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Abstract

We study the complexity of Non-Gaussian Component Analysis (NGCA) in the
Statistical Query (SQ) model. Prior work developed a general methodology to
prove SQ lower bounds for this task that have been applicable to a wide range of
contexts. In particular, it was known that for any univariate distribution A satis-
fying certain conditions, distinguishing between a standard multivariate Gaussian
and a distribution that behaves like A in a random hidden direction and like a stan-
dard Gaussian in the orthogonal complement, is SQ-hard. The required conditions
were that (1) A matches many low-order moments with the standard univariate
Gaussian, and (2) the chi-squared norm of A with respect to the standard Gaus-
sian is finite. While the moment-matching condition is necessary for hardness, the
chi-squared condition was only required for technical reasons. In this work, we
establish that the latter condition is indeed not necessary. In particular, we prove
near-optimal SQ lower bounds for NGCA under the moment-matching condition
only. Our result naturally generalizes to the setting of a hidden subspace. Lever-
aging our general SQ lower bound, we obtain near-optimal SQ lower bounds for a
range of concrete estimation tasks where existing techniques provide sub-optimal
or even vacuous guarantees.

1 Introduction

Non-Gaussian Component Analysis (NGCA) is a statistical estimation task first considered in the
signal processing literature [BKS+06]. As the name suggests, the objective is to find a non-gaussian
direction (or, more generally, low-dimensional subspace) in a high-dimensional dataset. Since its in-
troduction, the NGCA problem has been studied in a range of works from an algorithmic standpoint;
see [TV18, GS19] and references therein. Here we explore this problem from a hardness perspec-
tive in the Statistical Query (SQ) model. Before we motivate and state our results, we require basic
background on the SQ model.

SQ Model SQ algorithms are a class of algorithms that are allowed to query expectations of
bounded functions on the underlying distribution through the SQ oracle rather than directly ac-
cess samples. The model was introduced by Kearns [Kea98] as a natural restriction of the PAC
model [Val84] in the context of learning Boolean functions. Since then, the SQ model has been
extensively studied in a range of settings, including unsupervised learning [Fel16]. The class of SQ
algorithms is broad and captures a range of known algorithmic techniques in machine learning in-
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cluding spectral techniques, moment and tensor methods, local search (e.g., EM), and many others
(see, e.g., [FGR+17, FGV17] and references therein).

Definition 1.1 (SQ Model). Let D be a distribution on Rn. A statistical query is a bounded function
q : Rn → [−1, 1]. We define STAT(τ) to be the oracle that given any such query q, outputs a value
v such that |v − Ex∼D[q(x)]| ≤ τ , where τ > 0 is the tolerance parameter of the query. A
statistical query (SQ) algorithm is an algorithm whose objective is to learn some information about
an unknown distribution D by making adaptive calls to the corresponding STAT(τ) oracle.

The following family of high-dimensional distributions forms the basis for the definition of the
NGCA problem.

Definition 1.2 (Hidden-Subspace Distribution). For a distribution A supported on Rm and a matrix
V ∈ Rn×m with V⊺V = Im, we define the distribution PA

V supported on Rn such that it is dis-
tributed according to A in the subspace span(v1, . . . ,vm) and is an independent standard Gaussian
in the orthogonal directions, where v1, . . . ,vm denote the column vectors of V. In particular, if A
is a continuous distribution with probability density function A(y), then PA

V is the distribution over
Rn with probability density function

PA
V(x) = A(⟨v1,x⟩, . . . , ⟨vm,x⟩) exp(−∥x−VV⊺x∥22/2)/(2π)(n−m)/2 .

That is, PA
V is the product distribution whose orthogonal projection onto the subspace of V is A,

and onto the subspace perpendicular to V is the standard (n−m)-dimensional normal distribution.
An important special case of the above definition considers to m = 1 (i.e., the case when the hidden
subspace is a hidden direction); for this setting, we will use the notation PA

v for such a distribution,
where A is a one-dimensional distribution and v ∈ Rn is a unit vector.

Since we are focusing on establishing hardness, we will consider the following hypothesis test-
ing version of NGCA (since the learning/search version typically reduces to the testing problem).
We use Nn to denote the standard n-dimensional Gaussian distribution N (0, In). We use U(On,m)
to denote the uniform distribution over the set of all orthogonal matrices V ∈ Rn×m; namely,
this is the distribution obtained by taking RV′, where R ∈ Rn×n is a random rotation matrix and
V′ ∈ Rn×m is an arbitrary orthogonal matrix.

Definition 1.3 (Hypothesis Testing Version of NGCA). Let n > m ≥ 1 be integers. For a distribu-
tion A supported on Rm, one is given access to a distribution D such that either:

• H0: D = Nn,

• H1: D is given by PA
V, where V ∼ U(On,m).

The goal is to distinguish between these two cases H0 and H1.

For the special case that m = 1 (i.e., for a univariate distribution A), prior work [DKS17]
established SQ-hardness of NGCA1 under the following condition:

Condition 1.4. Let d ∈ Z+. The distribution A on R is such that (i) the first d moments of A agree
with the first d moments of N (0, 1), and (ii) the chi-squared distance χ2(A,N ) is finite, where the
chi-squared distance for two distributions (with probability density functions) P,Q : Rn → R+ is
defined as χ2(P,Q)

def
=
∫
x∈Rn P (x)2/Q(x)dx− 1.

Specifically, the main result of [DKS17] shows that any SQ algorithm that solves the testing version
of NGCA requires either 2n

Ω(1)

many SQ queries or at least one query with accuracy

n−Ω(d)
√
χ2(A,N (0, 1)).

It is worth noting that subsequent works (see [DK22a] and [DKPZ21]) generalized this result so
that it only requires that (i) A approximately matches moments with the standard Gaussian, and (ii)
A is a low-dimensional distribution embedded in a hidden low-dimensional subspace, instead of a
one-dimensional distribution.

