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Abstract—Automated spectrum analytics inform critical deci-
sions in dynamic spectrum access networks such as (i) how to
allocate network resources to clients, (ii) when to enforce penalties
due to malicious or disruptive activity, and (iii) how to chart poli-
cies for future regulations. The insights gleaned from a spectrum
trace, however, are as objective as the trace itself, and artifacts
introduced by sensor imperfections or improper configuration
will inevitably affect analysis outcomes. Yet, spectrum analytics
have been largely developed in isolation from the underlying data
collection and are oblivious to sensor-induced artifacts.

To address this challenge, we develop VIA, a framework
that attributes sensor properties and configuration to spectrum
data fidelity, and models the relationship between spectrum
analytics performance and data quality. VIA does not require
expert input or intervention and can be used to profile the
fidelity of unknown sensors. VIA takes as an input a spectrum
trace and the sensor configuration, and benchmarks data quality
along three dimensions: (i) Veracity, or how truthfully a scan
captures spectrum activity, (ii) Intermittency, characterizing
the temporal persistence of spectrum scans and (iii) Ambiguity
quantifying the likelihood of false detection. We employ VIA
to measure the data fidelity of five common sensor platforms.
We then predict the outcome of several spectrum analysis tasks
including occupancy and transmitter detection, and modulation
recognition using both controlled and real-world measurements.
We demonstrate high prediction performance with an average
mean squared error of 0.0013 across all tasks using both
regression and neural network models.

I. INTRODUCTION

Spectrum analytics is a cornerstone for future wireless
networking [1; 2]. The true benefit of data, however, is in the
information that can be extracted from it, and its corresponding
support of disparate spectrum applications. Emerging applica-
tions include spectrum enforcement, improved policy and the
design of third-party measurement infrastructures. An enforcer
might ask which among multiple transmitters is rogue, whether
it is mobile or stationary and what is its location; a policy-
maker might be interested in coexistence analysis in a certain
band and identifying patterns of utilization; and a crowd-
sourced sensing platform might be interested in the maximum
attainable accuracy for a new sensor platform. Since these
application pose different analytics questions, data quality
from the spectrum measurement pipeline will affect them
differently. Hence the importance of modeling the effects of
spectrum data fidelity on the quality of downstream analytics.

Spectrum analytic algorithms have been traditionally de-
veloped in isolation from the underlying data collection
principles. This poses a two-fold challenge. First, we lack
methodologies to link sensor properties and configuration with
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Fig. 1: VIA overview. A sensor’s capabilities and configuration
affect the quality of collected data. VIA profiles data quality
across three dimensions: veracity, ambiguity and intermittency.
The right pane of this figure color-codes low-level sensor
properties that affect veracity, ambiguity and intermittency.

the quality of collected spectrum data. Second, we lack under-
standing of the effects that data quality has on the accuracy
of spectrum analysis. The importance of coupling spectrum
data with scan metadata is gaining traction, resulting in
several metadata standards: VITA49 [3], CHDR [4] and, most
recently, SigMF [5], which underpins the IEEE 802.22.3—
SCOS [6]. While important, these standards focus on the radio
front-end’s specification and not on the sensors’ computational
resources, environment, connectivity and mobility. However,
the latter aspects, equally impact spectrum data quality. The
relationship between sensor quality and analysis accuracy has
been studied for specific sensor platforms [7; 8; 9; 10; 11].
However, there does not exist a principled approach that
quantifies this relationship in a platform-agnostic manner.
Furthermore, prior work focuses on a subset of sensor configu-
rations, such as sensitivity and frequency resolution, however,
additional properties need to be considered too.

To address these challenges, we develop VIA, a frame-
work that can automatically profile the fidelity of spectrum
traces, and predict the accuracy of spectrum analytic tasks
or inform optimal sensor configuration. Fig. 1 conceptualizes
VIA. Considering an end-to-end data pipeline (left pane)
comprised of spectrum sensors, data storage, analytics engine,
and data consumers, VIA fits as a middle layer between the
sensors and the data storage (right pane). VIA draws on the
collected data (power spectrum density or IQ samples) and
metadata about the sensor’s configuration and environment,
and adds three more metrics to the metadata: veracity, in-
termittency and ambiguity. Veracity is a measure of the
truthfulness with which a sensor captures spectrum activity.



Intermittency measures the temporal persistence of a
spectrum trace. Ambiguity captures the likelihood that
transmitter values might be confused with noise and vice versa.
Highlighted accordingly are low-level sensor capabilities that
affect the VIA metrics. These three statistics can be used
as predictors for the performance of downstream spectrum
analytics applications, or to inform sensor configurations
to maximize data fidelity or achieve a certain performance
benchmark. We design VIA to lower the barrier for expert
knowledge in sensor configuration and spectrum data quality,
and to support a variety of use cases. For example, a policy-
maker interested in the aggregate interference from a new
ruling might query a set of historic data from relevant other
bands whose data fidelity is above a certain VIA threshold.
She can then use the data along with propagation models to
inform new policies through quality data-driven analysis.

Using real-world traces across all configurations of five
sensor platforms, we demonstrate that VIA quantifies data
fidelity and is a strong predictor for analytics performance.
We collect 1700 traces from a controlled transmitter, and 100
traces of real-world FM radio and Television White Space
(TVWS) networks. We consider three spectrum analytic tasks:
(i) occupancy and (ii) transmitter detection, and (iii) modu-
lation recognition. To showcase VIA, we use two predictive
models: (1) a simple regression and (2) a neural network, to
predict the performance of the above three tasks. For both
models, our input is comprised of the VIA vectors, whereas
the output is the accuracy of the corresponding task. We
demonstrate high prediction accuracy with an average mean
squared error of 0.0013 even with a simple regression model
when training is performed on all five platforms. This accuracy
is retained across all tasks as we reduce the training pool
from five to two platforms, while testing on the remaining
unknown platforms. This demonstrates that VIA can predict
the performance of unseen sensor platforms, making it an ideal
tool for black-box characterization of the data fidelity of any
arbitrary sensor.

