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Abstract

Strictly serializable datastores greatly simplify application
development. However, existing techniques pay unnecessary
costs for naturally consistent transactions, which arrive at
servers in an order that is already strictly serializable. We ex-
ploit this natural arrival order by executing transactions with
minimal costs while optimistically assuming they are natu-
rally consistent, and then leverage a timestamp-based tech-
nique to efficiently verify if the execution is indeed consistent.
In the process of this design, we identify a fundamental pit-
fall in relying on timestamps to provide strict serializability
and name it the timestamp-inversion pitfall. We show that
timestamp inversion has affected several existing systems.

We present Natural Concurrency Control (NCC), a new con-
currency control technique that guarantees strict serializability
and ensures minimal costs—i.e., one-round latency, lock-free,
and non-blocking execution—in the common case by leverag-
ing natural consistency. NCC is enabled by three components:
non-blocking execution, decoupled response management,
and timestamp-based consistency checking. NCC avoids the
timestamp-inversion pitfall with response timing control and
proposes two optimization techniques, asynchrony-aware
timestamps and smart retry, to reduce false aborts. Moreover,
NCC designs a specialized protocol for read-only transactions,
which is the first to achieve optimal best-case performance
while guaranteeing strict serializability without relying on
synchronized clocks. Our evaluation shows NCC outperforms
state-of-the-art strictly serializable solutions by an order of
magnitude on many workloads.

1 Introduction

Strictly serializable datastores have been advocated by much
recent work [12,18,19,33,52,58, 68] because they provide
the powerful abstraction of programming in a single-threaded,
transactionally isolated environment, which greatly simplifies
application development and prevents consistency anoma-
lies [8]. However, only a few concurrency control techniques
provide strict serializability and they are expensive.
Common techniques include distributed optimistic concur-
rency control (dOCC), distributed two-phase locking (d2PL),
and transaction reordering (TR). They incur high overheads
which manifest in extra rounds of messages, distributed lock
management, blocking, and excessive aborts. The validation
round in dOCC, required lock management in d2PL, blocking

during the exchange of ordering information in TR, and aborts
due to conflicts in dOCC and d2PL are examples of these four
overheads, respectively. These costs are paid to enforce the
two requirements of strict serializability: (1) ensuring there
is a total order by avoiding interleaving transactions, and (2)
ensuring the real-time ordering i.e., later-issued transactions
take effect after previously-finished ones. However, we find
these costs are unnecessary for many datacenter workloads
where transactions are executed within a datacenter and then
replicated within or across datacenters.

Many datacenter transactions do not interleave: e.g., many
of them are dominated by reads [12], and the interleaving of
reads returning the same value does not affect correctness.
Many of them are short [24, 27, 40, 52, 64, 71], and short
lifetimes reduce the likelihood of interleaving. Advances in
datacenter networking also reduce variance in delivery times
of concurrent requests [5,14,22], resulting in less interleaving.

In addition, many datacenter transactions arrive at servers
in an order that trivially satisfies their real-time order require-
ment. That is, a transaction arrives at all participant servers
after all previously committed transactions.

Because many transactions do not interleave and their ar-
rival order satisfies the real-time order constraints, intuitively,
simply executing their requests in the order servers receive
them (i.e., treating them as if they were non-transactional
simple operations) will naturally satisfy strict serializability.
We call these transactions naturally consistent.

Ideally, naturally consistent transactions can be safely exe-
cuted without any concurrency control, incurring zero costs.
However, existing techniques pay unnecessary overheads. For
instance, dOCC still requires extra rounds of messages for
validation, d2PL still acquires locks, and TR still blocks trans-
actions to exchange ordering information, even if validation al-
ways succeeds, locks are always available, and nothing needs
to be reordered. Therefore, this paper strives to make naturally
consistent transactions as cheap as possible.

In this paper, we present Natural Concurrency Control
(NCC), a new concurrency control technique that guaran-
tees strict serializability and ensures minimal costs—i.e., one-
round latency, lock-free, and non-blocking execution—in the
common case. NCC’s design insight is to execute naturally
consistent transactions in the order they arrive, as if they were
non-transactional operations, while guaranteeing correctness
without interfering with transaction execution.
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NCC is enabled by three components. Non-blocking execu-
tion ensures that servers execute transactions in a way that is
similar to executing non-transactional operations. Decoupled
response management separates the execution of requests
from the sending of their responses, ensuring that only correct
results are returned. Timestamp-based consistency checking
uses timestamps to verify transactions’ results, without inter-
fering with execution.

While designing the consistency-checking component, we
identified a correctness pitfall in timestamp-based, strictly
serializable techniques. Specifically, these techniques some-
times fail to guard against an execution order that is total
but incorrectly inverts the real-time ordering between trans-
actions, thus violating strict serializability. We call this the
timestamp-inversion pitfall. Timestamp inversion is subtle
because it can happen only if a transaction interleaves with a
set of non-conflicting transactions that have real-time order
relationships. The pitfall is fundamental as we find it affects
multiple prior systems (TAPIR [71] and DrTM [66]), which,
as a result, do not provide strict serializability as claimed.

NCC handles timestamp inversion through response timing
control (RTC), an integral part of decoupled response man-
agement, without interfering with non-blocking execution or
relying on synchronized clocks. NCC proposes two times-
tamp optimization techniques, asynchrony-aware timestamps
and smart retry, to reduce false aborts. Moreover, NCC de-
signs a specialized protocol for read-only transactions, which,
to the best of our knowledge, is the first to achieve optimal
performance [40] in the best case while ensuring strict serial-
izability, without relying on synchronized clocks.

We compare NCC with common strictly serializable tech-
niques: dOCC, d2PL, and TR, and two serializable proto-
cols, TAPIR [71] and MVTO [55]. We use three workloads:
Google-F1, Facebook-TAO, and TPC-C (§6). The Google-
F1 and Facebook-TAO workloads synthesize production-like
workloads for Google’s Spanner [12, 59] and Facebook’s
TAO [10], respectively. Both workloads are read-dominated.
TPC-C [63] consists of few-shot transactions that are write-
intensive. We further explore the workload space by varying
the write fractions in Google-F1. NCC significantly outper-
forms dOCC, d2PL, and TR with 2—10x lower latency and
2-20x higher throughput. NCC outperforms TAPIR with 2x
higher throughput and 2 x lower latency, and closely matches
the performance of MVTO.

In summary, this work makes the following contributions:

* Identifies timestamp inversion, a fundamental correctness
pitfall in timestamp-based, strictly serializable concurrency
control techniques.

* Proposes NCC, a new concurrency control technique that
provides strict serializability and achieves minimal over-
head in the common case by exploiting natural consistency
in datacenter workloads.

* A strictly serializable read-only protocol with optimal best-

case performance that does not rely on synchronized clocks.

* An implementation and evaluation that shows NCC outper-
forms existing strictly serializable systems by an order of
magnitude and closely matches the performance of systems
that provide weaker consistency.

2 Background

This section provides the necessary background on transac-
tional datastores, strict serializability, and general techniques
for providing strict serializability.

2.1 Transactional Datastores

Transactional datastores are the back-end workhorse of many
web applications. They typically consist of two types of ma-
chines. Front-end client machines receive users’ requests, e.g.,
managing a web page, and execute these requests on behalf of
users by issuing transactions to the storage servers that store
the data. Servers are fault-tolerant, e.g., the system state is
made persistent on disks and replicated via replicated state
machines (RSM), like Paxos [30].

Transactions are managed by coordinators, which can be
co-located either with a server or the client. This paper adopts
the latter approach to avoid the delays caused by shipping
the transaction from the client to a server, while explicitly
handling client failures. The coordinator issues read/write
operations to relevant servers, called participants, following
the transaction’s logic, which can be one-shot, i.e., it knows a
priori which data to read/write and can send all requests in one
step, or multi-shot, i.e., it takes multiple steps as the data read
in one step determines which data to read/write in later steps.
The system executes transactions following a concurrency
control protocol, which ensures that transactions appear to
take effect in an order that satisfies the system’s consistency
requirements. The stronger the consistency provided by the
system, the easier it is to develop correct applications.

2.2 Strict Serializability

Strict serializability [23, 53], also known as external con-
sistency [21], is often considered the strongest consistency
model. It requires that (1) there exists a total order of transac-
tions, and (2) the total order must respect the real-time order,
which means if transaction tx; ends before tx; starts, then £x;
must appear before x, in the total order. As a result, trans-
actions appear to take effect one at a time in the order the
system receives them.

Formal definition. We use Real-time Serialization Graphs
(RSGQG) [1] to formalize the total order and real-time order
requirements. An RSG is a directed graph that captures the
order in which transactions take effect. Specifically, two re-
quests from different transactions have an execution edge
req, =5 req, if any of the following happens: req, creates
some data version v; and req, reads v;; req; reads some data
version v; and req, creates v’s next version that is after v;; or
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Figure 1: £x| and #x;, are naturally consistent. dOCC incurs unnecessary validation costs, and £x, could be falsely aborted
due to lock unavailability. NCC can commit both transactions with timestamp pre-assignment, refinement, and the
safeguard check (denoted by SG). These techniques are detailed in Section 5.1. Each version in NCC has a (z,,, #,) pair
which is included in server responses. RT'C means response timing control, detailed in Section 5.2.

req, creates some data version v; and req, creates v’s next
version that is after v;. Two transactions have an execution
edge tx; =% tx, if there exist L reqy and req, from tx; and tx,,
respectively, such that req; <% req,. A chain of execution
edges constructs a directed path between two transactions
(requests), denoted by x; +% txy (req; r% req,), meaning
that #x; (req,) “transitively” affects tx; (req,) through some
intermediary transactions (requests). Two transactions have a
real-time edge tx; 10 tx, if there is a real-time ordering be-
tween £x] and 7x,, meaning that £x; commits before £x;’s client
issues #x;’s first request. In an RSG, vertices are committed
transactions, connected by execution and real-time edges.

There exists a total order if and only if transactions do
not circularly affect each other. That is, the subgraph that
comprises all vertices and only execution edges is acyclic,
meaning that the following invariant holds:

€xe,

Invariant 1: Vexy, tx; (tx) 5% tx; = —(tx 2% 1x1))

The (total) execution order respects the real-time order if and
only if the execution edges (paths) do not invert the real-time
edges, meaning that the following invariant holds:

Invariant 2: Vix;, 0 (tx; 2% 1 = —(1x * 2% 1x1))

These invariants correspond to the total order and real-time or-
der requirements, respectively. Therefore, a system is strictly
serializable if and only if for any execution it allows, both
invariants hold.

