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Abstract— The Finite-Difference Time-Domain (FDTD) method
is a numerical modeling technique used by researchers as one of the
most accurate methods to simulate the propagation of an
electromagnetic wave through an object over time. Due to the nature
of the method, FDTD can be computationally expensive when used
in complex setting such as light propagation in highly heterogenous
object such as the imaging process of tissues. In this paper, we
explore a Deep Learning (DL) model that predicts the evolution of
an electromagnetic field in a heterogeneous medium. In particular,
modeling for propagation of a Gaussian beam in skin tissue layers.
This is relevant for the characterization of microscopy imaging of
tissues. Our proposed model named FDTD-net, is based on the U-net
architecture, seems to perform the prediction of the electric field (EF)
with good accuracy and faster when compared to the FDTD method.
A dataset of different geometries was created to simulate the
propagation of the electric field. The propagation of the electric field
was initially generated using the traditional FDTD method. This data
set was used for training and testing of the FDTD-net.

The experiments show that the FDTD-net learns the physics
related to the propagation of the source in the heterogeneous objects,
and it can capture changes in the field due to changes in the object
morphology. As a result, we present a DL model that can compute a
propagated electric field in less time than the traditional method.

Keywords-- FDTD method, U-net model, Encoder-Decoder
network, Heterogeneous medium.

[. INTRODUCTION

Computational Electromagnetics (CEM) predicts the
solution of diverse problems involving that wave propagation,
light scattering, antenna performance, radar signature, and the
frequency response of materials under varied conditions [1]. In
optical applications, understanding light as an electromagnetic
wave enables us to study light-object interactions. Therefore,
the numerical analysis from electromagnetic theory can be used
in the development and characterization of advanced techniques
for optical imaging [2], [3]. Computational methods such as the
finite-difference time-domain (FDTD) method are based on the
direct solution of the wave equation. They can accurately model
the light interaction with objects of arbitrary shape and
structural details [4]. However, achieving high accurate
simulations can be timely and computational expensive.

Parallel computing has been presented as an alternative to
deal with the computational cost in the CEM techniques. For
the FDTD method, parallel architectures are specialized in the
spatial domain [5], and time domains [6]. The optimization
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consists of reorganizing the operation in subdomains. The
subdomains can be resolved separately, and each solution is
assembled with the primary domain after determining the
subdomains. The assembly requires additional postprocessing
in the boundaries of each subdomain because these parallel
strategies can cause a loss in the accuracy of the solution.

Artificial intelligence models have been presented for
CEM while reducing the execution time and computational
iterations. Qi et. al. [7] proposed an implementation of the U-
net to model the electric field predicted by the finite-difference
frequency-domain (FDFD) method for homogeneous mediums
that contain two refractive indexes and regular shapes with
reasonable accuracy. Methodologies that include combining the
FDTD method with neural network architectures [8]-[10] have
also been proposed. Yao and Jiang proposed a Recurrent Neural
Network FDTD (RNN-FDTD) model and a Convolution
Neural Network FDTD (CNN-FDTD) model [8] to compute the
electric field and the absorption at the boundary as a general
solution for the wave equation. These neural network
architectures aim to reduce the number of iterations that are
required by the FDTD method to achieve high accuracy. The
resulting models have the advantage of reducing the prediction
time. However, the precision is lower compared to the
deterministic techniques.

Yao and Jiang have also proposed strategies to replace the
absorption boundary condition from the traditional perfectly
matched layer (PML) with a fully connected network [9] and a
long short-term memory (LTSM) model [10]. The goal is to
provide a way to reduce the simulated thickness to one cell in
the boundary domain. The implementation of these strategies is
computationally complex, and the performance of the neural
networks is comparable to the traditional approach. However,
more training samples are required when compared to other
methods based on deep neural models.

This paper presents a deep learning model based on an
Encoder-Decoder network called FDTD-net. The proposed
FDTD-net aims to model the electric field that results by
propagating a Gaussian source through a highly heterogeneous
object. To the best of our knowledge, there is no computational
framework with these characteristics. The FDTD-net is trained
with a dataset composed of the electric fields generated by the
traditional FDTD method. The electric field is propagated in an
object with heterogeneous geometries. The results show that the
proposed model can achieve an acceptable accuracy in
predicting the electric field propagated in the mediums while
reducing the prediction time. This article is organized as
follows: a description of the geometry’s dataset, a brief
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description of the FDTD method, a description of the proposed
FDTD-net, a results section, and the conclusions section.

