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Abstract—Quantifying uncertainties for machine learning
models is a critical step to reduce human verification effort by
detecting predictions with low confidence. This paper proposes a
method for uncertainty quantification (UQ) of table structure
recognition (TSR). The proposed UQ method is built upon
a mixture-of-expert approach termed Test-Time Augmentation
(TTA). Our key idea is to enrich and diversify the table represen-
tations, to spotlight the cells with high recognition uncertainties.
To evaluate the effectiveness, we proposed two heuristics to
differentiate highly uncertain cells from normal cells, namely,
masking and cell complexity quantification. Masking involves
varying the pixel intensity to deem the detection uncertainty.
Cell complexity quantification gauges the uncertainty of each cell
by its topological relation with neighboring cells. The evaluation
results based on standard benchmark datasets demonstrate that
the proposed method is effective in quantifying uncertainty in
TSR models. To our best knowledge, this study is the first of its
kind to enable UQ in TSR tasks. Our code and data are available
at: https://github.com/lamps-lab/UQTTA.git.

I. INTRODUCTION

Table recognition has been studied in recent years to facili-
tate document understanding and retrieval tasks [1]. This task
can be decomposed into two subtasks: table detection (TD) and
table structure recognition (TSR). TD aims to automatically
identify tables present in digital documents. TSR aims to
identify the rows, columns, and individual text cells in table
images. Early works use classical machine learning models
such as conditional random fields [2] and hidden markov
models [3]. Recently, deep learning approaches e.g., [4]–[6]
have been proposed. The output files for TSR models typically
contain the coordinates of the identified cells in terms of row
and column numbers and coordinates of bounding boxes that
enclose the cells, so the cell content can be recognized by
subsequent optical character recognition (OCR) software.

The current TSR models can automatically identify cell
locations, but the results do not predict uncertainties [6],
[7]. This prevents TSR models to be applied in real-world
scenarios, such as faithfully extracting domain tabular data
for downstream analysis in scientific domains, e.g., materials
science. It is costly and sometimes infeasible for domain
experts to verify all data extracted by machine learning mod-
els. Therefore, automatically quantifying TSR uncertainties is
crucial to minimize human effort for data verification.
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UQ methods have been proposed for deep learning-based
solutions of several natural language processing [8] and com-
puter vision tasks [9], but to our best knowledge, it has not
been incorporated into TSR. A recent work [4] attempted to
incorporate confidence estimation into the cell structures of the
tables detected in document images but the confidence scores
were represented as binaries indicating whether a cell was
detected or not. Our work will abridge the gap by quantifying
uncertainties for TSR models as continuous values.

Uncertainties in a machine learning model can arise from
two major sources, namely, aleatoric uncertainty (also known
as data uncertainty) and epistemic uncertainty (also known
as model uncertainty) [10]. Aleatoric uncertainty occurs as a
result of measurement noise, data missingness, or outliers [11],
while epistemic uncertainty occurs due to the choice of model
architecture, hyperparameters, and initialization [12]. Several
methods have been proposed to quantify the uncertainties
in deep learning-based models, such as Bayesian methods
[13], Monte Carlo (MC) dropout [12], and Ensembles [14].
Bayesian neural networks use prior distributions to represent
prior beliefs about the parameters of the neural networks,
which are updated based on the data during training [13].
Once the model is trained, posterior distributions can be used
to estimate uncertainty. MC dropout is based on dropout
regularization [12]. Specifically, during prediction, the dropout
is applied multiple times to the network, and the variance
of the predictions can be used as a measure of uncertainty.
An ensemble method involves training multiple models with
different architectures and combining their predictions [14].
The variance of the ensemble predictions can be used as a
measure of uncertainty. Although Bayesian or MC dropout
methods are easier to interpret, they are hard to scale up
because they require multiple forward passes through the
network for each prediction and require modifications to the
neural network architecture to incorporate uncertainty [12].
Ensemble methods are more scalable, robust, and flexible
because they are agnostic to neural network architecture [14].

Our proposed UQ pipeline adopts the Test-Time Aug-
mentation (TTA), a technique that involves applying data
augmentation to samples during inference (or testing) time
and then ensembling the predictions [15].

One key component of the vanilla TTA is data augmen-
tation, which is usually task-dependent. The augmentation
methods should be controllable and orthogonal. For TSR, we



explore four heuristic methods to augment test table images,
which were chosen to probe the differential performance
of the pre-trained model using variations of the test data.
We combined the original and augmented images to obtain
ensemble results, at different confidence levels at a certain
Intersection over Union (IoU) threshold, computed by dividing
the area of intersection between the predicted bounding boxes
(bboxes) and the ground truth bboxes by the area of the union
of the two bboxes. If the predicted IoU is greater than the
threshold, the two bboxes are deemed to match.