By enforcing a total order and the real-time order, strictly
serializable systems provide application programmers with
the powerful abstraction of programming in a single-threaded,
transactionally isolated environment, and thus they greatly
simplify application development and eliminate consistency
anomalies. For example, if an admin removes Alice from
a shared album and then notifies Bob of the change (via a
channel external to the system, e.g., a phone call), who then
uploads a photo he does not want Alice to see, then Alice
must not see Bob’s photo, since remove_Alice 0 new _photo.
Such guarantees cannot be enforced by weaker consistency
models, e.g., serializability, because they do not enforce the
real-time order that is external to the system.

2.3 dOCC, d2PL, & Transaction Reordering

Only a few techniques provide strict serializability. The com-
mon ones are dOCC, d2PL, and transaction reordering (TR).
dOCC and d2PL typically require three round trips, one for
each phase: execute, prepare, and commit. In the execute
phase, the coordinator reads the data from the servers while
writes are buffered locally. d2PL acquires read locks in this
phase while dOCC does not. In the prepare phase, the coordi-
nator sends prepare messages and the buffered writes to the
participant servers. d2PL locks all participants while dOCC
only locks the written data. dOCC must also validate that val-
ues read in the execute phase have not changed. If all requests
are successfully prepared, i.e., locks are available and/or val-
idation succeeds, the coordinator notifies the participants to
commit the transaction and apply the writes; otherwise, the
transaction is aborted and retried.

Transaction reordering typically requires two steps. In the
first step, the coordinator sends the requests to the servers,
which make requests wait while recording their arrival order
relative to those of concurrent transactions. This ordering in-
formation usually increases linearly in size with respect to
the number of concurrent transactions. In the second step,
the coordinator collects the ordering information from partici-
pants, sorts the requests to eliminate interleavings, and servers
execute the transactions in the sorted order.

These techniques are expensive, e.g., they require multiple
rounds of messages, locking, waiting, and aborts. We find that
these overheads are wasteful for most of the transactions in
many datacenter workloads, and this observation has inspired
our protocol design.

3 Design Insight & Overview

This section explains natural consistency, which inspires our
design, and overviews the key design components.

3.1 Exploiting Natural Consistency

For many datacenter transactions, simply executing their re-
quests in the order servers receive them, as if they were non-
transactional read/write operations, would naturally satisfy
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Figure 2: An overview of system architecture and transaction execution. NCC follows two-phase commit and has three
design pillars: non-blocking execution, decoupled response management, and timestamp-based consistency checking.

strict serializability. In other words, they arrive at servers in
an order that is already strictly serializable. We call these
transactions naturally consistent. Key to natural consistency
is the arrival order of transaction requests.

Many requests in datacenter workloads arrive in an order
that is total, i.e., transactions do not circularly affect each
other, due to the following reasons. First, many requests in
real-world workloads are reads [10, 12], and reads do not
affect other reads. For instance, reads that return the same
value can be executed in any order, and thus servers can safely
execute them in their arrival order. Second, many transactions
are short, e.g., they are one-shot [24, 27,40, 52, 64, 71] or
can be made one-shot using stored procedures [20, 34, 51,
60, 67], and thus their requests are less likely to interleave
with others’ requests. Third, advances in datacenter networks
reduce the variance of message delivery times [49,50,54], and
thus further reduces the likelihood of request interleaving.

In most cases, the (total) arrival order satisfies the real-time
order between transactions because a transaction that happens
later in real-time, i.e., it starts after another transaction has
been committed, must arrive at servers after the committed
transaction has arrived.

Ideally, the system would treat naturally consistent transac-
tions as non-transactional operations and execute them in the
order they arrive without any concurrency control, while still
guaranteeing strict serializability. This insight suggests room
for improvement in existing techniques. For instance, dOCC
still requires validation messages which are unnecessary when
transactions are naturally consistent. Further, during valida-
tion between prepare and commit, dOCC has a contention
window where it can cause other concurrent transactions to
abort. As shown in Figure 1a, such contention windows lead
to false aborts, where a transaction is aborted despite being
consistent. Our design aims to minimize costs for as many

naturally consistent transactions as possible.

3.2 Three Pillars of Design

Our design executes naturally consistent transactions in a
manner that closely resembles non-transactional operations.
This is made possible through three components.

Non-blocking execution. Assuming transactions are natu-
rally consistent, servers execute requests in the order they
arrive. Requests are executed “urgently” to completion with-
out acquiring locks, and their results are immediately made
visible to prevent blocking subsequent requests. As a result,
transactions are executed as cheaply as non-transactional op-
erations, without incurring contention windows.

Decoupled response management. Because not all transac-
tions are naturally consistent, servers must prevent returning
inconsistent results to clients and ensure there are no cascad-
ing aborts. This is achieved by decoupling requests’ responses
from their execution, with a response sent asynchronously
only once it is verified consistent. Inconsistent results are
discarded, and their requests are re-executed.

Timestamp-based consistency checking. We must check
consistency as efficiently as possible, without interfering with
server-side execution. We leverage timestamps to capture the
arrival order (thus the execution order) of requests and design
a client-side checker that verifies if requests were executed in
a total order, without incurring overheads such as messages
(as in dOCC and TR) or locks (as in dOCC and d2PL).
Figure 2 shows at a high level how these three pillars sup-
port our design, and depicts the life cycle of transactions:

© The user submits application requests to a client, which
translates the requests into transactions.

® The (client) coordinator sends operations to the par-

308 17th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



ticipant servers, following the transaction’s logic. The
servers execute requests in their arrival order. Their
responses are inserted into a queue and sent asyn-
chronously. The responses include timestamps that cap-
ture requests’ execution order.

©® Responses are sent to the client when it is safe, deter-
mined by response timing control (RTC).

® The safeguard checks if transactions were executed in
a total order by examining the timestamps in responses.
The coordinator sends commit/abort messages to the
servers and returns the results of committed transactions
to the user in parallel, without waiting for servers’ ac-
knowledgments. €9 and @ explicitly handle client fail-
ures by leveraging a server as a backup coordinator.

Limitations. First, our design leverages natural consistency,
which is observed in short (e.g., one or few shots) datacenter
transactions; while our design supports arbitrary-shot transac-
tions, many-shot long-lasting transactions that are more likely
to interleave might not benefit from our design. Second, the
timestamps associated with each request, including both reads
and writes, must be made persistent (e.g., written to disks)
and replicated for correctly handling failures, which could
lead to replication overhead, which we detail in Section 5.6.

An observation. Key to the correctness of our design is lever-
aging timestamps to verify a total order that respects the real-
time order. Yet, we identify a correctness pitfall in relying on
timestamps to ensure strict serializability.

4 Timestamp-Inversion Pitfall

We discover that timestamp-based techniques sometimes fail
to guard against a total order that violates the real-time order
in subtle cases. As a result, executing transactions in such a
total order inverts the real-time relationship between transac-
tions, which leads to a violation of strict serializability. We
call such violations the timestamp-inversion pitfall. Figure 3
shows a minimal construction of timestamp inversion using
three transactions. zx; and tx, are single-machine transactions
issued by different clients, and #x, starts after zx; finishes,
so there exists a real-time order tx; ™% tx, that strict seri-
alizability must enforce. £x3 is a multi-shard transaction by
a third client that interleaves with #x; and fx,. £x;, txp, and
tx3 have timestamps 10, 5, and 7, respectively.' By following
these timestamps, the transactions are executed in a total or-
der denoted as 1xy 2 tx3 2% x1, which inverts the real-time
order tx; ™% #x, and thus violates strict serializability. Specif-
ically, the execution of these transactions violates Invariant 2,
subjecting them to consistency anomalies discussed in §2.2.

The timestamp-inversion pitfall is subtle because it happens
only if a transaction interleaves with a set of non-conflicting
transactions that have real-time ordering constraints. We find

A timestamp is generated by either a loosely synchronized physical
clock [48] or a causal counter, e.g., a Lamport clock [28].

I. Timestamp-inversion

A @ >
tx, (t=10)
B @ >
1%, (t=5)
CL >
tx, (t=7)
_________________ mmmmmmmmm oo
II. Real-time diagram ! II1. Solution
- : —--1
tX1 I I : tX1
1 o) ] ! 1 1 txp
I 1 I 1
tx3 ! txs N
Real time : : Real time g

Figure 3: A minimal example of timestamp inversion, a
real-time diagram shows the ordering of transactions, and
how NCC tackles the timestamp-inversion pitfall.

timestamp inversion to be fundamental as it has affected mul-
tiple different systems; we discuss two such systems below.
In addition, we find that there are several existing systems that
do not explicitly define their consistency model, but give a
strong indication of providing strict serializability—e.g., they
claim invariants that are equivalent to strict serializability, or
are built on or evaluated against strictly serializable protocols.
We find that these systems also fall into the pitfall.

