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ENUMERATING WORD MAPS IN FINITE GROUPS

BOGDAN S. CHLEBUS , WILLIAM COCKE∗ AND MENG-CHE “TURBO” HO

Abstract. We consider word maps over finite groups. An n-variable word w is an element of the free

group on n-symbols. For any group G, a word w induces a map from Gn 7→ G where (g1, . . . , gn) 7→

w(g1, . . . , gn). We observe that many groups have word maps that decompose into components. Such a

decomposition facilitates a recursive approach to studying word maps. Building on this observation, and

combining it with relevant properties of the word maps, allows us to develop an algorithm to calculate

representatives of all the word maps over a finite group. Given these representatives, we can calculate

word maps with specific properties over a given group, or show that such maps do not exist. In particular,

we have computed an explicit a word on A5 such that only generating tuples are nontrivial in its image.

We also discuss how our algorithm could be used to computationally address many open questions

about word maps. Promising directions of potential applications include Amit’s conjecture, questions

of chirality and rationality, and the search for multilinear maps over a group. We conclude with open

questions regarding these problems.

1. Introduction

This paper discusses the challenge of enumerating the word maps of a finite group. Explicit enumer-

ations can be used to computationally explore a variety of different questions about word maps over

finite groups. We comment on many of these questions in Section 4.
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A word is an element of the free group Fn on n symbols. On a group G, the word w ∈ Fn induces a

map w : Gn → G by (g1, . . . , gn) 7→ w(g1, . . . , gn). Such maps are called word maps. We write w(G) for

the image of the word map induced by w on the group G. For example, if G is the group S3, i.e., the

symmetric group on 3 symbols, and w is the word x2, then w(G) is the set of all squares in S3, i.e, the

identity and the two 3-cycles.

Many structural properties of a group G can be determined by the behavior of specific word maps

over G. A word w is a law on G if for all g1, . . . , gn ∈ G we have w(g1, . . . , gn) = 1, or equivalently

w(G) = {1}. For example, the word w = [x, y] = x−1y−1xy is a law on G if and only if the group G is

abelian. For the same word w = [x, y], the statement that w(G) = G for each finite non-abelian simple

group G is known as the Ore conjecture; it was recently proven [17]. Similarly, there is a word w such

that a finite group G is solvable if and only if w(G) = 1 [25].

The set Kn(G) of n-variable laws of a group G forms a characteristic subgroup of Fn. Two words give

the same map if they are in the same coset of Kn(G). We write Fn(G) for the quotient Fn/Kn(G). The

group Fn(G) is the relatively free group of rank n in the variety generated by G as defined by Neumann

[20]. Elements of Fn(G) correspond to the word maps w : Gn → G, in the sense that the group Fn(G)

is isomorphic to the group of n-variable word maps over G. We present an algorithm to enumerate the

cosets of Kn(G) in Fn.

Throughout the paper, we always implicitly fix a transversal of Kn(G) in Fn that consists of words,

and identify the word with the induced word map as well as the corresponding element of Fn(G). We

will further assume the words corresponding to commutator word maps, i.e., elements of Fn(G)′, are

commutator words.

For a group G, the sequence

(|F1(G)|, |F2(G)|, |F3(G)|, . . . , |Fn(G)|, . . .)

is called the free spectrum of G. Free spectra of groups has been the subject of studies by various authors

[9, 22]. Nevertheless, there are few groups G for which the free spectrum of G is known. For example,

Kovács [15] determined the free spectrum of all dihedral groups. Recently, Cocke and Skabelund [7]

calculated the free spectrum of A5.

This paper is organized as follows. Section 2 includes some preliminary results and observations.

In Section 3, we give an algorithm to enumerate all of the n-variable word maps over a finite group.

In particular, Section 3.1 includes an example describing how to enumerate all of the 2-variable word

maps over S3. Finally, in Section 4, we present a few open questions related to word maps as potential

applications of our algorithm.
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2. Preliminaries

This section contains some observations about word maps that we will use in our algorithm in Section

3.

We will use a decomposition of words into powers and commutators. Specifically, by collecting

powers [19], a word w in Fn can be written as xi11 , . . . , x
in
n c for some c ∈ F′

n. We will write e(G) for the

exponent of G.