One challenge in evaluating UQ methods is the lack of
human-labeled ground truth. Therefore, we proposed two
heuristics (1) masking, which involves varying the pixel inten-
sities of table images and then quantifying uncertainties using
confidence level estimation, and (2) cell complexity quantifi-
cation, which models the complexity of cell relations using
undirected subgraphs and uses the complexity of subgraphs as
a surrogate for recognition uncertainty.

To showcase the efficacy of our UQ model, we apply it
to CascadeTabNet [4], a recently proposed TSR model, which
was retrainable. However, our UQ framework can be integrated
into other retrainable TSR models. The contributions of this
paper are below:

1) We proposed a novel ensemble method called TTA-m to
quantify uncertainties for the results of TSR tasks and
showcased its efficacy on a reproducible TSR framework
called CascadeTabNet.

2) We proposed two controllable and scalable methods,
masking and cell complexity quantification, to build the
ground truth uncertainties.

3) We created a new dataset containing table images based
on the ICDAR-19 document TSR competition. The new
dataset augmented the original data using four heuristics
and the ground truth uncertainties based on the two
methods above.

II. RELATED WORK

A. Uncertainty Quantification

UQ has been an area of interest in both traditional machine
learning and deep learning [10]. Several methods have been
proposed to quantify uncertainties in deep learning models,
such as Bayesian models, Monte-Carlo Dropout, and Ensem-
bles [12]. One ensemble method is Bayesian model averaging
[14], which quantifies uncertainties by averaging predictions
from multiple deep learning models training with augmented
data. TTA emerged as a straightforward method to enhance
ensemble models [16]. TTA is easier to implement and more
computationally efficient.

B. Table Structure Recognition

TSR has experienced significant strides recently due to the
utilization of deep neural networks. For example, Schreiber
et al. [17] devised an innovative strategy amalgamating Faster
R-CNN and Fully-Convolutional Network architectures. This
convergence facilitated proficient table detection and precise
cell position localization. Siddiqui et al. [18] treated table

images as comprehensive scenes using deformable convolution
operations. This holistic approach offers a fertile ground for
imbuing UQ into the fabric of scene-based representation. The
work of Xue et al. [7] ventured into the realm of graph-
based inference to unravel table syntactic structures using
a cell relationship network. Khan et al. [19] harnessed bi-
directional Gated Recurrent Units to discern intricate row
and column boundaries in tables. The split and merge model
proposed by [6] introduces a strategy for addressing TSR
through hierarchical decomposition. Lee et al. [5] framed TSR
as a challenge of table graph reconstruction. Hashmi et al. [20]
implemented Mask R-CNN for anchor estimation in TSR.

However, most existing models are not able to quantify
uncertainties of their predictions.

III. TTA-M: PROPOSED UQ PIPELINE

Figure 1 illustrates the architecture of the proposed UQ
pipeline. The key modules include (1) Training with data
augmentation, (2) Fine-tuning a pre-trained TSR model (using
CascadeTabNet as a case study), (3) Inference with fine-tuned
models, and (4) Uncertainty estimation. Because the proposed
model modified the traditional TTA model, we call it TTA-m.
For convenience, we define M as the number of augmentation
methods applied to the original data.

A. Data Augmentation

Data augmentation has become a practice for developing
robust and transformation-resistant models [21]. We applied a
combination of M = 4 distinct data augmentation methods
across the training and test stages. These methods encompass
the removal of all lines (NLT), the addition of horizontal
lines (HLT), the inclusion of vertical lines (VLT), and the
incorporation of both horizontal and vertical lines (HLT +
VLT). Figure 2 shows augmented table image examples.

B. Fine-tuning A Pre-trained TSR Model

Instead of training the model on all augmented data, we
fine-tuned a pre-trained TSR model on each set of augmented
table images plus the original table images, resulting in M+1
distinct models.

C. Predictions With Fine-tuned Model

In the inference stage, we first applied the same augmenta-
tions to the test set. Then, instead of evaluating the pre-trained
model on the M+1 sets of table images, each fine-tuned model
was applied to its corresponding test data set. For example, the
model fine-tuned on tables with only vertical lines was applied
on tables with vertical lines in the test set. Each fine-tuned
model can be thus evaluated on standard binary classification
metrics (precision, recall, and F1-score). These predictions
are intermediate results. The final output is generated by the
ensemble module.



