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K-theory equivariant with respect
to an elementary abelian 2-group

William Balderrama

ABSTRACT. We compute the RO(A)-graded coefficients of A-equivariant com-
plex and real topological K-theory for A a finite elementary abelian 2-group,
together with all products, transfers, restrictions, power operations, and Adams

operations.
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1. Introduction

Fix a finite elementary abelian 2-group A, that is, A = (Z/2)" for some
n. The purpose of this paper is to provide a reference for the structure of A-
equivariant complex and real topological K-theory. Geometrically, this gives in-
formation about stable classes of A-equivariant vector bundles over A-represen-
tation spheres. Homotopically, this gives information about A-equivariant sta-
ble homotopy theory at chromatic height 1.

We are not the first to study this. In particular, the additive structure of
7,KU 4 is known: Karoubi [Kar02] has described the groups 7, KU for any
finite group G, and the particular case G = (Z/2)" was revisited by Hu-Kriz
[HKO06]. Moreover, the coefficients of KO, were computed by Crabb-Steer
[CS75], Guillou-Hill-Isaksen-Ravenel have analyzed the connective analogue
koc, [GHIR20], and (KOCZ);\ was studied in [Bal21]. We are then interested in
the descent to KO 4 for general A and the wealth of additional structure present,
including products, transfers, restrictions, power operations, and Adams oper-
ations.

Though our computation gives ostensibly geometric information about vec-
tor bundles, our motivation is homotopical. Classically, KO has an infinite
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Hurewicz image, and its Bott periodicity reflects v,-periodicity in stable ho-
motopy theory. This refines to equivariant Bott periodicity for Spin representa-
tions, which give a rich web of periodicities in 7, KO 4, and these suggest a simi-
larly rich web of periodicities in A-equivariant stable homotopy theory. Sharper
information may be obtained by considering the A-equivariantJ-spectrumJ, =
Fib (33 -1: (KO 4)) — (KO A)(Z))' Our computation gives information nec-
essary to understand J 4, although we shall not pursue this further. When A =
C,, we note that the additive structure of 77, (J Cz);\ may be recovered from work
of Adams on the K-theory of projective spaces [Ada62], and has been studied
in the guise of the C,-equivariant J-homomorphism by several people [L578,
Cra80, Min83], with an analysis of the ring structure appearing in [Bal21].

We were led to this computation by a different path. Recently, Gepner-Meier
[GM20] have produced a fully integral theory of equivariant elliptic cohomol-
ogy for abelian compact Lie groups, building on work of Lurie [Lur09, Lur19];
this produces good analogues of equivariant K-theory at chromatic height 2.
We were initially led to study A-equivariant K-theory as we were investigating
equivariant elliptic cohomology and found that even the height 1 computations
we wished to consult did not exist. From this perspective, 7, KU 4 and 7, KO 4
give the A-equivariant analogues of those height 1 patterns which are found
across chromatic computations at p = 2. A good understanding of these pat-
terns is necessary for work at higher heights, and this motivated the present
work.

We summarize the structure of 7, KU 4 in Subsection 2.1, and of 7, KO, in
Subsection 3.1.

1.1. Conventions. We will maintain the following conventions throughout the

paper.
(1) We write AV for the dual space of A. Thus

AY =~ Hom(A, C,) ~ Hom(A, U(1)),

with corresponding isomorphisms Z[AY] = RO(A) = RU(A). We write the
group structure on AY multiplicatively, and refer to its elements as functionals.
Given K,L Cc AY, we write K + L C A for the smallest subgroup containing
KUL.

(2) The symbols 4, u, x, § are understood to range through linearly indepen-
dent functionals on A. Thus for instance “Z[x, ,]” would be shorthand for
“Zlx3, : A, u € AY linearly independent]”.

(3) Similarly, the symbol H ranges through the rank 2 subgroups of A, and
the symbol E ranges through the rank 3 subgroups of AV.

(4) Given functionals 4,, ..., 4, € A, we shall write (1, ..., 4,) C A" for the
subgroup generated by 4, ..., 4,.

(5) Finally, given a codimension 1 subgroup j: ker(4) C A, there is an A-
equivariant cofiber sequence

A/ker(d), — §° 25 st
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where the first map sends A/ ker(1) to the non-basepoint of S° and the second
map is the inclusion of poles. Smashing this with an A-equivariant spectrum
R, gives rise to the long exact sequence

Ji e J*
= T Rker(y =2 TxRa > Ty iRy —> 7 j*(x=)Rkerty —>

with j* the restriction and j, the transfer, and we shall freely make use of the
resulting equalities

ker(j* : muRp = 7jeyRyer(n)) = Im(p; ¢ Ty y1RA — T4 Ry),
ker(py @ TuyaRa = 7yR4) = Im(jy ¢ 7jexra)Rier(r) = TraRa)-
2. Complex K-theory

2.1. Summary. For ease of reference, we gather the result of our computation
in one place.

Theorem 2.1. The coefficients of KU 4 behave as described in this subsection.

The proof is spread throughout the rest of this section, glued together as de-
scribed below.

2.1.1. Generators. We begin by describing a set of multiplicative generators
for 7, KU 4.

There are three basic types of invertible elements in 7, KU, arising from
equivariant Bott periodicity. Following Atiyah [Ati68], for every orthogonal A-
representation V admitting a Spin® structure, there is an invertible Bott class
by, € my KU 4; to be precise, we shall take the Bott class denoted there by 4y,.
In particular, let § = b, € m,KU 4 be the standard Bott class, and define the
following Thom classes. First, for every nontrivial functional 1 € AV, the or-
thogonal representation 24 = 4 @ C admits a complex structure, and we set
77 = 8- b} Next, for every rank 3 subgroup E C AY, the orthogonal represen-
tation ), 1ep A admits a Spin structure, and we set 7y = Bg*- bgAIEE ;- Letusagree

to call any class in 7, KU 4 which is a product of classes of the form g*!, sz,
and g, a Bott class.

There are two basic types of noninvertible elements in 7, KU 4. First are
classes obtained from the case where A is cyclic: for each nontrivial functional
A € AY, there is a class p; € m_,;KU, obtained as the Hurewicz image of
the class in 7_;S 4 represented by the inclusion of poles S — S*. Second are
classes present only when A is of rank at least 2: for each rank 2 subgroup H C
AY, there is a unique class ky; € my_5,_, KU, such that 2ky; = tr(1), where
tr: moKU — 7m4_5,_, KUy is the transfer. We will construct ky; in Lemma 2.16.

We also give names to the following elements of 7, KU 4:
d;t:pif/{z‘@, U/lzl—d/l, I’li:1+0',1.