Lemma 2.1. The word w = xi11 , . . . , x
in
n c, where c ∈ F′

n, is a law on a group G if and only if e(G) | ij
for all j and c is a law on G.

Proof. The “if” direction is clear. Suppose w is a law. Since c(1, 1, . . . , 1, x, 1, . . . , 1) = 1 for every x, we

have that w(1, 1, . . . , 1, x, 1, . . . , 1) = xij0 = 1 for every x as a map from Gn → G. Hence we obtain that

e(G) | ij0 . This applies to every index j = j0, so xi11 , . . . , x
in
n takes on 1 for any assignment of values to

the symbols x1, . . . , xn, and c must be a law. □

By Lemma 2.1, the problem of enumerating laws on a finite group G is reduced to enumerating

commutator word maps over G that are laws on G. Therefore the problem of enumerating the word

maps over G can be reduced to enumerating the commutator word maps over G.

We can represent a function f : Gn → G as the set of tuples {(g1, . . . , gn, f(g1, . . . , gn)) : gi ∈ G}.

Lemma 2.2. If ϕ : ⟨g1, . . . , gn⟩ → H is a homomorphism, then ϕ(w(g1, . . . , gn)) = w(ϕ(g1), . . . , ϕ(gn)).

For a word map w, we do not need all of the |G|n tuples to define w. Specifically, by Lemma 2.2,

we can restrict our attention to orbit representatives of the diagonal action of End(G) on Gn. We can

actually refine via a slightly stronger criterion, which is given next as Lemma 2.4.

Definition 2.3. We will call a set X of elements of Gn a noncommutative covering of Gn if

for every tuple (g1, . . . , gn) in Gn such that ⟨g1, . . . , gn⟩ is nonabelian there are some homomorphism

ϕ : G → G and (x1, . . . , xn) ∈ X satisfying (ϕ(x1), . . . , ϕ(xn)) = (g1, . . . , gn). If no proper subset of a

noncommutative covering X is a noncommutative covering itself, then X is a minimal noncommu-

tative covering.

Lemma 2.4. Let G be a finite group and let X be a noncommutative covering of Gn. For any word

map w in Fn(G)′, the word map w is uniquely determined by its values on X.

Proof. For any (g1, . . . , gn) ∈ Gn such that ⟨g1, . . . , gn⟩ is abelian, we have that w(g1, . . . , gn) = 1. If

(g1, . . . , gn) ∈ Gn and ⟨g1, . . . , gn⟩ is not abelian, then there is some (x1, . . . , xn) ∈ X and a homomor-

phism ϕ : G → G such that (ϕ(x1), . . . , ϕ(xn)) = (g1, . . . , gn). Then w(g1, . . . , gn) = ϕ(w(x1, . . . , xn)),

by Lemma 2.2. □
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Computing a covering of Gn is in general nontrivial.

Definition 2.5. Let G be a group and let X be a noncommutative covering of Gn. A set W ⊆ Fn(G)′

isolates an element x = (g1, . . . , gn) ∈ X if the following two criteria hold:

(1) For all w ∈ W and z ∈ X \ {x} we have that w(z) = 1.

(2) ⟨w(x) : w ∈ W ⟩ = ⟨g1, . . . , gn⟩′.

Isolation is a useful concept for computations involving relatively free groups. Lemma 2.7 shows

explicitly how to use isolation. To state it, we define what we mean by associating commutator word

maps with a set of n-tuples of G by restricting their domains.

Definition 2.6. Given a set X ⊆ Gn, the set of commutator word maps over X is the set of

all word maps w ∈ Fn(G)′ with domains restricted to X. Note that this is a homomorphic image of

Fn(G)′.

Lemma 2.7. Let G be a group, X a noncommutative covering of Gn, and x = (g1, . . . , gn) ∈ X. If

there is a set W ⊆ Fn(G)′ of commutator word maps that isolates x, then Fn(G)′ ∼= ⟨g1, . . . , gn⟩′ ×H

where H is the set of commutator word maps over X \ {x}.

Proof. Suppose that a set W ⊆ Fn(G)′ of commutator word maps isolates x ∈ X. Consider a commuta-

tor word c ∈ Fn(G)′. It follows that c(x) ∈ ⟨g1, . . . , gn⟩′. There is some w ∈ ⟨W ⟩ such that w(x) = c(x).