Original table 
images

NAT

HLT

VLT

HLT + VLT

NLT

Training data 
augmentations Fine-tuning

pre-trained 
TSR Model

NAT model

NLT model

HLT model

VLT model

HLT + VLT model

NAT

NLT

HLT

VLT

HLT + VLT

NAT output

NLT output

HLT output

VLT output

HLT + VLT output

Ensemble

Training Testing

Testing data 
augmentations Uncertainty 

estimation
Inference 

Figure 1. A schematic illustration of the proposed UQ pipeline (TTA-m). In the training phase, we fine-tuned the TSR model
on the original tables and augmented tables. In the test phase, each model makes a prediction on table images similar to what
it was trained on and then ensembling is applied on the model outputs. NAT: Non-Augmented Tables, NLT: No Lines Tables,
HLT: Horizontal Lines Tables, VLT: Vertical Lines Tables.

Figure 2. Augmentation examples of a table image.

D. Uncertainty Estimation via Ensembles

In this module, we use an ensemble method to aggregate the
predictions by fine-tuned models on augmented testing data.
Our method is different from the traditional TTA because the
training data is also augmented and the TSR model is fine-
tuned before it is applied to the corresponding augmented
test data. The uncertainty is modeled as the dispersion of the
predicted results. The uncertainty estimation process involves
progressively combining predictions from M + 1 models
based on the degree of overlap between cell predictions. This
aggregation results in a set of merged cells with associated
confidence scores, which collectively constitute the output.
The steps are detailed below. Here, we use θ0 to represent
the IoU threshold as the criteria to match the bounding boxes
of two predicted cells.

1) Obtain all the predicted bounding boxes from a randomly
chosen model out of the M + 1 models (considered as
the base model).

2) Obtain predicted bounding boxes from the second model.
3) Calculate the IoU for each predicted cell from the base

model against each from the second model. If the IoU ≥
θ0, merge these two cells and remove the second model’s
cell from its list.

4) Repeat steps 2 and 3 for predictions from the remaining
models i = 3, 4, ...,M + 1.

5) Sequentially use i = 2, 3, 4, · · · ,M + 1 models as new
base models and perform calculations similar to Steps 1
to 4 for the cells that have not been merged.

6) For all cell combinations generated in the above steps:
a) Count the number of distinct models contributing to

each cell combination.
b) Divide the count by M +1 to calculate the confidence

score for that combination (Figure 3).

Figure 3. A schematic illustration of how to calculate confi-
dence scores using bounding boxes predicted by three models
(a, b, and c). Red color: 3/3 = 100% confidence, Green color:
2/3 = 66.7% confidence, Other colors: 1/3 = 33.3% confidence.

IV. EVALUATION

Because the ground truth uncertainties are not available
for the annotated cells, we proposed two methods to gauge
uncertainties in different scenarios and use them as surrogates
to evaluate the UQ pipeline.

a) Masking: The masking technique artificially changes
the level of difficulty by varying the intensity of pixels on table
images. Firstly, we increased the pixel intensity by a factor of
2 for each cell which makes the pixels appear fainter, and
calculated the confidence estimates at the previously defined
confidence scores. Next, we multiplied all pixel values by
3. If the pixel value becomes greater than 255, we set it to
255. Then, we estimated the confidence scores of the TSR
models at each intensity level. Our results indicate that the
intensity of cell pixel values remarkably affects the distribution
of confidence scores.



b) Cell complexity quantification.: We observed that
TSR models are more likely to make mistakes for tables with
complex structures. Specifically, table images may contain
cells that span across multiple rows and/or columns, which
are challenging for TSR models in general. To quantify the
structure complexity, we model a table as a non-directed
graph in which the nodes represent table cells, and the edges
represent adjacency between cells. We considered four types
of adjacency relations: left, top, right, and bottom. We define
adjacency degree as the number of adjacency cells of the target
cell, where a cell represents a unit within a table that contains
meaningful text contents. Intuitively, the higher the degree of
a cell is, the more likely the bounding box is incorrectly
predicted. Therefore, our evaluation will test whether the
fraction of cells detected with low confidence increases with
the average degree of a table. Figure 4 illustrates examples
of relationships that could exist between the cells of a table
image. For evaluation, we manually annotated the relations
between cells and constructed a graph for each table in the
test set.