Timestamp inversion affects several prior systems. The
minimal example in Figure 3 can be extended to variants of
timestamp inversion that affect different types of transactions
in real system designs, suggesting that this pitfall is general
and fundamental. For instance, we find two systems from
recent SOSPs fall into different variants of the pitfall, and
thus are not strictly serializable as claimed. We elaborate
below to help future work avoid timestamp inversion, and
provide the full counterexamples in a technical report [41].
TAPIR [71,72] is an integrated protocol that co-designs
concurrency control and replication. Its concurrency control
is a variant of dOCC which validates writes using times-
tamps without acquiring locks, while reads are validated in
the traditional way. Because reads and writes are executed
in timestamp order but validated with separate mechanisms,
TAPIR’s read-write transactions may cause an inversion of
concurrent writes. For instance, if zx}, tx, and #x3 in Figure 3
are read-write transactions, then all three transactions would
pass TAPIR’s validation, which results in the inversion of
tx1 29 tx,. The effect of this inversion is perceivable to the
client via future reads. This variant of timestamp inversion re-
quires a detailed analysis of the possible executions, showing
that none of them are admissible by strict serializability [41].
DrTM [11,66] is a specialized design for modern datastores
equipped with hardware transactional memory and remote
direct memory access. Dr'TM uses timestamps to validate read
leases which are acquired before reading the data, a technique
equivalent to executing read requests in the timestamp order.
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Algorithm 5.1: Client (transaction coordinator) logic

1 Function EXECUTERWTRANSACTION(%x) :

2 results <— {}; t_pairs <~ {} // server responses
3 t.clk < ASYNCHRONYAWARETS(tx); t.cid < clientID
4 for req in tx do

// send requests shot by shot,
// following tx’s logic

5 res, t_pair <~ NONBLOCKINGEXECUTE(req, t)
6 results < results U res
7 t_pairs < t_pairs U t_pair
// all shots done, tx’s logic complete
8 ok, t' < SAFEGUARDCHECK(t_pairs)
9 if not ok then
10 | ok < SMARTRETRY(tx, 1) // §5.4
11 if ok then
12 ASYNCCOMMITORABORT(tx, “committed’)
13 return results
14 else
15 ASYNCCOMMITORABORT(tx, “aborted’)
16 goto2 // abort, and retry from scratch

18 Function SAFEGUARDCHECK(?_pairs) :

19 ty_set < {}; t,_set + {}

20 for t_pair in t_pairs do

21 ty_set < t,,_set U t_pairleft

22 t,_set < t,_set U t_pair.right

23 ty_max <— max{t,_set}; t,_min < min{z,_set}
24 if t,,_max < t,_min then

25

// t_pairs overlap, 3 a snapshot
return frue, t,,_max

26 else
27 L return false, t,,_max

This makes Dr'TM’s read-only transactions subject to inver-
sion, e.g., when #x, txp, and x3 in Figure 3 are read-write,
read-write, and read-only transactions, respectively.

The main contributions of TAPIR and DrTM still stand, just
with weaker consistency than claimed. Both teams conjecture
that they can fix the systems by using synchronized clocks
(e.g., TrueTime [12]) and adapting their designs to use these
clocks. Thus, it is likely that their contributions still stand
with strict serializability when synchronized clocks are used.
However, synchronized clocks require specialized infrastruc-
ture and are not generally available (§7). Therefore, NCC
is designed to avoid timestamp-inversion without relying on
synchronized clocks.

5 Natural Concurrency Control

This section presents the basic components of NCC, explains
how NCC avoids the timestamp-inversion pitfall, introduces
two timestamp optimization techniques and a specialized
algorithm for read-only transactions, and concludes with dis-
cussions of failure handling and correctness.

5.1 Protocol Basics

We build NCC on the three design pillars (§3.2) to minimize
the costs for naturally consistent transactions.

Pre-timestamping transactions. NCC processes a transac-
tion in two phases: execute and commit. Algorithm 5.1 shows
the client (coordinator)’s logic. The coordinator starts a trans-
action #x by pre-assigning it a timestamp ¢ that consists of two
fields: clk which is the client’s physical time (Section 5.3 de-
tails how it is computed), and cid which is the client identifier.
t uniquely identifies #x (line 3). When two timestamps have
the same clk, NCC breaks the tie by comparing their cid. ¢ is
included in all of £x’s requests that are sent to servers shot by
shot, following #x’s application logic (lines 4 and 5). These
timestamps accompany zx throughout its life cycle and will
be used to verify if the results are consistent.

Refining timestamps to match execution order. Algo-
rithm 5.2 details the server-side logic for request execution
and commitment. Each key stores a list of versions in the
order of the server creating them. A version has three fields:
value, a pair of timestamps (t,,, t), and status. value stores
the data; #,, is the timestamp of the transaction that created
the version; ¢, is the highest timestamp of transactions that
read the version; and status indicates the state of the transac-
tion that created the version: either (initially) undecided, or
committed. An aborted version is removed from the datastore.

The server always executes a request against the most re-
cent version curr_ver, which is either undecided or committed
(line 35). Specifically, the server executes a write by creating a
new undecided version new_ver, which is now the most recent
version of the key, ordered after curr_ver (lines 39 and 40),
and executes a read by reading the value of curr_ver (line 44).
NCC’s basic protocol can work with a single-versioned data
store while multi-versioning is required only for smart retry,
a timestamp optimization technique (§5.4). The server refines
the most recent version’s timestamp pair to match the order in
which requests are executed. Specifically, a write request com-
putes new_ver’s t,, as follows: its physical time field is no less
than that of the write’s timestamp ¢ and that of curr_ver’s t,,
and its client identifier is the same as ¢’s (line 37); new_ver’s
t, is initialized to ¢, (line 38). Similarly, a read request updates
curr_ver’s t, if needed (line 43). Figure 1b shows examples of
how timestamps are refined. A version is associated with a 7,
and a t,, e.g., Ay initially has a timestamp pair (4, 8). tx1—#x3
are single-key read transactions with pre-assigned timestamps
10, 2, and 6, respectively. They return the most recent version
of A,i.e., A, update its 7, if needed, and return A;’s timestamp
pair. £x4 and x5 show how writes manage timestamps.

These (refined) timestamps match requests’ arrival order
and thus also match the execution order: on each key, a read
must have a timestamp greater than that of the write it sees,
i.e., aread is ordered after the most recent write, and a write
must have a timestamp greater than that of the most recent
read, i.e., a write is ordered after the most recent read (and
thus all previous writes).

Non-blocking execution and response queues. The server
executes requests in a non-blocking manner and decouples
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Algorithm 5.2: Server execution and commitment

28 Multi-versioned data store:
29 DS[key|[ver] // indexed by key, vers sorted by f,
// ver is either committed or undecided

30 Response queue:

31 resp_gslkey][resp_q]
32

33 Function NONBLOCKINGEXECUTE(req, t) :

// resp queues for each key

34 resp <— []// response message

35 curr_ver < DS[req.key|.most_recent

36 if req is write then

37 ty-clk < max{z.clk, curr_ver.t,.clk+ 1}; t,,.cid < t.cid
38 ety

39 new_ver < [req.value, (t,,, t,), “undecided’]

40 DS|req.key] <— DS[req.key) + new_ver

41 resp < [“done”, (t,, t,)]

42 else

43 curr_ver.ty < max{t, curr_ver.t,}

44 resp <— [curr_ver.value, (curr_ver.t,,, curr_ver.t,)]
45 resp_gslreq.key].enqueue(resp, req, t, “undecided”)

46 | RESPTIMINGCONTROL(resp_gslreq.keyl) // §5.2

47
48 Function ASYNCCOMMITORABORT(tx, decision) :

49 foreach ver created by 7x do

50 if decision = “committed” then

51 L ver.status <— decision

52 else

53 L DS.remove(ver)

54 foreach resp_q in resp_gs do

55 foreach resp in resp_g do

56 if resp.request € tx then

57 L resp.q_status < decision

58 RESPTIMINGCONTROL(resp_q) // §5.2

their execution from responses. Specifically, a write creates
a version and immediately makes it visible to subsequent
transactions; a read fetches the value of the most recent ver-
sion whose status could be undecided, without waiting for
it to commiit; the server prepares the response (lines 34, 41,
and 44), inserts it into a response queue (lines 45 and 46),
which asynchronously sends the responses to clients when it
is safe. (Section 5.2 details response timing control, which
determines when sending a response is safe so timestamp
inversion and cascading aborts are prevented.) Unlike d2PL
and dOCC, which lock data for at least one round-trip time in
the execute and prepare phases (i.e., the contention window),
non-blocking execution ensures that a transaction never ex-
clusively owns the data without performing useful work. As a
result, the server never stalls, and CPUs are fully utilized to ex-
ecute requests. Moreover, non-blocking execution eliminates
the contention window and thus reduces false aborts.

Client-side safeguard. A server response includes the times-
tamp pair (t,,, f,) of the most recent version, e.g., new_ver for
a write and curr_ver for a read. The returned (t,,, ) repre-
sents the time range in which the request is valid. That is,
a read must take effect after #,,, which is the time when the

most recent write on the same key took effect, and no later
writes can take effect between ¢,, and ¢, on the same key. A
write must have t,, = t,, meaning that it takes effect exactly at
t,,. When a transaction has completed its logic (i.e., all shots
are executed) and the client has received responses to all its
requests, the safeguard looks for a consistent snapshot that
intersects all (z,,, #,) pairs in server responses by checking if
the (¢, t,) pairs overlap (lines 8, 18-27). This intersecting
snapshot identifies the transaction’s synchronization point,
i.e., all requests are valid at the intersecting timestamp.

Figure 1c shows an example where NCC executes the same
transactions in Figure 1a. The default versions Ag and By both
have a timestamp pair (0, 0). £x; and rx, are pre-assigned 4
and 8, respectively, and their requests arrive in the same order
as they were in Figure la. The safeguard enables NCC to
commit both transactions, i.e., £x1’s responses intersect at 4
while £x;’s intersect at 8, without unnecessary overhead such
as dOCC’s validation cost and false aborts.

When the client has decided to commit or abort the trans-
action, the protocol enters the commit phase by sending the
commit/abort messages to the servers. If the transaction is
committed, the server updates the status of the created ver-
sions from undecided to committed; otherwise, the versions
are deleted (lines 48—53). The client retries the aborted trans-
action. The client sends the results of the committed trans-
action to the user in parallel with the commit messages, i.e.,
asynchronous commit, without waiting for servers’ acknowl-
edgments (lines 11-16).

Supporting complex transaction logic. NCC supports trans-
actions accessing a key multiple times, e.g., read-modify-
writes and repeated reads/writes, by treating its requests to
the same key as a single logical request. For instance, if a
read-modify-write has its read and write requests executed
consecutively (i.e., they are not intersected by other writes),
then only the write response is checked by the safeguard, treat-
ing read-modify-write as one logical request; otherwise, it is
aborted if there are intersecting writes, e.g., when the most
recent version has a #,, greater than that returned by the read
of this read-modify-write. The responses of these requests
are grouped together in the response queue, e.g., the write
response of a read-modify-write is inserted right after the
read response of the same read-modify-write. We explain the
details of handling complex logic in the technical report [41].

NCC achieves minimal costs by urgently executing transac-
tions in a non-blocking manner and by ensuring a total order
with the light-weight timestamp-based safeguard. Yet, in order
to provide strict serializability, NCC must enforce the real-
time order between transactions by handling the timestamp-
inversion pitfall, as we discuss next.