Such an element w ∈ ⟨W ⟩ is unique since, as an element of Fn(G)′, w is determined by its value on X

by Lemma 2.4. We have w(x) = c(x) and w(x) = 1 for every z ∈ X \ {x}. Writing h = w−1c, we obtain

c = wh. Observe that h(x) = 1 and w(z) = 1 for z ∈ X \ {x}, so w commutes with h. This process

defines a map c 7→ (c(x), h |X\{x}) from Fn(G)′ to ⟨g1, . . . , gn⟩′ ×H.

The image determines the value of c on x and X \ {x}, so the map is injective. It is also surjective

as every element of ⟨g1, . . . , gn⟩′ is in the image by condition (2) of Definition 2.6 and every element

of H is realized by some word map w which is mapped to (w(x), w |X\{x}). Finally, the map is a

homomorphism, since if c = wh and c′ = w′h′, then we have cc′ = whw′h′ = (ww′)(hh′) so cc′ is

mapped to ((cc′)(x), (hh′) |X\{x}) = ((c)(x), (h) |X\{x}) · ((c′)(x), (h′) |X\{x}). □

By (the proof) of a theorem by Lubotzky [18], in a finite simple group, any generating tuple in a

noncommutative covering is isolated by some set of commutator word maps. It has been shown that

for the holomorphs of groups of prime order, there are noncommutative covering sets of F2(G)′ where

every element is isolated [5]. This means that F2(G)′ is a direct product of copies of Cp−1.

In many cases, we cannot isolate every element of a noncommutative covering set. It appears how-

ever that many noncommutative covering sets decompose nicely. We formalize this observation by

generalizing the definition of isolation as follows.
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Definition 2.8. Let G be a group and let X be a noncommutative covering of Gn. Given a subset Y

of X, we say that a set of commutator word maps W separates Y in X if the following hold:

(1) For all w ∈ W and z ∈ X \ Y we have that w(z) = 1.

(2) ⟨W ⟩ is the group of all commutator word maps over Y .

Note that if Y = {y}, then W separating Y in X is equivalent to W isolating y in X. The argument

of Lemma 2.7 also generalizes to the following fact:

Lemma 2.9. Let G be a group and let X be a noncommutative covering of a group Gn. If there is a

set W ⊆ Fn(G)′ of commutator word maps that separates Y ⊆ X, then Fn(G)′ ∼= H1 × H2 where H1

(respectively, H2) is the set of commutator word maps over Y (respectively, X \ Y ).

After we split X into Y and X \ Y , we can further split Y and X \ Y into smaller subsets if a proper

subset is separated. This observation is the key idea behind Algorithm 1 in the next section. For this

further splitting, we need the following generalization of Lemma 2.9, with a similar proof.

Lemma 2.10. Let G be a group, X ⊆ X ′ ⊆ Gn where X ′ is a noncommutative covering of Gn, and

C ⊆ Fn(G)′ is a subgroup that separates X in X ′. If there are a set W ⊆ C of commutator word maps

and Y ⊆ X such that W separates Y in X ′, then C ∼= H1×H2 where H1 is the set of commutator word

maps over Y and H2 is the set of commutator word maps over X \ Y .

3. An algorithm to calculate the commutator word maps

We first present an example before stating the general algorithm.

3.1. Example: counting 2-variable word maps over S3. As noted in Section 2, this is equivalent

to enumerating all of the 2-variable commutator word maps over S3. Since commutator maps are

defined by their values on non-commuting tuples, we can restrict to non-commuting 2-tuples from S3.

A minimal noncommutative covering of (S3)
2 is given by

X = {((1, 2, 3), (1, 2)), ((1, 2), (1, 2, 3)), ((1, 2), (2, 3))}.