Under the isomorphism 7,KU 4 = RU(A), the class g, corresponds to the char-
acter A ® C, and h; = C[A/ ker(1)].
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2.1.2. Basis. If 7:KU, # 0, then there is a nonzero class x € ;KU 4 of the
form

X = P/ll ...p/ln . t- kHl ka

satisfying the following conditions. WriteK = H,+---+H,, and L = (4, ..., 4,).
Then

(1) A4,...,4, € AY are linearly independent;

(2) tis a Bott class;

(3) K is of rank 2m;

(4) KnL=0.
We shall call such a monomial a basic monomial, and refer to the classes rep-
resented by basic monomials as basic generators. These representations are not
unique. We now have 7, KU, = 0 and

KUy = Z{x} @ RU(A)/ (02 + 1) : L€ {4y, ..., 4.}, (02— 1) : L €K)

as myKU 4-modules. This is largely a reinterpretation of the computation of
KU, by Hu-Kriz [HK06], as we will explain in Subsection 2.3.

Remark 2.2. By relation R.9 below, one may always suppose a basic generator
is represented by a basic monomial as above satisfying n < 2. Alternately, if
n # 0, then one may suppose m = 0.

Example 2.3. If § = 3 -1 — u — Au — x — Aux, then KU , is generated by

: : _ -2._-2
the basic monomial X = P20 T2 1) T 1, T -

2.1.3. Relations. The multiplicative structure of 7, KU 4 is determined by the
following:

R.1 All basic monomials (2.1.2) in the same degree give the same class;

R.2 p h; =0, or equivalently, 0,0, = —p;;

R.3 d;, =d; +d, —d;d,, or equivalently, 0;, = 0;0,;

R4 PAPuPiu = 0;

R.5 p kg =0for A € H;

R.6 ki umka, 9= = 200 100) Tt Ty Kt i) — PuPicPaguP T3 8%

2
R.7 k</1 2 T/I‘L'# Mh,lh

This will be shown in Subsection 2.4.

Example 2.4. We record the following special cases of R.1:
— 22222 .
R.8 1'(/““{} TITLT TMTMTWTAW
R9 pﬂ.pplpKT<ﬂ.,ﬂ,K>;6 PauxT 21 uTKk{l,/lpt Ax ,wc};
2 2 —
R.10 T<u,x,6>fa,<fmk<a wkies) = T TaTak, M5>k</lx W
R11 010uT(x,4418) 16T s Kiaun,) = PASPUST(A408) T T s K.8)-
Here, R.11 is redundant, being implied by R.9. It is plausible that R.1 could be
replaced by some minimal set of relations such as these, but we shall not pursue
this.
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Remark 2.5. R.6 may written as k; wkoaxy = Ay * T T /mka Lacy» al-
though this is no longer symmetric.

Remark 2.6. It is interesting to observe that relations R.2 and R.3 do not im-
ply R.4, but do imply 20,0,0;, = 0, and that this is all that holds in 7, KO 4
(Section 3).

2.1.4. Restrictions. Fix a second elementary abelian 2-group B. For any ho-
momorphism g : A — B there is a restriction

g": mKUp = gy KU 4.
This is determined by the following.
(1) g* is a ring homomorphism;
(2) g* preserves Bott classes;
(3) g"(pa) = pg+a, With the understanding that p; = 0;
(4) If gVH C AV is of rank 2, then g*(ky) = kgvpy; if gYH C AV is cyclic
with generator A, then g*(ky) = Tflh,l; and if g¥H C AV is trivial then
g (ky) = 2.
Here, (4) holds by Lemma 2.16 and the definition of kg, and the rest are clear.
Example 2.7. Let j: ker(1) C A. Then j*(z(z,.)) = TJZ.* (M)TJZ.* (K)TJZ.* o
2.1.5. Transfers. To any subgroup inclusion j: L C A, there is a transfer
Ji: mpx KUy, — 7, KU,. These are transitive, so to describe their effect it is
sufficient to consider the case where L = ker(4) is a codimension 1 subgroup.
Now j, is determined by the following.
T.1 jyis 7, KU4-linear, i.e. j,(x - j*(y)) = ji(x) -y for x € 7., KUyerzy and
Yy € T, KUy,;
T.2 ji: moKUyerry — moKU 4 satisfies ji(1) = hy € moKU 4;
T.3 ji: Mppjry KUker(z) = Ma—y-2,KU 4 satisfies j,(rjz.*#) = 0uP1P;
T4 ji: Ty 2jouKUxern) = 3-1-y-2,KU 4 satisfies ji(z3, ) = ki -
This will be shown in Subsection 2.5.

Example 2.8.

T.5 j,: 7r0K Uker( A) = Ty qurr—icKUA 18 determined by T.1and T.4;as 1 =

jrat 12 12 72), it satisfies j(1) = T

Aty Ap A M x) /m Axk@ 798

2.1.6. Weyl action. For any subgroup j: L C A, there is an action of the
Weyl group WL = A/L on 7., KU;. Together with all the preceding, this
makes the collection {#,KU; : L C A}into an RO(A)-graded Green functor
[Gre71, LMO06]. To describe this action we may reduce to the case where L =
ker(4) is a codimension 1 subgroup, so that W4L is cyclic with generator Q.
Now Q acts by

Qx = j*ji(x) — x.
This is merely a reformulation of the double coset formula.
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Example 2.9. If £ = i*({) for any sectioni: A — L and { € RO(L), then Q
acts trivially on 7 ;.: KU}, = KU} . On the other hand,

(1) Qactson 7.y, _2,)KU; = Z{TJZ.*M}®RU(L) as multiplication by —0 .,

(T.3);

(2) Qacts on 7js3_3_y_3,)KUp = Z{rjz.m} ® RU(L) as multiplication by
2.1.7. Power operations. Equivariant K-theory is equipped with power oper-
ations, as constructed by Atiyah [Ati66]. From this, one may produce for every
subgroup j : L C A amultiplicative norm map

j® : W*KUL - ﬂj!*KUA.
Together with all the preceding, these norms make { ,KU; : L C A}intosome
flavor of Tambara functor [Tam93, AB18], although we shall not make use of
this formalism. By transitivity, to describe this it is sufficient to instead describe
the external squaring operation
Sq: M KUy = Ty1+0)KU axc,

where o denotes the generating functional on C,. This is determined by the
following.

(1) Sq(xy) = Sq(x) Sq(y);

(2) Sq(x + y) = Sq(x) + Sq(y) + tr(xy), where tr is the transfer;

(3) Sq preserves Bott classes;

(4) Sq(pa) = papacs

(5) SQ(ku,m) = T(/l,u,a)fc?4(o'/1 + Oy + Oau + Ua)-
Here, (1) and (2) are general properties of Sq, and the rest will be computed in
Subsection 2.6.