5.2 Response Timing Control

NCC avoids the timestamp-inversion pitfall by disentangling
the subtle interleaving between a set of non-conflicting trans-
actions that have real-time order dependencies (e.g., Figure 3),
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without relying on synchronized clocks. Specifically, NCC
introduces response timing control (RTC), which controls the
sending time of responses. It is safe to send the response of a
request req; when the following dependencies are satisfied:
D; If req, reads a version created by req of another trans-
action, then req,’s response is not returned until reqy is
committed or it is discarded if req is aborted (then req,
will be re-executed).

D, If req, is a write and there are reads that read the version
which immediately precedes the one created by req,,
then req,’s response is not returned until the reads are
committed/aborted.

D3 If req, creates a version immediately after the version
created by req, of another transaction, then reg,’s re-
sponse is not returned until req, is committed/aborted.

By enforcing these dependencies, NCC controls the send-
ing of responses so that the transactions which form the subtle
interleaving are forced to take effect in their real-time order.
For instance, in Figure 3, server A cannot send the response
of #x1 until #x3 has been committed (assuming at least one of
them writes to A). As a result, any transaction £x; that begins
after fx| receives its response, i.e., £x] o, tx>, must be exe-
cuted after tx;, and thus after #x3 as well: tx,’s execution on
each server is after it begins, which is after zx; ends, which is
after 7x;’s response is sent, which is after zx3 commits, which
is after #x3 executes on each server. This results in a total
order tx3 <% 1x; <% 1y, which respects the real-time order,
enforcing Invariant 2, as shown in Part III of Figure 3.

NCC implements RTC by managing response queues, inde-
pendently from request execution. NCC maintains one queue
per key. A queue item consists of four fields: response that
stores the response message of a request, the request itself,
ts which is the pre-assigned timestamp of the request, and
q_status that indicates the state of the request, which is ini-
tially undecided, and updated to either committed or aborted
when the server receives the commit/abort message for this
request (lines 54—57, Algorithm 5.2).

Managing response queues. Algorithm 5.3 details how
NCC manages the response queue of each key. This logic
is invoked every time the server finishes executing a request
(line 46) and receives a commit/response message (line 58).
NCC iterates over the queue items from the head (i.e., the
oldest response) until it finds the first response whose g_status
is undecided, which means all earlier requests on the same
key have been committed or aborted, i.e., this response has
satisfied the three dependencies (lines 60-62 and 71). The
server sends this response message to the client if it has not
done so (lines 72, 74-77). If this is a read response, then
the server sends all consecutive read responses that follow it
(lines 73 and 78-81), because all these read responses satisfy
the three dependencies. In other words, reads returning the
same value do not have dependencies between them. RTC is
effectively similar to locking the response queues, e.g., the

Algorithm 5.3: Response timing control

59 Function RESPTIMINGCONTROL(resp_gq) :

60 head < resp_g.head() // the oldest response
61 while head.q_status # “undecided” do
// find the first response we can send
62 resp_g.dequeue()
63 new_head < resp_g.head()
64 new_req <— new_head.request; t < new_head.ts
65 while head.q_status = “aborted”
66 and head.request is write and new_req is read do
// handle reads seeing aborted writes
67 resp_g.dequeue() // discard read response
// re-execute the read locally
68 NONBLOCKINGEXECUTE(new_req, t)
69 new_head < resp_g.head()
70 new_req <— new_head.request; t < new_head.ts
7 head < resp_q.head()
72 curr_item < head
73 repeated loop
// send dependency-satisfied responses
74 resp < curr_item.response
75 if resp.is_sent # true then
76 sys_call.send(resp) // send to client
77 resp.is_sent <— true
// send consecutive read responses
78 next_item <— curr_item.next()
79 if curr_item.request is not read
80 or next_item.request is not read then
81 L break repeated loop
82 curr_item <— next_item

queue is “locked” when a response is sent and other responses
must wait, and is “unlocked” when the commit/abort message
for the request to which the sent response belongs is received.
However, RTC differs from lock-based mechanisms in that
it is decoupled from execution and does not introduce con-
tention windows, i.e., data objects are not locked.

Fixing reads locally. When the server receives an abort mes-
sage for a write request, it must invalidate the responses of any
reads that have fetched the value of the aborted write. This
is necessary to avoid returning invalid results to the client
and to prevent cascading aborts. Specifically, the server re-
moves the response of such a read from the response queue
and re-executes the read request, e.g., it fetches the current
most recent version, prepares a new response, and inserts the
new response to the tail of the queue (lines 65-68).

Avoiding indefinite waits. To avoid responses from circu-
larly waiting on dependencies across different keys, NCC
early aborts a request (thereby aborting the transaction to
which it belongs) if its pre-assigned timestamp is not the high-
est the server has seen and if its response cannot be sent
immediately, i.e., it is not the head of the queue. Specifically,
a write (read) is aborted if there is an undecided request (write
request) with a higher timestamp. Then, the server sends a spe-
cial response to the client without executing the request. The
special response includes a field early_abort which allows
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the client to bypass the safeguard and abort the transaction.
We omit the details from the pseudocode for clarity.

RTC is a general solution to timestamp inversion, with-
out the need for synchronized clocks. It does not incur more
aborts even when responses are not sent immediately, be-
cause response management is decoupled from request exe-
cution. That is, whether a transaction is committed or aborted
is solely based on timestamps, and RTC does not affect ei-
ther pre-assignment or refinement of timestamps. Yet, NCC’s
performance also depends on how well timestamps capture
the arrival order of (naturally consistent) transactions. That is,
timestamps that do not match transactions’ arrival order could
cause transactions to falsely abort even if they are naturally
consistent. Next, we will discuss optimization techniques that
enable timestamps to better match the arrival order.

5.3 Asynchrony-Aware Timestamps

NCC proposes two optimizations: a proactive approach that
controls how timestamps are generated before transactions
start, and a reactive approach that updates timestamps to
match the naturally consistent arrival order after requests are
executed. This subsection discusses the proactive approach.

The client pre-assigns the same timestamp to all requests
of a transaction; however, these requests may arrive at their
participant servers at different physical times, which could
result in a mismatch between timestamp and arrival order,
as shown in Figure 4a. Transactions #x; and #x, start around
the same time and thus are assigned close timestamps, e.g.,
t1 = 1004 and £, = 1005, respectively (client IDs are omitted).
Because the latency between B and CL; is greater than that
between B and CL,, tx; may arrive at B later than tx,, but £x;
has a smaller timestamp. As a result, the safeguard may falsely
reject txy, e.g., server B responds with a refined timestamp
pair (1006, 1006) which does not overlap with (1004, 1004),
the timestamp pair returned by server A. However, aborting
tx1 is unnecessary because tx; and x, are naturally consistent.

To tackle this challenge, NCC generates timestamps while
accounting for the time difference, 7o, between when a request
is sent by the client and when the server starts executing the
request. Specifically, the client records the physical time ¢,
before sending the request to the server; the server records
the physical time #; before executing the request and piggy-
backs ¢, onto the response sent back to the client; and the
client calculates 75 by finding the difference between ¢, and
ty, 1.., 1A =ty — t.. By measuring the end-to-end time differ-
ence, fa effectively masks the impact of queuing delays and
clock skew. The client maintains a 74 for each server it has
contacted. An asynchrony-aware timestamp is generated by
adding the client’s current physical time and the greatest 75
among the servers this transaction will access. For instance,
given the values of 4 shown in Figure 4a, CL; assigns x|
timestamp 1014 (i.e., 1004 + 10) and CL; assigns tx 1010
(i.e., 1005 +5), and both transactions may successfully pass
their safeguard check, capturing natural consistency.

Algorithm 5.4: Smart retry

83 Function SMARTRETRY(%x, t') :

84 foreach ver accessed by 7x do
// next version of the same key
85 next_ver < ver.next()
86 if next_vert, <t then
87 L return false
88 if ver created by tx and ver.t,, # ver.t, then
89 | return false
90 if ver created by tx then
91 L vert, «—t';vert, <t
92 else
93 | vert, « max{ver.t, 1’}
94 return frue

5.4 Smart Retry

NCC proposes a reactive approach to minimizing the perfor-
mance impact of the safeguard’s false rejects, which happen
when timestamps fail to identify the naturally consistent ar-
rival order, as shown in Figure 4b. Initially, version Ag has
a timestamp pair (0, 0), and By has (0, 5). The same trans-
actions x; and #x; as those in Figure 1c access both keys.
Following NCC'’s protocol, £x;’s responses contain the times-
tamp pairs (0, 4) and (6, 6) from A and B, respectively, which
will be rejected by the safeguard because they do not overlap.
However, aborting #x; is unnecessary because tx; and tx, are
naturally consistent.

Instead, NCC tries to “reposition” a rejected transaction
with respect to the transactions before and after it to construct
a total order, instead of aborting and re-executing the rejected
transaction from scratch, which would waste all the work the
server has done for executing it. Specifically, NCC chooses a
timestamp that is nearest “in the future” and hopes the rejected
transaction can be re-committed at that time. This is possible
if the chosen time has not been taken by other transactions.

Algorithm 5.4 shows the pseudocode for smart retry. When
the transaction fails the safeguard check, NCC suggests a new
timestamp ¢’, which is the maximum ¢,, in the server responses.
The client then sends smart retry messages that include ¢’ to
the participant servers, which then attempt to reposition the
transaction’s requests at ¢’. The server can reposition a re-
quest if there has not been a newer version that was created
before ¢’ (lines 85-87) and, if the request is a write, the ver-
sion it created has not been read by any transactions (lines 88
and 89). The server updates the timestamps of relevant ver-
sions if smart retry succeeds, e.g., the created version has a
new timestamp pair (', '), and ¢, of the read version is up-
dated to ¢ if ¢ is greater (lines 90-93). (Our implementation
does not smart-retry the request that returned the maximum
tw, 1.€., t, = t', because its smart retry always succeeds.) The
client commits the safeguard-rejected transaction if all its
smart retry requests succeed, and aborts and retries it from
scratch otherwise (lines 9 and 10, Algorithm 5.1).
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Figure 4: Optimizations that match the timestamps with transactions’ arrival order. Asynchrony-aware timestamps
proactively controls the pre-assigned timestamps before execution. Smart retry reactively fixes the safeguard’s false
rejects after execution thus avoids aborting and re-executing transactions.