Commutator words can only map S3 × S3 → S′
3
∼= C3. Since a word map is determined by its value

on X and |X| = |C3| = 3, there are at most 33 = 27 commutator word maps on 2 variables over S3. The

word maps [x2, y], [x, y2], and [x3, y3] each isolate a unique element of X. We see that any 2-variable

word map on S3 can be uniquely expressed in the form

xiyj [x, y2]a[x2, y]b[x3, y3]c

where i, j ∈ {0, . . . , 5} and a, b, c ∈ {0, 1, 2}. Hence there are 27 word maps over X, and we conclude

that |F′
2(S3)| = 27. Thus |F2(S3)| = 62 · 27 = 972.
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3.2. The algorithm. The motivation of our algorithm is to essentially walk the Cayley graph of com-

mutator word maps Fn(G)′ over G. These maps have images in G′, and given a noncommutative

covering X of Gn, can be thought of as maps from X → G′. In practice, the graph can be quite large,

making the naive approach of simply constructing all such maps infeasible due to time and compu-

tational resource limits. Nevertheless, it is often the case that the group of commutator word maps

decomposes nicely into direct products of commutator word maps over smaller sets. Identifying the

existence of word maps that separate subsets of the noncommutative covering of Gn reduces the size of

the computation drastically.

Hence we need a function which checks whether or not a subset V of a set W ⊆ Fn(G)′ of com-

mutator word maps separates a subset Y of a noncommutative covering X of G. For the function

separates(X,Y,V,B) to compute if a set of words V separates Y from X, we need to check that V

vanishes on X \ Y and that every commutator word map is replicated over Y . To do this, we consider

the following generating set of F′
n and check that for every basis word b, there is a word in ⟨V ⟩ that is

equal to b on Y .

We describe how to calculate a free basis for F′
n and reduce to a generating set of Fn(G)′ by examining

when two maps are equal over X. We first reduce the powers modulo the exponent e(G). We note that

when n = 2 there is a well-known basis for F2(G)′: {[xi, yj ] : i, j ≤ e(G)}. In general, we can use the

following basis, or a variation thereof:

{xi11 · · ·xinn xjx
−i1
1 · · ·x−ij−1

j · · ·x−in
n : ik ≤ e(G)}.

We then detect and remove any repetition of these sets as word maps. Note that the resulting set B is

a generating set of Fn(G)′ which may not be free.

The function below is not meant to represent code in any language, but to be a convenient pseudo-

code.

Our main algorithm will consist of generating balls of the Cayley graph of Fn(G)′ with respect to the

generating set B. Here we use W ∗B to denote the set of word maps in W that are concatenated with

the elements of B. Note that both W and W ∗B are stored as maps, i.e., maps from Gn → G are stored

as n + 1 tuples with elemenets form G. Since there are only finitely many possibilities, eventually we

will have W = W ∗B.

We will need the following function in our main algorithm.

Then our algorithm can be summarized as:

Algorithm 1. To enumerate the word maps over a group G first calculate a noncommutative covering

X for the set Gn and a generating set B for Fn(G)′. Then

This algorithm returns a list of direct summands of Fn(G)′, where each element is given as a map

from a subset Y of X to G′. One can then use these to reconstruct Fn(G) as described in Section 2.
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3.3. Remarks on the Algorithm. For some groups G, it may be feasible to execute Algorithm 1 by

hand. To streamline computations, the choice of when to separate a set could be done using either

theoretical bounds or other information about the group in question.

For example, over a finite simple group, the tuples in a noncommutative covering that generate the

group naturally separate from the tuples in the noncommutative covering that do not. Using this fact,

we were able to enumerate enough word maps over A5 to compute the word

w(x, y) = [[x2, y2], [xy, yx]][[x, y], [xy2, yx2]].

Over A5 we have that w(a, b) ̸= 1 if and only if ⟨a, b⟩ = A5. Such words were shown to exist by Lubotzky

[18], but no examples were known.

Next, we discuss the performance bounds. The algorithm traverses the Cayley graph of the commu-

tators over the noncommutative covering. Assuming the functions of conducting group multiplications

and comparing maps are constant, simply traversing the graph will take O (|B| · |Fn(G)′|) time, where

B is the generating set of Fn(G)′, while the amount of space required is O (|X| · |Fn(G)′|). However, the
splitting of the noncommutative covering X significantly speeds up the algorithm and reduces storage

requirements. Returning to the example of F2(S3)
′, using the noncommutative covering in Example

3.1, we only need to store 3 + 3 + 3 word maps. Moreover, once subsets split in the noncommutative

covering, we can distribute the computation further reducing requirements.