II. METHODOLOGY

A. Object’s geometry

The object is simulated in terms of index refraction (n).
The geometries are inspired in a representation of the human
skin layers presented in [11]. A two-dimensional matrix
represents the object's geometry. The rows and columns
represent the spatial dimensions. In the matrix, the value of
each pixel represents the electromagnetic properties:
permeability and relative permittivity of the material, where the
values define the refractive index of the electromagnetic
radiation. The refractive index of electromagnetic radiation is:
n = /e |1, where €, is the material's relative permittivity, and
W is the relative permeability.

We create square matrices of 256 pixels, equivalent to
10.54 [um]. The geometries simulate the skin's dermis with
layers of cells and their components, such as the nucleus,
cytoplasm, mitochondria, and melanin. The cells are randomly
generated by variations in the elliptical form, position, and
separation of the cells. Figure 2 first column presents four
random simulated geometries. Each geometry contains water
(n=1.33), sinusoidal junction (n=1.37), dermis (n=1.40), cells
with nucleus (n=1.39), cytoplasm (n=1.37), and intercellular
fluid (n=1.34), mitochondria (n=1.42); and melanin (n=1.7). A
total of 1232 samples with at least 3 different refractive indices
were generated.

B. FDTD Method

The Finite-Difference Time-Domain (FDTD) method is a
deterministic method developed by Yee in 1966 [12] that
consists of solving the differential form of Maxwell's equations:
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where H is the magnetic field vector, D is the electric
displacement vector, J is the electric current density vector, E is
the electric field vector, B is the magnetic flux density vector.

The matrix form of the FDTD method for 2 dimensions and
transverse magnetic mode [13] corresponds to:
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Inside the propagation medium, we set the conductivity
equal to zero because there aren't internal electric and magnetic
sources. On the computational boundaries, we are set to a
fictitious conductivity following the perfectly matched layer
(PML) [14]. The stability of the FDTD method depends on the
Courant-Friedrichs-Lewy (CFL) condition and the spatial
discretization restricted by wavelength condition [15]. From the
CFL condition, the time step must satisfy:

At ———, a7
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where At is the temporal step size; A is the spatial step size; V2
correspond to the 2-dimensional problem; ¢, is the speed of
light in free space; and n,;,;,, is the minimum index of refraction
in the propagation medium. For the spatial discretization the

condition is: A < where 1,4, 1s the maximum index of

Nmax
refraction in the propagation medium. The experiment

propagates a sinusoidal electric voltage source in the z-direction
for all mediums described in Section II-A. The source term is
formulated as the real part of the complex electric field E,

propagated by a Gaussian wave [11]:
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C. FDTD-net model

In this paper, a deep learning model is employed to
approximate the solution of Maxwell's equations given by the
iterative process of the FDTD method in the form of system (3)-
(5). The model requires two input matrices to perform the
prediction of the propagated electromagnetic field. The input
matrices are the concatenation of a discrete representation of
the medium and the electromagnetic source. The refractive
index describes the medium, and the source corresponds to the
electromagnetic field generated by a Gaussian beam source in
the vacuum. The model's output represents the modulated
source by the interaction of the source with the medium.

To achieve electromagnetic field predictions by the image
generation process, we use the Encoder-Decoder architecture in
a similar configuration to the U-net model [16]. A U-net is a
network that is commonly for image segmentation and contains
residual blocks configuration to ease the training of networks
by adding shortcut connections between the weight layers.
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Fig. 1. FDTD-net architecture to model the FDTD method.

