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Abstract

Strictly serializable datastores greatly simplify application

development. However, existing techniques pay unnecessary

costs for naturally consistent transactions, which arrive at

servers in an order that is already strictly serializable. We ex-

ploit this natural arrival order by executing transactions with

minimal costs while optimistically assuming they are natu-

rally consistent, and then leverage a timestamp-based tech-

nique to efficiently verify if the execution is indeed consistent.

In the process of this design, we identify a fundamental pit-

fall in relying on timestamps to provide strict serializability

and name it the timestamp-inversion pitfall. We show that

timestamp inversion has affected several existing systems.

We present Natural Concurrency Control (NCC), a new con-

currency control technique that guarantees strict serializability

and ensures minimal costs—i.e., one-round latency, lock-free,

and non-blocking execution—in the common case by leverag-

ing natural consistency. NCC is enabled by three components:

non-blocking execution, decoupled response management,

and timestamp-based consistency checking. NCC avoids the

timestamp-inversion pitfall with response timing control and

proposes two optimization techniques, asynchrony-aware

timestamps and smart retry, to reduce false aborts. Moreover,

NCC designs a specialized protocol for read-only transactions,

which is the first to achieve optimal best-case performance

while guaranteeing strict serializability without relying on

synchronized clocks. Our evaluation shows NCC outperforms

state-of-the-art strictly serializable solutions by an order of

magnitude on many workloads.

1 Introduction

Strictly serializable datastores have been advocated by much

recent work [12, 18, 19, 33, 52, 58, 68] because they provide

the powerful abstraction of programming in a single-threaded,

transactionally isolated environment, which greatly simplifies

application development and prevents consistency anoma-

lies [8]. However, only a few concurrency control techniques

provide strict serializability and they are expensive.

Common techniques include distributed optimistic concur-

rency control (dOCC), distributed two-phase locking (d2PL),

and transaction reordering (TR). They incur high overheads

which manifest in extra rounds of messages, distributed lock

management, blocking, and excessive aborts. The validation

round in dOCC, required lock management in d2PL, blocking

during the exchange of ordering information in TR, and aborts

due to conflicts in dOCC and d2PL are examples of these four

overheads, respectively. These costs are paid to enforce the

two requirements of strict serializability: (1) ensuring there

is a total order by avoiding interleaving transactions, and (2)

ensuring the real-time ordering i.e., later-issued transactions

take effect after previously-finished ones. However, we find

these costs are unnecessary for many datacenter workloads

where transactions are executed within a datacenter and then

replicated within or across datacenters.

Many datacenter transactions do not interleave: e.g., many

of them are dominated by reads [12], and the interleaving of

reads returning the same value does not affect correctness.

Many of them are short [24, 27, 40, 52, 64, 71], and short

lifetimes reduce the likelihood of interleaving. Advances in

datacenter networking also reduce variance in delivery times

of concurrent requests [5,14,22], resulting in less interleaving.

In addition, many datacenter transactions arrive at servers

in an order that trivially satisfies their real-time order require-

ment. That is, a transaction arrives at all participant servers

after all previously committed transactions.

Because many transactions do not interleave and their ar-

rival order satisfies the real-time order constraints, intuitively,

simply executing their requests in the order servers receive

them (i.e., treating them as if they were non-transactional

simple operations) will naturally satisfy strict serializability.

We call these transactions naturally consistent.

Ideally, naturally consistent transactions can be safely exe-

cuted without any concurrency control, incurring zero costs.

However, existing techniques pay unnecessary overheads. For

instance, dOCC still requires extra rounds of messages for

validation, d2PL still acquires locks, and TR still blocks trans-

actions to exchange ordering information, even if validation al-

ways succeeds, locks are always available, and nothing needs

to be reordered. Therefore, this paper strives to make naturally

consistent transactions as cheap as possible.

In this paper, we present Natural Concurrency Control

(NCC), a new concurrency control technique that guaran-

tees strict serializability and ensures minimal costs—i.e., one-

round latency, lock-free, and non-blocking execution—in the

common case. NCC’s design insight is to execute naturally

consistent transactions in the order they arrive, as if they were

non-transactional operations, while guaranteeing correctness

without interfering with transaction execution.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation    305



NCC is enabled by three components. Non-blocking execu-

tion ensures that servers execute transactions in a way that is

similar to executing non-transactional operations. Decoupled

response management separates the execution of requests

from the sending of their responses, ensuring that only correct

results are returned. Timestamp-based consistency checking

uses timestamps to verify transactions’ results, without inter-

fering with execution.

While designing the consistency-checking component, we

identified a correctness pitfall in timestamp-based, strictly

serializable techniques. Specifically, these techniques some-

times fail to guard against an execution order that is total

but incorrectly inverts the real-time ordering between trans-

actions, thus violating strict serializability. We call this the

timestamp-inversion pitfall. Timestamp inversion is subtle

because it can happen only if a transaction interleaves with a

set of non-conflicting transactions that have real-time order

relationships. The pitfall is fundamental as we find it affects

multiple prior systems (TAPIR [71] and DrTM [66]), which,

as a result, do not provide strict serializability as claimed.

NCC handles timestamp inversion through response timing

control (RTC), an integral part of decoupled response man-

agement, without interfering with non-blocking execution or

relying on synchronized clocks. NCC proposes two times-

tamp optimization techniques, asynchrony-aware timestamps

and smart retry, to reduce false aborts. Moreover, NCC de-

signs a specialized protocol for read-only transactions, which,

to the best of our knowledge, is the first to achieve optimal

performance [40] in the best case while ensuring strict serial-

izability, without relying on synchronized clocks.

We compare NCC with common strictly serializable tech-

niques: dOCC, d2PL, and TR, and two serializable proto-

cols, TAPIR [71] and MVTO [55]. We use three workloads:

Google-F1, Facebook-TAO, and TPC-C (§6). The Google-

F1 and Facebook-TAO workloads synthesize production-like

workloads for Google’s Spanner [12, 59] and Facebook’s

TAO [10], respectively. Both workloads are read-dominated.