There is an interesting phenomenon here which we describe heuristically: if the noncommutative

covering has a high degree of splitting, then Fn(G)′ is a product among the independent components,

making our algorithm computationally less expensive. An extreme family of examples in this case are

the finite simple groups wherein every tuple, which generates the whole group, in a noncommutative

covering is isolated in the covering. If the noncommutative covering does not split, then Fn(G)′ is more

complex since there are interdependencies among the elements of the noncommutative covering meaning

our algorithm for enumerating Fn(G)′ is computationally more expensive.

4. Applications and Connections to Other Topics

In this section, we give some problems for which our algorithm may be able to provide examples or

counterexamples to help further investigations.

4.1. Amit’s Conjecture. Sometime in the early 2000’s, Alon Amit made a conjecture about how

word maps behave on finite nilpotent groups. This conjecture was quoted in several places, Abert [1] in

2006, Nikolov and Segal [21] in 2007, and later by Ashurst [2] and Levy [16]. As of 2023, Amit’s work

containing the conjecture has not been published. The conjecture, known as Amit’s Conjecture, is the

following:
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Question 4.1 (Amit’s Conjecture). Given an n-variable word map w over a finite nilpotent group G,

the number of n-tuples mapping to 1 is at least |G|n−1.

The Amit conjecture itself has been shown to hold for some families of different groups. For example,

both Levy [16], and Iñiguez and Sangroniz [10] showed that the Amit conjecture holds for groups of

nilpotency class two by using commutator calculus and character theory, respectively. There is also a

solvable analog of Amit conjecture, which has been proven, that says a group is solvable if and only if

there is some constant c = c(G) such that for every natural number n and n-variable word map w, the

number of n-tuples mapping to 1 by w is at least c|G|n−1 [1, 21].

As part of the history of Amit’s conjecture, we mention a generalization of Amit’s Conjecture, which

appeared in peer-review form as the “generalized Amit conjecture” in [4]. This generalization also

appeared in Ashurst’s thesis [2]. In her thesis, Ashurst showed that the Amit conjecture and the

generalization hold for the nilpotent dihedral groups and nilpotent generalized quaternion groups. For

this reason, Camina, Cocke, and Thillaisundaram [3] have chosen to call it the Amit–Ashurst Conjecture;

extending Ashurst’s work they showed that the Amit–Ashurst Conjecture holds for all p-groups with a

cyclic maximal subgroup.

Question 4.2 (The Amit–Ashurst Conjecture). Given an n-variable word map w over a finite nilpotent

group G and an element g ∈ w(G), the number of n-tuples mapping to g is at least |G|n−1.

In [3, Theorem A], it is shown that the Amit–Ashurst Conjecture holds for p-groups with a cyclic

maximal subgroup. Work by Kishnani and Kulshrestha [14] shows that in certain other classes, e.g.,

extra special groups, the Amit–Ashurst conjecture also holds.

One could use Algorithm 1 to enumerate word maps of a nilpotent group G and test the Amit or

Amit–Ashurst conjectures for G. In fact, given the nilpotency class of G and the exponents of the factors

in the lower central series of G, one may replace the free basis with a Mal’cev basis of the relatively free

group of G. However, enumerating the n-variable word maps over a group G is not enough to prove

that the Amit–Ashurst conjecture holds for the group G. This leads to the following question, which is

also of some interest:

Question 4.3. Is there a recursive function f = f(G) such that the truth of the Amit–Ashurst conjecture

for G depends only on knowing the truthfulness of the Amit–Ashurst conjecture for word maps on f(G)

variables?

One could further ask if such a function exists which takes as input the nilpotency, number of

generators, or other group theoretic invariants of G.

4.2. Images of word maps, chirality, and rationality. The question of chirality is motivated by

the definition of symmetrized w-values in G where Gw = {w(g1, . . . , gn)±1 : g1, . . . , gn ∈ G} in Dan
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Segal’s Words [23]. The question of whether the ±1 in the exponent is necessary led to the following

definition of chirality [6].

Definition 4.4. A pair consisting of a group G and a word w is called chiral if w(G) is not closed

under inverses. The group G is called chiral if it is chiral for some word w and achiral if it is not

chiral.