This paper makes the following contributions.

o We conceptualize VIA, the first middle layer for spectrum
measurements that can profile the data fidelity of unknown
sensors while accounting for sensor properties, configuration
and the radio environment.

o We evaluate VIA in a comprehensive experimental cam-
paign that included five SDR-based sensors across all their
possible configurations in indoor and outdoor settings, and
with controlled and real-world transmissions.

o Using three spectrum analytic tasks, we demonstrate that
VIA is platform-agnostic and can support data fidelity bench-
marks for unknown sensors.

e VIA is extensible to various tasks (i.e. anomaly detection,
localization, spectrum usage statistics) and across arbitrary
unknown platforms. New data fidelity vectors can also be
incorporated into VIA.

e VIA has the potential to lower the entry barrier into
spectrum research by allowing non-experts to use it as a black-
box tool-set to benchmark sensor capabilities.

II. RELATED WORK

Platforms for spectrum measurement. There exist sev-
eral spectrum measurement systems including the Chicago
Spectrum Observatory [12], Microsoft’s Spectrum Observa-
tory [13], NTIA’s repository [14], CityScape [15] and Elec-
trosense [16]. These systems employ low-/mid-cost spectrum
sensors such as the RTL-SDR [16; 17] or USRP [13], and
perform sweep-based monitoring of the sub-6 GHz bands.
Some of these platforms provide basic spectrum occupancy
analytics, such as spectrograms or idle/occupied fraction of
time. Their primary focus is on sensor integration, data storage
and presentation, however, they do not facilitate deep spectrum
analytics or application-driven measurement. Data is collected
in the form of IQ samples or power spectral density (PSD)
and is usually not coupled with meta-data about the underlying
sensor properties or configuration. NTIA’s repository [14] is
the only one that attempts to collect meta-data with spectrum
traces using the SigMF [18] data schema. However, this
metadata is not being used to aid spectrum analytics. VIA
is orthogonal to these systems as it seeks to establish a
middle layer that ingests side information about the sensor
configuration and the radio environment to quantify the fidelity
of spectrum data. VIA also seeks to further inform spectrum
meta-data formats that will help attribute data fidelity to the
capabilities and configuration of the underlying hardware.

Spectrum data analytics. There exist a plethora of applica-
tions that ingest spectrum data to glean usage insights. These
insights can then feed into resource allocation technologies,
spectrum enforcement engines or policy-making decisions.
Spectrum data analytics tasks include general spectrum aware-
ness [19; 20; 21; 22; 23; 24; 25; 26; 27, 13; 28; 29], transmitter
localization [8; 9; 30] and modulation recognition [31; 32;
33; 34; 35; 36; 37; 38; 39; 40; 41; 42; 43; 44]. All of these
efforts assume that data is readily available and focus on the
design of (often machine learning inspired) spectrum analysis
methodologies. However, analysis efforts are usually oblivious
to the underlying sensor platforms and any data quality issues
they might have created. VIA is orthogonal to these works as it
seeks to establish the relationship between sensor capabilities
and the performance of these analysis algorithms.

Bridging sensor capabilities with spectrum analytics.
Most closely related to our work is research on sensor bench-
marks that establishes direct relationships between sensors’
configuration and the performance of an analysis algorithm [7;
8; 9; 10; 11]. [8] focuses on crowd-sourced RTL-SDR mea-
surements for transmitter identification and localization. [7]
studies noise level, sensitivity and energy consumption of three
realizations of an RTL-SDR sensor. [9] develops a framework
that attributes RTL-based sensor properties (gain and FFT
size) to the detection of idle/occupied bands, driving sensor
selection and configuration. [10] informs spectrum sensing for
narrow-band fleeting signals, while [11] creates benchmarks
for sensor selection in transmitter localization. While these
works break important grounds in attributing sensor properties
to spectrum insights and sensor selection, they require full



supervision. Each target platform has to be exercised across all
its configurations while collecting controlled spectrum traces.
These traces have to be characterized before one can model
the relationship between algorithm performance and sensor
properties. This quickly becomes prohibitive for new platforms
as each un-profiled sensor has to undergo a rigorous bench-
mark with experts in the loop. In addition, existing approaches
that focus on one sensor type will face practical challenges
in systems with heterogeneous spectrum sensors. Our work
establishes an automated framework with limited supervision
and no expert input that can automatically benchmark the
fidelity of spectrum data for an arbitrary unknown sensor.

III. SENSORS AND DATA QUALITY

Software defined radio (SDR) spectrum measurement plat-
forms are increasingly considered for data collection [13; 16].
A SDR sensor is comprised of (i) an SDR-based radio
frontend, (ii) a host and (iii) the link between the two. The
SDR collects discrete samples from a pre-configured radio
frequency and with a given sampling rate and feeds those
samples through the link to the host for further processing.
Depending on the task, the resulting data can be in the
form of complex IQ samples [42], PSD [13] or otherwise
compressed/pre-processed versions of those data types [45].