1While the SQ lower bound result of [DKS17] was phrased for the search version of NGCA, they can be
directly translated to the testing version; see, e.g., Chapter 8 of [DK23].
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The starting point of our investigation is a key technical limitation of this line of work. Specif-
ically, if χ2(A,N (0, 1)) is very large (or infinite), e.g., if A has constant probability mass on a
discrete set, the aforementioned SQ lower bound of [DKS17] can be very weak (or even vacuous).
It is thus natural to ask if the finite chi-squared assumption is in fact necessary for the corresponding
SQ lower bounds to hold.

A concrete motivation to answer this question comes from the applications of a generic SQ
lower bound for NGCA to various learning problems. The SQ-hardness of NGCA can be used
to obtain similar hardness for a number of well-studied learning problems that superficially ap-
pear very different. These include learning mixture models [DKS17, DKPZ23, DKS23], robust
mean/covariance estimation [DKS17], robust linear regression [DKS19], learning halfspaces and
other natural concepts with adversarial or semi-random label noise [DKZ20, GGK20, DK22a,
DKPZ21, DKK+22], list-decodable mean estimation and linear regression [DKS18, DKP+21],
learning simple neural networks [DKKZ20, GGJ+20], and even learning simple generative mod-
els [CLL22]. In several of these applications, the requirement of bounded chi-squared distance is
somewhat problematic, in some cases leading to quantitatively sub-optimal results. Moreover, in
certain applications, this restriction leads to vacuous guarantees.

1.1 Our Results

1.1.1 Main Result

Our main result is a qualitatively near-optimal (up to the constant factor in the exponent) SQ lower
bound for the NGCA problem, assuming only the moment-matching condition (i.e., without the
chi-squared distance restriction). Informally, we essentially show that in order to solve the NGCA
in n dimensions with an m-dimensional distribution A that (approximately) matches moments with
the standard Gaussian up to degree d, any SQ algorithm will either require one query with accuracy
Om,d(n

−Ω(d)) or exponential in n many queries.

Formally, we establish the following theorem.

Theorem 1.5 (Main SQ Lower Bound Result). Let λ ∈ (0, 1) and n,m, d ∈ N with d even and
m, d ≤ nλ. Let ν ∈ R+ and A be a distribution on Rm such that for any polynomial f : Rm → R of
degree at most d and Ex∼Nm

[f(x)2] = 1, the following holds: |Ex∼A[f(x)]−Ex∼Nm
[f(x)]| ≤ ν.

Let 0 < c < (1 − λ)/8 and n be at least a sufficiently large constant depending on c. Then any
SQ algorithm solving the n-dimensional NGCA problem (as in Definition 1.3) with 2/3 success
probability requires either (i) a query of tolerance Om,d

(
n−((1−λ)/8−c)d

)
+ (1 + o(1))ν, or (ii)

2n
Ω(c)

many queries.

A few comments regarding the parameters are in order here. We first note that the constant in
Om,d(n

−((1−λ)/8−c)d) is roughly the size of the Binomial coefficient
(
(d+m)/2−1

m/2−1

)
. Furthermore,

we would like to point out that for most applications we will have m, d < 1/poly(n). Therefore,
the parameters λ and c can be taken to be arbitrarily close to 0. So, informally, our lower bound on
the query accuracy can be roughly thought of as

(
(d+m)/2−1

m/2−1

)
n−d/8.

For all the applications given in this paper, the above theorem will be applied for the special
case that m = 1; namely, the case that the hidden subspace is a hidden direction and A is a univariate
distribution.

Relation to LLL-based Algorithms for NGCA Consider the special case of the NGCA problem
corresponding to m = 1 where A is a discrete distribution that matches its first d moments with
the standard Gaussian. Theorem 1.5 implies that any SQ algorithm for this version of the problem
either uses a query with accuracy n−Ω(d) or exponential many queries. On the other hand, recent
works[DK22b, ZSWB22] gave polynomial-time algorithms for this problem with sample complex-
ity O(n), regardless of the degree d. It is worth noting that the existence of these algorithms does
not contradict our SQ lower bound, as these algorithms are based on the LLL-method for lattice
basis reduction that is not captured by the SQ framework. An an implication, it follows that LLL-
based methods surpass any efficient SQ algorithm for these settings of NGCA. A similar observation
was previously made in [DH23] for the special case that the discrete distribution A is supported on
{0,±1}; consequently, [DH23] could only obtain a quadratic separation. Finally, we note that this
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limitation of SQ algorithms is also shared by two other prominent restricted families of algorithms
(namely, SoS algorithms and low-degree polynomial tests).

1.1.2 Applications

We believe that Theorem 1.5 is interesting in its own right, as it elucidates the SQ complexity of a
natural and well-studied statistical problem. Here we discuss concrete applications to some natural
statistical tasks. We note that the SQ lower bound in the prior work [DKS17] cannot give optimal
(or even nontrivial) lower bounds for these applications.

List-decodable Gaussian Mean Estimation One can leverage our result to obtain a sharper SQ
lower bound for the task of list-decodable Gaussian mean estimation. In this task, the algorithm is
given as input points from Rn where an α < 1/2 fraction of the points are drawn from an unknown
mean and identity covariance Gaussian N (µ, I), and the remaining points are arbitrary. The goal of
the algorithm is to output a list of O(1/α) many hypothesis vectors at least one of which is close to
µ in ℓ2-norm with probability at least 2/3. [DKS18] established the following SQ lower bound for
this problem (see also [DK23] for a different exposition).

Fact 1.6 ([DKS18]). For each d ∈ Z+ and c ∈ (0, 1/2), there exists cd > 0 such that for any α > 0
sufficiently small the following holds. Any SQ algorithm that is given access to a (1− α)-corrupted
Gaussian N (µ, I) in n > d3/c dimensions and returns a list of hypotheses such that with probability
at least 2/3 one of the hypotheses is within ℓ2-distance cdα−1/d of the true mean µ, does one of the
following: (i) Uses queries with error tolerance at most exp(O(α−2/d))Ω(n)−(d+1)(1/4−c/2). (ii)
Uses at least exp(Ω(nc)) many queries. (iii) Returns a list of at least exp(Ω(n)) many hypotheses.