Not only does smart retry avoid false aborts, it also un-
leashes a higher degree of concurrency, as shown in Fig-
ure 4c. The servers have executed a newer transaction txp
when x;’s smart retry (SR) messages arrive, and both transac-
tions can be committed even if the messages interleave, e.g.,
tx1’s smart retry succeeds and tx, passes its safeguard check,
because zx,’s pre-assigned timestamps have left enough room
for repositioning #x|’s requests. In contrast, validation-based
techniques would unnecessarily abort zx; (considering SR
as dOCC’s validation messages) due to the presence of the
conflicting transaction #x;.

Garbage collection. Old versions are temporarily stored and
garbage collected as soon as they are no longer needed by
undecided transactions for smart retry. Only the most recent
versions are used to serve new transactions.

5.5 Read-Only Transactions

NCC designs a specialized read-only transaction protocol
for read-dominated workloads [10, 12, 26, 40, 44]. Similar
to existing works, NCC optimizes read-only transactions by
eliminating their commit phase because they do not modify
the system state and have nothing to commit. By eliminat-
ing commit messages, read-only transactions achieve optimal
performance in the best case, i.e., one round of non-blocking
messages with constant metadata [40,42,43].

Eliminating commit messages brings a new challenge
to response timing control: write responses can no longer
track their dependencies on preceding read-only transactions,
as they do not know if and when those reads are commit-
ted/aborted. To tackle this challenge, NCC aborts a read-only
transaction if it could possibly cause the subtle interleaving
that leads to timestamp inversion. In other words, NCC com-
mits a read-only transaction if its requests arrive in a naturally
consistent order and no intervening writes have been executed
since the last time the client accessed these servers.

Specifically, each client tracks ¢,, which is the t,, of the
version created by the most recent write on a server, and the
client maintains a map of ¢,, for each server this client has con-
tacted. A read-only transaction is identified by a Boolean field

IS_READ_ONLY. The client sends each of its requests to the
participant server together with the pre-assigned timestamp
(as in the basic protocol) and the ¢, of the server. To execute a
read request, the server checks the version at z,,. If the version
is still the most recent, the server continues to execute the read
following the basic protocol, e.g., it fetches the most recent
version, refines its #. if needed, and returns its timestamp pair;
otherwise, the server sends a special response that contains a
field ro_abort immediately without executing the request. If
any of the responses contain ro_abort, the client aborts this
read-only transaction; otherwise, the client continues with the
safeguard check and, if needed, smart retry, after which the
client does not send any commit/abort messages.

This protocol pays more aborts in the worst case in ex-
change for reduced message overhead in the normal case, a
trade-off that is worthwhile for read-dominated workloads
where writes are few so aborts are rare, and read-only transac-
tions are many so the savings in message cost are significant.
This protocol also expedites the sending of responses for read-
write transactions because read-only transactions do not insert
responses into the response queue, i.e., a write response de-
pends only on the reads of preceding read-write transactions
in Dependency D», not those of read-only transactions.

5.6 Failure Handling

Tolerating server failures. NCC assumes servers never fail
as their state is typically made persistent on disks and repli-
cated via state machine replication such as Paxos [29]. All
state changes incurred by a transaction in the execute phase
(e.g., t,, and ¢, of each request) must be written to the disk
and replicated for correctness. For instance, after a request
is executed, the server inserts its response into the response
queue and, in parallel, writes the state changes to the disk
and replicates the request to other replicas. Its response is
sent back to the client when it is allowed by response timing
control and when its replication is finished. Commit/abort and
smart retry messages are also made persistent and replicated.
This simple scheme ensures correctness but incurs high over-
head. We plan to investigate possible optimizations in future
work, e.g., NCC could defer disk writes and replication to the
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last shot of a transaction where all state changes are made
persistent and replicated once and for all, without having to
replicate each request separately. Server replication inevitably
increases latency but does not introduce more aborts, because
whether a transaction is committed or aborted is solely based
on its timestamps, which are decided during request execution
and before replication starts.

Tolerating client failures. NCC must handle client failures
explicitly because clients are not replicated in most systems
and NCC co-locates coordinators with clients. NCC adopts
an approach similar to that in Sinfonia [4] and RIFL [31].
We briefly explain it as follows. For a transaction fx, one
of the storage servers fx accesses is selected as the backup
coordinator, and the other servers are cohorts. In the last
shot of the transaction logic, which is identified by a field
IS_LAST_SHOT in the requests, the client notifies the backup
coordinator of the identities of the complete set of cohorts.
Cohorts always know which server is the backup coordinator.
When the client crashes, e.g., is unresponsive for a certain
amount of time, the backup coordinator reconstructs the final
state of tx by querying the cohorts for how they executed tx,
and commits/aborts #x following the same safeguard and smart
retry logic. Because computation is deterministic, the backup
coordinator always makes the same commit/abort decision
as the client would if the client did not fail. To tolerate one
client failure, NCC needs one backup coordinator which is a
storage server replicated in a usual way.

5.7 Correctness

This section provides proof intuition for why NCC is safe
and live. At a high level, NCC guarantees a total order, the
real-time order, and liveness, with the mechanisms (M) the
safeguard, (M) non-blocking execution with response timing
control, and (M3) early aborts, respectively. We provide a
formal proof of correctness in a technical report [41].

NCC is safe. We prove that NCC guarantees strict serial-
izability by demonstrating that both Invariants 1 and 2 are
upheld. These two invariants correspond to the total order and
real-time order requirements, respectively.

Intuitively, NCC commits all requests of a transaction
at the same synchronization point, which is the intersec-
tion of all (#,, t,) pairs in responses, and the synchroniza-
tion points of all committed transactions construct a total
order. Specifically, we prove that the safeguard enforces In-
variant 1, by contradiction. Assume both 7x; and tx, are
committed, and x; *&% tx, =% 1x;. Without loss of gen-
erality, there must exist a chain of transactions such that

1 28 o &G S 1, &S 1x;. Then, each transaction

may have two requests, req and req’, such that req) = reqs,
reqh =5 reqs, ..., reql, | =% req,, req), =% req,. Consider
their returned timestamps, we can derive the following:

@ 1) <tya, tly <tys, ..., 1, < ty1, by NCC’s protocol.

@ tw1 <tly,two <tly, ..., 1wy <1}, because all transactions

are committed and by the safeguard logic.
® tw1 <t <ty <t/ <...<ty <t], <t,1,by Dand @.
@1ty =tw=t,=ty=... =ty =1, =1, by Q.
® req/ is a write and reg; is aread, i € [1, n], by @, NCC’s

protocol, and #x; <% 1y Z% S g, ES .

® tywo =t and t,,; =1, by ® and NCC’s protocol.

@ t,, =1, by @ and (©, which contradicts that writes
from different transactions must have distinct #,, because
timestamps are unique. Therefore, Invariant | holds.

We prove that NCC enforces Invariant 2 by considering two
cases while assuming #x; I fxo. In case 1, x| and tx; access
some common data items. Then, we must have tx; <% fx,,
because NCC executes requests in their arrival order. Then,
it must be true that —(tx; *=% £x1), by Invariant 1. In case 2,
tx; and fx; access disjoint data sets, and we prove the claim
by contradiction. Assume #x; *2% tx;, then there must exist
req, and req, in tx, and tx|, respectively, such that req, +=%
reqy. req,’s response is not returned until req, is committed
or aborted, by applying response timing control transitively
(85.2). Then, req, is issued before req,’s client receives req;’s
response because a request, e.g., req,, can be committed or
aborted only after it is issued and executed. Thus, we can
derive —(zx; o, 1x;) because fx; has at least one request, e.g.,
req,, which starts before x| receives all its responses. This
means x, starts before rx; is committed, which contradicts
our assumption zx; 19 tx,. Therefore, Invariant 2 must hold.

NCC is live. NCC’s non-blocking execution guarantees that
requests always run to completion, i.e., execution never stalls
(§5.1). Blocking can happen only to the sending of responses
due to response timing control, and NCC avoids circular wait-
ing with early aborts (§5.2). Thus, NCC guarantees that trans-
actions finish eventually.

NCC’s specialized read-only transaction protocol and opti-
mization techniques such as asynchrony-aware timestamps
and smart retry do not affect correctness, because transactions
are protected by the three mechanisms (i.e., M|, My, and M3
summarized at the beginning of this subsection) regardless of
whether optimizations or the specialized protocol are used.

6 Evaluation

This section answers the following questions:
1. How well does NCC perform, compared to common
strictly serializable techniques dOCC, d2PL, and TR?

2. How well does NCC perform, compared to state-of-the-
art serializable (weaker consistency) techniques?

3. How well does NCC recover from client failures?

Implementation. We developed NCC on Janus’s frame-
work [52]. We improved the framework by making it support
multi-shot transactions, optimizing its baselines, and adding
more benchmarks. NCC'’s core protocols have ~3 K lines of
C++ code. We also show the results of NCC-RW, a version
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Workload Write fraction Assoc-to-obj  # keys/RO # keys/RW Value size # cols/key  Zipfian
Google-F1 0.3% [0.3%-30%] — 1-10 1-10 1.6KB+119B 10 0.8
Facebook-TAO 0.2% 9.5:1 1-1K 1 1-4KB 1-1K 0.8
TPC-C New-Order Payment Delivery Order-Status Stock-Level DisttWH  WH/svr
44% 44% 4% 4% 4% 10 8

Figure 5: Workload parameters. RO and RW mean read-only and read-write transactions, respectively. TPC-C has a
scaling factor of 10 districts per warehouse and 8 warehouses per server.

Workload Contention # shots Characteristics NCC takeaway

Facebook-TAO Low 1 Read-dominated Performance-optimal reads by the RO protocol
Google-F1 Low 1 Read-dominated Performance-optimal reads by the RO protocol
TPC-C Medium—High  Multi-shot Write-intensive Leverages the natural arrival order, minimizes false aborts
Google-WF Low—High 1 Write-intensive  Leverages the natural arrival order, minimizes false aborts

Figure 6: Facebook-TAO and Google-F1 have low contention. TPC-C and Google-WF (varying write fractions) are
write-intensive. TPC-C Payment and Order-Status are multi-shot.

without the read-only transaction protocol, i.e., all transac-
tions are executed as read-write transactions.

