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Abstract—This position paper explores the gap between the
current state-of-the-art in spectrum management and the ob-
jective of data driven spectrum policy. We explore four issues
underlying successful data-driven policy: data requirements to
support policy decisions; data acquisition and storage; robust,
extensible metadata; and tools for analysis and visualization.
For each issue, we discuss the state-of-the-art and describe the
ultimate objective. We conclude the paper with a call for action to
the spectrum community and list a number of efforts that should
be undertaken to support true data-driven spectrum policy.

I. INTRODUCTION

Radio frequency (RF) spectrum is an increasingly scarce
resource, owning to the popularity of mobile and wireless
broadband and the increasing need of wireless spectrum in
other domains, such as radio astronomy and remote sens-
ing [1]. In 2016 Weldon [2] projected that utilized bandwidth
would increase by 10x between 2010 and 2024; that network
access would shift from 97% wired to 97% wireless; and that
the number of wireless household devices would increase by
10x.

To make radio frequency (RF) spectrum available for new
services, regulators are forced to re-allocate spectrum from
existing services (incumbents), or develop mechanisms to
share spectrum between incumbents and new entries. This
process was formalized in the U.S. with a 2010 Presidential
Memorandum [3] which tasked the National Telecommunica-
tions and Information Administration (NTIA) to identify 500
MHz of government spectrum that could be re-allocated. Some
examples of spectrum reallocation include:

o The 600 MHz Transition reallocated 70 MHz of spectrum
formally allocated for broadcast television to wireless
services [4];

e The Advanced Wireless Services 3 (AWS-3) transition
reallocated the 1695-1710 MHz, 1755-1780 MHz, and
2155-2180 MHz bands from federal to commercial use.
Some federal systems were unable to relocate and will
share spectrum with new entries [5];

e The Citizens Broadband Radio Service (CBRS) band,
3550-3700 MHz was reallocated for non-federal use via
a complex sharing mechanism with DoD radars [6].

When making spectrum management decisions including
reallocation, assignments, and coexistence analysis and tech-

niques, regulators must consider a number of technical ques-
tions including, but not limited to:

(1) What is the incumbent occupancy in key geographic
areas? Policy examples include TV White Space
(TVWS) [7] and CBRS [6].

(2) What are the propagation characteristics of the band
in consideration? Relevant policy examples include the
effect of propagation models on TVWS density [8].

(3) What are the electromagnetic compatibility character-
istics of the involved and neighboring systems? Most
of these policy decisions concern interference based on
the signal strength or transmission mask of adjacent
channels as in the role of Dedicated Short Range Com-
munications (DSRC) in the 5.9Ghz [9]. Issues such as
Ligado/LightSquared involve receiver specifications, but
knowledge of the existing interference in those bands
could influence policy decisions [10].

(4) What is the potential for aggregate interference from a
large numbers of new devices? Relevant examples of the
effects of aggregate interference include: Industrial, Sci-
entific, and Medical (ISM) bands [11], LED interference
[12] and remote sensing [13].

(5) How can the effectiveness or efficiency of a policy
be evaluated? Are the policy decisions meeting their
stated goals? This question has started to be explored
for the case of CBRS, but typical efforts to date have
involved counting devices as opposed to measuring oc-
cupancy [14].

The FCC and NTIA have long sought a more data driven
approach to spectrum management and allocation policies.
In the Spring of 2023, under the auspices of the Wireless
Spectrum R&D Interagency Working Group (WSRD), and
hosted by the National Institute for Standards and Technology
(NIST) a workshop was held titled "Making Data Available
for National Spectrum Management.” [15]. At the workshop,
several points were made about data driven spectrum policy:

o The goal is data driven policy, but how to achieve this?
o The community needs meaningful guidance for spectrum
data collection.

The question naturally arises that, given the number of orga-
nizations (academic, government, industry) making spectrum
measurements of various types, why is the resulting data not



sufficient to drive data driven policy? In this position paper,
we explore this question by examining the requirements for
spectrum measurements, collection, distribution and cataloging
for data driven policy decisions. Section II discusses the re-
quirements for data driven policy. Section III surveys existing
data collection systems. Section IV explores the need for good
metadata. Section V explores the requirements for analysis
and visualization. The paper concludes with a Call to Action
to the spectrum community with recommendations to enable
data driven spectrum policy.