The above statement is obtained using the framework of [DKS17] by considering the distribu-
tion testing problem between N (µ, I) and PA

v , where A is the one-dimensional moment-matching
distribution of the following form.

Fact 1.7 ([DKS18], see Lemma 8.21 in [DK23]). For d ∈ Z+, there exists a distribution A =
αN (µ, 1) + (1 − α)E, for some distribution E and µ = 10cdα

−1/d, such that the first d moments
of A agree with those of N (0, 1). Furthermore, the probability density function of E can be taken
to be pointwise at most twice the pdf of the standard Gaussian.

We note that χ2(A,N ) = O(exp(µ2)), and this results in the exp(O(α−2/d)) term in the error
tolerance of Fact 1.6. Consequently, if α ≪ log(n)−d/2, the error tolerance is greater than one and
Fact 1.6 fails to give a non-trivial bound. It is worth noting that the setting of “small α” (e.g., α
is sub-constant in the dimension) is of significant interest in various applications, including in mean
estimation. A concrete application is in the related crowd-sourcing setting of [MV18] dealing with
this parameter regime.

We can circumvent this technical problem by combining our main result (Theorem 1.5) with
Fact 1.7 to obtain the following sharper SQ lower bound (see Appendix C for the proof).

Theorem 1.8 (SQ Lower Bound for List-Decoding the Mean). Let λ ∈ (0, 1) and n, d ∈ N with
d be even and d ≤ nλ. Let c > 0 and n be at least a sufficiently large constant depending on c.
There exists cd > 0 such that for any α > 0 sufficiently small the following holds. Any SQ algorithm
that is given access to a (1 − α)-corrupted Gaussian N (µ, I) in n dimensions and returns a list
of hypotheses such that with probability at least 2/3 one of the hypotheses is within ℓ2-distance
cdα

−1/d of the true mean µ, does one of the following: (i) Uses queries with error tolerance at most
Od(n

−((1−λ)/8−c)d). (ii) Uses at least 2n
Ω(c)

many queries. (iii) Returns a list of at least exp(Ω(n))
many hypotheses.

Anti-concentration Detection Anti-concentration (AC) detection is the following hypothesis test-
ing problem: given access to an unknown distribution D over Rn, where the input distribution D is
promised to satisfy either (i) D is the standard Gaussian; or (ii) D has at least α < 1 of its probabil-
ity mass residing inside a dimension (n− 1) subspace V ⊂ Rn. The goal is to distinguish between
the two cases with success probability 2/3.

In order to use our main result to derive an SQ lower bound for this task, we require the follow-
ing lemma on univariate moment-matching (see Appendix C for the proof).
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Lemma 1.9. Let D0 denote the distribution that outputs 0 with probability 1. For d ∈ Z+, there
exists αd ∈ (0, 1) and a univariate distribution A = αdD0 + (1 − αd)E for some distribution E,
such that the first d moments of A agree with those of N (0, 1). Furthermore, the pdf of E can be
taken to be pointwise at most twice the pdf of the standard Gaussian.

Using the above lemma and our main result, we can deduce the following SQ lower bound on
the anti-concentration detection problem (see Appendix C for the proof).
Theorem 1.10 (SQ Lower Bound for AC Detection). For any α ∈ (0, 1/2), any SQ algorithm
that has access to a n-dimensional distribution that is either (i) the standard Gaussian; or (ii) a
distribution that has at least α < 1 probability mass in a (n-1)-dimensional subspace V ⊂ Rn, and
distinguishes the two cases with success probability at least 2/3, either requires a query with error
at most n−ωα(1), or uses at least 2n

Ω(1)

many queries.

Learning Periodic Functions Another application is for the well-studied problem of learning
periodic functions, see, e.g., [SVWX17] and [SZB21], which is closely related to the continuous
Learning with Errors (cLWE) problem [BRST21]. In the task of learning periodic functions, the
algorithm is given sample access to a distribution D of (x, y) over Rn × R. The distribution D is
such that x ∼ N (0, In) and y = cos(2π(δ⟨w,x⟩ + ζ)) with noise ζ ∼ N (0, σ2). This implies
that y is a periodic function of x along the direction of w with a small amount of noise. While
the frequency and noise scale parameters δ, σ ∈ R+ are known to the algorithm, the parameter
w ∈ Sn−1 is unknown; the goal of the algorithm is to output a hypothesis h : Rn → R such that
Ex∼D[(h(x)− y)2] is minimized.

In order to use our main theorem to derive an SQ lower bound for this problem, we need to show
that for any t ∈ [−1, 1], D conditioned on y = t approximately matches moments with N (0, In). To
this end, we introduce the following definition and fact of discrete Gaussian measure from [DK22a].
Definition 1.11. For s ∈ R+ and θ ∈ R, let Gs,θ denote the measure of the “s-spaced discrete
Gaussian distribution”. In particular, for each n ∈ Z, Gs,θ assigns mass sg(ns + θ) to the point
ns+ θ, where g is the pdf function of N (0, 1).

Note that although Gs,θ is not a probability measure (as the total measure is not one), it can be
thought of as a probability distribution since the total measure is close to one for small σ. To see
this, we introduce the following fact.
Fact 1.12 (Lemma 3.12 from [DK22a]). For all k ∈ N, s > 0 and all θ ∈ R, we have that
|Et∼N (0,1)[t

k]−Et∼Gs,θ
[tk]| = k!O(s)k exp(−Ω(1/s2)).