Baselines. The evaluation includes three strict serializable
baselines (dOCC, d2PL, and Janus) and two serializable base-
lines (MVTO and TAPIR). We chose d2PL and dOCC be-
cause they are the most common strictly serializable tech-
niques. We chose Janus because it is the only open-source
TR-based strictly serializable system we could find. We chose
MVTO because it has the highest best-case performance
among all (weaker) serializable techniques, presenting a per-
formance upper bound. We chose TAPIR because it utilizes
timestamp-based concurrency control.

Our evaluation focuses on concurrency control and assumes
servers never fail. Janus and TAPIR are unified designs of the
concurrency control and replication layers, so we disabled
their replication and only compare with their concurrency con-
trol protocols, shown as Janus-CC and TAPIR-CC, to make
the comparisons fair. We compare with two variants of d2PL.
d2PL-no-wait aborts a transaction if the lock is not available.
d2PL-wound-wait makes the transaction wait if it has a larger
timestamp and aborts the lock-holding transaction otherwise.
All baselines are fully optimized: we co-locate coordinators
with clients (even if baselines cannot handle client failures),
combine the execute and prepare phases for d2PL-no-wait
and TAPIR-CC, and enable asynchronous commitment, i.e.,
the client replies to the user without waiting for the acknowl-
edgments of commit messages.

6.1 Workloads and Experimental Setup

We evaluate NCC under three workloads that cover both read-
dominated “simpler” transactions and many-write more “‘com-
plex” transactions. Google-F1 and Facebook-TAO synthesize
real-world applications and capture the former: they are one-
shot and read-heavy. TPC-C has multi-shot transactions and

is write-intensive, capturing the latter. We also vary write
fractions in Google-F1 to further explore the latter. Table 5
shows the workload parameters.

Google-F1 parameters were published in F1 [59] and
Spanner [12]. Facebook-TAO parameters were published in
TAO [10]. TPC-C’s New-Order, Payment, and Delivery are
read-write transactions. Its Order-Status and Stock-Level are
read-only. Janus’s original implementation of TPC-C is one-
shot, so we modified it to make Payment and Order-Status
multi-shot, to demonstrate NCC is compatible with multi-shot
transactions and evaluate its performance beyond one-shot
transactions (though they are still relatively short).

Experimental setting. We use Microsoft Azure [47]. Each
machine has 4 CPUs (8 cores), 16 GB memory, and a 1 Gbps
network interface. We use 8 machines as servers and 16—
32 machines as clients that generate open-loop requests to
saturate the servers. (The open-loop clients back off when
the system is overloaded to mitigate queuing delays.) Google-
F1 and Facebook-TAO have 1M keys, with the popular keys
randomly distributed to balance load. We run 3 trials for
each test and 60 seconds for each trial. Experiments are CPU-
bound (i.e., handling network interrupts).

6.2 Result Overview

NCC outperforms strictly serializable protocols dOCC, d2PL,
and TR (Janus-CC) by 80%—20x higher throughput and 2—
10x lower latency under various workloads (Figure 7) and
write fractions (Figure 8a). NCC outperforms and closely
matches serializable systems, TAPIR-CC and MVTO, respec-
tively (Figure 8b). NCC recovers from client failures with
minimal performance impact (Figure &8c). Please note that Fig-
ure 7 and Figure 8b have log-scale axes. Figure 6 summarizes
the takeaway of performance improvements.
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Figure 7: NCC achieves much lower latency under read-dominated workloads with its specialized read-only transaction
algorithm, 50 % lower latency under write-intensive workload, and at least 80% higher throughput across workloads.

6.3 Latency vs. Throughput Experiments

Figure 7 shows NCC'’s overall performance is strictly bet-
ter than the baselines, i.e., higher throughput with the same
latency and lower latency with the same throughput.

Google-F1 and Facebook-TAO. Figure 7a shows the results
under Google-F1. X-axis is the system throughput, and y-axis
shows the median read latency in log scale. A horizontal line
(O.P.) marks the operating point with reasonably low latency
(< 10ms). At the operating point, NCC has a 2—4x higher
throughput than dOCC and d2PL. We omit the results for
Janus-CC to make the graph clearer as we found that Janus-
CC’s performance is incomparable (consistently worse) with
other baselines, because Janus-CC is designed for highly con-
tended workloads by relying on heavy dependency tracking,
which is more costly under low contention.

NCC has better performance because Google-F1 and
Facebook-TAO have many naturally consistent transactions
due to the prevalence of reads. NCC enables low overhead
by leveraging natural consistency. In particular, its read-only
transaction protocol executes the dominating reads with the
minimum costs (Figure 6). For instance, at the operating point,
NCC has about 99% of the transactions that passed their safe-
guard check and finished in one round trip. 99.1% of the
transactions did not delay their responses, i.e., the real-time
order dependencies were already satisfied when they arrived.
That is, 99% of the transactions were finished by NCC within
a single RTT without any delays. For the 1% of the trans-
actions that did not pass the safeguard check initially, 70%
of them passed the smart retry. Only 0.2% of the transac-
tions were aborted and retried from scratch. All of them were
committed eventually.

As a result, NCC can finish most transactions with one
round of messages (for the read-only ones) and a latency of
one RTT (for both read-only and read-write) while dOCC
and d2PL-wound-wait require three rounds of messages and
a latency of two RTTs (asynchronous commitment saves one
RTT). NCC has much higher throughput than d2PL-no-wait
due to its novel read-only protocol which requires one round
of messages, while d2PL-no-wait requires two. The fewer
messages of NCC translate to lower latency under medium

and high load due to lower queuing delay. d2PL-no-wait
performs similar to NCC-RW because NCC-RW executes
read-only transactions by following its read-write protocol.
However, NCC-RW outperforms d2PL-no-wait under higher
load because conflicts cause d2PL-no-wait to abort more fre-
quently, while NCC-RW has fewer false aborts by leveraging
the natural arrival order. This is more obvious in the Facebook-
TAO results shown in Figure 7b, because Facebook-TAO has
larger read transactions that are more likely to conflict with
writes. The results of Facebook-TAO show similar takeaways.

TPC-C. Each experiment ran all five types of TPC-C transac-
tions, and Figure 7c shows the latency and throughput (both
in log scale) of New-Order while the throughput of the other
four types is proportional. NCC and NCC-RW have ~20x
higher peak throughput with ~10x lower latency compared to
dOCC. dOCC and d2PL-no-wait have many false aborts when
load increases due to conflicting writes. NCC and NCC-RW
can execute most naturally consistent transactions with low
costs, even if they conflict. For instance, NCC-RW has more
than 80% of the transactions passing the safeguard check and
fewer than 10% of the transactions being aborted and retried
from scratch. NCC-RW has a 50% higher peak throughput
than d2PL-wound-wait because NCC-RW requires only two
rounds of messages, while d2PL-wound-wait requires three.
NCC-RW has higher peak throughput than NCC because
TPC-C has very few read-only transactions, which are also
more likely to abort in NCC due to conflicting writes. Janus-
CC’s performance benefits mostly come from unifying the
transaction and replication layers and are less significant in
a single-datacenter setting, especially after we made some
TPC-C transactions multi-shot.

6.4 Additional Experiments

We show more experiments with Google-F1. We chose
Google-F1 because it has both read-write and read-only trans-
actions, while Facebook-TAO only has read-only transactions
and non-transactional writes.

Varying write fractions. Figure 8a shows the throughput
while increasing the write fraction. Each system is run at
~75% load according to Figure 7a. The y-axis is the through-
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Figure 8: NCC’s performance with different write fractions (Google-WF), compared to serializable protocols (TAPIR-CC

and MVTO), and under failures for the Google-F1 workload.

put normalized to the maximum throughput of each system
during the experiment. The higher the write fraction, the more
conflicts in the system. The results show that NCC-RW is
most resilient to conflicts because NCC-RW can exploit more
concurrency in those conflicting but naturally consistent trans-
actions, i.e., NCC has fewer aborts. In contrast, other protocols
may falsely abort transactions due to failed validation (dOCC)
or lock unavailability (d2PL variants). NCC’s read-only trans-
actions are more likely to abort when writes increase because
frequent writes cause the client to have stale knowledge of
the most recently executed writes on each server; as a result,
NCC must abort the reads to avoid timestamp inversion.

Comparing with serializable systems. Figure 8b compares
NCC with MVTO and TAPIR-CC, which provide serializabil-
ity, under Google-F1. NCC outperforms TAPIR-CC because
NCC has fewer messages with its read-only transaction pro-
tocol. MVTO and NCC have similar performance under low
and medium load because they have the same number of
messages and RTTs. Under high load, MVTO outperforms
NCC when many read-only transactions in NCC are aborted:
MVTO never aborts reads because it is allowed to read stale
versions, whereas NCC must read the most recent version and
handle timestamp inversion. In this sense, MVTO presents
a performance upper bound for strictly serializable systems,
and NCC closely matches the upper bound.

Failure recovery. Figure 8c shows how well NCC-RW han-
dles client failures under Google-F1. We inject failures 10
seconds into the experiment by forcing all clients to stop send-
ing the commit messages of ongoing transactions while they
continue issuing new transactions. Undelivered commit mes-
sages cause servers to delay the responses of later transactions
due to response timing control, until the recovery mechanism
is triggered after a timeout. We show two timeout values, 1
and 3 seconds. NCC-RW recovers quickly after failures are
detected, thus client failures have a limited impact on through-
put. In realistic settings, failures on one or a few clients would
have a negligible impact because uncommitted reads do not
block other reads. Similarly, NCC is minimally impacted by
client failures because its read-only transactions do not send
commit messages and thus never delay later writes.

7 Related Work

NCC proposes a new strictly serializable distributed protocol.
This section places it in the context of existing strictly serial-
izable techniques, single-machine concurrency control, and
techniques that provide weaker consistency. At a high-level,
NCC provides better performance, addresses a different prob-
lem setting, and provides stronger guarantees, compared to
these categories of work, respectively.