II. REQUIREMENTS FOR DATA DRIVEN POLICY

The point of policy is to provide the stability required to
allow future investments in using the relevant spectrum in a
manner that delivers useful benefits for people. By contrast,
actual data is always about the past or the present — we never
have direct access to the future. Consequently, data-collection
impacts policy making in two distinct ways:

« Via implicit/explicit forecasts of conditions in the relevant
future. This is the only path by which actually collected
data can be useful for policy making.

o As a capability that one can count on as a part of the
policy itself. Reliable data in the future allows closed-
loop policies that adapt to local circumstances.

Specific parameters of any policy that made sense with a
particular view of the state of the world (including uncertainty
estimates) can be less sensible for the more refined view that
fresh data can enable. Being able to adapt those parameters
in “closed-loop” is a powerful tool in improving the efficient
utilization of spectrum. However, a successful adaptive policy
has at least six prerequisites:

(a) Data collection capabilities that can provide us with
policy-relevant data across time/space/frequency as rel-
evant to the policy parameters being adapted.

(b) We must have a practical level of trust in the data coming
from these capabilities.

(c) The capability to appropriately disseminate the relevant
updated policy parameters to spectrum-using agents in an
automatic and timely manner.

(d) Spectrum-using agents must be able to actually adapt
their usage characteristics to the updated parameters.

(e) We must have a practical level of trust that spectrum-
using agents can/will adapt to updated policy parameters.

(f) Those developing/deploying spectrum-using agents must
be able to forecast the range of policy parameters ex-
pected in the useful lifetime of spectrum-using agents in
order to make investment decisions rationally.

The last point (f) above is simultaneously banal — this is a
characteristic of any real-world investment scenario involving
any resource, not just spectrum — and vital since such stability
is the whole point of policy in the first place. Without sufficient
stability, investments do not happen. A quantitative sense of
historic trends, variability, and correlations can help manage
risks, and this requires well-instrumented, dense, and long-
term longitudinal data. This value of good data is one

of the underappreciated roles for spectrum monitoring.
Good hierarchical visualizations that permit rich multimodal
exploration and interaction by diverse human decision-makers
and stakeholders are also vital in both taming the fear of
“unknown unknowns” that are the bane of risk-takers, as
well as refining the sense of relevant “known unknowns” that
need to be quantified — possibly by commissioning additional
measurements or collecting additional types of data.

Points (a), (c), and (d) are within the mainstream of engi-
neering thinking for dynamic spectrum, although a lot more
needs to be understood. However, to actually have data driven
policy, the trust dimensions represented by (b) and (e) are
critically important and much more engineering research and
even basic problem formulation is needed. Understanding the
tradeoffs that underlie being able to determine what “practical
level of trust” should mean is one critically understudied
dimension here, as is understanding the different aspects of
the real world that can potentially undermine trust.

A. Spectrum Data

Each technical question described in §I needs different data:
Band Power: Incumbent occupancy measurements require
at least power or carrier sensing and can record specific
frequencies occupied, the duration of those events and e.g.
detected signal power. This is used for cases (1), (3), (4) and
(5) described in §I.

Adjacent Band Power: Band occupancy measures the use of
a band, but certain policy decisions depend on the activity in
adjacent bands, including aggregate interference from those
bands (e.g. (3) and (4) from §I)

Data Measures: In certain cases, it may be useful to record
IQ samples or band-specific derived products - for example,
when determining the need for additional bands for specific
services (LTE, WiFi, etc), it can be useful to record the data
utilization rather than just transmission power. A 20MHz LTE
signal will have some degree of constant, detectable power but
may be conveying very little data. This is used for case (5)
described in §I.

Propagation characteristics: Signals are affected by trans-
mitter and antenna characteristics, elevation above ground and
environmental effects. Predicted interference relies on more
detailed and careful measurement that matches the policy goals
such as (2) and (4) in §I.