Remark 2.10. Regarding (3), explicitly we have

Sq(B) = t;28%  Sq(t;) = 1375 150,
SA(T () = Thpaaeo) T Tin) T3 T Tag To
where the last monomial is noncanonical though the class itself is not.

2.1.8. Adams operations. Fix an odd integer ¢. Then the Adams operation
¥’ acts on 7, KU A[%] by ring automorphisms [HK82], and is given on genera-
tors by the following.

(1) pr(B) = 8.

@) P =73 +5(¢ = Ddy).

@) Pp) = 7L+ 22 = DT,y d)-

4) 9%(p2) = pa-

(5) 9*(kn) = k.

Here, (1) is standard and (4) is clear; (2) is pulled back from Lemma 2.14

along1: A - C,, and we will see (3) in Lemma 2.15 and (5) in Lemma 2.16.
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Example 2.11. ¢~'(z;) = 750; and ~!(rp) = 7.

Remark 2.12. Using R.3, one may write %’ (7(3 ) = T(z ) - X Where

X = 1+§(€2—1)(dl+dﬂ+d,c)— i(fz—l)(dld#+dldk+d#dk)+ %(ﬁ—l)dldﬂd,{.
This concludes our statement of Theorem 2.1.

2.2. Low ranks. Let o be the generating functional of C,. We begin by con-
sidering KU, ; here we omit the subscript o from the classes in 7, KU, intro-
duced in Subsubsection 2.1.1. For this material see also [Bal21].

Lemma 2.13. 7,KUc, = Z[f*',7*2,p]/(p - h).
Proof. Asin Subsection 1.1, there is a C,-equivariant cofiber sequence
Cyy — 8% > 5°

giving rise to a long exact sequence

o
- —> TaoKUc, = T KUg, =% (KU =5 Tayo KU, — -

In particular, there is a short exact sequence
0 — KU —%% 7KUc, —£5 7n_,KUs, —> 0 .

Astr(1) = C[C;] = h,we have p-h = 0. This sequence also implies 7_;KUc, =
Z{p}, and the lemma follows. O

Lemma 2.14. The Adams operation ? for ¢ odd acts on 7w, K Uc, [%] by multi-
plicative automorphisms, and is given on generators by

PR =¢B  PEH=tA+ (¢ D), Pp) =p.

Proof. As 7, KU, [%] embeds into 77, (K UCZ);\, it suffices to show these iden-

tities hold after 2-completion. In [Ada62, Theorem 7.3], Adams computes the
K-theory of stunted real projective spaces, together with their action by 1*. This
computation shows that the completion map

7,420KUc, = KUT(PY) 2 lim KU(PY),

where P} = RP"/ RP!, is an isomorphism after 2-completion. Thus Adams’
computation gives us the action of ¢ on 7, (K Uc,),, after noting that his D
corresponds to our —7~24 and his ¥ corresponds to our 7723d. O

We also record the following here.
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Lemma 2.15. Suppose that A is of arbitrary rank, and fix an odd integer €. Then

. 1 .
the action of Y? on m KU A[;] satisfies

1
Pp) =11+ (€2~ 1) > dif.
A€E\{1}

Proof. Write £ =8 — ), 1ep A The joint restriction map

7T§KUA—) H 7Ti*§KUL
i: LCA,
L cyclic

is an injection, so it is sufficient to verify the stated formula for ¢ after restric-
tion to any cyclic subgroup of A. This now follows from Lemma 2.14. O

Now suppose that A is of rank 2.
Lemma 2.16. Write§ =43, _,, A Then
ﬂé’KUA = Z{k}, 77.'§'+1KUA =0,

where k satisfies the following properties. Choose any j : ker(1) C AV. Identify
ker(1) = C,, and writei: 1 C C,. Note j*(§) = 2 — 20, where o is the generating
functional on C,.

(D k = ji(t?), where ji : 7y »,KUc, = m:KU y;

(2) 2k = tr(1), where tr: myKU — 7w:KU 4 is the transfer;
(3) k restricts to 2 in m,KU;

@ 9 (k) = kinm, KU[];

(5) k restricts to T*h in m,_,,KU¢,.

Proof. (1) Choose u € AY linearly independent from A, so that AY = (4, u).
The cofibering

A/ker(A), ® S5 — 5574 — 55,

gives a short exact sequence

J* Jr
0 — Tera-)KUa —> T 2,KUc, —> KUy — 0.

As&+ (1 —A) = —u— Au+ (4 —22), we may identify
Tey-nKUa = 7_y 3, KU 4 ® Z{T36} = Z{p 01,736}
As
7TZ—20'KUC2 = Z{TZ’ pzﬁ}a j*(p/xpl,uf/zlﬁ) = pzﬁa

it follows that 7:KU, = Z{k} where k = ji(t?). The same cofibering shows
also g KU, = 0.
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(2) Note that i, : m)KU — 7, 5,KU, satisfies iy(1) = i(i*(r?)) = 7* -
i\(i*(1)) = r%h. By transitivity and the short exact sequence used for (1), it
follows that tr : 7yKU — 7¢KU 4 satisfies

tr(1) = ik (1) = j(z?h) = j272) = 2k.

(3) This follows from the double coset formula, because A acts trivially on
iy KU.

(4) 2k is in the Hurewicz image by (2), so is fixed by ¢?. Thus the same is
true for k.

(5) As k is fixed by 171, its restriction to ,_,,K Uc, lands in the fixed sub-
module H({p*'}; m,_,, KU ) = Z{r?h}. Thus j*(k) = ¢ - 2h for some integer
t,and ¢ =1 by (3). ([

For more general A, we obtain the class ky € 74_5,_,1KU,4 by restriction
along A - H".

2.3. Basis. Now let A be an arbitrary finite elementary abelian 2-group. The
structure of 7, KU 4, was investigated by Hu-Kriz in [HKO06]; part of their argu-
ment can be understood as a constructive proof of the following.

Lemma 2.17. Every { € RO(A) may be written in the form § = ¢+ S+ V, where
(1) € €{0,1}.
(2) S is a sum of virtual representations of the form +24 and + ), rep e In
particular, S is KU-orientable.
(3) VisoftheformV =%, . 4 + lejSm ZleHj A, where
(@) Aq,..., 4, € AV are linearly independent;
(b) Hy,...,H,, C AY areof rank 2 and H, + --- + H,, C A" is of rank
2m;
©) Ay ApyNn(H; + -+ Hp) =0.

Proof. This is contained within the proof of [HK06, Theorem 1], so let us just
explain how to translate their work to the present context. Let I C RO(A) be
the subgroup generated by the trivial representation together with elements of
the form S given in (2). Then we are claiming that every element of RO(A)/I is
equivalent to one of the form V given in (3).