Figure 4. An example of the graph model of a table. Each cell
is enclosed by a red box, with an ID labeled next to it. The
dashed lines represent the connections of a cell to its adjacency
cells and can be used for counting the adjacency degrees of a
cell. For instance, cell 5 is connected by 2 green lines, so it
has an adjancency degree of 2.

V. EXPERIMENTAL SETUP

A. Data

We used the dataset created for the competition at the Inter-
national Conference on Document Analysis and Recognition
(ICDAR) 2019 containing real-world table images. For an even
comparison, We used the dataset adopted by Prasad et al. [4]
consisting of 543 table images selected from the benchmark
dataset created for the competition at the International Con-
ference on Document Analysis and Recognition (ICDAR-19).
We randomly selected 443 table images for training and the
remaining 100 table images for testing. The ICDAR 2019
dataset was originally used for both TD and TSR. We only
used the ground truth labels for TSR.

B. Baseline Methods

We compare TTA-m with three baseline methods, including
two variants of TTA and an active learning model.

Figure 5. A schematic comparison of TTA variants imple-
mented by this paper. TTA-m is proposed for its highest F1
over the others (Table I).

a) TTA-t: TTA-t adds a small cell filter to the vanilla
TTA to exclude small cells predicted by fine-tuned models.
In observation, these small cells are usually produced by fine-
tuned models using augmented data, and the large cells are
produced by the model fine-tuned using the original data.
These small cells occupy areas much smaller than the actual
cell and thus do not contribute to confidence scores. Therefore,
we crafted simple heuristics to remove them before ensembling
the predicted results. The small cell filter is applied if its area
(S) meets the following conditions. (1) the smaller cell is
fully inside a bigger cell, (Ssmall ∩ Slarge)/Ssmall = 1; (2)
the smaller cell is significantly smaller than the bigger cell, or
Ssmall/Slarge ≤ 0.5.

b) TTA-tm: TTA-tm combines the TTA-t and TTA-m
model, which includes both training data augmentation and
the small cell filter (Figure 5).

c) Active Learning: We also compare our method against
an active learning model proposed by Choi et al. [22]. This
method aims to reduce labeling costs by selecting only the
most informative samples in a dataset. It uses a mixture
density network that estimates a probabilistic distribution for
each localization and classification head’s output to explicitly
estimate the aleatoric and epistemic uncertainty in a single
forward pass of a single model. This method uses a scoring
function that aggregates these uncertainties for both heads to
obtain every image’s informativeness score. We fine-tuned the
baseline model on the table images in our training set and
tested it on the original table images.

C. Experiment Design

We conduct three experiments to evaluate the proposed
model. Our goal is to demonstrate that the ensemble results
generated by the proposed model can accurately detect cells
and that the confidence levels can be reliably used as a
measure of uncertainty. To showcase the efficacy, we adopt
CascadeTabNet [4] as the TSR model. All experiments are
run on a server with 24 Intel Xeon cores, 384GB RAM, and
4x Nvidia 2080 Ti GPUs. The fine-tuning was run 1 time for
either the training or the test set.

a) Experiment 1: Cell Detection.: In the first experiment,
we compare model performances on cell recognition. The
results in Table I show that the TTA-m model outperforms



TABLE I: Comparing the models used in our study. The mod-
els compared include the original CascadeTabNet, baseline,
and the fine-tuned CascadeTabNet on the four augmentation
types and original table images.

Model Augmentation Method Precision Recall F1

Vertical lines 0.765 0.713 0.738
Horizontal lines 0.792 0.707 0.749

TTA Both lines 0.725 0.677 0.701
No lines 0.846 0.742 0.793
Original 0.883 0.767 0.823

TTA ensemble result 0.683 0.824 0.753

Vertical lines 0.854 0.755 0.802
Horizontal lines 0.841 0.758 0.798

TTA-m Both lines 0.844 0.744 0.791
No lines 0.838 0.738 0.785
Original 0.883 0.771 0.823

TTA-m ensemble result 0.761 0.835 0.798

TTA-tm ensemble result 0.778 0.831 0.806

Baseline Original 0.899 0.659 0.76

all the baseline models in terms of the F1-scores. Note that
we should not compare against F1-scores of models based
on individual augmentation methods because they are not the
final output of the pipeline. Notably, the employment of the
ensemble technique resulted in a reduction in precision but an
improvement in recall. However, the poor performance of the
fine-tuned model on the augmented table images implies its
low generalization capability to such augmented testing data.