The proposed FDTD-net model has an asymmetrical
configuration characterized by a modified version of the
residual blocks [17]. The residual blocks are used to create
convolutional and transpose-convolutional blocks. The encoder
stage is formed by a sequence of five levels of two
convolutional blocks (blue rectangle) and a Pooling layer
(orange rectangle). The decoder stage is formed by a succession
of five levels of transpose-convolution blocks. Figure 1 shows
the encoder and decoder stages of the proposed FDTD-net
model.
The convolutional block is defined by a modified residual block
composed of the addition between a Conv. layer and a sequence
of Conv-CReLU-Conv-Gated layers. The Pooling layer is used
to reduce the spatial dimension of the input data from 256 x 256

Random media

El [V/m] computed by FDTD method

to 8 x 8 pixels; in each level, the spatial dimension is comprised
by a factor of 2. The transpose-convolution block is defined by
a modified residual block composed of the addition between a
TrConv. layer and a sequence of TrConv-CReLU-TrConv-
Gated layers. Each encoder unit has connected with the decoder
unit of the same spatial size. There is a convolutional sequence

between the encoder-decoder stages to maximize the flux
information.

D. Training model

For the input of the FDTD-net model, we concatenate the
geometry and the electric field propagated in the vacuum. The
correspondent target is the electric source propagated by the
FDTD method in the input geometry. The training and testing
samples are split into 80 and 20 percent, respectively.

In terms of parameters, each convolution layer has a
variable number of filters with a fixed size; for example, the
first convolutional block has a weight matrix of 3x3x2x8 and a

bias matrix of 1x1x8, so there are 144 and 8 parameters to train
in the initial convolutional layer. In total, the FDTD-net model
have 5'099,421 learnable parameters.

The FDTD-net model and the FDTD method were
implemented using MATLAB® (2020b - Academic license)
programming language. We did all experiments in a Windows
10 Education Desktop computer, using an Intel(R) Core(TM)
17-8700 CPU 3.20 (GHz) with 16 GB RAM, in the Laboratory
for Applied Remote Sensing and Image Processing (LARSIP)
at the University of Puerto Rico, Mayaguez Campus.
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Fig. 2. Example of two random medium of simulation (first column), Electric field propagated by FDTD method (second column), Electric field estimate by FDTD-
net model (third column), and the difference between the Electric fields computed by the FDTD method and the FDTD-net model (last column). The refractive

index describes the properties of the heterogeneous material. The spatial size of 256x256 pixels of simulation correspond to a square of 10.54 [um] by side. The
medium is a model of tissue with cells of different size and components.
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III. RESULTS

This section presents the results of the trained FDTD-net to
model the FDTD method for heterogeneous mediums. In Figure
2, the first column corresponds to the propagation medium, the
second column is the electric field propagated by the FDTD
method, the third column is the electric field predicted by the
FDTD-net, and the fourth column shows the difference between
the electric fields computed by the two methods. Each row in
Figure 2 shows corresponds to an object randomly selected. We
also compute the structural similarity index metric (SSIM) [18]
for each pair of the electric fields. To calculate SSIM, we
represent each matrix as an image of 8-bit. For the objects
presented in Figure 2, the SSIM values are: [0.8448, 0.4674] for
rows one and two, respectively. For the testing samples, FDTD-
net obtain a mean value of the SSIM of 0.8082. Table 1 shows
the execution times for the training and testing stages of the
FDTD-net model and the execution times of the FDTD method.

TABLE I
TIME EXECUTION PERFORMANCE

FDTD-net time

1) Training time

235.53 (min)

2) Testing time

a. Load net 0.5816 (s)

b. Predict one media 0.0074 (s)

c. Predict all media 9.1612 (s)
FDTD method

Compute one media 17.9385 (s)

Compute all media 368.33 (min)

IV. CONCLUSIONS AND FUTURE WORK

This article presents an FDTD-net model for calculating
the propagated electric field across a non-homogeneous object.
The results show that FDTD-net can follow the changes in the
electric field in terms of the heterogeneities of the medium. This
approach provides a good performance based on the metrics
values and exploits the advantage of the DL models in time
execution. As shown in Table 1, the FDTD-net model is 30
times faster than the FDTD method in predicting one media.
The network loading time is approximately half-second. The
execution time to predict the field for all the testing samples is
~2400 times faster than the FDTD method.

Future work includes exploring modification of the FDTD-
net by augmenting the number of layers to increase the
prediction accuracy. A modified model version is being studied
by tuning the parameters to perform a more precise prediction
of the electric field.
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