General strictly serializable protocols. As discussed in Sec-
tion 2.3, existing general strictly serializable protocols are
d2PL, dOCC, TR, or their variants, suffering extra costs when
transactions are naturally consistent. For instance, Spanner’s
read-write transactions [12], Sinfonia [4], and Carousel [68]
are variants of d2PL that must acquire locks. FaRM [15],
FaRMv?2 [58], RIFL [31] are variants of dOCC that suffer
extra validation costs, even if they use timestamp-based tech-
niques to reduce validation aborts. AOCC [2] is a variant of
dOCC and operates in a data-shipping environment, e.g., data
can move from servers to client caches, which is different
from NCC which works in a function-shipping environment,
i.e., data resides only on servers. Rococo [51] and its de-
scendant Janus [52] reorder transactions to minimize aborts.
Granola [13] requires an all-to-all exchange of timestamps
between servers, incurring extra messages and RTTs. Our
evaluation shows that NCC outperforms these techniques
for real-world workloads where natural consistency is preva-
lent. When transactions are not naturally consistent, however,
these techniques could outperform NCC. Figure 9 summa-
rizes performance and consistency properties of NCC and
some representative distributed systems.

Special strictly serializable techniques. In addition to the
general techniques discussed above, there are several inter-
esting research directions that use specialized techniques to
provide strict serializability. Some work utilizes a central-
ized sequencer to enforce strict serializability [6, 19,33, 36,
45,56,62,73]. Because all transactions must contact the se-
quencer before execution (e.g., Eris [33]), in addition to the
extra latency, the sequencer can be a single point of failure
and scalability bottleneck. Scaling out sequencers incurs ex-
tra costs, e.g., Calvin [62] requires all-to-all messages among
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System Consistency Technique Latency (RTT) Lock-free Non-blocking False aborts
NCC Strict Ser. NC+TS 1 Yes Yes Low
Spanner [12] Strict Ser. d2PL+TrueTime RO: 1, RW: 2 RO: Yes, RW: No No RO: None, RW:
d2PL-NoWait Strict Ser. d2PL 1 No No High
AOCC [2] Strict Ser. dOCC 2 Yes No High
Janus [52] Strict Ser. TR 2 Yes No None
dOCC Strict Ser. dOoCC 2 No No High
d2PL-WoundWait Strict Ser. d2PL 2 No No

FaRMv?2 [58] Strict Ser. docCcC 2 No No

TAPIR [72] Ser. dOCC+TS 1 Yes No

DrTM [66] Ser. RO: TS, RW: d2PL RO: 2, RW: 3 RO: Yes, RW: No No

TO [7] Ser. TS 1 Yes No

MVTO [55] Ser. TS 1 Yes No Low

Figure 9: The consistency and best-case performance of representative distributed protocols for naturally consistent
workloads, processing one-shot transactions with possible optimizations considered. NC means natural consistency, and
TS means timestamp-based technique. NCC has the lowest performance costs while providing strict serializability.

sequencers for each transaction (epoch). Some ensure strict
serializability by moving all data a transaction accesses to
the same machine, e.g., LEAP [35]. Some rely on program
analysis and are application-dependent, e.g., the homeostasis
protocol [57]. Some rely on extensive gossip messages for
liveness, which lower throughput and increase latency, e.g.,
Ocean Vista [18] whose latency of a transaction cannot be
lower than the gossiping delay of the slowest server even if
this server is not accessed by the transaction. General tech-
niques such as NCC do not have the above limitations.

Strictly serializable read-only transaction protocols. To
the best of our knowledge, the only existing strictly serializ-
able read-only transaction protocol that has optimal best-case
performance is Spanner [12]. Spanner ensures strict serial-
izability by using d2PL for read-write transactions and by
using synchronized clocks (TrueTime) for read-only transac-
tions. TrueTime must be accurately bounded for correctness
and those bounds need to be small to achieve good perfor-
mance, which are achieved by Google’s infrastructure using
special hardware, e.g., GPS and atomic clocks [9] that are not
generally available. For instance, CockroachDB [61], which
began as an external Spanner clone, chose not to support
strict serializability because it does not have access to such
infrastructure [25]. In contrast, NCC’s read-only transactions
achieve optimal best-case performance and provide strict seri-
alizability, without requiring synchronized clocks.

Single-machine concurrency control. Concurrency control
for single-machine databases is different from the distributed
setting on which this paper focuses. First, some techniques
are not feasible in a distributed setting. For instance, Silo [64]
relies on atomic instructions, and MVTL [3] relies on shared
lock state, which are challenging across machines. Second,
most techniques, e.g., Silo [64] and TicToc [69], follow a
multi-phase design and would be expensive if made dis-
tributed, e.g., they need distributed lock management and one
round of inter-machine messages for each phase, which would

be unnecessary costs for naturally consistent transactions.
Their designs, however, are feasible and highly performant
for the single-machine setting they target.

Protocols for weaker consistency. Many systems trade
strong consistency for better performance. For instance, some
settle for restricted transaction APIs, e.g., read-only and/or
write-only transactions [16,37,38]. Some choose to support
weaker consistency models, e.g., causal consistency and se-
rializability [17,32,38,39,46,61, 65, 70]. In contrast, NCC
provides stronger consistency and supports general transac-
tions, greatly simplifying application development.

8 Conclusion

Strictly serializable datastores are advocated by recent work
because they greatly simplify application development. This
paper presents NCC, a new design that provides strict seri-
alizability with minimal overhead by leveraging natural con-
sistency in datacenter workloads. NCC identifies and over-
comes timestamp inversion, a fundamental correctness pitfall
in timestamp-based concurrency control techniques. NCC sig-
nificantly outperforms existing strictly serializable techniques
and closely matches the performance of serializable systems.
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https://github.com/nyu-news/janus/tree/ncc. More
details on NCC are in the technical report [41].

USENIX Association

17th USENIX Symposium on Operating Systems Design and Implementation 319



References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

Atul Adya. Weak consistency: a generalized theory and
optimistic implementations for distributed transactions.
PhD thesis, Massachusetts Institute of Technology, De-
partment of Electrical Engineering and Computer Sci-
ence, 1999.

Atul Adya, Robert Gruber, Barbara Liskov, and Umesh
Maheshwari. Efficient optimistic concurrency control
using loosely synchronized clocks. ACM SIGMOD
Record, 24(2):23-34, 1995.

Marcos K Aguilera, Tudor David, Rachid Guerraoui, and
Junxiong Wang. Locking timestamps versus locking ob-
jects. In ACM Symposium on Principles of Distributed
Computing (PODC), 2018.

Marcos K. Aguilera, Arif Merchant, Mehul Shah, Al-
istair Veitch, and Christos Karamanolis. Sinfonia: A
new paradigm for building scalable distributed systems.
In ACM Symposium on Operating System Principles
(SOSP), 2007.

InfiniBand Trade Association. Infiniband architecture
specification, release 1.0, october 2000. http://www.
infinibandta.org/, 2000.

Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prab-
hakaran, Ted Wobbler, Michael Wei, and John D Davis.
CORFU: A shared log design for flash clusters. In
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2012.

Philip A Bernstein and Nathan Goodman. Concurrency
control in distributed database systems. ACM Comput-
ing Surveys (CSUR), 13(2):185-221, 1981.

Google Cloud Blog. Why you should pick strong con-
sistency, whenever possible. https://cloud.google.
com/blog/products/databases/why-you-should-
pick-strong-consistency-whenever-possible,
2018.

Eric Brewer. Spanner, TrueTime and the CAP theorem.
Technical report, Google Research, 2017.

Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat
Venkataramani. TAO: Facebook’s distributed data store
for the social graph. In USENIX Annual Technical Con-
ference (ATC), Jun 2013.

Haibo Chen, Rong Chen, Xingda Wei, Jiaxin Shi,
Yanzhe Chen, Zhaoguo Wang, Binyu Zang, and Haib-
ing Guan. Fast in-memory transaction processing using

[12]

(13]

(14]
[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

RDMA and HTM. ACM Transactions on Computer
Systems (TOCS), 35(1):1-37, 2017.

James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, JJ Furman andSanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s globally-distributed database. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2012.

James Cowling and Barbara Liskov. Granola: Low-
overhead distributed transaction coordination. In
USENIX Annual Technical Conference (ATC), Jun 2012.

DPDK. DPDK. http://dpdk.org/, 2020.

Aleksandar Dragojevic, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No
compromises: distributed transactions with consistency,
availability, and performance. In ACM Symposium on
Operating System Principles (SOSP), Oct 2015.

Jiaging Du, Sameh Elnikety, Amitabha Roy, and Willy
Zwaenepoel. Orbe: Scalable causal consistency using
dependency matrices and physical clocks. In ACM Sym-
posium on Cloud Computing (SoCC), 2013.

Amazon DynamoDB. Amazon DynamoDB :: Fast and
flexible NoSQL database service for any scale. http:
//aws.amazon.com/dynamodb/, 2021.

Hua Fan and Wojciech Golab. Ocean Vista: Gossip-
based visibility control for speedy geo-distributed trans-
actions. Proceedings of the VLDB Endowment (PVLDB),
12(11):1471-1484, 2019.

FaunaDB.  FaunaDB :: The data API for your
client-serverless applications. https://fauna.com/,
2021.

Hector Garcia-Molina and Kenneth Salem. Main mem-
ory database systems: An overview. I[EEE Transac-
tions on knowledge and data engineering, 4(6):509-516,
1992.

David K. Gifford. Information storage in a decentral-
ized computer system. PhD thesis, Stanford University,
Department of Electrical Engineering, 1981.

Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert NM Watson, Andrew W Moore, Steven Hand,
and Jon Crowcroft. Queues don’t matter when you can

320

17th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

JUMP them! In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2015.

Maurice P. Herlihy and Jeannette M. Wing. Linearizabil-
ity: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463-492, 1990.

Robert Kallman, Hideaki Kimura, Jonathan Natkins, An-
drew Pavlo, Alexander Rasin, Stanley Zdonik, Evan PC
Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, John Hugg, and Daniel J. Abadi. H-store: A
high-performance, distributed main memory transaction
processing system. Proceedings of the VLDB Endow-
ment (PVLDB), 1(2):1496-1499, 2008.

Spencer Kimball and Irfan Sharif. Living without
atomic clocks. https://www.cockroachlabs.com/
blog/living-without-atomic-clocks/, 2021.

Kishori M Konwar, Wyatt Lloyd, Haonan Lu, and Nancy
Lynch. SNOW revisited: Understanding when ideal read
transactions are possible. In IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2021.