1) The host can be either a general purpose computer
(PC/laptop) or an embedded computer (Raspberry Pi/mobile).
The data processing speed, the probability for dropped sam-
ples, and the timeliness of SDR control are all issues intro-
duced by the host capabilities. These may affect the rate at
which a frequency band is revisited by a spectrum sweeping
sensor, and the likelihood of that sensor to miss target activity.
2) The link connecting the SDR with the host can be realized
via different technologies such as USB 2.0/3.0 or Ethernet.
This determines the maximum transfer speed of samples
between the SDR and the host. Samples might be dropped if
the sampling rate of the SDR is higher than the transmission
rate supported by the link. The volume of dropped samples, in
turn, affects a sensor’s ability to truthfully capture the spectrum
activity, even when a frequency band is observed continuously.
3) The SDR frontend effects on data quality stem from
the SDR’s instantaneous bandwidth (which is determined by
its supported sampling rates), tuning range, analog-to-digital
resolution and sensitivity. First, as a target observable range
might be orders of magnitude larger than the instantaneous
bandwidth of a sensor, measurement infrastructures [16] utilize
sequential sweeping of consecutive bands. As a result, any
given band is scanned intermittently, which may lead to
omission of spectrum activity. To increase the instantaneous
bandwidth and reduce scan intermittency, sweeping sensors
are often configured to scan with high sampling rates. This,
however, may lead to buffer overflows, especially in sensors
where lower-rate host-SDR links present a bottleneck [17].
Dropped samples caused by buffer overflows affect a sensor’s
capability to accurately capture spectrum activity, especially
with short-lived or narrow-band transmissions. The analog-

to-digital converter resolution and the sensitivity of the SDR
affect the degree to which a sensor can pick out faint signals.

The combination of effects introduced by the SDR, the host
and the link affect the quality of data collected by a sensor, the
truthfulness with which this data represents spectrum activity
and the accuracy with which spectrum insights can be drawn.
Thus, understanding and quantifying the effects of sensor
properties on data quality is essential for trustworthy spectrum
measurement. To this end, we design VIA, detailed next.

IV. METHODOLOGY

We now present VIA, which quantifies the fidelity of IQ
and PSD data collected by a spectrum sensor across three di-
mensions: Veracity, Intermittency and Ambiguity.
Veracity, is a measure of how truthfully the data represents
spectrum activity. In terms of lower-level sensor configuration,
veracity is expressed as the amount of spectrum samples a sen-
sor is actually able to retain using a particular configuration.
Intuitively a large volume of dropped samples leads to lower
accuracy in spectrum characterization. Sensor properties that
affect veracity (Fig. 1 right pane) include the set sampling
rate, buffer spaces and the speed of sample transmission
from the sensor’s front-end to the host. Intermittency
captures the non-contiguous nature of sweep-based spectrum
traces. Intuitively, if a sensor is set on a particular frequency
at a given location for continuous amount of time, this
sensor will capture all occurring spectrum activity. However,
emerging systems [12; 13; 14; 16; 15] target wide bands
and perform sweep-based sensing with stationary or mobile
sensors. Thus, spectrum activity in a given band may only
be captured intermittently. Underlying sensor properties that
affect intermittency include the set instantaneous bandwidth,
dwell time, target frequency range and the amount of time it
takes for a sensor to tune to a particular frequency. Finally, the
Ambiguity, captures the likelihood that data samples arising
from transmitters are confused with noise and vice versa.
Ambiguity is most affected by the sensor’s noise floor and
the set receiver gain. VIA can be used as a black box toolset
to benchmark sensor capabilities by non-experts. Next, we
describe our testbed and data, and detail the VIA framework.

A. Testbed and Data Collection

Our testbed consists of a transmitter and five sensors. The
transmitter is set with a USRP B210 [46] SDR and a PC (Intel
174770 CPU and 16GB RAM). For the sensors, we use two
SDRs—an RTL-SDR [47] and a USRP B210, and three host
platforms, a PC, a Laptop, and a Raspberry Pi (Table I). All
hosts run Ubuntu 16 with GNURadio3.7 [48]. All sensors are
equipped with a wide-band multi-polarized antenna [49]. Our
testbed stores data as IQ samples, which are then converted to
PSD for some analytics tasks (§VI). We make a best effort to
control for ambient interference by selecting unoccupied spec-
trum for our controlled transmissions. We note that controlled
measurements are only necessary for our experimentation and
will not be required for using VIA in the wild.



TABLE I: Evaluated sensor platforms an dtheir corresponding configurations.

Platform SDR Host SDR-HOST Link | Sample Rates (Msps) RX Gain (dB)
RTL-Pi RTL2832U Raspberry Pi (quad-core, RAM 1GB) USB2.0 1,2,3 24,30,40,50,56
RTL-Laptop RTL2832U Lenovo X201 Laptop (i7-5600, RAM 8GB) | USB3.0 1,23 24,30,40,50,56
RTL-PC RTL2832U Dell Desktop (i7-4770, RAM 16GB) USB3.0 1,23 24,30,40,50,56
USRP-Laptop | USRP-B210 | Lenovo X201 Laptop (i7-5600, RAM 8GB) | USB3.0 1,2,4,8,12,16,20,24,28,32 | 38,40,50,60,70,76
USRP-PC USRP-B210 | Dell Desktop (i7-4770, RAM 16GB) USB3.0 1,2,4,8,12,16,20,24,28,32 | 38,40,50,60,70,76

We set up two controlled transmitter configurations for data
collection. First, we collect samples to demonstrate VIA with
occupancy and transmitter detection. Thus, we setup a con-
trolled transmitter within an unoccupied TV channel at 572-
578MHz [50], emitting periodic and broadcast patterns with a
signal modulated with BP SK. For broadcast, we transmit 1200
bytes at a bandwidth of IMHz and vary the gain from 30-80dB
in increments of 10dB. For periodic patterns, we transmit 1200
bytes every second at a IMHz bandwidth and 60dB gain. Both
the transmitter and sensors are in line of sight at a distance
varied between 5 and 25 ft. For the second setup, we configure
our testbed to collect IQ samples across four modulations
to demonstrate VIA with modulation recognition. We set the
transmitter gain at 60dB to generate signals modulated with
BPSK, QPSK, 8PSK, and QAM16. The transmitter emits a
broadcast pattern by continuously transmitting 1200 bytes. The
instantaneous bandwidth of the transmitter is set to 1-3MHz
and the center frequency of the transmitter is set to 1.2GHz.