Using the above fact, we are now ready to prove our SQ lower bound for learning periodic
functions (see Appendix C for the proof).
Theorem 1.13 (SQ Lower Bound for Learning Periodic Functions). Let c > 0 and n be at least a
sufficiently large constant depending on c. Let D be the distribution of (x, y) over Rn × R that is
generated by x ∼ N (0, In) and y = cos(2π(δ⟨w,x⟩ + ζ)) with noise ζ ∼ N (0, σ2). Let δ > nc,
σ be known and w be unknown to the algorithm. Then any SQ algorithm that has access to the
distribution D and returns a hypothesis h : Rn → R such that E(x,y)∼D[(h(x) − y)2] = o(1),

either requires a query with error at most exp(−nc′) for c′ < min(2c, 1/10), or uses at least 2n
Ω(1)

many queries.

1.2 Technical Overview

We start by noting that we cannot use the standard SQ dimension argument [FGR+17] to prove
our result, due to the unbounded chi-squared norm. To handle this issue, we need to revisit the
underlying ideas of that proof. In particular, we will show that for any bounded query function
f : Rn → [−1, 1], with high probability over some V ∼ U(On,m), it holds that |Ex∼Nn

[f(x)] −
Ex∼PA

V
[f(x)]| will be small. This allows an adversarial oracle to return Ex∼Nn

[f(x)] to every
query f regardless of which case we are in, unless the algorithm is lucky enough (or uses high
accuracy) to find an f that causes |Ex∼Nn

[f(x)]−Ex∼PA
V
[f(x)]| to be at least τ .

Our approach for calculating Ex∼PA
V
[f(x)] will be via Fourier analysis. In particular, using

the Fourier decomposition of f , we can write f(x) =
∑∞

k=0⟨Tk,Hk(x)⟩, where Hk(x) is the
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properly normalized degree-k Hermite polynomial tensor and Tk is the degree-k Fourier coefficients
of f . Taking the inner product with the distribution PA

V involves computing the expectation of
Ex∼PA

V
[Hk(x)], which can be seen to be ⟨V⊗kAk,Tk⟩, where Ak = Ex∼A[Hk(x)]. Thus, we

obtain (at least morally speaking) that

Ex∼PA
V
[f(x)] =

∞∑
k=0

⟨V⊗kAk,Tk⟩ ≤
∞∑
k=0

|⟨Ak, (V
⊺)⊗kTk⟩| ≤

∞∑
k=0

∥Ak∥2∥(V⊺)⊗kTk∥2. (1)

The k = 0 term of the above sum will be exactly T0 = Ex∼Nn [f(x)]. By the moment-matching
condition, the k = 1 through k = d terms will be very small. Finally, we need to argue that the
higher degree terms are small with high probability. To achieve this, we provide a non-trivial upper
bound for EV∼U(On,m)[∥(V⊺)⊗kTk∥22]. Combining with the fact that

∑∞
k=0 ∥Tk∥22 = ∥f∥22 ≤ 1,

this allows us to prove high probability bounds on each term, and thus their sum.

Furthermore, if we want higher probability estimates of the terms with small k, we can instead
bound EV∼U(On,m)[∥(V⊺)⊗kTk∥2a2 ] for some integer a. Unfortunately, there are non-trivial tech-
nical issues with the above approach, arising from issues with (1). To begin with, as no assumptions
other than moment-matching (for a few low-degree moments) were made on A, it is not guaranteed
that Ak is finite for larger values of k. To address this issue, we will truncate the distribution A.
In particular, we pick a parameter B (which will be determined carefully), and define A′ to be A
conditioned on the value in the ball Bm(B). Due to the higher-moment bounds, we can show that
A and A′ are close in total variation distance, and thus that Ex∼PA

V
[f(x)] is close to Ex∼PA′

V
[f(x)]

for any bounded f .

Furthermore, using the higher moment bounds, we can show that A′ nearly matches the low-
degree moments of Nm. The second issue arises with the interchange of summations used to de-
rive (1). In particular, although f(x) =

∑∞
k=0⟨Tk,Hk(x)⟩, it does not necessarily follow that we

can interchange the infinite sum on the right-hand-side with taking the expectation over x ∼ PA
V.

To fix this issue, we split f into two parts f≤ℓ (consisting of its low-degree Fourier components)
and f>ℓ. We note that (1) does hold for f≤ℓ, as the summation there will be finite, and we can use
the above argument to bound Ex∼Nn

[f(x)] − Ex∼PA
V
[f≤ℓ(x)]| with high probability. To bound

|Ex∼PA
V
[f>ℓ(x)]|, we note that by taking ℓ large, we can make ∥f>ℓ∥2 < δ for some exponentially

small δ > 0. We then bound EV∼U(On,m)[Ex∼PA
V
[|f>ℓ|]] = Ex∼Q[|f>ℓ|], where Q is the average

over V of PA
V (note that everything here is non-negative, so there is no issue with the interchange

of integrals). Thus, we can bound the desired quantity by noting that ∥f>ℓ∥2 is small and that the
chi-squared norm of Q with respect to the standard Gaussian Nn is bounded.

2 Preliminaries

We will use lowercase boldface letters for vectors and capitalized boldface letters for matrices and
tensors. We use Sn−1 = {x ∈ Rn : ∥x∥2 = 1} to denote the n-dimensional unit sphere. For
vectors u,v ∈ Rn, we use ⟨u,v⟩ to denote the standard inner product. For u ∈ Rn, we use
∥u∥k =

(∑n
i=1 u

k
i

)1/k
to denote the ℓk-norm of u. For tensors, we will consider a k-tensor to be

an element in (Rn)⊗k ∼= Rnk

. This can be thought of as a vector with nk coordinates. We will use
Ai1,...,ik to denote the coordinate of a k-tensor A indexed by the k-tuple (i1, . . . , ik). By abuse
of notation, we will sometimes also use this to denote the entire tensor. The inner product and
ℓk-norm of k-tensor are defined by thinking of the tensor as vectors with nk coordinates and then
use the definition of inner product and ℓk-norm of vectors. For a vector v ∈ Rn, we denote by
v⊗k to be a vector (linear object) in Rnk