Although IQ samples are the standard from which other data
can be derived, IQ is expensive to collect and store and not
needed for many policy decisions. Surprisingly, most existing
data collection systems focus on recording IQ samples.

III. EXISTING DATA COLLECTION SYSTEMS

Spectrum monitoring has been performed by govern-
ments [16], researchers [17] and companies [18]; most moni-
toring systems use a single sensor at each location and those
locations are widely separated. Such systems can be used to
determine how spectrum is used in order to justify or argue
spectrum policy allocations, to measure increases in the noise
floor, or to indicate that interference has occurred.



In the realm of large-scale spectrum monitoring, numerous
studies advocate for distributed data collection using afford-
able, software-defined radio (SDR) sensors such as Spec-
Sense [19] and the systems proposed in [20], [21]. While Spec-
Sense emphasizes sensor selection optimization to minimize
deployment costs, both rely on centralized cloud processing
for efficient data aggregation and analysis. SpecSense focuses
on on-demand spectrum occupancy queries, utilizing sensor
augmentation and interpolation techniques to fill data gaps.
The system in [20] takes a broader approach, leveraging a
secure network for collaborative sensing and data sharing,
ensuring accuracy and coverage across the wideband spectrum;
[21] explores low-cost SDRs that are directly connected to a
smartphone for real-time spectrum monitoring suggesting the
potential for on-device processing and analysis.

ElectroSense [22] is a crowd-sourced spectrum monitoring
network designed to oversee the spectrum on a large scale
through the integration of low-cost spectrum sensing nodes.
This innovative platform not only democratizes access to cru-
cial spectrum information but also ensures that the monitoring
process is cost-effective and scalable. By deploying a network
of affordable spectrum sensing nodes, ElectroSense empowers
users to contribute to a collective effort in monitoring and
understanding the radio frequency spectrum. This collaborative
approach facilitates comprehensive coverage and also pro-
motes real-time data acquisition, allowing for a more dynamic
and responsive spectrum monitoring ecosystem. ElectroSense
has been used in a variety of studies, such as real-time wireless
technology classification [23].

ElectroSense supports both Power Spectrum Density (PSD)
and IQ data pipelines. For PSD data, the Fast Fourier Trans-
form (FFT) is computed. Subsequently, the derived PDF data
is compressed and permanently stored in a dedicated database
for future processing. Unlike PSD data, ElectroSense does not
permanently store 1Q data due to its inherently large size.

KiwiSDR offers a unique and flexible approach to radio
signal processing. The architecture of KiwiSDR is centered
around a low-cost, credit-card-sized BeagleBone single-board
computer, that serves as the processing engine. Connected to
this board is a high-performance wideband RF frontend that
operates in the HF band (i.e., up to 30 MHz). The distributed
nature of KiwiSDR allows multiple users to access the sys-
tem simultaneously, each with their own independent tuning
and demodulation settings. The data pipeline of KiwiSDR is
designed to efficiently handle the streaming and processing of
RF data, ensuring low-latency access for users.

Some automated spectrum interference detection systems
have been proposed — one of the oldest involved comparing
measured emissions to a database of licenses for land-mobile
radio [24] and more recent versions [25], [26] have a similar
design. Companies [27] have deployed similar systems —
CarrierIQ’s system collects “key performance indicators” that
can be used to detect interference.

An interesting and vital question is why, despite these
numerous spectrum monitoring systems, data-driven policy has
not been realized?

The primary reason is that these are developed as “general
platform”, whereas policy-making (and other applications)
require greater specificity in measurement capabilities. Let
us take a look at one example candidate aspect of policy
innovation to understand this better. Several policy decisions
differentiate between indoor and outdoor transmission limits.
For example, in the CBRS, transmission power limits vary for
indoor and outdoor installations [28]. Similarly, in the case of
WiFi 6E, deployment is restricted to indoor environments to
prevent potential interference with outdoor fixed microwave
links and the FCC has already revisited WiFi transmission
levels in the SGHz U-NNI-1, U-NNI-2A and U-NNI-4 bands
similar to the Low-Power Indoor limits in WiFi 6E. Imposing
distinct power thresholds is intended to reduce interference,
ensuring the coexistence of different applications within the
shared spectrum.