Data Collection. We collect 1700 traces with a controlled
transmitter and 100 real-world traces of commercial technolo-
gies. For the controlled traces, we first collect 1400 traces
using all possible scan configurations across the five platforms
(Table I), in an indoor and outdoor setting with a dwell time
of 20 seconds. We use these traces for our transmitter and
occupancy detection applications. We next collect 300 traces
for the modulation recognition task using all the possible scan
configurations across the three RTL platforms (Table I) indoors
with a dwell time of 5 seconds. Section VI justifies the use
of RTL sensors alone to collect modulation recognition traces.
For the real-world traces, we collect samples at 99.3MHz (FM
radio) and in a TVWS testbed at 563MHz. All FM traces are
collected indoors with all five sensors with a sampling rate of
1MHz, gain of 30dB (RTL), 40dB (USRP), and a dwell time of
20 seconds. The TVWS traces are collected outdoors using the
battery-powered RTL-Laptop and USRP-Laptop sensors with
a sampling rate of 2MHz (RTL) and 8MHz (USRP), a gain of
30dB (RTL), 40dB (USRP) and a dwell time of 20 seconds.
We use iPerf to generate UDP traffic in the TVWS network
by injecting 4 Mbits at 1 second intervals. For each trace, we
calculate PSDs from the stored IQ data using a Python script.

B. Veracity

1) Definition: Veracity quantifies the retention of IQ sam-
ples. We define veracity (V) as the ratio between the number
of expected samples N, and the actual collected samples N':

N/

V= N ey

The number of expected samples N depends on the sensor
configuration as follows: N = A; x fs, where A; is the dwell

time and f, is the sampling rate of the sensor measured in
samples per second (sps). A sensor dwelling for 1 second at
a sampling rate of 1 Msps will collect 1M samples.

In reality, however, spectrum sensors may fail to obtain the
number of expected samples /N due to hardware limitations
(§II), which results in the actual obtained sample count
N’ being smaller than the expected N. As the number of
actual collected samples decreases, so does the quality of the
collected spectrum scan, as its ability to capture all spectrum
activity diminishes. The measure of veracity varies between 0
and 1, where O is an extreme (and arguably unrealistic) case
where no samples are saved, whereas with 1, all samples are
saved. While veracity is computed on IQ samples it quantifies
the fidelity of both IQ and PSD data, as demonstrated in §VI.

2) Effects of sensor properties and configuration on verac-
ity: Sensor properties such as the ADC/DAC resolution, buffer
size, and the SDR-Host link speed impact veracity. The used
sampling rate, which determines the volume of data transferred
between the radio and the host, also affects veracity. We
study the effects of these properties on IQ samples stored
as binary files. Each sample is stored as an 8-byte number
[48]. To calculate the number of collected IQ samples in
a file, we measure the size of the file in bytes and divide
by 8. We calculate the veracity of the trace as per Eqn.
(1). Fig. 2 presents results across sensors. As the sample
rate increases, the veracity declines for all platforms. This is
due to buffer overflows resulting from the increased rate of
symbols transmitted from the SDR to the host. Platforms that
use low-capability hosts (RTL-Pi and USRP-Laptop) suffer
significant deterioration in veracity compared to their higher-
speed counterparts. 27% of the sample rates fall below 0.8
veracity, of which 66% are due to RTL-Pi and USRP-Laptop.

C. Ambiguity

An arbitrary spectrum trace in a frequency band with active
transmitters might capture some samples that represent noise
and others that represent transmitter activity. An example
trace is presented in Fig. 3 (left), where lighter values repre-
sent transmitter activity, while darker values represent noise.
Transmitters whose signal is low and close to the sensor’s
noise floor, can be ambiguously interpreted as noise. This
relationship between the noise floor of a sensor and the level
of a transmitter’s signal will affect transmitter detection.

1) Definition: We develop a metric, dubbed ambiguity (A),
which quantifies the likelihood that transmitter samples in a
scan are confused with noise. Given a spectrum trace p(f,t)
with N = T x F' samples we model the data as a Gaussian
Mixture Model (GMM) [51] with two components: one for
noise Gn(un,on) and one for non-noise values Gr(ur, o).
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with increasing sampling
rate.