TPC-C [63] consists of few-shot transactions that are write-

intensive. We further explore the workload space by varying

the write fractions in Google-F1. NCC significantly outper-

forms dOCC, d2PL, and TR with 2–10× lower latency and

2–20× higher throughput. NCC outperforms TAPIR with 2×
higher throughput and 2× lower latency, and closely matches

the performance of MVTO.

In summary, this work makes the following contributions:

• Identifies timestamp inversion, a fundamental correctness

pitfall in timestamp-based, strictly serializable concurrency

control techniques.

• Proposes NCC, a new concurrency control technique that

provides strict serializability and achieves minimal over-

head in the common case by exploiting natural consistency

in datacenter workloads.

• A strictly serializable read-only protocol with optimal best-

case performance that does not rely on synchronized clocks.

• An implementation and evaluation that shows NCC outper-

forms existing strictly serializable systems by an order of

magnitude and closely matches the performance of systems

that provide weaker consistency.

2 Background

This section provides the necessary background on transac-

tional datastores, strict serializability, and general techniques

for providing strict serializability.

2.1 Transactional Datastores

Transactional datastores are the back-end workhorse of many

web applications. They typically consist of two types of ma-

chines. Front-end client machines receive users’ requests, e.g.,

managing a web page, and execute these requests on behalf of

users by issuing transactions to the storage servers that store

the data. Servers are fault-tolerant, e.g., the system state is

made persistent on disks and replicated via replicated state

machines (RSM), like Paxos [30].

Transactions are managed by coordinators, which can be

co-located either with a server or the client. This paper adopts

the latter approach to avoid the delays caused by shipping

the transaction from the client to a server, while explicitly

handling client failures. The coordinator issues read/write

operations to relevant servers, called participants, following

the transaction’s logic, which can be one-shot, i.e., it knows a

priori which data to read/write and can send all requests in one

step, or multi-shot, i.e., it takes multiple steps as the data read

in one step determines which data to read/write in later steps.

The system executes transactions following a concurrency

control protocol, which ensures that transactions appear to

take effect in an order that satisfies the system’s consistency

requirements. The stronger the consistency provided by the

system, the easier it is to develop correct applications.

2.2 Strict Serializability

Strict serializability [23, 53], also known as external con-

sistency [21], is often considered the strongest consistency

model. It requires that (1) there exists a total order of transac-

tions, and (2) the total order must respect the real-time order,

which means if transaction tx1 ends before tx2 starts, then tx1

must appear before tx2 in the total order. As a result, trans-

actions appear to take effect one at a time in the order the

system receives them.

Formal definition. We use Real-time Serialization Graphs

(RSG) [1] to formalize the total order and real-time order

requirements. An RSG is a directed graph that captures the

order in which transactions take effect. Specifically, two re-

quests from different transactions have an execution edge

req1
exe−−→ req2 if any of the following happens: req1 creates

some data version vi and req2 reads vi; req1 reads some data

version v j and req2 creates v’s next version that is after v j; or
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Algorithm 5.1: Client (transaction coordinator) logic

1 Function EXECUTERWTRANSACTION(tx) :

2 results←{}; t_pairs←{} // server responses

3 t.clk← ASYNCHRONYAWARETS(tx); t.cid← clientID

4 for req in tx do

// send requests shot by shot,

// following tx’s logic

5 res, t_pair← NONBLOCKINGEXECUTE(req, t)

6 results← results ∪ res

7 t_pairs← t_pairs ∪ t_pair

// all shots done, tx’s logic complete

8 ok, t ′ ← SAFEGUARDCHECK(t_pairs)

9 if not ok then

10 ok← SMARTRETRY(tx, t ′) // §5.4

11 if ok then

12 ASYNCCOMMITORABORT(tx, “committed”)

13 return results

14 else

15 ASYNCCOMMITORABORT(tx, “aborted”)

16 go to 2 // abort, and retry from scratch

17

18 Function SAFEGUARDCHECK(t_pairs) :

19 tw_set←{}; tr_set←{}
20 for t_pair in t_pairs do

21 tw_set← tw_set ∪ t_pair.left

22 tr_set← tr_set ∪ t_pair.right

23 tw_max←max{tw_set}; tr_min←min{tr_set}
24 if tw_maxf tr_min then

// t_pairs overlap, ∃ a snapshot

25 return true, tw_max

26 else

27 return false, tw_max

This makes DrTM’s read-only transactions subject to inver-

sion, e.g., when tx1, tx2, and tx3 in Figure 3 are read-write,

read-write, and read-only transactions, respectively.

The main contributions of TAPIR and DrTM still stand, just

with weaker consistency than claimed. Both teams conjecture

that they can fix the systems by using synchronized clocks

(e.g., TrueTime [12]) and adapting their designs to use these

clocks. Thus, it is likely that their contributions still stand

with strict serializability when synchronized clocks are used.

However, synchronized clocks require specialized infrastruc-

ture and are not generally available (§7). Therefore, NCC

is designed to avoid timestamp-inversion without relying on

synchronized clocks.

5 Natural Concurrency Control

This section presents the basic components of NCC, explains

how NCC avoids the timestamp-inversion pitfall, introduces

two timestamp optimization techniques and a specialized

algorithm for read-only transactions, and concludes with dis-

cussions of failure handling and correctness.

5.1 Protocol Basics

We build NCC on the three design pillars (§3.2) to minimize

the costs for naturally consistent transactions.

Pre-timestamping transactions. NCC processes a transac-

tion in two phases: execute and commit. Algorithm 5.1 shows

the client (coordinator)’s logic. The coordinator starts a trans-

action tx by pre-assigning it a timestamp t that consists of two

fields: clk which is the client’s physical time (Section 5.3 de-

tails how it is computed), and cid which is the client identifier.

t uniquely identifies tx (line 3). When two timestamps have

the same clk, NCC breaks the tie by comparing their cid. t is

included in all of tx’s requests that are sent to servers shot by

shot, following tx’s application logic (lines 4 and 5). These

timestamps accompany tx throughout its life cycle and will

be used to verify if the results are consistent.