Additively, we may identify RO(A)/Z{1} =~ Z[AY \ {1}], and there is a se-
quence of surjections

RO(A) — F,[AY \ {1}] — RO(A)/I.

Choose a basis AY = Fy{ay, ..., ap}. Then [, [AY \ {1}] corresponds to the set of
hypergraphs on {a;, ...,a,} used in [HK06]. There it is shown that every hyper-
graphon{ay, ..., a,}is equivalent in RO(A)/I to a disjoint union of hypergraphs
on subsets of {a, ..., } of cardinality at most 2. The only hypergraphs on a set
{a, B} with two elements are, in additive notation,

0, a, B, aB, a+p, a+aBf, B+aBf, a+p+af,
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and a disjoint union of these is, up to adding a multiple of the trivial represen-
tation, of the form V given in (3). O

Recall that a basic monomial isa monomial of the form py, --- py -t-kp, -+~ kg,
where 44, ..., 4, are linearly independent, ¢ is a Bott class, H; + --- + H,, is of
rank 2m, and (4,,...,4,,) n (H; + --- + H,,) = 0, and that a basic generator is a
class which may be represented by a basic monomial.

Proposition 2.18. Fix { € RO(A), and suppose that 7:KU 4 # 0.
(D w1 KUy =0;
(2) meKU 4 is a cyclic RU(A)-module generated by a basic generator x;
(3) Choose a presentation x = py, -+ p; -t-ky, -~ ky _of x by a basic mono-
mial. Then 7:KUy = Z{x}QRU(A) /(03 +1 : A €{Ay,.... 4.}, 03 —1:
A€H{+ -+ Hp).

Proof. FirstconsiderarepresentationV =}, . (=4)+2, < PICEDIPS)
3= =J= J

satisfying the conditions necessary for y = p; ---p; kg, - ky, € myKU, to
be a basic monomial. Write L; and K for the quotients of A dual to (4;) and H,
so that the low rank calculations of Subsection 2.2 imply

7_3,KUr, = Z{py}, 91,1, = —Pa,
and
7T4—z,1€Hj/1KUKj = Z{kHj}’ pAkHj = kHj,
the latter for A € H;. Let C¥ = (4, ...,4,) + H; + --- + H,, C A", and choose
a splitting of the surjection A — C with complementary summand B. Then

the external Kiinneth ismorphisms of the form 7,/ KUy ® xy TxnKUgn =
7T*/+*//KUA/®AH lmply that

nyKU, = myKUp @ myKU¢ = RU(B) ® Z{y}
_ g,+1:A€{l,....,4,.}, )
_Z{y}®RU(A)/< op—1:A€H, +-+H,

as myKU 4-modules, and that 7y, KU, = 0. This proves the lemma when
& = V. The general case then follows from Lemma 2.17, which implies that
any £ € RO(A) may be written in the form ¢ + S + V where ¢ € {0,1} and
KU 4 contains a Bott class ¢. (]

We must verify the uniqueness of basic generators.
Lemma 2.19 (R.4). p;0,0;, = 0.

Proof. Note that

ﬁ_zk(/l,u) € 7T—1—/1—;,L—/1/.LKUA-
In particular, we have 7_;_ A—u—1u KU 4 # 0, and thus 7_ A1, KUs =0 by
Proposition 2.18. This implies p; 0,04, = 0. O

Lemma 2.20 (R.9). 00,0, = P/mxfaﬂ’x)l'ifﬁfiﬁ_lk{l,/m,/lx,/m}-
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Proof. Without loss of generality, we may suppose that A is of rank 3. By
Lemma 2.19, the class p;0,0, is in the kernel of restriction to ker(4ux), and
is therefore divisible by p,,,.. The only possibility is that

— -1 2.2 2n-1
PaPuPrx = - p/l,uKT@’M,K)T/IT,uTxﬁ k{l,/lu,/lx,/ﬂc}

for some integer ¢. After restriction to ker(Au) N ker(ux) = C, this becomes
p* =t 207?67,

and thus ¢ = 1 by Lemma 2.13. O

Proposition 2.21. In the situation of Proposition 2.18, the class x is unique.

Proof. Write x = py ---py -t - kg, --- kg, and fix another basic generator
x' = py PN, t -k - kyy, in the same degree, so that we are claiming
x = x'. Without loss of generality we may suppose ¢t = 1.

Note thatn = Oifand onlyifn’ = 0. Indeed, n # 0 precisely wheno,-x = —x
for some x, and likewise n’ # 0 precisely when o, - x’ = —x’ for some k. As
both x and x’ generate 7:KU 4, these conditions agree.

Suppose first n = 0. Observe H; + --- + H,, = {x € AY : 0, -x = x}
and H| + --- + Hy, = {x € AY : g, - x' = x’}. Asboth x and x’ generate
m:KU 4, it follows that Hy + --- + H,, = H| + --- + Hy,. Thus we may suppose
without loss of generality that A = (H; + --- + H,,)" is of rank 2m. In this case
KU, = Z{x} = Z{x'}, and so x = +x’. Asboth x and x’ restrict to 2" in
7oK U, the only possiblity is that x = x’.

Suppose next n > 1. By a repeated application of Lemma 2.20, we may ex-
pand x and x’ into monomials of the form x = p, ---p; -sand x’ = P P
s’, where 14, ..., Ay are linearly independent, /13, s /1,’c are linearly independent,
and s, s’ are Bott classes. After modifying these by a Bott class we may take
s = 1. Observe that oy -x" = —x'for1 <i < k. As both x and x’ generate
eKUy, it follows that o X = —X; thus we may write /1{ = /lni,l Ani,si , where
N1, ..., N are distinct and s; is odd, and in particular, A, ... ,/1,’() C Ay s Ap)e
In the same way we find (1,,...,4;) C (1,... ,A]’c), so these subgroups agree.
So we may suppose without loss of generality that A = (4, ...,4;)" is of rank
k. In this case 7;:KU, = Z{x} = Z{x'}, so that x = +x’, and we must show
that this sign is positive. Let K = [, <i<j<k ker(4;4;) and write j : K C A for
the inclusion. Write 1 for the restriction of 4, to K, so that j*(x) = p’/{. By the
decompositions 1] = 4, ++ Ay, » we find that j*(x") = p’; < j*(). As jH*(s') is
a Bott class in 7K Uy, it must be that j*(s") = 1, so that j*(x) = j*(x’). Thus
the sign in x = +x’ is positive, and x = x’. O
2.4. Relations. We must now verify the relations of Subsubsection 2.1.3. We
begin with those which are by now clear.

Lemma 2.22.
R.1 There is at most one basic generator in any single degree;
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R.2 pyh; =0, or equivalently, o 0; = —p;;
R.3 d;, =dy +d, —d;d,, orequivalently, o;, = 0,0,;

R.4 prpoupay =0;
R.5 pykg =0ford € H.