Given these two distributions, for each measured sample p?
we can calculate the posterior probability that p’, is associated
with each of the two components, as follows: pN(ptf)

t 2 t 2

O'N\}E27T) 6( (prUIJ;VN) ) and pT(p?) UT\/IEQﬂ') (pr:’;) )
Intuitively, these two probabilities quantify the likelihood that
a sample arises from noise/transmitter activity. We label a
sample as ambiguous if both its association probabilities are
non-zero, ie. if pn(p}) > 0 and pr(p}) > 0. Thus, the
ambiguity of a trace p(f,t) is defined as the fraction of
ambiguous samples N from all collected samples N:

zl=

A= 2)
A varies between 0 and 1. A trace with ambiguity of 0
will have a clear separation between noise and non-noise
values such as in high SNR settings, and should, be easy to
characterize. A trace with ambiguity close to 1, will have a
small margin between noise and non-noise samples (i.e. low
SNR), and will be hard to characterize. Ambuguity can be
calculated either directly with PDS data or with the amplutude
of IQ samples, and is thus applicable to both data streams.
Fig. 3 (left) illustrates the overlap between sample distributions
that model noise and non-noise signals for an example PSD
trace. The blue bars represent the distribution of the empirical
PSDs, the red line presents the fited GMM Gy (un, on) and
Gr(ur,or). Highlighted red are the ambiguous PSD values.
GMM is a general unsupervised clustering approach, which
has been used to mine the number of transmitters in a spectrum
trace [52; 53]. In our work, we apply it to discern between
transmitter and non-transmitter measurements in real-world
traces with no ground truth. This allows us to identify data
points that are ambiguous and determine the likelihood of a
false detection in a trace. Additionally, we emphasise that our
ambiguity measure is different than the classical SNR. SNR is
defined as a comparison of the level of a desired signal to the
level of background noise. In contrast, ambiguity determines
the likelihood that a measured signal will be misclassified.
2) How we use GMM: GMM takes as an input (i) the data
p(f,t) to be modeled, (ii) a number of distributions K to be
fitted over the data and (iii) a guess of the mean, standard
deviation and weight (u, 0, w) of each of the distributions.
GMM then uses an Expectation Maximization algorithm (EM)
to refine this guess, by maximizing the likelihood that the

gain of the sensor (middle). Ambiguity of the collected traces as a
function of the receiver gain (right).

time across all the five
platforms.

outputted model (i, &, W) represents the data correctly. While
the above approach is fully unsupervised, and thus, does
not require prior knowledge of the noise and transmitter
distributions, the goodness of the GMM fit often depends on
the setting of the initial guess. We study the effects of the
initial guess on ambiguity in Fig. 5. Fig. 5 (top) explores the
effects of the noise guess. The x-axis represents the difference
A, between the means of the empirical and the guessed noise
component. We fix the non-noise guess to be 20dB higher than
the empirical noise mean. A, is negative when the guess is
lower than the empirical mean, and positive when the guess is
higher than the empirical mean. Red and blue represent USRP-
and RTL-based sensors, respectively. The ambiguity measure
is nearly zero and stable for a wide range of offsets from
the empirical noise mean for both platforms: -8dB to 20dB
for RTL and -5dB to 20dB for USRP. Similar trends can be
observed on the counterpart graph that studies ambiguity as a
function of the transmitter guess (Fig. 5 (bottom)). We fix the
noise guess to be equal to the empirical noise mean and vary
the difference between the empirical transmitter mean and the
guessed mean. The ambiguity measure is stable for a wide
range of guesses for both RTL and USRP: -7 to 20dB for
RTL and -1 to 20dB for the USRP. These results emphasize
the robustness of ambiguity to GMM’s initialization.
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Fig. 5: Ambiguity across different noise (top) and transmitter
(bottom) offsets is stable within a wide range for both SDRs.

To refine our GMM noise guess we profile a sensor’s
noise floor in the wild. Traditionally, noise floor is profiled
in an anechoic chamber to ensure that measurements are not
tainted by interference. Since our goal is to automatically
profile sensors without expert input or facilities, we propose
an alternative approach that utilizes spectrum white spaces for
coarse noise floor profiling. Various spectrum bands can be
used for this purpose, including TVWS, which are documented



in a public database [50], or protected spectrum used by
radio astronomy and passive remote sensing [54]. For a noise
benchmark trace py (f,t) collected in one of these bands,
and oy are calculated as the mean and standard deviation of
pn(f,t). The so obtained uy and oy can then be supplied
as domain-informed input to GMM.

Having profiled a sensor’s noise floor, we use GMM as
follows. We model a collected trace p(f,t) as two distributions
(i.e. K = 2): one arising from noise and one arising from
transmitter values. Our initial guess for the noise distribution
(un,oNn,wn) is set as per the noise floor profiling method
discussed in the previous paragraph. The non-noise guess
(,U,T,O'T,’LUN) is set as pur = pun + 20dB and o = oy.
The weights wy and wy are each set to 0.5.

3) Effects of sensor properties and configuration on ambi-
guity: Ambiguity is affected by a sensor’s noise floor, the
noise floor stability across the sensor’s tunable range, the
receiver gain and the transmitter signal strength. We explore
these factors in turn. We start with the variance of the noise
floor of RTL and USRP radios across their entire tunable
range in indoor and outdoor settings and in different parts
of the day and days of the week (figure omitted for space).
The noise fluctuations do not exceed 2dB across both sensors.
At the same time ambiguity is robust within a much larger
range of deviation of the input guess Fig. 5. We also study the
effects of the sensor’s receiver gain on the noise floor (Fig. 3
(middle)) and ambiguity (Fig. 3 (right)). As the receiver gain
increases, so do the noise floor and ambiguity. This highlights
the importance of operating within a safe gain regime.

D. Intermittency

Sweep-based spectrum sensing (§III) introduces intermit-
tency in spectrum scans, which in turn, may affect data quality.
Thus, we propose a metric to quantify the intermittency
of a spectrum scan as a function of the sensor’s sweeping
configuration. We define intermittency as the revisit time (AT)
elapsed between consecutive revisits of a given band:

N-1

AT = (1 + At;) 3)

i=1

Here N is the number of sweep steps Af;, [Hz] that
a sensor must complete in order to scan the entire target
frequency range AF, [Hz]. At; is the amount of time a sensor
dwells on a given sweep step A f; (also known as dwell time).
Finally, 7 is the hop delay defined as the time from the start
of the radio reconfiguration until it records the first sample. 7
factors in the time it takes to configure the hardware, the local
oscillator to settle, the operating system scheduling, and the
time taken at the application level to start producing data.