Refining timestamps to match execution order. Algo-

rithm 5.2 details the server-side logic for request execution

and commitment. Each key stores a list of versions in the

order of the server creating them. A version has three fields:

value, a pair of timestamps (tw, tr), and status. value stores

the data; tw is the timestamp of the transaction that created

the version; tr is the highest timestamp of transactions that

read the version; and status indicates the state of the transac-

tion that created the version: either (initially) undecided, or

committed. An aborted version is removed from the datastore.

The server always executes a request against the most re-

cent version curr_ver, which is either undecided or committed

(line 35). Specifically, the server executes a write by creating a

new undecided version new_ver, which is now the most recent

version of the key, ordered after curr_ver (lines 39 and 40),

and executes a read by reading the value of curr_ver (line 44).

NCC’s basic protocol can work with a single-versioned data

store while multi-versioning is required only for smart retry,

a timestamp optimization technique (§5.4). The server refines

the most recent version’s timestamp pair to match the order in

which requests are executed. Specifically, a write request com-

putes new_ver’s tw as follows: its physical time field is no less

than that of the write’s timestamp t and that of curr_ver’s tr,

and its client identifier is the same as t’s (line 37); new_ver’s

tr is initialized to tw (line 38). Similarly, a read request updates

curr_ver’s tr if needed (line 43). Figure 1b shows examples of

how timestamps are refined. A version is associated with a tw
and a tr, e.g., A1 initially has a timestamp pair (4, 8). tx1–tx3

are single-key read transactions with pre-assigned timestamps

10, 2, and 6, respectively. They return the most recent version

of A, i.e., A1, update its tr if needed, and return A1’s timestamp

pair. tx4 and tx5 show how writes manage timestamps.

These (refined) timestamps match requests’ arrival order

and thus also match the execution order: on each key, a read

must have a timestamp greater than that of the write it sees,

i.e., a read is ordered after the most recent write, and a write

must have a timestamp greater than that of the most recent

read, i.e., a write is ordered after the most recent read (and

thus all previous writes).

Non-blocking execution and response queues. The server

executes requests in a non-blocking manner and decouples
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Algorithm 5.2: Server execution and commitment

28 Multi-versioned data store:

29 DS[key][ver] // indexed by key, vers sorted by tw
// ver is either committed or undecided

30 Response queue:

31 resp_qs[key][resp_q] // resp queues for each key

32

33 Function NONBLOCKINGEXECUTE(req, t) :

34 resp← [ ] // response message

35 curr_ver← DS[req.key].most_recent

36 if req is write then

37 tw.clk←max{t.clk, curr_ver.tr.clk+1}; tw.cid← t.cid

38 tr ← tw
39 new_ver← [req.value, (tw, tr), “undecided”]

40 DS[req.key]← DS[req.key]+new_ver

41 resp← [“done”, (tw, tr)]

42 else

43 curr_ver.tr ←max{t, curr_ver.tr}
44 resp← [curr_ver.value, (curr_ver.tw, curr_ver.tr)]

45 resp_qs[req.key].enqueue(resp, req, t, “undecided”)

46 RESPTIMINGCONTROL(resp_qs[req.key]) // §5.2

47

48 Function ASYNCCOMMITORABORT(tx, decision) :

49 foreach ver created by tx do

50 if decision = “committed” then

51 ver.status← decision

52 else

53 DS.remove(ver)

54 foreach resp_q in resp_qs do

55 foreach resp in resp_q do

56 if resp.request ∈ tx then

57 resp.q_status← decision

58 RESPTIMINGCONTROL(resp_q) // §5.2

their execution from responses. Specifically, a write creates

a version and immediately makes it visible to subsequent

transactions; a read fetches the value of the most recent ver-

sion whose status could be undecided, without waiting for

it to commit; the server prepares the response (lines 34, 41,

and 44), inserts it into a response queue (lines 45 and 46),

which asynchronously sends the responses to clients when it

is safe. (Section 5.2 details response timing control, which

determines when sending a response is safe so timestamp

inversion and cascading aborts are prevented.) Unlike d2PL

and dOCC, which lock data for at least one round-trip time in

the execute and prepare phases (i.e., the contention window),

non-blocking execution ensures that a transaction never ex-

clusively owns the data without performing useful work. As a

result, the server never stalls, and CPUs are fully utilized to ex-

ecute requests. Moreover, non-blocking execution eliminates

the contention window and thus reduces false aborts.

Client-side safeguard. A server response includes the times-

tamp pair (tw, tr) of the most recent version, e.g., new_ver for

a write and curr_ver for a read. The returned (tw, tr) repre-

sents the time range in which the request is valid. That is,

a read must take effect after tw, which is the time when the

most recent write on the same key took effect, and no later

writes can take effect between tw and tr on the same key. A

write must have tw = tr, meaning that it takes effect exactly at

tw. When a transaction has completed its logic (i.e., all shots

are executed) and the client has received responses to all its

requests, the safeguard looks for a consistent snapshot that

intersects all (tw, tr) pairs in server responses by checking if

the (tw, tr) pairs overlap (lines 8, 18–27). This intersecting

snapshot identifies the transaction’s synchronization point,

i.e., all requests are valid at the intersecting timestamp.

Figure 1c shows an example where NCC executes the same

transactions in Figure 1a. The default versions A0 and B0 both

have a timestamp pair (0, 0). tx1 and tx2 are pre-assigned 4

and 8, respectively, and their requests arrive in the same order

as they were in Figure 1a. The safeguard enables NCC to

commit both transactions, i.e., tx1’s responses intersect at 4

while tx2’s intersect at 8, without unnecessary overhead such

as dOCC’s validation cost and false aborts.

When the client has decided to commit or abort the trans-

action, the protocol enters the commit phase by sending the

commit/abort messages to the servers. If the transaction is

committed, the server updates the status of the created ver-

sions from undecided to committed; otherwise, the versions

are deleted (lines 48–53). The client retries the aborted trans-

action. The client sends the results of the committed trans-

action to the user in parallel with the commit messages, i.e.,

asynchronous commit, without waiting for servers’ acknowl-

edgments (lines 11–16).