Proof. R.1. This was shown in Proposition 2.21.

R.2. This was shown in Lemma 2.13.

R.3. This follows from 7,KU, = RU(A) and the definition of the classes
involved.

R.4. This was shown in Lemma 2.19.

R.5. This holds as the relevant degree vanishes by Proposition 2.18, compare
Lemma 2.19. O

This leaves relations R.6 and R.7.
Lemma 2.23 (R.6). k(l’mku’,{) = 27(/1,# x0T yx /l/mku i) p#,o,cp,mp,lk‘[ﬁﬁz.
Proof. Without loss of generality we may suppose that A is of rank 3, so that

this product lives in the group Z{z; ,, K>TMK Mmk( L} @ Z{L, byt As kg vk
lifts 4 in 7y KU, and p,, - k¢ ,nk(1..) = 0 by R.5, it follows that

ki = My T T Ty ek -
This expands out to the more symmetric relation claimed. O

Lemma 2.24 (R.7). k</l 5= =171, iyh,lh

Proof. Without loss of generality we may suppose that A is of rank 2. Now
both sides of this equality are the unique class in their degree which lift 4 in
7oK U and are in the kernel of ps5 for any § € AV. O

It must be verified that this is a complete set of relations.

Lemma 2.25. Suppose given rank 2 subgroups H,, ...,H,, C AY and 1 € H, +
.-+ H,,. Then there are rank 2 subgroups H, ...,H,, C A" such that 1 € H
andky kg =t- kH{ -~ kg fora Bott class t.

Proof. We induct on m, the case m = 1 being clear. In the inductive step, we
may suppose A & Hy + --- +I/J; +---+ H, forany 1 < j < m, for otherwise the
inductive hypothesis already applies. Thus we may write H; = (y;, x;) insuch a
way that A = pt; -+ w,. Let H) = (3 up, %1) and H) = (u,, k1 %,). Then we have
ke kg, = t' - kprkgy for a suitable Bott class t’ by R.10. By construction we

have A € H + H; + - + Hy,. It follows by induction that kurky, - ky, =1t
ket By - kHr with A € H],and so H}, ..., Hy, satisfy the desired properties. [

Proposition 2.26. The above form a complete set of relations, i.e.

T KUy = Z[B*, 732, 1, o1, ki1 /1,
where I is spanned by relations R.1-R.7.
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Proof. Let us work in the periodic quotient ring of 7, KU, wherein all Bott
elements are identified with 1; no information is lost in doing so by R.1. By
Proposition 2.18, which also incorporates R.1-R.5, it is sufficient to verify that
the relations in I allow us to write any monomial in the classes p; and ky as
a sum of classes which are a product of some element of RU(A) with a basic
generator. So fix some monomial x = py, -+ py kg, -+ kg, ; let us say that such
a monomial has k-length m and p-length n. If ; = 4; for some i # j, then
PaPa; € RU(A), so we may suppose 4; # 4; fori # j. By a repeated application
of R.9, we may moreover suppose that x has p-length at most 2. We now induct
on k-length without increasing p-length, splitting into the following cases.

First we claim thatif A; € H; + --- + H,, for some i, then x = 0. Indeed, we
may suppose that 4; € H; by Lemma 2.25, at which point x = 0 by R.5.

Next we claim that ifn = 2and 1,4, € H, + --- + H,,, then x is a product of a
class in RU(A) with a monomial of smaller k-length. Indeed, by Lemma 2.25,
we may suppose L1, € H;. If we write H; = (1414, u), then p; 03 .01, =
P, K1, DY R, and thus x = dy 0; ,oa,.KH, - ki ,» Which is of the form
claimed.

Finally we claim that if H; + --- + H,, is not of rank 2m, then ky;, --- ky,may
be written as a product of an element of RU((H; + -+ + H,,,)¥) C RU(A) with
a monomial of smaller k-length. Indeed, after possibly rearranging Hy, ..., Hy,,
we may suppose H; N (H, + --- + H,,;) # 0; choose 4 # 1 in this intersection.
Now A € H, + --- + H,,,, so by Lemma 2.25 we may suppose A € H,. The claim
now follows by an application of either R.6 or R.7 to the subword ky ky,. U

2.5. Transfers. Fix a codimension 1 subgroup ker(1) C A, and consider the
transfer j, @ 7« s KUyer(z) = T KUjy.

Lemma 2.27. The transfer j, satisfies the following properties:
T.1 j,is m, KU 4-linear, i.e. j(x - j*(y)) = ji(x) -y forx € 7 j 5 KUxer(2) and
Yy € T KUy;
T.2 j,: moKUyerr) = moKU 4 satisfies j (1) = hy € moKU 4;
T.3 jit Mapjr(uKUkera) = a—p-1,K O satisfies j!(rjz.*(#)) = 0uPP;
T4 ji: Toajr(uKUxert) = T3-2—u—2,KU 4 satisfies j!(rj*(m) = k(-

Proof. T.1. This is a general property of transfers.

T.2. This follows from the definition of h; = 1 + ;.

T.3. Without loss of generality we may suppose that A is of rank 2. Write
o = j*(w). As p,p;,B is in the kernel of gy, it is in the image of j,, and thus
(T2 = +p P B- We must show that this sign is positive. By 7, KU 4-linearity,
we may compute j,(t2d,) = hT)d, = +puppuB - dy = £2p,04,8, and thus
j¥ji(tid,) = +212d,, this + agreeing with the previous. On the other hand,
let Q be the generator of A/ ker(1) = C,. Then the double coset formula yields
j¥ji(tid,) = t2d, + Q(r2d,). For t2d, + Q(r2d,) = +272d, to hold with Q an
involution, the only possibility is that Q(r2d,) = 72d,, so the relevant sign is
positive.
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T.4. This was shown in Lemma 2.16. O
We must verify that these properties fully determine j,.

Lemma 2.28. Fix a nontrivial functional A € A". Then any basic generator
may be represented by a basic monomial of the form x = p; -~ py -t -ky, -~ kg
satisfying one of the following conditions:

(D A& A,y dg) + Hy + o+ Hy;

m

Q) A=
(3) A =44y;
(4) A € H,.

Proof. Fix an arbitrary basic generator x = p; ---p; -t -ky, ---ky withn <
2, and suppose that none of (1)-(4) hold. We are then left w1th the following
possibilities.

First suppose A € H; + --- + H,,. By Lemma 2.25 we may suppose 4 € H;,
reducing us to case (4).

Next suppose n = 1land 4 € (4;) + H; + --- + H,,. By Lemma 2.25, we may
suppose Hy = (A4;,%). Now 0; K14, x) = P1P2,xPax - t' for a Bott class ¢’ by R.9,
putting us in case (2).