As a result, accurate detection of indoor versus outdoor
environments becomes pivotal for these applications. This en-
ables the implementation of adaptive power control strategies,
facilitating harmonious spectrum sharing. Abedi et al. [29]
have introduced a technique for automatic indoor-outdoor
detection using ADS-B signals from airplanes. Their findings
indicate that the conventional practice of adjusting transmis-
sion configurations based on indoor or outdoor categorization
may lack effectiveness in various environments. To our knowl-
edge, no existing spectrum measurement system captures such
indoor/outdoor distinctions and could provide the data required
to tune/adjust policy in this direction.

IV. METADATA 1S ESSENTIAL

Spectrum data collection efforts thus-far have been largely
decoupled from the analytics task the data will support. At
the same time, spectrum analytics rely on the quality of the
underlying sensor properties, configuration, behavior and en-
vironment. Coupling these properties with the fidelity of spec-
trum data and the corresponding spectrum analytics outcomes
must also be handled by metadata [30]. Those factors can vary
between different sensors and even similar sensors in multiple
vantage points. The interpretation of the underlying data, and
its suitability for policy decisions, depends on these factors
and thus they must be documented. Subsequently, the notion of
spectrum metadata has emerged, resulting in several proposed
metadata standards including VITA49 [31], CHDR [32] and,
most recently, SigMF [33], which underpins the IEEE 802.22.3
SCOS [34]. Fig. 1 summarizes data properties that can be
currently captured with existing metadata standards (in red)
and emerging data characteristics (in black). Standardizing
metadata also involves entailing specialists in at least GIS,
radio science and mobility. For example the FixedRoute
data might be represented as a series of GIS points or a
LineString that captures an entire path or also include
altitude and velocity. We believe it is essential to provide
prescriptive practices documenting what metadata is necessary
for different spectrum recording activities to provide that trust
to data consumers.
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Fig. 1: Metadata capabilities vs. requirements. Highlighted in red
are sensor capabilities that can currently be captured by existing
metadata standards. Expanded in black are additional capabilities that
will ensure data is sufficiently coupled with the collection approach
and can provide trustworthy analytics.

VITA49 is designed as a “digital IF” to describe the steps
and components a signal traverses during transmission or
reception and is not directly applicable for archival data. The
standard includes ~22 fields, some of which are highlighted
in red in Fig. 1. The fields describe the configuration of
the analog RF-digital chain, and some environmental factors
(temperature, GPS coordinates) but not other factors such as
antenna type, antenna height, etc. VITA49 is a packet based
protocol and the context data is embedded within the data
making it difficult to search for the metadata fields.

CHDR [32] was developed by Ettus Research and is cur-
rently embedded in all USRP B2XX products. It is designed
as an RFNoC transport protocol and contains fields for “user-
defined” metadata, which are not specified by the CHDR
standard itself, leaving them open for custom implementation.

SigMF is explicitly designed for recorded data samples,
making it particularly relevant for data-driven policy. It fea-
tures a prescriptive data format with fields highlighted in red
in Fig. 1. The metadata is stored in hierarchical JSON and
explicitly designed to support extensions. The standard has
a core data schema and several extensions including those
provided by NTIA [35] that define environmental, sensor,
waveform and processing algorithms among others.
Metadata Design: We believe that having a metadata format
separate from recorded data, as in SigMF, is important for RF

archives because a key activity of an archive is discovery and
retrieval of different datasets. Embedded metadata within an
1Q stream makes it difficult to search because the full dataset
must be scanned; while the embedded metadata can be stored
in a separate form, neither VITA49 or CHDR define such a
form. Yet, we believe that SigMF requires specific extensions
—it is important that multiple data formats can be described
by the metadata and that it is important to describe “derived
products” and the provenance of those products. For example,
a spectrum occupancy measurement of a time-granularity
average and peak power measurements or a frequency-based
occupancy measurement using FFT’s would be derived from
previously recorded IQ samples. Because those different prod-
ucts may reside in different spectrum repositories, mechanisms
such as Digital Object Identifiers (DOI’s) [36] to link one data
product to another are essential metadata extensions. Similarly,
while most spectrum data can be represented as time-series
vectors, numerous concrete representations exist that more
easily facilitate cloud storage.