Tim Kraska, Gene Pang, Michael J Franklin, Samuel
Madden, and Alan Fekete. MDCC: Multi-data center
consistency. In ACM SIGOPS European Conference on
Computer Systems (EuroSys), 2013.

Leslie Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM
(CACM), 21(7), 1978.

Leslie Lamport. The part-time parliament. ACM Trans-
actions on Computer Systems (TOCS), 16(2):133-169,
1998.

Leslie Lamport. Paxos made simple. ACM SIGACT
News, 32(4):18-25, 2001.

Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Mat-
sushitay, and John Ousterhout. Implementing lineariz-
ability at large scale and low latency. In ACM Sympo-
sium on Operating System Principles (SOSP), 2015.

Justin Levandoski, David Lomet, Sudipta Sengupta,
Ryan Stutsman, and Rui Wang. High performance trans-
actions in deuteronomy. In Conference on Innovative
Data Systems Research (CIDR), 2015.

Jialin Li, Ellis Michael, and Dan RK Ports. Eris:
Coordination-free consistent transactions using in-
network concurrency control. In ACM Symposium on
Operating System Principles (SOSP), 2017.

[34]

[35]

(36]

[37]

(38]

(39]

[40]

(41]

[42]

[43]

Kai Li and Jeffrey F Naughton. Multiprocessor main
memory transaction processing. In Proceedings Inter-
national Symposium on Databases in Parallel and Dis-
tributed Systems, pages 177-178. IEEE Computer Soci-
ety, 1988.

Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi,
Kian-Lee Tan, and Zhengkui Wang. Towards a non-2PC
transaction management in distributed database systems.
In ACM International Conference on Management of
Data (SIGMOD), 2016.

Yu-Shan Lin, Shao-Kan Pi, Meng-Kai Liao, Ching
Tsai, Aaron Elmore, and Shan-Hung Wu. MgCrab:
Transaction crabbing for live migration in deterministic
database systems. Proceedings of the VLDB Endowment
(PVLDB), 12(5):597-610, 2019.

Wyatt Lloyd, Michael J. Freedman, Michael Kamin-
sky, and David G. Andersen. Don’t settle for eventual:
Scalable causal consistency for wide-area storage with
COPS. In ACM Symposium on Operating System Prin-
ciples (SOSP), 2011.

Wyatt Lloyd, Michael J. Freedman, Michael Kamin-
sky, and David G. Andersen. Stronger semantics for
low-latency geo-replicated storage. In USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2013.

David Lomet, Alan Fekete, Rui Wang, and Peter Ward.
Multi-version concurrency via timestamp range conflict
management. In IEEE International Conference on
Data Engineering (ICDE), 2012.

Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai
Mu, and Wyatt Lloyd. The SNOW theorem and latency-
optimal read-only transactions. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2016.

Haonan Lu, Shuai Mu, Siddhartha Sen, and Wyatt Lloyd.
NCC: Natural concurrency control for strictly serial-
izable datastores by avoiding the timestamp-inversion
pitfall (extended version). https://arxiv.org/abs/
2305.14270, 2023.

Haonan Lu, Siddhartha Sen, and Wyatt Lloyd.
Performance-optimal read-only transactions. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2020.

Haonan Lu, Siddhartha Sen, and Wyatt Lloyd.
Performance-optimal read-only transactions (extended
version). Technical report, TR-005-20 v1, Princeton
University, Department of Computer Science, 2020.

USENIX Association

17th USENIX Symposium on Operating Systems Design and Implementation

321



[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux,
Jim Hunt, Yee Jiun Song, Wendy Tobagus, Sanjeev Ku-
mar, and Wyatt Lloyd. Existential consistency: Measur-
ing and understanding consistency at Facebook. In ACM
Symposium on Operating System Principles (SOSP), Oct
2015.

Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Mad-
den. Aria: A fast and practical deterministic OLTP
database.  Proceedings of the VLDB Endowment
(PVLDB), 13(12):2047-2060, 2020.

Hatem A Mahmoud, Vaibhav Arora, Faisal Nawab, Di-
vyakant Agrawal, and Amr El Abbadi. MaaT: Effec-
tive and scalable coordination of distributed transactions
in the cloud. Proceedings of the VLDB Endowment
(PVLDB), 7(5):329-340, 2014.

Microsoft. Microsoft Azure :: New challenges need
agile solutions. Invent with purpose. https://azure.
microsoft.com/en-us/, 2020.

David Mills. RFC1305: Network Time Protocol (Version
3) Specification, Implementation. RFC Editor, 1992.

Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. Timely: RTT-based congestion control for the
datacenter. ACM SIGCOMM Computer Communication
Review, 45(4):537-550, 2015.

Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
ACM Special Interest Group on Data Communication
(SIGCOMM), 2018.

Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and
Jinyang Li. Extracting more concurrency from dis-
tributed transactions. In USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI),
2014.

Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang
Li. Consolidating concurrency control and consensus
for commits under conflicts. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2016.

Christos H. Papadimitriou. The serializability of con-
current database updates. Journal of the ACM, 26(4),
1979.

Costin Raiciu and Gianni Antichi. NDP: Rethinking dat-
acenter networks and stacks two years after. ACM SIG-
COMM Computer Communication Review, 49(5):112—
114, 2019.

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

David P Reed. Implementing atomic actions on decen-
tralized data. ACM Transactions on Computer Systems
(TOCS), 1(1):3-23, 1983.

Kun Ren, Dennis Li, and Daniel J Abadi. SLOG:
Serializable, low-latency, geo-replicated transactions.
Proceedings of the VLDB Endowment (PVLDB),
12(11):1747-1761, 2019.

Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hos-
sein Hojjat, Christoph Koch, Nate Foster, and Johannes
Gehrke. The homeostasis protocol: Avoiding transac-
tion coordination through program analysis. In ACM
International Conference on Management of Data (SIG-
MOD), 2015.

Alex Shamis, Matthew Renzelmann, Stanko No-
vakovic, Georgios Chatzopoulos, Aleksandar Dragoje-
vi¢, Dushyanth Narayanan, and Miguel Castro. Fast
general distributed transactions with opacity. In ACM
International Conference on Management of Data (SIG-
MOD), 2019.

Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy,
Chad Whipkey, Eric Rollins, Mircea Oancea, Kyle
Littlefield, David Menestrina, Stephan Ellner, John
Cieslewicz, lan Rae, Traian Stancescu, and Himani Apte.
F1: A distributed SQL database that scales. Proceedings
of the VLDB Endowment (PVLDB), 2013.

Michael Stonebraker, Samuel Madden, Daniel J Abadi,
Stavros Harizopoulos, Nabil Hachem, and Pat Helland.
The end of an architectural era: It’s time for a complete
rewrite. In Making Databases Work: the Pragmatic Wis-
dom of Michael Stonebraker, pages 463—489. Associa-
tion for Computing Machinery and Morgan & Claypool,
2018.

Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan Van-
Benschoten, Jordan Lewis, Tobias Grieger, Kai Niemi,
Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaf-
fray, Lucy Zhang, and Peter Mattis. CockroachDB: The
resilient geo-distributed SQL database. In ACM Interna-
tional Conference on Management of Data (SIGMOD),
2020.

Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J. Abadi.
Calvin: Fast distributed transactions for partitioned
database systems. In ACM International Conference
on Management of Data (SIGMOD), 2012.

TPC. TPC-C: An on-line transaction processing bench-
mark. http://www.tpc.org/tpcc/, 2020.

322

17th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



[64] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In ACM Symposium on
Operating System Principles (SOSP), 2013.

[65] Xingda Wei, Rong Chen, Haibo Chen, Zhaoguo Wang,
Zhenhan Gong, and Binyu Zang. Unifying timestamp
with transaction ordering for MVCC with decentralized
scalar timestamp. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2021.

[66] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using RDMA and HTM. In ACM Symposium on Oper-
ating System Principles (SOSP), 2015.

[67] Arthur Whitney, Dennis Shasha, and Stevan Apter. High
volume transaction processing without concurrency con-
trol, two phase commit, SQL or C++, 1997.

[68] Xinan Yan, Linguan Yang, Hongbo Zhang, Xi-
ayue Charles Lin, Bernard Wong, Kenneth Salem, and
Tim Brecht. Carousel: Low-latency transaction process-
ing for globally-distributed data. In ACM International
Conference on Management of Data (SIGMOD), 2018.

[69] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srini-
vas Devadas. TicToc: Time traveling optimistic con-
currency control. In ACM International Conference on
Management of Data (SIGMOD), 2016.

[70] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sanchez,
Larry Rudolph, and Srinivas Devadas. Sundial: Harmo-
nizing concurrency control and caching in a distributed
OLTP database management system. Proceedings of the
VLDB Endowment (PVLDB), 11(10):1289-1302, 2018.

[71] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan R. K. Ports. Build-
ing consistent transactions with inconsistent replication.
In ACM Symposium on Operating System Principles
(SOSP), 2015.

[72] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan RK Ports. Building con-
sistent transactions with inconsistent replication. ACM
Transactions on Computer Systems (TOCS), 35(4):1-37,
2018.

[73] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Nama-
sivayam, Alex Miller, Evan Tschannen, Steve Ather-
ton, Andrew J Beamon, Rusty Sears, John Leach, Dave
Rosenthal, Xin Dong, Will Wilson, Ben Collins, David
Scherer, Alec Grieser, Young Liu, Alvin Moore, Bhaskar
Muppana, Xiaoge Su, and Vishesh Yadav. Founda-
tionDB: A distributed unbundled transactional key value
store. In ACM International Conference on Manage-
ment of Data (SIGMOD), 2021.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 323






	Introduction
	Background
	Transactional Datastores
	Strict Serializability
	dOCC, d2PL, & Transaction Reordering

	Design Insight & Overview
	Exploiting Natural Consistency
	Three Pillars of Design

	Timestamp-Inversion Pitfall
	Natural Concurrency Control
	Protocol Basics
	Response Timing Control
	Asynchrony-Aware Timestamps
	Smart Retry
	Read-Only Transactions
	Failure Handling
	Correctness

	Evaluation
	Workloads and Experimental Setup
	Result Overview
	Latency vs. Throughput Experiments
	Additional Experiments

	Related Work
	Conclusion