. For a matrix V ∈ Rn×m, we denote by ∥V∥2, ∥V∥F
to be the operator norm and Frobenius norm respectively. In addition, we denote by V⊗k to be
a matrix (linear operator) mapping Rnk

to Rmk

. We use 1 to denote the indicator function of a
set, specifically 1(t ∈ S) = 1 if t ∈ S and 0 otherwise. We will use Γ : R → R to denote the
gamma function Γ(z) =

∫∞
0

tz−1e−tdt. We use B : R × R → R to denote the beta function
B(z1, z2) = Γ(z1)Γ(z2)/Γ(z1 + z2). We use χ2

k to denote the chi-squared distribution with k
degrees of freedom. We use Beta(α, β) to denote the Beta distribution with parameters α and β.
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For a distribution D, we use PrD[S] to denote the probability of an event S. For a continuous
distribution D over Rn, we sometimes use D for both the distribution itself and its probability
density function. For two distributions D1, D2 over a probability space Ω, let dTV(D1, D2) =
supS⊆Ω |PrD1

(S) − PrD2
(S)| denote the total variation distance between D1 and D2. For two

continuous distribution D1, D2 over Rn, we use χ2(D1, D2) =
∫
Rn D1(x)

2/D2(x)dx−1 to denote
the chi-square norm of D1 w.r.t. D2. For a subset S ⊆ Rn with finite measure or finite surface
measure, we use U(S) to denote the uniform distribution over S (w.r.t. Lebesgue measure for the
volumn/surface area of S).

Basics of Hermite Polynomials

Definition 2.1 (Normalized Hermite Polynomial). For k ∈ N, we define the k-th probabilist’s
Hermite polynomials Hek : R → R as Hek(t) = (−1)ket

2/2 · dk

dtk
e−t2/2. We define the k-th

normalized Hermite polynomial hk : R → R as hk(t) = Hek(t)/
√
k!.

Furthermore, we will use multivariate Hermite polynomials in the form of Hermite tensors (as
the entries in the Hermite tensors are rescaled multivariate Hermite polynomials). We define the
Hermite tensor as follows.

Definition 2.2 (Hermite Tensor). For k ∈ N and x ∈ Rn, we define the k-th Hermite tensor as

(Hk(x))i1,i2,...,ik =
1√
k!

∑
Partitions P of [k]

into sets of size 1 and 2

⊗
{a,b}∈P

(−Iia,ib)
⊗

{c}∈P

xic .

We denote by L2(Rn,Nn) the function space of all functions f : Rn → R such that
Ev∼Nn

[f2(v)] < ∞. For functions f, g ∈ L2(Rn,Nn), we use ⟨f, g⟩Nn
= Ex∼Nn

[f(x)g(x)]

to denote their inner product. We use ∥f∥2 =
√
⟨f, f⟩Nn

to denote its L2-norm. For a func-
tion f : Rn → R and ℓ ∈ N, we use f≤ℓ to denote f≤ℓ(x) =

∑ℓ
k=0⟨Ak,Hk(x)⟩, where

Ak = Ex∼Nn
[f(x)Hk(x)], which is the degree-ℓ approximation of f . We use f>ℓ = f − f≤ℓ to

denote its residue. We remark that normalized Hermite polynomials (resp. Hermite tensors) form a
complete orthogonal system for the inner product space L2(R,N ) (resp. L2(Rn,Nn)). This implies
that for f ∈ L2(Rn,Nn), limℓ→∞ ∥f>ℓ∥2 = 0. We also remark that both our definition of Her-
mite polynomial and Hermite tensor are “normalized”. In the sense that for Hermite polynomials,
∥hk∥2 = 1. For Hermite tensors, given any symmetric tensor A, we have ∥⟨A,Hk(x)⟩∥22 = ⟨A,A⟩.
The following claim states that for any orthonormal transformation B, the Hermite tensor Hk(Bx)
can be written as applying the linear transformation B⊗k on the Hermite tensor Hk(x). The proof
is deferred to Appendix A.

Claim 2.3. Let 1 ≤ m < n. Let B ∈ Rm×n with BB⊺ = Im. It holds that Hk(Bx) =
B⊗kHk(x),x ∈ Rn.

3 SQ-Hardness of NGCA: Proof of Theorem 1.5

The main idea of the proof is the following. Suppose that the algorithm only asks queries with
tolerance τ , and let f be an arbitrary query function that the algorithm selects. The key ingredient is
to show that |Ex∼PA

V
[f(x)]−Ex∼Nn

[f(x)]| ≤ τ with high probability over V ∼ U(On,m). If this
holds, then when the algorithm queries f , if the input is from the alternative hypothesis, with high
probability, Ex∼Nn

[f(x)] is a valid answer for the query. Therefore, when the algorithm queries f ,
regardless of whether the input is from the alternative or null hypothesis, the oracle can just return
Ex∼Nn

[f(x)]. Then the algorithm will not observe any difference between the two cases with any
small number of queries. Thus, it is impossible to distinguish the two cases with high probability.
To prove the desired bound, we introduce the following proposition.

Proposition 3.1. Let λ ∈ (0, 1) and n,m, d ∈ N with d be even and m, d ≤ nλ. Let ν ∈ R+

and A be a distribution on Rm such that for any polynomial f : Rm → R of degree at most d and
Ex∼Nm

[f(x)2] = 1,

|Ex∼A[f(x)]−Ex∼Nm
[f(x)]| ≤ ν .

6



Let 0 < c < (1 − λ)/8 and n is at least a sufficiently large constant depending on c, then, for any
function f : Rn → [−1, 1], it holds

Pr
V∼U(On,m)

[∣∣∣∣∣ E
x∼PA

V

[f(x)]− E
x∼Nn

[f(x)]

∣∣∣∣∣ ≥
(
Γ(d+m

2 )

Γ(m2 )

)
n−( 1−λ

8 −c)d + (1 + o(1))ν

]
≤ 2−nΩ(c)

.