Supporting complex transaction logic. NCC supports trans-

actions accessing a key multiple times, e.g., read-modify-

writes and repeated reads/writes, by treating its requests to

the same key as a single logical request. For instance, if a

read-modify-write has its read and write requests executed

consecutively (i.e., they are not intersected by other writes),

then only the write response is checked by the safeguard, treat-

ing read-modify-write as one logical request; otherwise, it is

aborted if there are intersecting writes, e.g., when the most

recent version has a tw greater than that returned by the read

of this read-modify-write. The responses of these requests

are grouped together in the response queue, e.g., the write

response of a read-modify-write is inserted right after the

read response of the same read-modify-write. We explain the

details of handling complex logic in the technical report [41].

NCC achieves minimal costs by urgently executing transac-

tions in a non-blocking manner and by ensuring a total order

with the light-weight timestamp-based safeguard. Yet, in order

to provide strict serializability, NCC must enforce the real-

time order between transactions by handling the timestamp-

inversion pitfall, as we discuss next.

5.2 Response Timing Control

NCC avoids the timestamp-inversion pitfall by disentangling

the subtle interleaving between a set of non-conflicting trans-

actions that have real-time order dependencies (e.g., Figure 3),
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without relying on synchronized clocks. Specifically, NCC

introduces response timing control (RTC), which controls the

sending time of responses. It is safe to send the response of a

request req1 when the following dependencies are satisfied:

D1 If req1 reads a version created by req0 of another trans-

action, then req1’s response is not returned until req0 is

committed or it is discarded if req0 is aborted (then req1

will be re-executed).

D2 If req1 is a write and there are reads that read the version

which immediately precedes the one created by req1,

then req1’s response is not returned until the reads are

committed/aborted.

D3 If req1 creates a version immediately after the version

created by req0 of another transaction, then req1’s re-

sponse is not returned until req0 is committed/aborted.

By enforcing these dependencies, NCC controls the send-

ing of responses so that the transactions which form the subtle

interleaving are forced to take effect in their real-time order.

For instance, in Figure 3, server A cannot send the response

of tx1 until tx3 has been committed (assuming at least one of

them writes to A). As a result, any transaction tx2 that begins

after tx1 receives its response, i.e., tx1
rto−→ tx2, must be exe-

cuted after tx1, and thus after tx3 as well: tx2’s execution on

each server is after it begins, which is after tx1 ends, which is

after tx1’s response is sent, which is after tx3 commits, which

is after tx3 executes on each server. This results in a total

order tx3
exe−−→ tx1

exe−−→ tx2, which respects the real-time order,

enforcing Invariant 2, as shown in Part III of Figure 3.

NCC implements RTC by managing response queues, inde-

pendently from request execution. NCC maintains one queue

per key. A queue item consists of four fields: response that

stores the response message of a request, the request itself,

ts which is the pre-assigned timestamp of the request, and

q_status that indicates the state of the request, which is ini-

tially undecided, and updated to either committed or aborted

when the server receives the commit/abort message for this

request (lines 54–57, Algorithm 5.2).

Managing response queues. Algorithm 5.3 details how

NCC manages the response queue of each key. This logic

is invoked every time the server finishes executing a request

(line 46) and receives a commit/response message (line 58).

NCC iterates over the queue items from the head (i.e., the

oldest response) until it finds the first response whose q_status

is undecided, which means all earlier requests on the same

key have been committed or aborted, i.e., this response has

satisfied the three dependencies (lines 60–62 and 71). The

server sends this response message to the client if it has not

done so (lines 72, 74–77). If this is a read response, then

the server sends all consecutive read responses that follow it

(lines 73 and 78–81), because all these read responses satisfy

the three dependencies. In other words, reads returning the

same value do not have dependencies between them. RTC is

effectively similar to locking the response queues, e.g., the

Algorithm 5.3: Response timing control

59 Function RESPTIMINGCONTROL(resp_q) :

60 head← resp_q.head() // the oldest response

61 while head.q_status ̸= “undecided” do

// find the first response we can send

62 resp_q.dequeue()

63 new_head← resp_q.head()

64 new_req← new_head.request; t← new_head.ts

65 while head.q_status = “aborted”

66 and head.request is write and new_req is read do

// handle reads seeing aborted writes

67 resp_q.dequeue() // discard read response

// re-execute the read locally

68 NONBLOCKINGEXECUTE(new_req, t)

69 new_head← resp_q.head()

70 new_req← new_head.request; t← new_head.ts

71 head← resp_q.head()

72 curr_item← head

73 repeated loop

// send dependency-satisfied responses

74 resp← curr_item.response

75 if resp.is_sent ̸= true then

76 sys_call.send(resp) // send to client

77 resp.is_sent← true

// send consecutive read responses

78 next_item← curr_item.next()

79 if curr_item.request is not read

80 or next_item.request is not read then

81 break repeated loop

82 curr_item← next_item

queue is “locked” when a response is sent and other responses

must wait, and is “unlocked” when the commit/abort message

for the request to which the sent response belongs is received.

However, RTC differs from lock-based mechanisms in that

it is decoupled from execution and does not introduce con-

tention windows, i.e., data objects are not locked.

Fixing reads locally. When the server receives an abort mes-

sage for a write request, it must invalidate the responses of any

reads that have fetched the value of the aborted write. This

is necessary to avoid returning invalid results to the client

and to prevent cascading aborts. Specifically, the server re-

moves the response of such a read from the response queue

and re-executes the read request, e.g., it fetches the current

most recent version, prepares a new response, and inserts the

new response to the tail of the queue (lines 65–68).

Avoiding indefinite waits. To avoid responses from circu-

larly waiting on dependencies across different keys, NCC

early aborts a request (thereby aborting the transaction to

which it belongs) if its pre-assigned timestamp is not the high-

est the server has seen and if its response cannot be sent

immediately, i.e., it is not the head of the queue. Specifically,

a write (read) is aborted if there is an undecided request (write

request) with a higher timestamp. Then, the server sends a spe-

cial response to the client without executing the request. The

special response includes a field early_abort which allows
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the client to bypass the safeguard and abort the transaction.

We omit the details from the pseudocode for clarity.