Query Methods: Metadata is only as useful as the mecha-
nisms to query that metadata and the underlying data. Query-
ing RF archives involves both a mechanism and a query
language. While REST API’s are the most common query
mechanism, they are poorly adapted to extensible schema;
a typical REST API uses a set of verbs (PUT, GET) over
a set of nouns (user name, location). We believe resolving
policy questions using spectrum databases will typically re-
quire more complex queries such as “the time of peak power
measurements from PSD’s collected in 700Mhz-750Mhz in
Ohio collected using omnidirectional antennnas outdoors no
more than 10 meters above ground”. Because REST API’s
operate on a primary noun, multiple REST queries need to be
performed to retrieve complex data relationships. For example,
a query to retrieve datasets using a specific antenna type may
return a long list of identifiers, each of which may need to be
queried to determine if that record was then in a frequency of
interest. GraphQL is designed to reduce the number of those
queries by combining queries across aspects of a recorded
metadata and possibly for time-series data.

There are several query languages for time-series data that

focus on vectors of values and the ability to operate over
ranges of that data in a query. For example PromQL [37]
can query data at an instant in time or a range of time values
across multiple time-series datasets; however, it is designed for
simple scalar values although extensions to query histograms
have been added. We know of no suitable standard for locating
RF datasets that match specific sensor (e.g. antenna pattern)
and dataset (e.g. carrier frequency).
Data Discovery Methods: Regulatory bodies need to under-
stand the provenance of data and be able to cite specific
datasets and the relationships of different datasets to one
another. Even with standardized data formats and metadata
descriptions, the problem of searching for and referencing
specific datasets needs study.

The DOI system [36] is designed to relate unique digital
object identifiers to specific objects coupled with metadata to
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Fig. 2: Diagram from [36] showing the process of registering a DOI
with a associated reference and metadata.

describe the object. DOI was originally created for entertain-
ment artifacts, but includes different registration authorities
that maintain specific DOI areas and the metadata for them.
DOI is an existing standard used by government agencies —
for example, the NSF uses the ORCID registration authority
for researcher identities and to relate identify publications
specified by a DOI to those researchers. The DOI system has
been used to identify datasets — one such registration authority
is https://datacite.org/. As shown in Figure 2, DOI is similar
to DNS by providing unique names for a dataset and allowing
the location of that data to move if needed. The DOI system
does not record the data itself nor does it fully describe that
data - it simply provides the references to it and methods to
locate it. We believe that the spectrum science community
should adopt a DOI namespace to refer to RF datasets. The
SigMF metadata format already includes DOI fields for data
and metadata in the global namespace.

Uniquely identifying a dataset leaves open the problem of
data discovery. Despite efforts at developing singular data
archives, the parallel history of documents in the WWW
has shown that multiple repositories (websites) and search-
based methods (e.g. google search) provide advantages. De-
veloping a search method for RF datasets should be studied.
IQEngine [38] demonstrates a newer approach by using a
Large Language Model to ingest the SigMF metadata de-
scriptions and then using free-text queries to locate relevant
datasets. Once a standard metadata and DOI framework is
adopted, research will be needed on effective data discovery.

V. ANALYTICS AND VISUALIZATION

Several spectrum monitoring solutions and web-based toolk-
its for analyzing, processing, and visualizing data have been
designed and proposed in literature.

IQEngine is a web-based toolkit for sharing and analyzing
RF IQ recordings. The web interface allows for easy access to
view and analyze IQ recordings and allows users to manually
annotate them to highlight known spectrum activity. Record-
ings can be visualized as spectrograms, in time and frequency
domain, or IQ timeseries. The interface includes tools to adjust
the display colormap, FFT size, window, filters, and resolution.