1) Effects of sensor properties and configuration on inter-
mittency: While N and At; are apriori known configuration
parameters, the hop delay 7 is not deterministic, because
the time to configure, schedule and produce samples will
vary depending on the SDR-Host platform. Fig. 4 presents
the hop delay over 1000 runs for the five platforms. It is

different across platforms, owning to the different hardware
configuration, processors, and USB link speeds. In addition,
the hop delay varies from run to run for the same platform,
as indicated by the deviation of measured values for each
platform. All RTL sensors had lower deviation of their hop
delays compared to the USRP-based sensors. Finally, all RTL-
based platforms were faster to re-initialize compared to their
USRP-based counterparts, due to their simpler hardware.

We note that our traces were collected without sweeping,
as our sensors dwelled for 20 seconds per run. Thus no hop
delays were experienced. In order to study the effects of hop
delay, we excised portions of each trace at a random location,
according to the measured platform hop delays in Fig. 4.

V. VIA AS APPLICATION ACCURACY PREDICTOR

VIA quantifies the quality of spectrum data and thus, can
be used as a performance predictor for a variety of spectrum
analysis tasks. We explore VIA’s predictive capabilities with
three such applications (i) transmitter detection, (ii) occupancy
detection, and (iii) modulation recognition as detailed below.

A. Target Applications

1) Transmitter Detection (TD). We employ a recent unsu-
pervised transmitter detection algorithm from the literature
called AirVIEW [28] that is robust in low SNR regimes.
It takes as an input an array of PSD measurements over
time for a set of frequencies (sweep). It finds the sweep’s
wavelet decomposition represented as a binary tree and then
calculates the multiscale product of lossy reconstructions of
the underlying PSD. It then thresholds the multiscale product
to determine idle and occupied frequency ranges. Finally,
occupied ranges are reconciled into a single transmitter over
time based on the alignment across consecutive sweeps. Given
groundtruth for transmitter activity, the accuracy of transmitter
detection is calculated as the bidirectional Jaccard similarity
between actual and detected active time-frequency blocks [28].
2) Occupancy Detection (OD). We employ edge detection in
order to identify idle and occupied bands [55]. The method
takes as input an array of PSD measurements over time. A
threshold is applied to detect the rising and falling edges
of the occupied bins for each PSD sweep. To calculate the
threshold, we obtain the max frequency hold over time. We
find the minimum and maximum value, take the difference and
divide in half. We calculate accuracy as the overlap between
expected and detected active frequency bins. We average the
so-calculated overlaps across all sweeps with detected activity.
3) Modulation Recognition (MR). For this application, we
employ the methodology from [41] assuming 100% overlap
between the transmitter’s and the sensor’s bandwidths. The
methodology employs dictionary learning with local sequential
patterns in IQ timeseries to determine the modulation of a
signal. We calculate the accuracy of this application as the
fraction of total samples with a correctly identified modulation.

B. VIA as a Performance Predictor

To demonstrate VIA’s potential as a performance predictor,
we model the relationship between VIA and the accuracy of
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Fig. 6: Demonstration of VIA as a performance predictor. (left) TD accuracy as a function of observed data veracity (middle)
TD accuracy as a function of observed data ambiguity. (right) TD accuracy as a function of hop delay time.

the above applications. We use two prediction models: ridge
regression [56] and a neural network [57]. Ridge regression
is an extension of linear regression and is highly effective in
eliminating multicollinearity. The neural network is a feedfor-
ward network which consists of an input layer with a fully
connected hidden layer (five neurons), and the output layer.

For each trace, we calculate veracity, intermittency and
ambiguity (VIA vector). Veracity is calculated using Eqn 1.
Intermittency is represented by the hop delay time described
in §IV-D. Ambiguity is calculated using the methodology
described in §IV-C and using Eqn 2. The dataset captures a
full range of VIA values. Finally, we employ TD, OD and MR
applications to all traces and calculate the respective accuracy
as described in §V-A. The input to our models is the VIA
vector (i.e. the model inputs) and the output of the model is
accuracy (i.e. the model output) of the targeted application.
Our prototype framework is implemented in MATLAB (VIA
vector calculation) and Python (prediction models).

C. Case Study

To showcase VIA’s relationship with application accuracy,
we study the relationship between the VIA vectors and the
performance of transmitter detection (TD). We seek to demon-
strate two core VIA characteristics: (i) its predictive power for
spectrum tasks and (ii) the fact that it is sensor-agnostic. Fig. 6
plots TD accuracy vs. each of the three indicators.

Fig. 6 (left) shows accuracy as a function of veracity.
For this result, we consider all traces with ambiguity of 0
and no hop delay in order to isolate the effects of veracity.
As a reminder, lower veracity means more dropped samples,
which adversely affects the accuracy. We see a clear trend of
decreasing accuracy as the veracity decreases, regardless of
the sensor platform. Thus, veracity is a strong predictor for
accuracy regardless of the platform.

Fig. 6 (middle) shows the relationship between ambiguity
and TD accuracy. For this result, we consider all traces
with veracity of 1 and no hop delay in order to isolate the
effects of ambiguity. As a reminder, higher ambiguity makes
transmitters harder to detect, thus leading to reduced accuracy.
Accordingly, we see that as the ambiguity grows, the accuracy
decreases across all sensor platforms.