RTC is a general solution to timestamp inversion, with-

out the need for synchronized clocks. It does not incur more

aborts even when responses are not sent immediately, be-

cause response management is decoupled from request exe-

cution. That is, whether a transaction is committed or aborted

is solely based on timestamps, and RTC does not affect ei-

ther pre-assignment or refinement of timestamps. Yet, NCC’s

performance also depends on how well timestamps capture

the arrival order of (naturally consistent) transactions. That is,

timestamps that do not match transactions’ arrival order could

cause transactions to falsely abort even if they are naturally

consistent. Next, we will discuss optimization techniques that

enable timestamps to better match the arrival order.

5.3 Asynchrony-Aware Timestamps

NCC proposes two optimizations: a proactive approach that

controls how timestamps are generated before transactions

start, and a reactive approach that updates timestamps to

match the naturally consistent arrival order after requests are

executed. This subsection discusses the proactive approach.

The client pre-assigns the same timestamp to all requests

of a transaction; however, these requests may arrive at their

participant servers at different physical times, which could

result in a mismatch between timestamp and arrival order,

as shown in Figure 4a. Transactions tx1 and tx2 start around

the same time and thus are assigned close timestamps, e.g.,

t1 = 1004 and t2 = 1005, respectively (client IDs are omitted).

Because the latency between B and CL1 is greater than that

between B and CL2, tx1 may arrive at B later than tx2, but tx1

has a smaller timestamp. As a result, the safeguard may falsely

reject tx1, e.g., server B responds with a refined timestamp

pair (1006, 1006) which does not overlap with (1004, 1004),

the timestamp pair returned by server A. However, aborting

tx1 is unnecessary because tx1 and tx2 are naturally consistent.

To tackle this challenge, NCC generates timestamps while

accounting for the time difference, t∆, between when a request

is sent by the client and when the server starts executing the

request. Specifically, the client records the physical time tc
before sending the request to the server; the server records

the physical time ts before executing the request and piggy-

backs ts onto the response sent back to the client; and the

client calculates t∆ by finding the difference between tc and

ts, i.e., t∆ = ts− tc. By measuring the end-to-end time differ-

ence, t∆ effectively masks the impact of queuing delays and

clock skew. The client maintains a t∆ for each server it has

contacted. An asynchrony-aware timestamp is generated by

adding the client’s current physical time and the greatest t∆
among the servers this transaction will access. For instance,

given the values of t∆ shown in Figure 4a, CL1 assigns tx1

timestamp 1014 (i.e., 1004+ 10) and CL2 assigns tx2 1010

(i.e., 1005+5), and both transactions may successfully pass

their safeguard check, capturing natural consistency.

Algorithm 5.4: Smart retry

83 Function SMARTRETRY(tx, t ′) :

84 foreach ver accessed by tx do

// next version of the same key

85 next_ver← ver.next()

86 if next_ver.tw f t ′ then

87 return false

88 if ver created by tx and ver.tw ̸= ver.tr then

89 return false

90 if ver created by tx then

91 ver.tw ← t ′; ver.tr ← t ′

92 else

93 ver.tr ← max{ver.tr, t ′}

94 return true

5.4 Smart Retry

NCC proposes a reactive approach to minimizing the perfor-

mance impact of the safeguard’s false rejects, which happen

when timestamps fail to identify the naturally consistent ar-

rival order, as shown in Figure 4b. Initially, version A0 has

a timestamp pair (0, 0), and B0 has (0, 5). The same trans-

actions tx1 and tx2 as those in Figure 1c access both keys.

Following NCC’s protocol, tx1’s responses contain the times-

tamp pairs (0, 4) and (6, 6) from A and B, respectively, which

will be rejected by the safeguard because they do not overlap.

However, aborting tx1 is unnecessary because tx1 and tx2 are

naturally consistent.

Instead, NCC tries to “reposition” a rejected transaction

with respect to the transactions before and after it to construct

a total order, instead of aborting and re-executing the rejected

transaction from scratch, which would waste all the work the

server has done for executing it. Specifically, NCC chooses a

timestamp that is nearest “in the future” and hopes the rejected

transaction can be re-committed at that time. This is possible

if the chosen time has not been taken by other transactions.

Algorithm 5.4 shows the pseudocode for smart retry. When

the transaction fails the safeguard check, NCC suggests a new

timestamp t ′, which is the maximum tw in the server responses.

The client then sends smart retry messages that include t ′ to

the participant servers, which then attempt to reposition the

transaction’s requests at t ′. The server can reposition a re-

quest if there has not been a newer version that was created

before t ′ (lines 85–87) and, if the request is a write, the ver-

sion it created has not been read by any transactions (lines 88

and 89). The server updates the timestamps of relevant ver-

sions if smart retry succeeds, e.g., the created version has a

new timestamp pair (t ′, t ′), and tr of the read version is up-

dated to t ′ if t ′ is greater (lines 90–93). (Our implementation

does not smart-retry the request that returned the maximum

tw, i.e., tw = t ′, because its smart retry always succeeds.) The

client commits the safeguard-rejected transaction if all its

smart retry requests succeed, and aborts and retries it from

scratch otherwise (lines 9 and 10, Algorithm 5.1).
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last shot of a transaction where all state changes are made

persistent and replicated once and for all, without having to

replicate each request separately. Server replication inevitably

increases latency but does not introduce more aborts, because

whether a transaction is committed or aborted is solely based

on its timestamps, which are decided during request execution

and before replication starts.

Tolerating client failures. NCC must handle client failures

explicitly because clients are not replicated in most systems

and NCC co-locates coordinators with clients. NCC adopts

an approach similar to that in Sinfonia [4] and RIFL [31].

We briefly explain it as follows. For a transaction tx, one

of the storage servers tx accesses is selected as the backup

coordinator, and the other servers are cohorts. In the last

shot of the transaction logic, which is identified by a field

IS_LAST_SHOT in the requests, the client notifies the backup

coordinator of the identities of the complete set of cohorts.

Cohorts always know which server is the backup coordinator.