Assuming Proposition 3.1, the proof of our main theorem is quite simple.

Proof for Theorem 1.5. Suppose there is an SQ algorithm A using q < 2n
Ω(c)

many queries of ac-
curacy τ ≥

(
Γ(d/2+m/2)

Γ(m/2)

)
n−((1−λ)/8−c)d+(1+o(1))ν and succeeds with at least 2/3 probability.

We prove by contradiction that such an A cannot exist. Suppose the input distribution is Nn, and
the SQ oracle always answers Ex∼Nn

[f(x)] for any query f . Then the assumption on A implies
that it answers “null hypothesis” with probability α > 2/3. Now consider the case that the input
distribution is PA

V and V ∼ U(On,m). Suppose the SQ oracle still always answers Ex∼Nn
[f(x)]

for any query f . Let f1, · · · , fq be the queries the algorithm asks, where q = 2n
Ω(c)

. By Proposition
3.1 and a union bound, we have

PrV∼U(On,m)[∃i ∈ [q], |Ex∼PA
V
[fi(x)]−Ex∼Nn [fi(x)]| ≥ τ ] = o(1) .

Therefore, with probability 1−o(1), the answers given by the oracle are valid. From our assumption
on A, the algorithm needs to answer “alternative hypothesis” with probability at least 2

3 (1 − o(1)).
But since the oracle always answers Ex∼Nn

[f(x)] (which is the same as the above discussed null
hypothesis case), we know the algorithm will return “null hypothesis” with probability α > 2/3.
This gives a contradiction and completes the proof.

The rest of this section is devoted to the proof of Proposition 3.1.

3.1 Fourier Analysis using Hermite Polynomials

The main idea of Proposition 3.1 is to analyze Ex∼PA
V
[f(x)] through Fourier analysis using Hermite

polynomials. Before we do the analysis, we will first truncate the distribution A inside Bm(B) which
is the ℓ2-norm unit ball in m-dimension with radius B for some B ∈ R+ to be specified. Namely,
we will consider the truncated distribution A′ defined as the distribution of x ∼ A conditioned
on x ∈ Bm(B). The following lemma shows that given any m-dimensional distribution A that
approximately matches the first d moment tensor with the Gaussian, the truncated distribution A′ is
close to A in both the total variation distance and the first d moment tensors.
Lemma 3.2. Let n,m, d ∈ N with d be even. Let A be a distribution on Rm such that for any
polynomial f of degree at most d and Ex∼Nm

[f(x)2] = 1,

|Ex∼A[f(x)]−Ex∼Nm
[f(x)]| ≤ ν≤ 2 .

Let B ∈ R+ such that Bd ≥ c1

(
2d/2

√
Γ(d+m/2)
Γ(m/2)

)
where c1 is at least a sufficiently large universal

constant and let A′ be the truncated distribution defined as the distribution of x ∼ A conditioned on

x ∈ Bm(B). Then dTV(A,A
′) = O

(
2d/2

√
Γ(d+m/2)
Γ(m/2)

)
B−d, Furthermore, any k ∈ N and k < d,

∥Ex∼A′ [Hk(x)]−Ex∼Nm
[Hk(x)]∥2 = 2O(k)

(
2d/2

√
Γ(d+m/2)

Γ(m/2)

)
B−(d−k) + ν .

The proof of Lemma 3.2 is deferred to Appendix B.

Since dTV(A,A
′) ≤ O

(
2d/2

√
Γ(d+m/2)
Γ(m/2)

)
B−d and f is bounded in [−1, 1], it follows that

|Ex∼PA′
V
[f(x)]−Ex∼PA

V
[f(x)]| ≤ 2dTV(P

A′

V ,PA′

V ) = 2dTV(A,A′)

= O

((
2d/2

√
Γ(d+m/2)

Γ(m/2)

)
B−d

)
.
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Therefore, if suffices for us to analyze Ex∼PA′
V
[f(x)] instead of Ex∼PA

V
[f(x)]. Furthermore, the

property that A′ is bounded inside Bm(B) will be convenient in the Fourier analysis later. We
introduce the following lemma which decomposes Ex∼PA′

V
[f(x)] using Hermite analysis. The proof

is deferred to Appendix B.

Lemma 3.3 (Fourier decomposition Lemma). Let A′ be any distribution supported on Rm,
V ∈ Rn×m and V⊺V = Im. Then for any ℓ ∈ N, Ex∼PA′

V
[f(x)] =

∑ℓ
k=0⟨V⊗kAk,Tk⟩ +

Ex∼PA′
V
[f>ℓ(x)], where Ak = Ex∼A′ [Hk(x)] and Tk = Ex∼Nn [f(x)Hk(x)].

Remark 3.4. Ideally, in Lemma 3.3, we would like to have Ex∼PA′
V
[f(x)] =

∑∞
k=0⟨V⊗kAk,Tk⟩.

However, since we do not assume that χ2(A′,Nm) < ∞, this convergence may not hold.

Recall that our goal is to show that |Ex∼PA
V
[f(x)] − Ex∼Nn

[f(x)]| is small with high
probability. Observe that Ex∼Nn [f(x)] = T0 which is the first term in the summation
of
∑ℓ

k=0⟨V⊗kAk,Tk⟩ (since A0 = 1). Therefore, given Lemma 3.3, it suffices to show
that |

∑ℓ
k=1⟨V⊗kAk,Tk⟩| and |Ex∼PA′

V
[f≥ℓ(x)]| are both small with high probability. We

ignore the |Ex∼PA′
V
[f≥ℓ(x)]| part for now as this is mostly a technical issue. To bound

|
∑ℓ

k=1⟨V⊗kAk,Tk⟩|, it suffices to analyze
∑ℓ

k=1 |⟨V⊗kAk,Tk⟩| by looking at each term
|⟨V⊗kAk,Tk⟩| = |⟨Ak, (V

⊺)⊗kTk⟩| ≤ ∥Ak∥2∥(V⊺)⊗kTk∥2. To show that the summation is
small, given we need to prove that (with high probability):

1. ∥Ak∥2 does not grow too fast w.r.t k;

2. ∥(V⊺)⊗kTk∥2 decays very fast w.r.t k (is small with high probability w.r.t the randomness
of V).