Finally, we showcase the effects of intermittency on TD
accuracy (Fig. 6 (right)). For this result, we consider all the
traces with ambiguity of 0 and veracity of 1 in order to
isolate the effects of intermittency. The x-axis presents the
five platforms in increasing order of average intermittency.
Boxplots present the accuracy distribution for each platform.
Lower intermittency results in higher overall accuracy, thus
the intermittency, can serve as a predictor for accuracy.

VI. EVALUATION

To evaluate VIA’s ability to predict application perfor-
mance, we utilize the regression and neural network mod-
els described in §V-B. Furthermore, we focus on the three
applications—transmitter detection (TD), occupancy detection
(OD) and modulation recognition (MR) detailed in §V-A.
We first explore VIA’s predicting performance for known
platforms then study the transferability of VIA models across
unknown platforms and propagation environments. Finally, we
explore the predictive power of individual VIA vectors and
analyze the effects of the training data size.

Evaluation metrics and implementation. For TD and OD,
which draw on PSD data, the models are trained with 150
samples of controlled traces and tested with 25 samples of
controlled or real-world traces, all from the five platforms with
10-fold validation. For MR, which uses IQ data from the RTL-
based platforms, we train on 150 samples of controlled traces
and tested with 25 of controlled traces. In all experiments, we
report the mean squared error (MSE), which is the average
squared error between the model’s prediction and the target
value. We select MSE as it is a common standard metric for
both prediction models. As a reminder, our predicted and target
value is TD/OD/MR accuracy, which varies between 0 and 1.
Thus, MSE close to 0 corresponds to a good predictive model.

A. VIA Performance for Known Platforms

We begin by exploring VIA’s ability to predict TD and
OD accuracy across known platforms. A platform is “known”
if it was included in the model training process. For this
experiment we train on a mix of all platforms. Our results
are presented in Fig. 7 (left) across six testing scenarios,
comparing both applications and models. “All” includes equal
representation of testing samples from the five platforms. For
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Fig. 7: MSE for known platforms. Testing on controlled traces
(left) and testing on real-world traces (right).

the remaining five cases, all test samples are drawn from
a single platform. All six cases achieve high and stable
performance regardless of the target sensor, application and
prediction model, as indicated by the consistently low MSE.
With a mix of testing samples our average MSE is 0.0013
across all testing scenarios.

We next evaluate, VIA’s prediction performance on real-
world traces. For this experiment, we train on the controlled
traces with all five platforms and test using the FM radio and
TVWS real-world collected traces. Unlike the controlled traces
collected with our testbed, for which we have groundtruth
for both bandwidth and temporal duration, for the real-world
FM/TVWS traces we only know their bandwidth (based on
transmitter specification) but not duration. Thus, for real-world
data we report accuracy in bandwidth detection. Our results are
presented in Fig. 7 (right) with testing on a mix of all platforms
(“All”) and individual platforms. All six cases achieve high
and stable performance as indicated by the low MSE scores.
With the real-world testing samples our average MSE score
is less than 0.0015 across all testing scenarios. These results
show that VIA models transfer across transmitter settings and
do not require training on different technologies, as we were
able to train on indoor controlled traces and test on wide-area
outdoor traces.

B. Transferability of VIA Models

Next, we explore VIA’s ability to predict TD and OD
performance for unknown platforms and unseen multipath
environments. A platform is unknown if it was not included in
training. We generate all possible combinations (Z), where n
is the number of training platforms, k is the number of testing
platforms and n + k = 5. Fig. 8 (left) represents MSE across
all combinations. In “All” both the training and the testing
pool are comprised of samples from all five platforms. For
the remaining four cases, we exclude an increasing number
of platforms from the training set, i.e. “1-4” trains on 4
platforms and uses the fifth for testing, “2-3” trains on three
and tests on the remaining two and so on. The presented results
are average over all possible combinations for a given train-
test ratio. Overall, the first 4 combinations have a low and
consistent MSE (an average of 0.0014 or better with a small
variance). The rightmost combination “4-1" scores just below
0.004 with increased variance, which indicates that as we limit
the amount of training platforms and increase the unknown
testing platforms, VIA’s performance declines. Upon closer
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Fig. 8 MSE for unknown platforms (left) and for
known/unknown propagation environments (right).

Indoor Outdoor Mixed

examination of the individual “4-1” combinations, we found
that training on a single RTL sensor, while testing on a mix
of RTL and USRP, gains bad performance. This is due to the
limited set of sensor configurations that can be explored with
an RTL compared to a USRP. As a result, we see much fewer
realizations of the VIA vectors than we would with a sensor
with many more possible configurations such as the USRP.
Thus, in order to be a good training candidate, a platform
should provide a full range of VIA realizations.

We also evaluate VIA’s transferability across multipath
propagation environments. Fig. 8 (right) presents results for
three cases: Indoor, for which training and testing is on the
indoor data, Outdoor, with training and testing on the outdoor
data and Mix, with training on the indoor and testing on
the outdoor data. All three scenarios maintain a low MSE
score (less than 0.0015) with low variance. These results
hold for both known (Indoor/Outdoor) and unknown (Mixed)
propagation environments, across spectrum tasks and predic-
tion models. Particularly noteworthy is the Mixed scenario,
showing that VIA performs well even when sensors are only
profiled in indoor settings. This can lower the barrier in data
collection by allowing sensor profiling in indoor environments.

Our evaluation so far demonstrates that VIA is platform-
agnostic, can successfully be transferred from one platform to
another and from indoor to outdoor scenarios. Furthermore,
VIA can predict application accuracy even when the training
dataset contains fewer platforms than the testing data.