Finally suppose n = 2 and 1 € {(4;,4,) + H; + --- + H,,,. By the preceding
case and Lemma 2.25, we may suppose 4 = 414, with u € Hy. Write H; =
(A1 22,%). Now ;. 03, Kiaaa,0) = Pa,xPaycKias - t' for a Bott class t' by R.11,
putting us in case (4). O

Proposition 2.29. The transfer j, is determined by the properties in Lemma 2.27.

Proof. Fix { € RO(A); we must verify that j, : 7;.¢KUyez) = 7:KU, may
be computed from the given properties. If 7:KU, = 0, then there is nothing
to show, so we may suppose that 7;KU, contains some basic monomial x of
the form described in Lemma 2.28. Applying T.1, we may focus our attention
on only those subwords which interact with 4, and so reduce to the following
cases.

If x = 1, then we may apply T.2.

If x = py, then 7 j.(£)K Uger(zy) = 0, and there is nothing to show.

If x = pupay then 7;.:KUyeyy is generated by j*(riﬁ_l), and T.3 gives
WG @™ = G @) - B~ = pupauB - B = x.

If x = k), then 7.:KUyerz) is generated by j (Tﬂ) and ].(]*(rﬂ))
k(LI«l) =X by T.4. |

2.6. Power operations. Let o be the generating functional of C,, and write
j: A - A X C, for the inclusion. Here we compute the external squaring
operation

Sq: T KUy = a4+ KU axc,
on the multiplicative generators of 7, KU 4.

Lemma 2.30. Sq preserves Bott classes.
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Proof. First we claim Sq(8) = 7,22 Let L be the tautological complex line
bundle over S2, so that § = 1 — L € KU 4(S?). By construction [Ati66], the
square Sq(f3) is represented by the virtual bundle (1 - L)® 1 —L)=1—-(L &
L)+ L ®L,where C, C AXC, acts freelyon L @ L and by asignon L @ L.
On the other hand, 7 252 is the Bott class of L ® C[C,], which is given by the
exterior algebra A*(L ® C[C,]) = 1 — L ® C[C,] + A*(L ® C[C,]). These
agree, so Sq(B) = 7,282 indeed. The same argument may be used to verify that
Sq(r;*f) = 7, °t; 2%, and thus Sq(t3) = 777;_7,°.

To verify that Sq(rE) is a Bott class we may argue as follows. Let £ = (8 —
ZAeE A1 + o), and let ¢ be the Bott class of £, so that 7:KU s, = Z{t} ®
RU(A x C,) and we are claiming Sq(7g) = ¢t. The joint restriction map

KU g, = H T(ixcy)eKUrxc,

i: LCA
L cyclic

is injective, so it is sufficient to fix some inclusion i : C, — A and verify that
(i X C2)*(Sq(rg)) = (i X C)*(1). Indeed, (i X C;)*(Sq(rg)) = Sq(i*7g), and
i*(ty)is a product of complex Bott classes, so this follows from the cases already
considered. O

Lemma 2.31. Sq(p;) = p1Pi0-

Proof. This is the only possibility given j*Sq(p;) = p/zl. O
Lemma 2.32. Sq(k(;, ) = T(,l’“,C,)T;A'(O'A +0, + 05, +05)
Proof. Note that
Sq(kiauy) € T3—r—p-aw+0)KUaxc, = Z{T (075} @ RU(A X Cy).
This class depends only on the group (4, u), so is of the form
Sq(keauy) = T, 5>7:_4(a +b(oy + 0, +03,) + o, +d(0,05 + 0,0, +07,05))
2.2

for some integers a, b, c,d. As Sq(k ,,) restricts to k</1 0 = TTu lu(a’l +o,+

oy, + 1) over A and to Sq(2) = 3 + o, over C,, these integers satisfy
a+b=1, b+d=1, a+3b=3, c+3d=1.

This system has the unique solution a = d = 0 and b = ¢ = 1, and the lemma
follows. 0

This concludes our computation of 7, KU 4.

3. Real K-theory

We now consider the descent to KO,4. Throughout this section, we shall
write

9 . ﬂ*KOA g ﬂ*KUA
for the complexification map.
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3.1. Summary. Aswith KU 4, we begin with a full description of the result.
Theorem 3.1. The coefficients of KO 4 behave as described in this subsection.

The proof of Theorem 3.1 is spread throughout the rest of this section, glued
together as described below. The core of the proof is the homotopy fixed point
spectral sequence

henceforth referred to as the HFPSS, obtained from the equivalence KO, =~
(KU 4)"C2, where C, acts on KU 4 by complex conjugation, realized by 1.

3.1.1. Ring structure. We shall name the elements of 7, KO 4 by their image
in 7, KU 4, with the following exceptions. First, we write « € ;KO 4 for the
first nonequivariant Hopf map. Second, we write 7; = ][] AeH\{1} T/Zl, where

as always H C AV is a rank 2 subgroup. Third, we write n; € 7;KO4 for a
class determined by 8(5;) = p ,11';26 . The ring 7, KO 4 is now described by the
following.

(1) The ring 7, KO, is generated by classes
B, 282, T, 1y, T, 2, s
T/zlkH, ﬁzkH, ZkH, ZT/ZIﬁZkH, T/zlh-/l, Ti‘gzh/l,

which are sent by 6 to the corresponding elements in 7, KU 4, where in
writing 7;ky; and 2772k we assume 1 € H;

(2) Themap 6 : (7,KO,)/(ax) - 7, KU , is injective;

(3) The following classes vanish:

2a, a3, a-2B% a-2ky, «- Zr/zlﬁzkH;
(4) The following relations hold:
PaPuPay = Bk - & 2PNk = 0,
Palaly = T; T Ky - & Maluay = O,
pr-Tih =0, n1-Tihy = pa?, py - T3Bhy =T, - Tif%hy =0,
Pap " To ki = PaPuT, % P Takigy =0, Pau - By = mnuTia g,
M Toko =0, 0 T3 Ky = P T, @ M- Bk = 0.
This computation will be carried out in Subsection 3.2 and Subsection 3.3.

Remark 3.2. The products in (4) which vanish do so for degree reasons. This
leads to the simpler rule: if an extension may exist, then the extension does
exist.

Remark 3.3. Write o for the generating functional of C,. Then 7, = —7¢,,
where 7¢, is the C,-equivariant Hopf map with conventions as in e.g. [ GHIR20].
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3.1.2. Basis. Fix { € RO(A). Then 7¢,,KO, is either a free KO,-module or
a direct sum of copies of KU,. In the former case, 7, .KO, is generated over
KO,  ® RO(A) by a class of the form

— 2 2 2 2
X _p/ll ...p/ln .77#1 ...nlus .t ﬁ kH1 ﬁ ka .Tklka-#l ”'TszHmH’

where

1) A4, ..., Ay, g, -r » Mg are linearly independent, and one may suppose #, S,
n+s<2;

(2) tis a product of classes of the form +*, ‘L';I_M, Ty, TR

(3) Hy + - + H,,,; is of rank 2(m + t);

4) x;€H,,;for1<i<t;

(5) A4y ees Ay My e s gy N(Hy + -+ + Hyppy ) = 0.