∥Ak∥2 does not grow too fast: We will use slightly different arguments depending on the size
of k. We consider three cases : k < m, m ≤ k ≤ n(1−λ)/4, and k ≥ n(1−λ)/4 (the value in the
exponent will deviate by a small quantity to make the proof go through). For k < m, ∥Ak∥2 grows
slowly by the approximate moment-matching property of A′. For m ≤ k ≤ n(1−λ)/4, we require
the following fact:

Fact 3.5. Let Hk be the k-th Hermite tensor for m-dimension. Suppose ∥x∥22 ≥ m, then
∥Hk(x)∥2 = 2O(k) max(∥x∥k2 , 1).

We provide the proof of Fact 3.5 in Appendix B. For k > n(1−λ)/4, we can show that ∥Ak∥2 does
not grow too fast by the following asymptotic bound on Hermite tensors.

Fact 3.6. Let Hk be the k-th Hermite tensor for m-dimension, then ∥Hk(x)∥2 ≤
2O(m)

(
k+m−1
m−1

)1/2
exp(∥x∥22/4).

We provide the proof of Fact 3.6 in Appendix B.

∥(V⊺)⊗kTk∥2 decays very fast: We show that |⟨V⊗k,Tk⟩| is small with high probability by
bounding its a-th moment for some even a. Notice that since ∥Hk∥2 ≤ ∥f∥2 ≤ 1, we can then
combine it with the following lemma. We defer its proof to Appendix B.

Lemma 3.7. Let k ∈ Z+, a ∈ Z+ be even, T ∈ Rnk

and m ∈ Z+ satisfy m < n. Then, we have

EV∼U(On,m)[∥(V⊺)⊗kT∥a2 ] ≤ EV∼U(On,m)

[
∥V⊺u∥ak/22

]
∥T∥a2 .

Roughly speaking, this is just the ak/2-th moment of the correlation between a random sub-
space and a random direction, which can be upper bounded by the following lemma and corollary
(see Appendix B for the proofs).

Lemma 3.8. For any even k ∈ N, and u ∈ Sn−1, EV⊺∼U(On,m)[∥Vu∥k2 ] = Θ

(
Γ( k+m

2 )Γ(n
2 )

Γ( k+n
2 )Γ(m

2 )

)
.
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Corollary 3.9. Let c ∈ (0, 1) and m ≤ nc. Let k ∈ N be even. We have that

EV∼U(On,m)[∥V⊺u∥k2 ] =

O(2k/2n−(1−c)k/2) k ≤ nc ,

exp(−Ω(nc))O

((
nc+n
k+n

)(n−m)/2
)

k ≥ nc .

To combine the above results and give the high probability upper bound on∑ℓ
k=1 |⟨Ak, (V

⊺)⊗kTk⟩|, we require the following lemma. The proof is deferred to Appendix B.

Lemma 3.10. Under the conditions of Proposition 3.1, and further assume d,m ≤ nλ/ log n,

ν < 2 and
(

Γ(d/2+m/2)
Γ(m/2)

)
n−((1−λ)/8−c)d < 2. Then for any n that is at least a suffi-

ciently small constant depending on c, there is an α′ < (1 − λ)/8 such that for any B =
nα where α′ < α < (1 − λ)/8 the following holds. Let A′ be the truncated distribution
defined as the distribution of x ∼ A conditioned on x ∈ Bm(B). Then dTV(A,A′) ≤(

Γ(d/2+m/2)
Γ(m/2)

)
n−((1−λ)/8−c)d. Furthermore for any ℓ ∈ N, except with probability at most 2−nΩ(c)

w.r.t. V ∼ U(On,m),
∑ℓ

k=1 |⟨Ak, (V
⊺)⊗kTk⟩| =

(
Γ(d/2+m/2)

Γ(m/2)

)
n−((1−λ)/8−c)d + (1 + o(1))ν

where Ak = Ex∼A′ [Hk(x)] and Tk = Ex∼Nn [f(x)Hk(x)].

3.2 Proof for Proposition 3.1

We are now ready to prove Proposition 3.1 which is the main technical ingredient of our main result.
Proposition 3.1 states that |Ex∼PA

V
[f(x)]−Ex∼Nn

[f(x)]| is small with high probability. The main
idea of the proof is to use Fourier analysis on Ex∼PA′

V
[f(x)] as we discussed in the last section,

where A′ is the the distribution obtained by truncating A inside Bm(B).

Proof for Proposition 3.1. For convenience, we let ζ = (1 − λ)/8 − c. We will analyze
Ex∼A[Hk(x)] by truncating A. Therefore, we will apply Lemma 3.10 here. However, notice
Lemma 3.10 additionally assumes d,m ≤ nλ/ log n, ν < 2 and

(
Γ(d/2+m/2)

Γ(m/2)

)
n−ζd < 2. We show

that all these three conditions can be assumed true WLOG. If either the second or the third condition
is not true, then our lower bound here is trivialized and is always true since f is bounded between
[−1,+1]. For d,m ≤ nλ/ log n, consider a λ′ > λ such that (1− λ′)/8− ζ = (1−λ)/8−ζ

2 . Then it
is easy to see for any sufficiently large n depending on (1 − λ)/8 − ζ, we have d,m ≤ nλ′

/ log n
and ζ ≤ (1− λ)/8− ζ. Therefore, we can WLOG apply Lemma 3.10 for λ′.