GR-Bokehui and Gqrx are open-source graphical toolk-
its that can visualize 1Q traces in a waterfall plot. Elec-
trosense [22] allows interactive sensor selection and varying

frequency resolution. Historical data from the sensors can
be viewed and live spectrum updates can also be displayed.
A similar approach was taken by the Microsoft Spectrum
Observatory [39], which used higher-end RFEye and USRP
sensors and provided a web-UI for data visualization. Basic
analytics, such as fraction of band occupancy based on power
thresholding, were also available through this platform. Both
the Microsoft Spectrum Observatory and Electrosense were
decommissioned since their inception. All these general tools
take in IQ data and not policy specific datatypes.

Some vertically integrated systems have been studied. The
authors in [40] propose a database-assisted spectrum sharing
system that takes in information on license holders, their
rights, and policy constraints. It uses algorithms and a variety
of data to make spectrum sharing decisions, but provides
no visualization tools. Cosmic-CoNN [41] is an interactive
image segmentation and visualization framework for cosmic
rays and demonstrates the advantage of domain-specific RF
analysis systems. It allows identifying, inspecting, and editing
of tiny objects in large multimegapixel high-dynamic-range
images. This work attempts to create an end-to-end system
and displays the identified object in a visualization tool.

Collection and basic visualization of raw spectrum data
only goes part of the way towards comprehensive support of
data-driven policy. In addition, required are spectrum analytics
toolkits, which can automatically and autonomously mine
spectrum data for insights that inform policy. Such toolkits
should be embedded with the visualization engines to allow
policy-makers to toggle between insights and the underlying
data. For example, a policy-maker trying to discern aggregate
interference would require spectrum analytic tasks such as
transmitter localization. A policy-maker trying to reallocate
spectrum may need to assess who is using the spectrum
(e.g. signal classification), and what resources are being used.
Data driven policy decisions require specific analytic tasks.
While such tasks have been researched [19], [21], [23], [42],
existing visualization tools do not support such tasks required
to inform policy. Furthermore, existing analytics methods are
often developed for offline mining and have not been tested on
longitudinal spectrum data. The latter, however, is critical to
enable autonomous annotation of spectrum activity, and create
spectrum utilization stories from the raw data.

While these existing systems provide the tools to visualize
spectrum data (i.e. observe the distribution of radio signals
in terms of frequency and time), data driven policy decisions
require specific data analytic tasks that are not supported by
them. Analytic and visualization tools should be developed in
tandem and support insights to spectrum utilization, analytics
required to make policy decisions, and trust in data products.

VI. SUMMARY - A CALL TO ACTION

This paper outlines the requirements for spectrum archives
necessary for data-driven policy decisions. There are nascent
solutions that can be combined to assemble a usable data
ecosystem, but efforts need to be taken in specific areas:
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2)

3)

4)

5)

6)

The community should focus on generating longitudinal,
geographically and environmentally diverse data sets. A
minimum viable data product to support policy decisions
should be defined to inform data collection and storage.
A standardized metadata format for sensors and datasets
should be adopted. We believe that extending SigMF and
providing supporting infrastructure is the best solution.
RF data should be able to be stored and accessed in
multiple data formats, including cloud-enabled storage.
Rather than mandate a specific format, we believe that an
“adaptation library” should be developed to access data
and the specific data storage should be described though
SigMF extensions.

We need federated data archives with unique data prod-
ucts identified through a DOI reference with metadata
specific to RF data collection.

The community should develop query methods to search
those federated datasets in a way that’s usable and un-
derstandable by practitioners in the RF community. This
should be coupled with data discovery methods.
Analysis and visualization tools should be developed to
support policy making. Such tools should enable insights
about past and present spectrum utilization, as well as
supporting what if exercises. The tools should enable
toggling between insights and raw data, and support
exploration of uncertainty and trust in data products.

We believe this collections of standards will increase data
reuse and begin to make that data suitable for data-driven
policy. This in turn will support the proper instrumentation
of field trials to enhance their policy impact by being able
to reduce the uncertainty surrounding critically important
considerations like aggregate interference which require the
fusion of occupancy measurements with propagation modeling

and
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