C. VIA with IQ Data for Modulation Recognition

We next explore VIA’s predictive capabilities for MR ap-
plications using IQ data. We limit this experiment to data
collected on the RTL-based sensors for two reasons. First,
existing MR algorithms require that a transmitter’s bandwidth
be scanned alone and at 100% or less overlap between the
bandwidth of the sensor and the transmitter. Thus, modu-
lation recognition cannot be performed on spectrum scans
that encompass sideband noise. Additionally, our USRP-based
transmitter can reliably run with a bandwidth up to 4Mhz,
after which it starts dropping samples. Since we want to avoid
transmitter-induced imperfections in our scans, we only run
our transmitter with a bandwidth up to 3Mhz. This inherently
limited the bandwidths we could use on the sensor side to
3MHz as well. USRP platforms do not suffer performance
deterioration at 3MHz bandwidth, while RTLs begin to drop
samples at that bandwidth (§1V). Thus, to ensure 100% overlap



— 0.002 — 0.002 —0.015 —
m m m goors -
2 s é [ENN-TD =0.012 IH=NN-TD)
» 0.0015 » 0.0015 - =
g e S 001 § o0t
5 5 5 ° 0.008
g 0.001 g 0.001 K B
@ ©

g g S 0.005 0.006
& 0.0005 ®0.0005 @ @ 0.004
] ] s
o) o] 2 2 0.002
= 0 = 0 0

Al RTL-PC RTL-Lap RTL-Pi All 1.2 2.1 V. I A VI VA A VA 20 40 60 80 100 120 140 180

Testing Combinations Testing/Training Combinations Model Inputs Number Training Samples
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between the sensor and the transmitter bandwidths, while
allowing for some imperfections in the spectrum scan to occur,
we limit this experiment to the RTL-based sensors.

Our results are presented in Fig. 9. On the left we have
MSE across known platforms. Here, the training set includes
all RTL-based sensor platforms. “All” includes equal repre-
sentation of testing samples from the three platforms. For
the remaining three cases, all test samples are drawn from a
single platform. All cases achieve high and stable performance
as indicated by the low MSE (under 0.0015). On the right,
we have MSE across unknown platforms. Once again, “All”
includes equal representation of testing samples from the
three platforms. For the remaining 2 cases, we exclude an
increasing number of platforms from the training set. Overall,
all combinations have a low and consistent MSE (0.0015
or under). These results demonstrate that VIA can reliably
predict application accuracy for a variety of applications and
data types, including modulation recognition from IQ traces.

D. Analysis of Input Importance and Input Size Requirements

We now evaluate the importance of the three VIA vectors
in predicting the performance of the PSD-based transmitter
detection task. Our goal is to determine whether some VIA
vectors hold higher predictive power than others, and justify
the use of all three vectors in combination as opposed to indi-
vidually. To that end, we modify the inputs to our models to
be (i) the individual VIA vectors, (ii) pairs of VIA vectors and
(iii) the combination of all three and evaluate the performance
of TD with both models. Our results are presented in Fig. 10
(left). Veracity and intermittency alone achieve an MSE score
just under 0.009. The combination of these exacerbates the
performance (over 0.012). The two combinations that include
ambiguity achieve an MSE score of 0.0022, which is better
than ambiguity alone (0.0027). However, neither of these two
combinations reach the VIA score of 0.0013. Thus, all of the
VIA vectors are important predictors for application accuracy.

Finally, we study the effects of the training data size on
VIA’s performance. This will inform the amount of required
traces and characterizations. For this experiment, we increase
the size of the training samples from 20 to 180 in increments
of 20. The training and testing samples are taken from all five
platforms. Fig. 10 (right) shows our results across all training
sizes for both models and the transmitter detection task. We
observe that with a training pool of 20-60 samples, the LR

Fig. 10: Analysis of VIA input importance (left) and training
data size (right).

model performs better, likely due to the higher training data
requirement of neural network based models. As the training
pool increases, the MSE score improves for the NN model
and converges with the LR model. These results inform our
choice of 150 training samples for the previously presented re-
sults. They also have important practical implications, as they
demonstrate that VIA can reliably predict application accuracy
with as few as 100 controlled spectrum characterizations.

VII. DISCUSSION AND CONCLUSION

Understanding and modeling the effects of spectrum sensors
on data quality is instrumental to measurements that can
objectively capture spectrum activity. The state-of-the-art in
spectrum measurement, however, lacks methods to catalogue
sensor properties and attribute them to data quality and appli-
cation performance.

To address this issue we develop VIA, a framework that
can profile the fidelity of spectrum traces while account-
ing for the sensor configuration and radio environment, and
link data quality with the performance of spectrum analyt-
ics. VIA benchmarks data across three vectors: veracity,
intermittency and ambiguity. Using an extensive ex-
perimental campaign with five RTL- and USRP-based sensor
platforms we demonstrate that VIA is a strong predictor for
spectrum analytics’ performance. We consider a variety of
applications — transmitter and occupancy detection, and mod-
ulation recognition — that use both power spectrum density
traces and raw IQ data. VIA can benchmark data fidelity
for arbitrary and unknown platforms with limited supervision.
VIA has the potential to lower the entry barrier into spectrum
research and measurements for non-experts by providing an
automated approach to sensor and data quality benchmarks.

While our current efforts focus on VIA’s ability for spec-
trum analytics prediction, an extension of this framework for
sensor selection is worth exploring. Furthermore, expanding
our dataset to include data from new sensor platforms, NLOS
scenarios, and testing in real-world environments will also be
a priority. Finally, the current VIA design accounts for the
impact on data quality of the most influential sensor capabil-
ities. Further exploration of sensor imperfections such as 1/Q
imbalances, automatic gain control, front end saturation, and
RF nonlinearity may inform additional VIA fidelity vectors.
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