It is straightforward to see that abelian groups are achiral. In [6] families of chiral groups are given.

In contrast, Singh and Reddy [24] show that many families of words are achiral.

Definition 4.5. A pair consisting of a group G and a word w is called rational if the number of tuples

evaluating to g and h are equal whenever ⟨g⟩ = ⟨h⟩.

Chirality is a generalization of ratonality, because if a pair is rational, then it is chiral. Many authors

have investigated rational words in various settings, see for example [8]. In particular, Camina, Iniguez

and Thillaisundaram [4] showed that every finite nilpotent group of class 2 is rational. Kaur, Kishnani,

and Kulshrestha [13] also explore the images of word maps in finite nilpotent groups.

Many questions about word maps over a specific group can be answered using our algorithm. For

example, as noted in [6], enumerating all word maps over two variables is sufficient to determine if a

group is chiral. However, an algorithm to identify subsets of a group that occur as word maps would be

very interesting. There are only a finite number of subsets of a finite group, and determining if a subset

is the image of a word map is recursively enumerable; it is unclear if it is recursive. The below question

has been informally discussed in many settings:

Question 4.6 (The Big Question). Is there a decision procedure that takes as input a finite group and

a subset thereof and returns whether or not the subset occurs as the image of a word map?

Question 4.6 could be restricted to relatively free groups:

Question 4.7. Is there a decision procedure that takes as input a finite relatively free group and a subset

thereof and returns whether or not the subset occurs as the image of a word map?

Lemma 4.8. The Question 4.7 is equivalent to Question 4.6.

Proof. Given a finite group G that is n-generated, we can construct Fn(G). Every image of a word map

in G is the quotient of an image of a word map in Fn(G) by one of the maps Fn(G) → G. If we can

enumerate all such images in Fn(G), then we can enumerate all such images in G. □

The proof of Lemma 4.6 shows the stronger statement: If G is a quotient of H, then every image of a

word map over G is the quotient of an image of a word map over H. Thus, the problem of enumerating

images of word maps over G can be reduced to the problem of enumerating word maps over H.
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4.3. Multilinear word maps. Recent work by Kahrobaei, Tortora, and Tota [11, 12] investigate

cryptographic protocols arising from multilinear maps over groups.

Definition 4.9. A map f from Gn → G is multilinear if for all a1, . . . , an ∈ Z we have f(ga11 , . . . , gann ) =

f(g1, . . . , gn)
a1,...,an, i.e., the powers factor through the function.

Kahrobaei, Tortora, and Tota note that the n-fold commutator word defined by the recursive rules

[x1, x2] = x−1
1 x−1

2 x1x2 and [x1, . . . , xn] = [[x1, . . . , xn−1], xn] is a multilinear word map on nilpotent

groups of class n. This raises the question of what other word maps are multilinear.

Using our enumeration algorithm we rediscovered the following: the Burnside groups B(3, n) (expo-

nent 3 and n-generated) have the property that [x, y] is multilinear as a two-variable map and [x, y, z]

is multilinear as a three-variable map. Our observation is actually equivalent to the fact that every

two-generated subgroup of the Burnside group B(3, n) has nilpotency class 2, while the group itself has

nilpotency class 3. Groups with a family of multilinear maps could be used to establish protocols for

multiple participants at once.

We have the following lemma about multilinear maps over G.

Lemma 4.10. If G is a group and w is a multilinear map on G, then either w is a commutator map

or w is a single variable map.

Proof. Suppose that w is not a map on a single variable map. Write

w(x1, . . . , xn) = xk11 · · ·xk2n c(x1, . . . , xn).

Then we note that for any i,

xi·k1 = w(x, 1, . . . , 1)i = w(x, 1i, . . . , 1) = xk1 ,

which implies (i − 1)(k1) ≡ 0 (mod exp(G)). Hence k1 ≡ 0 (mod exp(G)). By symmetry ki ≡ 0

(mod exp(G)) for all i and we conclude that w is a commutator map. □

Currently, the best-known examples of multilinear maps are (n+1)-fold commutators since the maps

[x0, x1, . . . , xn] are multilinear in nilpotent groups of step n.

Question 4.11. What groups have multilinear word maps from Gk to G for k ≥ 2 and what are these

word maps?
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