In the latter case, 7,,KO, may be regarded as a KU, ® RO(A)-module, and
is generated by a class of the form x - 72h; where x is as above and

5 ¢ (ll,...,ln,#l,...,us> +H1 + .- +Hm+t~

In either case, such classes are unique in their degree, though their presentation
as a monomial need not be.

All of this follows from the analogous statements for KU 4 in 2.1.2 and the
work in 3.2.

3.1.3. Mackey structure. Fix a second elementary abelian 2-group B, and
map g: A — B. The restriction

g": myKOp — 74, KOy

is determined by the following.

(1) g* commutes with 6;
() g o) =a;
(3) g"(n3) = ng+;, with the interpretation that 7, = a.

Here, (1) and (2) are clear, and we will verify (3) in Lemma 3.6.
Now fix a codimension 1 subgroup j : ker(1) — A, inducing a transfer

j! . ﬂj**KOker(/l) - 7T*KOA.

This is determined by the following.
(1) j, commutes with 6;
(2) jiis m, KO -linear;
3) Ji: 7T0Koker(/1) — m;_,KO0 4 satisfies j!(l) = p,x.
We will verify this in Subsection 3.4.
The Weyl action is formally determined by these as in Subsubsection 2.1.6.
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3.1.4. Operations. As with KU 4, there is an external squaring operation
Sq: 1,KO4 = 7y(1+5)KOaxc,»
where we have written o for the generating functional of C,. This commutes
with 0, satisfies the identities
Sq(xy) =Sq(x)Sq(y),  Sq(x +y) = Sq(x) + Sq(y) + tr(xy),
where tr is the transfer, and is otherwise determined by

Sq(a) = nsa.
Indeed this is the only class in its degree that lifts 2.

Finally, fix an integer ¢, so that the Adams operation ¥? acts on 7, KO A[%]
by ring automorphisms. This commutes with 8, and is otherwise determined
by

i) = a.

This is clear, as «a is in the Hurewicz image.

3.2. The HFPSS. We begin by computing the HFPSS
E, = H*(Cy; m, KU ,) = 1, KO,.
Lemma 3.4. The subring
H(Cy;m,KU,) C m, KU 4
is generated by the following elements:

2 4 2 2 2
B=, T T Tes Pas Mas Ky Tyka, T

Here, in writing TﬁkH we assume A € H. Where a generates H'(Cy; Z{8}), we
have

H*(Cy; 1 KUy) = HY(Cy; m, KU )]/ 2a, p5 - a, T3hy - @).

Proof. Note first H*(C,; 7, KU) = Z[B*?,a]/(2a), and that 7,KU , is entirely
fixed by 1~!. Fix a basic monomial

X = p/ll ...p/ln . t- kH1 ka

such that ¢ is a product of classes of the form 1/21 and 7. It is sufficient to verify

the following: if ¥»~1(x) = x, then x is a product of the listed generators; if
¥»~1(x) = —x, then Bx is a product of the listed generators; and finally if p~(x)
is linearly independent from x, then both x +%~!(x) and B~ 'x +3~}(8~!x) are
products of the listed generators, this product involves either some ,o/zl or Tih,l,

and both p7 and 77k, may be obtained as such a class.

As 1t and ‘r;—r“ are fixed by ¢!, we may suppose that ¢ is of the form t =

2 2 : : : 2 2
o T 4If s 22 2,2 then 2We may inductively apply the relation 7 --- 7,
T * Trnger " Tty Tty " Tty 1O further reduce to the case wheret = lort =7

In the former case, x is fixed by ! and is a product of the listed generators,
consider the latter case.

T

[0)

N = o
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Suppose first © € (A,...,4,) + Hy + --- + H,,. After possibly reordering
A1y s Ay and Hy, ..., Hy,, we may suppose 4 = 4; -+ 4, - % -k, with0 < r < n,
0 < s <m,and x; € H;. We now have

— 2 2
X = }7/11 ...nlr "oﬂ-r+1 ...‘o/.tn . TxlkHl ...TKSkHS . kHs+1 ka

=2 =2 =2 =2 2
B T T Ty T T

If r is even, then this is fixed by !, and is a product of the listed generators,
and if r is odd then the same is true of Sx.
Suppose next u & (A;,...,4,) + H; + --- + H,,,. In this case we have

X+ 97N = py, o, - Tohy Ky o K,

Blx + 97N (BIX) = pa, - pa, - Pp - e, o K,
and these satisfy the desired properties. O
Lemma 3.5. The differentials in the HFPSS are determined by
di(B) =, dy(r]) =0, ds(t7) =0, ds(rp) =0, d3(pz) =0,
d3(m) =0, d3(B*ky) =0, d3(7,21kH) =0, d3(T/21h/1) =0,
after which E, = E,.

Proof. The nontrivial differential d;(8%) = o3 is standard. The structure of
H*(C,; m, KU ,) then implies that for each multiplicative generator x, either
d;(x) = 0 or d3(x) = f~2xa?, and that these are the only differentials. Now
T:{, 1'12{, and 7y are cycles as they are Thom classes of Spin bundles, and p;,
Mis r;zkH, and Tﬁh , are cycles as they are in the Hurewicz image, the first by
construction, second by its relation to the equivariant Hopf map, and last two
as they are of the form tr(1). It remains to show that kg is not a cycle, and here
may suppose without loss of generality that AY = H = (4, u).

Recall that kj; restricts to 2h over each of ker(1), ker(u), and ker(1u), and
that this class is killed by a. Thus, if d;(ky) = 0 then kg - o survives to a class
which is divisible by each of p;, p,,, and p,,,, and if instead d;(B~2ky) = 0 then
the same holds for 872k, -. In either case o, o wPay # 0,and the only possibility

is that p; 0,02, = B~2ky - a, so it must be that 872k is a cycle. O

3.3. Extensions. There is room for hidden extensions in the HFPSS, and to
fully describe 7, KO, we must resolve these. Our work is simplified by the
following observation: in any given stem, the E, page of the HFPSS is con-
centrated in a single filtration. In particular, there is no room for nontrivial
additive extensions, and no room for hidden multiplicative extensions with ad-
ditional indeterminacy. Thus there are three basic relations in 77, KU 4 we must
consider:
pahy =0, papupa =0,  prky =0,

the lastassuming A € H. The relations on the E, page of the HFPSS which may
hide a nontrivial product in 7, KO 4 are of this form, only where 7, may take the
place of p,., where 72h, or t232h, must take the place of h,, and where 2k
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or %k must take the place of k. This reduces our work to a case analysis.
Before carrying this out, we note the following.