b) Experiment 2: Confidence Level as a Measure of
Uncertainty.: To demonstrate the confidence level output by
the proposed model can be used as a measure of uncertainty,
we calculated the percentage of correctly predicted cells at 0.2,
0.4, 0.6, 0.8, and 1.0 confidence levels and an IoU threshold
θ0 = 0.5. The confidence levels were obtained based on the
overlap area of the 5 predicted bounding boxes. For example,
if only a cell is overlapped by two predicted bounding boxes,
the confidence level is 2/5 = 0.4 (as shown in Section III-D).
Figure 6 shows that the percentages of the correctly predicted
cells increase monotonously with the confidence levels for the
TTA and TTA-m models. However, this trend is not seen for
the results produced by the baseline method. Figure 6 also
indicates that the TTA-m method correctly predicted over 80%
of cells with a confidence of 1.0.

c) Experiment 3: Confidence Level as a Measure of
Uncertainty Gauged by Pixel Intensity.: The purpose of this
experiment is to evaluate proposed models when table image
pixel intensity varies. Figure 7 indicates that the whole curve
of the fraction of correctly predicted cells is shifted down as
the pixel value increases (so the pixels look fainter). The only
exception is when the confidence level is 0.8, but the difference
is subtle. Intuitively decreasing pixel intensity (increasing pixel
values) should increase the difficulty of accurate detection,
leading to higher levels of uncertainty. The results in Figure 7

Figure 6. The percentage of true predictions for the TTA
(green) and TTA-m (red) and baseline (light-green). TTA-m
outperforms both the TTA and baseline models for confidence
levels above 0.6.

Figure 7. Evaluations of the reliability of the confidence scores
as a measure of the uncertainty. m1: no masking applied; m2:
pixel values doubled; m3: pixel values tripled.

indicate that this trend is captured by the confidence levels
output by the TTA-m model.

d) Experiment 4: Confidence Level as a Measure of
Uncertainty Gauged by Cell Complexity.: In this experiment,
we quantify cell complexity by the adjacency degrees, which
is used as a gauge of uncertainty here assuming that cells
with more complex structures (and thus adjacency degrees)
are likely to be detected with higher uncertainty. Table II
shows that approximately 85% of the cells in our test data
have between 3 to 4 degrees of relationships with neighboring
cells. In general, the confidence level decreases as the degree
of relationships between cells increases from 1 to 6 with the
exception of degree 5.

VI. CONCLUSION AND DISCUSSION

This study explores UQ in TSR problems by modifying the
traditional TTA technique and testing it on a customized Cas-
cadeTabNet model [4]. To evaluate the effectiveness of our UQ
method, we used masking and cell complexity quantification



TABLE II: Quantifying cell complexity based on the adjacency
degree of table cells. The mean confidence level was obtained
by taking the average of the confidence scores obtained for all
cells for each degree.

Degree #Cells Cells% Mean Confidence Level

1 27 0.5 0.95
2 409 7.61 0.84
3 1878 34.93 0.74
4 2937 54.62 0.71
5 115 2.14 0.77
6 8 0.15 0.65

techniques. These techniques involve adjusting cell pixel in-
tensity and determining cell complexity based on relationships
among cells in table images at different confidence levels. The
proposed method demonstrated better Experiments indicating
the proposed UQ method provides a more reliable uncertainty
estimation.

Compared with the vanilla TTA, TTA-m extends the data
augmentation to the training phase, which increases the cost
of time to obtain uncertainties of the TSR model. When
inferencing the pipeline on a dataset without ground truth
labels, one can simply adopt pre-fine-tuned models, so only
the test data augmentation is needed.

Our approach to quantifying uncertainty takes into account
both data variation and model variation, unlike the vanilla TTA
method that only considers data variation. This is achieved
through fine-tuning the target TSR model using our UQ
method, which is not limited to any particular TSR model.
Additionally, the data augmentation techniques utilized in our
study ensure that the TSR model is invariant to different types
of tables.

Our study has the following limitations. First, the lack of
ground truth limits the capability of assessing real uncer-
tainties. Although we used the pixel intensity and adjacency
degree as proxy gauges of detection uncertainties, the real-
world data can be hybrid. Such ground truth data could be built
by collecting human corrections of automatic annotations by
TSR models. Second, the ways we augmented the table images
may not be comprehensive. Specifically, the augmentation
techniques we explored might not encompass all possibilities
or capture the extensive array of variations present in table
images. This limitation can be mitigated by building a library
of heuristics to modify table images or by building a corpus
of artificially synthesized tables.
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