When the client crashes, e.g., is unresponsive for a certain

amount of time, the backup coordinator reconstructs the final

state of tx by querying the cohorts for how they executed tx,

and commits/aborts tx following the same safeguard and smart

retry logic. Because computation is deterministic, the backup

coordinator always makes the same commit/abort decision

as the client would if the client did not fail. To tolerate one

client failure, NCC needs one backup coordinator which is a

storage server replicated in a usual way.

5.7 Correctness

This section provides proof intuition for why NCC is safe

and live. At a high level, NCC guarantees a total order, the

real-time order, and liveness, with the mechanisms (M1) the

safeguard, (M2) non-blocking execution with response timing

control, and (M3) early aborts, respectively. We provide a

formal proof of correctness in a technical report [41].

NCC is safe. We prove that NCC guarantees strict serial-

izability by demonstrating that both Invariants 1 and 2 are

upheld. These two invariants correspond to the total order and

real-time order requirements, respectively.

Intuitively, NCC commits all requests of a transaction

at the same synchronization point, which is the intersec-

tion of all (tw, tr) pairs in responses, and the synchroniza-

tion points of all committed transactions construct a total

order. Specifically, we prove that the safeguard enforces In-

variant 1, by contradiction. Assume both tx1 and txn are

committed, and tx1
exe7−→ txn

exe7−→ tx1. Without loss of gen-

erality, there must exist a chain of transactions such that

tx1
exe−−→ tx2

exe−−→ . . .
exe−−→ txn

exe−−→ tx1. Then, each transaction

may have two requests, req and req′, such that req′1
exe−−→ req2,

req′2
exe−−→ req3, . . . , req′n−1

exe−−→ reqn, req′n
exe−−→ req1. Consider

their returned timestamps, we can derive the following:

1 t ′r1 f tw2, t ′r2 f tw3, . . . , t ′rn f tw1, by NCC’s protocol.

2 tw1 f t ′r1, tw2 f t ′r2, . . . , twn f t ′rn, because all transactions

are committed and by the safeguard logic.

3 tw1f t ′r1f tw2f t ′r2f . . .f twnf t ′rnf tw1, by 1 and 2 .

4 t ′r1 = tw2 = t ′r2 = tw3 = . . .= twn = t ′rn = tw1, by 3 .

5 req′i is a write and reqi is a read, i ∈ [1, n], by 4 , NCC’s

protocol, and tx1
exe−−→ tx2

exe−−→ . . .
exe−−→ txn

exe−−→ tx1.

6 tw2 = t ′w1 and tw1 = t ′wn, by 5 and NCC’s protocol.

7 t ′w1 = t ′wn, by 4 and 6 , which contradicts that writes

from different transactions must have distinct tw because

timestamps are unique. Therefore, Invariant 1 holds.

We prove that NCC enforces Invariant 2 by considering two

cases while assuming tx1
rto−→ tx2. In case 1, tx1 and tx2 access

some common data items. Then, we must have tx1
exe7−→ tx2,

because NCC executes requests in their arrival order. Then,

it must be true that ¬(tx2
exe7−→ tx1), by Invariant 1. In case 2,

tx1 and tx2 access disjoint data sets, and we prove the claim

by contradiction. Assume tx2
exe7−→ tx1, then there must exist

req2 and req1 in tx2 and tx1, respectively, such that req2
exe7−→

req1. req1’s response is not returned until req2 is committed

or aborted, by applying response timing control transitively

(§5.2). Then, req2 is issued before req1’s client receives req1’s

response because a request, e.g., req2, can be committed or

aborted only after it is issued and executed. Thus, we can

derive ¬(tx1
rto−→ tx2) because tx2 has at least one request, e.g.,

req2, which starts before tx1 receives all its responses. This

means tx2 starts before tx1 is committed, which contradicts

our assumption tx1
rto−→ tx2. Therefore, Invariant 2 must hold.

NCC is live. NCC’s non-blocking execution guarantees that

requests always run to completion, i.e., execution never stalls

(§5.1). Blocking can happen only to the sending of responses

due to response timing control, and NCC avoids circular wait-

ing with early aborts (§5.2). Thus, NCC guarantees that trans-

actions finish eventually.

NCC’s specialized read-only transaction protocol and opti-

mization techniques such as asynchrony-aware timestamps

and smart retry do not affect correctness, because transactions

are protected by the three mechanisms (i.e., M1, M2, and M3

summarized at the beginning of this subsection) regardless of

whether optimizations or the specialized protocol are used.

6 Evaluation

This section answers the following questions:

1. How well does NCC perform, compared to common

strictly serializable techniques dOCC, d2PL, and TR?

2. How well does NCC perform, compared to state-of-the-

art serializable (weaker consistency) techniques?

3. How well does NCC recover from client failures?

Implementation. We developed NCC on Janus’s frame-

work [52]. We improved the framework by making it support

multi-shot transactions, optimizing its baselines, and adding

more benchmarks. NCC’s core protocols have ∼3 K lines of

C++ code. We also show the results of NCC-RW, a version
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Workload Write fraction Assoc-to-obj # keys/RO # keys/RW Value size # cols/key Zipfian

Google-F1 0.3% [0.3%–30%] — 1–10 1–10 1.6KB±119B 10 0.8

Facebook-TAO 0.2% 9.5 : 1 1–1K 1 1–4KB 1–1K 0.8

TPC-C
New-Order Payment Delivery Order-Status Stock-Level Dist/WH WH/svr

44% 44% 4% 4% 4% 10 8

Figure 5: Workload parameters. RO and RW mean read-only and read-write transactions, respectively. TPC-C has a

scaling factor of 10 districts per warehouse and 8 warehouses per server.

Workload Contention # shots Characteristics NCC takeaway

Facebook-TAO Low 1 Read-dominated Performance-optimal reads by the RO protocol

Google-F1 Low 1 Read-dominated Performance-optimal reads by the RO protocol

TPC-C Medium→High Multi-shot Write-intensive Leverages the natural arrival order, minimizes false aborts

Google-WF Low→High 1 Write-intensive Leverages the natural arrival order, minimizes false aborts

Figure 6: Facebook-TAO and Google-F1 have low contention. TPC-C and Google-WF (varying write fractions) are

write-intensive. TPC-C Payment and Order-Status are multi-shot.

without the read-only transaction protocol, i.e., all transac-

tions are executed as read-write transactions.