Lemma 3.6. Letg: A — B be a map of elementary abelian 2-groups. Then
8" (m2) = gz,

with the interpretation thatn; = a.

Proof. We need only consider the case where g“A = 1, and here we may reduce
to the case of g: e — C,. Write o for the generating functional of C,. As 7, is
not in the image of p,, it must have nonzero image in 7, KO, so mustbe . [J

We may now proceed to our case analysis. Half of these cases proceed by ob-
serving that 7, KO, vanishes in the degree containing the product under con-
sideration. We illustrate these in Lemma 3.7(2), omitting the analogous details
in the remaining cases.

Lemma 3.7.
(D prpupau = B 2kiayy -
(2) PaPulan = 0;
(3) Paally = T T K gy
(4) Manunau = 0.
Proof. We may suppose without loss of generality that A is of rank 2.

(1) The class ,B_Zku,m - a is in the kernel of restriction to each of ker(A4),
ker(u), and ker(4u). It is therefore divisible by each of p;, p,,, and p;,,, and this
is the only possibility.

(2) This holds as 7_1,(3_1—y—1)—(2-24.0K04 = 0. To see this, first observe
that 7;3-1—y-2)--220KUa = Z{Tﬁlq a0} It follows from Lemma 3.5 that
the Z-graded piece 7,4 (3-1—p—1u)—(2-22K O 1s a free KO,-module generated
by TZ,fku,m- That 7_14(3-3—u-1u)-(2-22u)KO4 = 0 then follows as 7_; KO = 0.

(3) The class T;Z‘L'ﬁzlq 1, - @ is in the kernel of restriction to ker(4u), and is
therefore divisible by p,,,. This is the only possibility.

(4) This holds as 773+(3—A—/,(—A,u)—(2—2/1)—(2—2#)—(2—2/1,11)KOA = 0. ([
Lemma 3.8.

(D p; - r/zlh,l =0;
(2) ny - T3hy; = pra;
(3) pa - T3B%hy = mTya%;
(4) m - 1367y = 0.
Proof. (1) This holds as 7,_3;KO4 = 0.
(2) Without loss of generality we may suppose that A is of rank 2. Choose u

linearly independent from A, write j : ker(1) — A for the inclusion, and write
o = j*(4). The class pﬂp,mocz is in the kernel of p,, and thus in the image of

Ji» and the only possibility is that j,(t2h,) = p30,,a* On the other hand, by



K-THEORY EQUIVARIANT WITH RESPECT TO AN ELEMENTARY 2-GROUP 1551

comparison with KU 4 we may compute j(t3h,) = ji(1) - T3hy = paunz - T3hs.
It follows that 7, - rﬁh 2 # 0, and the indicated relation is the only possibility.
(3) The class 5 ,11'3'052 restricts to a®> = 0 over ker(4), and is thus in the image

of p;. The indicated relation is the only possibility.
(4) This holds as r4_; KO, = 0. H

Lemma 3.9.
(1) Py Ti#ku,m = PAPMT}‘#OC;
() pa- ok =0;
(3) P Bk = ManuT 0%
4) My Ty Ko = 0
(5) My~ Tﬁ#ku,u) = pwm}‘#a;
(6) ;- B*kiz = 0.

Proof. We may suppose without loss of generality that A is of rank 2.
(1) The class p Apﬂrj{ﬂoc is in the kernel of restriction to ker(4du), and is there-
fore divisible by p;,,. This is the only possibility.

(2) This holds as 7T1+(2—2/1)+(2—2,u)—,u—lyKoA =0.

(3) The class ;7,7 o is in the kernel of restriction to ker(4u), and is there-
fore divisible by p;,,. This is the only possibility.

(4) This holds as 73, (,—234)-1-,KO4 = 0.

(5) Let o denote the restriction of A to ker(1u). The listed relation is the only
possible lift in its degree of the relation 7, - 72h, = p,a? seen in Lemma 3.8.

(6) This holds as 7;_,_;,KO4 = 0. O

This completes our computation of the ring structure of 7, KO 4.
3.4. Transfers. Itremains only to understand the transfer. Fix a codimension
1 subgroup j : ker(1) C A, and consider j, : 7 -, KOyer(1) = 7TxKOy4.
Lemma 3.10. j, : 7oKOyer1) = 71-3,KO 4 satisfies j(1) = pya.

Proof. The class p,a is in the kernel of p;, and thus in the image of j,. This is
the only possibility. O

Lemma 3.11. Fix a nontrivial functional 1 € A. Then any generator x of the
first form described in Subsubsection 3.1.2 may be written as

X=pa, Pa, My Ny, 52kH1 ...52ka .Tilka+1 Tg[kaH’
satisfying one of the following conditions:

(D A& Ayees gy g oo s gy + Hy + o+ + Hygs
(2) 1 € {1, Ay, pas Mafho, L s

(3) A € Hy;

(4) A€ H,and A =x;;

(5) A€ Hy,q and A # k.

Proof. This follows immediately from Lemma 2.28. ([
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Proposition 3.12. The transfer j,: 70+ KOyerny = KOy is determined by
7, KO 4-linearity, comparison with KU 4, and Lemma 3.10.

Proof. The proofis essentially identical to that of Lemma 2.27. Fix £ € RO(A),
so that we must compute j, : 7 j+¢KOyer(zy = 7:KO4. If 1KO 4 is torsion-free,
then j, is determined by comparison with KU 4. Thus we may suppose that
7:KO, is generated by a class of the form xa®, where € € {1,2} and x is one
of the types given in Lemma 3.11. By 7,KO 4-linearity, we further reduce to
considering only the subwords which interact with 4.

We summarize the case analysis in the following table. The first column
gives the form of the generators x which one may reduce to considering, and
the second column is a class y such that j*(y) generates 7 j«:KOye(z)- In this
case j, is determined by j,(j*(y)) = j(1) - y; the third column gives j,(1) and
the fourth column gives the product. When a particular ¢ is chosen, the claim
is that with the other one would have 7;.: KO, = 0.

x |y paes | i) -y
as as hi pania
pract | pa x
P2, Pz, & Tﬁlhal PN, x
N a? 0 0
N, Man, & T,Ilzﬁ *hy, | paNaa, x
P, Maa, &° 0‘; P, M4, x
522k</1,x>0€2 ,0}524 T;ZZ kgl,x) X
T%k(/l,x)az Tﬁng T&Z’: K | X
Tokoa” | Ty T “Kias by

This concludes our computation of 7, KO 4.
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