Now let B = nα where α < (1 − λ)/8 is the constant in Lemma 3.10. Then we consider
the truncated distribution A′ defined as the distribution of x ∼ A conditioned on x ∈ Bm(B).
By Lemma 3.10, we have dTV(A,A

′) ≤
(

Γ(d/2+m/2)
Γ(m/2)

)
n−ζd. Given that f is bounded between

[−1, 1], this implies |Ex∼PA
V
[f(x)] − Ex∼PA′

V
[f(x)]| ≤ 2dTV(P

A
V,PA′

V′) = 2dTV(A,A′) ≤

2
(

Γ(d/2+m/2)
Γ(m/2)

)
n−ζd. Thus, it suffices for us to analyze Ex∼PA′

V
[f(x)] instead of Ex∼PA

V
[f(x)].

Let ℓ = ℓf (n) ∈ N be a function depending only on the query function f and the dimension n

(ℓ to be specified later). By Lemma 3.3, we have that Ex∼PA′
V
[f(x)] =

∑ℓ
k=0 |⟨Ak, (V

⊺)⊗kTk⟩|+
Ex∼PA′

V
[f>ℓ(x)] . Recall that we want to bound |Ex∼PA′

V
[f(x)]−Ex∼Nn [f(x)]| with high proba-

bility, where we note that Ex∼Nn
[f(x)] = ⟨A0,T0⟩. Therefore, we can write

|Ex∼PA′
V
[f(x)]−Ex∼Nn

[f(x)]| ≤
∣∣∣∣∑ℓ

k=1
⟨Ak, (V

⊺)⊗kTk⟩
∣∣∣∣+ |Ex∼PA′

V
[f>ℓ(x)]| .

For the first term, by Lemma 3.10, we have that |
∑ℓ

k=1⟨Ak, (V
⊺)⊗kTk⟩| =

(
Γ(d/2+m/2)

Γ(m/2)

)
n−ζd+

(1 + o(1))ν, except with probability 2−nΩ(c)

.

It now remains for us to show that |Ex∼PA′
V
[f>ℓ(x)]| is also small with high probability. Con-

sider the distribution D = Ev∼U(On,m)[P
A′

V ]. The following lemma shows that D is continuous
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and χ2(D,Nn) is at most a constant only depending on n (independent of the choice of the one
dimensional distribution A).

Lemma 3.11. Let A be any distribution supported on Bm(n) for n ∈ N which is at least a suffi-
ciently large universal constant. Let D = EV∼U(On,m)[P

A′

V ]. Then, D is a continuous distribution
and χ2(D,Nn) = On(1).

Roughly speaking, the proof of the lemma follows by noting that the average over V of PA
V is

spherically symmetric. We defer its proof to Appendix B.2. Using this lemma, we can write

EV∼U(On,m)

[∣∣Ex∼PA′
V
[f>ℓ(x)]

∣∣] ≤ EV∼U(On,m)

[
Ex∼PA′

V

[
|f>ℓ(x)|

]]
= Ex∼D

[
|f>ℓ(x)|

]
= Ex∼Nn

[
D(x)

Nn(x)
|f>ℓ(x)|

]
≤
√
1 + χ2(D,Nn) ∥f>ℓ∥2,

where the first equality holds due to Fubini’s theorem. Furthermore, since χ2(D,Nn) = On(1),
there is a function δ : R → R such that 1 + χ2(D,Nn) ≤ δ(n). Therefore, we have that

EV∼U(On,m)

[∣∣Ex∼PA′
V
[f>ℓ(x)]

∣∣] ≤√1 + χ2(D,Nn) ∥f>ℓ∥2 ≤ δ(n)∥f>ℓ∥2 .

We can take ℓ = ℓf (n) (ℓ only depends on the query function f and dimension n) to be a sufficiently

large function such that ∥f>ℓ∥2 ≤
(

e−n

δ(n)

)(
Γ(d/2+m/2)

Γ(m/2)

)
n−ζd. Then we get

EV∼U(On,m)

[∣∣Ex∼PA′
V
[f>ℓ(x)]

∣∣] ≤ δ(n)∥f>ℓ∥2 ≤ e−n

(
Γ(d/2 +m/2)

Γ(m/2)

)
n−ζd .

This gives the tail bound PrV∼U(On,m)

[∣∣Ex∼PA′
V
[f>ℓ(x)]

∣∣ ≥ (Γ(d/2+m/2)
Γ(m/2)

)
n−ζd

]
≤ e−n.

Using the above upper bounds, we have∣∣Ex∼PA′
V
[f(x)]−Ex∼Nn

[f(x)]
∣∣ ≤ ∣∣∣∑ℓ

k=1⟨Ak, (V
⊺)⊗kTk⟩

∣∣∣+ |Ex∼PA′
V
[f>ℓ(x)]|

= 2

(
Γ(d/2 +m/2)

Γ(m/2)

)
n−ζd + (1 + o(1))ν ,

except with probability 2−nΩ(1)

. As we have argued at the beginning of the proof,

|Ex∼PA
V
[f(x)]−Ex∼PA′

V
[f(x)]| ≤ 2

(
Γ(d/2 +m/2)

Γ(m/2)

)
n−ζd .

Therefore,

|Ex∼PA
V
[f(x)]−Ex∼Nn [f(x)]| ≤ 3

(
Γ(d/2 +m/2)

Γ(m/2)

)
n−ζd + (1 + o(1))ν ,

except with probability 2−nΩ(1)

< 2−nΩ(c)

given c = O(1).

In the end, notice that the above argument is still true if we take ζ ′ > ζ such that (1−λ)/8−ζ ′ =
(1−λ)/8−ζ

2 . Using the above argument for ζ ′ and given n is a sufficiently large constant depending
(1− λ)/8− ζ = 2((1− λ)/8− ζ ′), we get

|Ex∼PA
V
[f(x)]−Ex∼Nn [f(x)]| ≤

(
Γ(d/2 +m/2)

Γ(m/2)

)
n−ζd + (1 + o(1))ν ,

except with probability 2−nΩ((1−λ)/8−ζ′)
= 2−nΩ(c)

. Replaceing ζ with (1− λ)/8− c completes the
proof.
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