Baselines. The evaluation includes three strict serializable

baselines (dOCC, d2PL, and Janus) and two serializable base-

lines (MVTO and TAPIR). We chose d2PL and dOCC be-

cause they are the most common strictly serializable tech-

niques. We chose Janus because it is the only open-source

TR-based strictly serializable system we could find. We chose

MVTO because it has the highest best-case performance

among all (weaker) serializable techniques, presenting a per-

formance upper bound. We chose TAPIR because it utilizes

timestamp-based concurrency control.

Our evaluation focuses on concurrency control and assumes

servers never fail. Janus and TAPIR are unified designs of the

concurrency control and replication layers, so we disabled

their replication and only compare with their concurrency con-

trol protocols, shown as Janus-CC and TAPIR-CC, to make

the comparisons fair. We compare with two variants of d2PL.

d2PL-no-wait aborts a transaction if the lock is not available.

d2PL-wound-wait makes the transaction wait if it has a larger

timestamp and aborts the lock-holding transaction otherwise.

All baselines are fully optimized: we co-locate coordinators

with clients (even if baselines cannot handle client failures),

combine the execute and prepare phases for d2PL-no-wait

and TAPIR-CC, and enable asynchronous commitment, i.e.,

the client replies to the user without waiting for the acknowl-

edgments of commit messages.

6.1 Workloads and Experimental Setup

We evaluate NCC under three workloads that cover both read-

dominated “simpler” transactions and many-write more “com-

plex” transactions. Google-F1 and Facebook-TAO synthesize

real-world applications and capture the former: they are one-

shot and read-heavy. TPC-C has multi-shot transactions and

is write-intensive, capturing the latter. We also vary write

fractions in Google-F1 to further explore the latter. Table 5

shows the workload parameters.

Google-F1 parameters were published in F1 [59] and

Spanner [12]. Facebook-TAO parameters were published in

TAO [10]. TPC-C’s New-Order, Payment, and Delivery are

read-write transactions. Its Order-Status and Stock-Level are

read-only. Janus’s original implementation of TPC-C is one-

shot, so we modified it to make Payment and Order-Status

multi-shot, to demonstrate NCC is compatible with multi-shot

transactions and evaluate its performance beyond one-shot

transactions (though they are still relatively short).

Experimental setting. We use Microsoft Azure [47]. Each

machine has 4 CPUs (8 cores), 16GB memory, and a 1Gbps

network interface. We use 8 machines as servers and 16–

32 machines as clients that generate open-loop requests to

saturate the servers. (The open-loop clients back off when

the system is overloaded to mitigate queuing delays.) Google-

F1 and Facebook-TAO have 1M keys, with the popular keys

randomly distributed to balance load. We run 3 trials for

each test and 60 seconds for each trial. Experiments are CPU-

bound (i.e., handling network interrupts).

6.2 Result Overview

NCC outperforms strictly serializable protocols dOCC, d2PL,

and TR (Janus-CC) by 80%–20× higher throughput and 2–

10× lower latency under various workloads (Figure 7) and

write fractions (Figure 8a). NCC outperforms and closely

matches serializable systems, TAPIR-CC and MVTO, respec-

tively (Figure 8b). NCC recovers from client failures with

minimal performance impact (Figure 8c). Please note that Fig-

ure 7 and Figure 8b have log-scale axes. Figure 6 summarizes

the takeaway of performance improvements.
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System Consistency Technique Latency (RTT) Lock-free Non-blocking False aborts

NCC Strict Ser. NC+TS 1 Yes Yes Low

Spanner [12] Strict Ser. d2PL+TrueTime RO: 1, RW: 2 RO: Yes, RW: No No RO: None, RW: Med

d2PL-NoWait Strict Ser. d2PL 1 No No High

AOCC [2] Strict Ser. dOCC 2 Yes No High

Janus [52] Strict Ser. TR 2 Yes No None

dOCC Strict Ser. dOCC 2 No No High

d2PL-WoundWait Strict Ser. d2PL 2 No No Med

FaRMv2 [58] Strict Ser. dOCC 2 No No Med

TAPIR [72] Ser. dOCC+TS 1 Yes No Med

DrTM [66] Ser. RO: TS, RW: d2PL RO: 2, RW: 3 RO: Yes, RW: No No Med

TO [7] Ser. TS 1 Yes No Med

MVTO [55] Ser. TS 1 Yes No Low

Figure 9: The consistency and best-case performance of representative distributed protocols for naturally consistent

workloads, processing one-shot transactions with possible optimizations considered. NC means natural consistency, and

TS means timestamp-based technique. NCC has the lowest performance costs while providing strict serializability.

sequencers for each transaction (epoch). Some ensure strict

serializability by moving all data a transaction accesses to

the same machine, e.g., LEAP [35]. Some rely on program

analysis and are application-dependent, e.g., the homeostasis

protocol [57]. Some rely on extensive gossip messages for

liveness, which lower throughput and increase latency, e.g.,

Ocean Vista [18] whose latency of a transaction cannot be

lower than the gossiping delay of the slowest server even if

this server is not accessed by the transaction. General tech-

niques such as NCC do not have the above limitations.

Strictly serializable read-only transaction protocols. To

the best of our knowledge, the only existing strictly serializ-

able read-only transaction protocol that has optimal best-case

performance is Spanner [12]. Spanner ensures strict serial-

izability by using d2PL for read-write transactions and by

using synchronized clocks (TrueTime) for read-only transac-

tions. TrueTime must be accurately bounded for correctness

and those bounds need to be small to achieve good perfor-

mance, which are achieved by Google’s infrastructure using

special hardware, e.g., GPS and atomic clocks [9] that are not

generally available. For instance, CockroachDB [61], which

began as an external Spanner clone, chose not to support

strict serializability because it does not have access to such

infrastructure [25]. In contrast, NCC’s read-only transactions

achieve optimal best-case performance and provide strict seri-

alizability, without requiring synchronized clocks.

Single-machine concurrency control. Concurrency control

for single-machine databases is different from the distributed

setting on which this paper focuses. First, some techniques

are not feasible in a distributed setting. For instance, Silo [64]

relies on atomic instructions, and MVTL [3] relies on shared

lock state, which are challenging across machines. Second,

most techniques, e.g., Silo [64] and TicToc [69], follow a

multi-phase design and would be expensive if made dis-

tributed, e.g., they need distributed lock management and one

round of inter-machine messages for each phase, which would

be unnecessary costs for naturally consistent transactions.

Their designs, however, are feasible and highly performant

for the single-machine setting they target.

Protocols for weaker consistency. Many systems trade

strong consistency for better performance. For instance, some

settle for restricted transaction APIs, e.g., read-only and/or

write-only transactions [16, 37, 38]. Some choose to support

weaker consistency models, e.g., causal consistency and se-

rializability [17, 32, 38, 39, 46, 61, 65, 70]. In contrast, NCC

provides stronger consistency and supports general transac-

tions, greatly simplifying application development.

8 Conclusion

Strictly serializable datastores are advocated by recent work

because they greatly simplify application development. This

paper presents NCC, a new design that provides strict seri-

alizability with minimal overhead by leveraging natural con-

sistency in datacenter workloads. NCC identifies and over-

comes timestamp inversion, a fundamental correctness pitfall

in timestamp-based concurrency control techniques. NCC sig-

nificantly outperforms existing strictly serializable techniques

and closely matches the performance of serializable systems.
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vić, Dushyanth Narayanan, and Miguel Castro. Fast

general distributed transactions with opacity. In ACM

International Conference on Management of Data (SIG-

MOD), 2019.

[59] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy,

Chad Whipkey, Eric Rollins, Mircea Oancea, Kyle

Littlefield, David Menestrina, Stephan Ellner, John

Cieslewicz, Ian Rae, Traian Stancescu, and Himani Apte.

F1: A distributed SQL database that scales. Proceedings

of the VLDB Endowment (PVLDB), 2013.

[60] Michael Stonebraker, Samuel Madden, Daniel J Abadi,

Stavros Harizopoulos, Nabil Hachem, and Pat Helland.

The end of an architectural era: It’s time for a complete

rewrite. In Making Databases Work: the Pragmatic Wis-

dom of Michael Stonebraker, pages 463–489. Associa-

tion for Computing Machinery and Morgan & Claypool,

2018.

[61] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan Van-

Benschoten, Jordan Lewis, Tobias Grieger, Kai Niemi,

Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,

Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaf-

fray, Lucy Zhang, and Peter Mattis. CockroachDB: The

resilient geo-distributed SQL database. In ACM Interna-

tional Conference on Management of Data (SIGMOD),

2020.

[62] Alexander Thomson, Thaddeus Diamond, Shu-Chun

Weng, Kun Ren, Philip Shao, and Daniel J. Abadi.

Calvin: Fast distributed transactions for partitioned

database systems. In ACM International Conference

on Management of Data (SIGMOD), 2012.

[63] TPC. TPC-C: An on-line transaction processing bench-

mark. http://www.tpc.org/tpcc/, 2020.

322    17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



[64] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara

Liskov, and Samuel Madden. Speedy transactions in

multicore in-memory databases. In ACM Symposium on

Operating System Principles (SOSP), 2013.

[65] Xingda Wei, Rong Chen, Haibo Chen, Zhaoguo Wang,

Zhenhan Gong, and Binyu Zang. Unifying timestamp

with transaction ordering for MVCC with decentralized

scalar timestamp. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2021.

[66] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and

Haibo Chen. Fast in-memory transaction processing

using RDMA and HTM. In ACM Symposium on Oper-

ating System Principles (SOSP), 2015.

[67] Arthur Whitney, Dennis Shasha, and Stevan Apter. High

volume transaction processing without concurrency con-

trol, two phase commit, SQL or C++, 1997.

[68] Xinan Yan, Linguan Yang, Hongbo Zhang, Xi-

ayue Charles Lin, Bernard Wong, Kenneth Salem, and

Tim Brecht. Carousel: Low-latency transaction process-

ing for globally-distributed data. In ACM International

Conference on Management of Data (SIGMOD), 2018.

[69] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srini-

vas Devadas. TicToc: Time traveling optimistic con-

currency control. In ACM International Conference on

Management of Data (SIGMOD), 2016.

[70] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sanchez,

Larry Rudolph, and Srinivas Devadas. Sundial: Harmo-

nizing concurrency control and caching in a distributed

OLTP database management system. Proceedings of the

VLDB Endowment (PVLDB), 11(10):1289–1302, 2018.

[71] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres,

Arvind Krishnamurthy, and Dan R. K. Ports. Build-

ing consistent transactions with inconsistent replication.

In ACM Symposium on Operating System Principles

(SOSP), 2015.

[72] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres,

Arvind Krishnamurthy, and Dan RK Ports. Building con-

sistent transactions with inconsistent replication. ACM

Transactions on Computer Systems (TOCS), 35(4):1–37,

2018.

[73] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Nama-

sivayam, Alex Miller, Evan Tschannen, Steve Ather-

ton, Andrew J Beamon, Rusty Sears, John Leach, Dave

Rosenthal, Xin Dong, Will Wilson, Ben Collins, David

Scherer, Alec Grieser, Young Liu, Alvin Moore, Bhaskar

Muppana, Xiaoge Su, and Vishesh Yadav. Founda-

tionDB: A distributed unbundled transactional key value

store. In ACM International Conference on Manage-

ment of Data (SIGMOD), 2021.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation    323




	Introduction
	Background
	Transactional Datastores
	Strict Serializability
	dOCC, d2PL, & Transaction Reordering

	Design Insight & Overview
	Exploiting Natural Consistency
	Three Pillars of Design

	Timestamp-Inversion Pitfall
	Natural Concurrency Control
	Protocol Basics
	Response Timing Control
	Asynchrony-Aware Timestamps
	Smart Retry
	Read-Only Transactions
	Failure Handling
	Correctness

	Evaluation
	Workloads and Experimental Setup
	Result Overview
	Latency vs. Throughput Experiments
	Additional Experiments

	Related Work
	Conclusion

