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Abstract

Distributed databases suffer from performance degradation
under skewed workloads. Such workloads cause high con-
tention, which is exacerbated by cross-node network latencies.
In contrast, single-machine databases better handle skewed
workloads because their centralized nature enables perfor-
mance optimizations that execute contended requests more
efficiently. Based on this insight, we propose a novel hybrid
architecture that employs a single-machine database inside a
distributed database and present TurboDB, the first distributed
database that leverages this hybrid architecture to achieve up
to an order of magnitude better performance than representa-
tive solutions under skewed workloads.

TurboDB introduces two designs to tackle the core chal-
lenges unique to its hybrid architecture. First, Hybrid Concur-
rency Control is a specialized technique that coordinates the
single-machine and distributed databases to collectively en-
sure process-ordered serializability. Second, Phalanx Replica-
tion provides fault tolerance for the single-machine database
without significantly sacrificing its performance benefits. We
implement TurboDB using CockroachDB and Cicada as the
distributed and single-machine databases, respectively. Our
evaluation shows that TurboDB significantly improves the
performance of CockroachDB under skewed workloads.

1 Introduction

Distributed databases support large applications by sharding
data across many machines to provide capacity far greater than
what can fit on a single machine. However, these databases of-
ten experience severe performance degradation under skewed
workloads where most requests contend on a small subset of
data. This contention results in excessive aborts and retries
that are expensive in the distributed setting. Unfortunately,
many real-world workloads are highly skewed [3,9, 10,62].
In contrast, single-machine databases store all data on one
machine. Although these databases cannot support large-scale
applications, they handle skewed workloads more efficiently.
For instance, Cicada [37], a single-machine database, can
achieve much higher throughput and lower latency for TPC-C
New-Order than CockroachDB, a representative distributed

database, running on 48 servers [54]. This drastic difference
stems from two performance multipliers, such as local concur-
rency control and one-stop execution, which single-machine
databases can employ due to their centralized nature, but dis-
tributed databases cannot.

Local concurrency control techniques handle conflicts more
efficiently by leveraging global knowledge of, and centralized
control over, transactions, as all transactions access the same
machine. However, when data is spread over multiple servers,
these techniques, such as memory fences in Silo [58] and
shared lock tables in MVTL [1], are infeasible.

One-stop execution, which handles transactions entirely
within a single machine, enables shorter transaction lifetimes.
For instance, a lock’s acquisition and release, as part of trans-
action execution on a single machine, takes only nanosec-
onds to microseconds. However, distributed lock manage-
ment, which requires multiple round trips between servers,
takes orders of magnitude longer. Short transaction lifetimes
lower the likelihood of conflicts and thus aborts. Aborting and
retrying distributed transactions is more costly than aborting
local transactions, due to network delays.

Empowered by local concurrency control and one-stop ex-
ecution, single-machine databases offer a natural solution to
the challenge of skewed workloads. Therefore, this paper
proposes a novel hybrid architecture that employs a single-
machine database within a distributed database to improve
performance under skewed workloads. The single-machine
database “turbocharges” overall performance under skew
while the distributed database scales capacity.

Specifically, one server of the distributed database is des-
ignated as the furbo, which runs a single-machine database.
The turbo co-locates many popular, contended data items,
creating a focal point on which the single-machine database
can concentrate its performance multipliers. The remaining
servers run a distributed database to handle less contended
requests, which access less popular data.

TurboDB is the first distributed database to employ this
hybrid architecture. The architecture enables it to achieve sig-
nificantly better performance than representative distributed
databases under skewed workloads. However, it requires Tur-
boDB to overcome two new correctness challenges.

First, a transaction may access data on both the single-
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machine and distributed databases. Thus, some of its requests
are executed with local concurrency control employed by
the turbo while the rest of its requests are executed with dis-
tributed concurrency control. TurboDB must ensure the trans-
action as a whole is isolated from other transactions, and all
transactions provide the correct consistency guarantees. Sec-
ond, TurboDB must make the turbo fault tolerant. Although
there are replication techniques for single-machine databases,
none automatically work for TurboDB because they require
full control of transactions, which the turbo does not have, i.e.,
the turbo is part of the distributed database, and its execution
partially relies on the rest of the system.

TurboDB addresses these challenges, while preserving the
performance benefits of the turbo, through two novel designs:
Hybrid Concurrency Control and Phalanx Replication.

Hybrid Concurrency Control (HCC) leverages timestamp
ordering to stitch together local and distributed concurrency
control protocols. HCC ensures all requests of the same trans-
action commit at the same timestamp, and that all transac-
tions are serialized in their timestamp order, thus guarantee-
ing process-ordered serializability [16,40]. To maximize the
performance advantages of local concurrency control, HCC
applies finale commit, a serial-commit protocol that avoids
unnecessary blocking and aborts on the turbo.

Phalanx Replication tackles the unique challenge of repli-
cating a single-machine database in a distributed setting. A
later-received transaction may be assigned a smaller times-
tamp due to clock skew and network asynchrony. Thus, exist-
ing replication techniques for single-machine databases that
rely on assigned timestamps being monotonically increasing
do not automatically work for TurboDB’s setting. To address
this challenge, Phalanx uses Frontline, a mechanism that deter-
mines the correct replication order even when timestamps may
be out-of-order. Phalanx also employs a set of techniques to
reduce replication costs, including per-core replication and de-
coupled log replay. The non-turbo servers are replicated with
standard techniques for distributed databases, e.g., Raft [43].

We implement TurboDB using Cicada [37] and Cock-
roachDB [54], which are representative single-machine and
distributed databases, respectively. We evaluate TurboDB us-
ing YCSB+T and TPC-C, with a variety of read-write ratios
and levels of skew. TurboDB achieves up to an order of mag-
nitude higher throughput and 50% lower latency for highly-
skewed YCSB+T, and up to 1.6x higher throughput and lower
latency for highly contended TPC-C than CockroachDB.

In summary, this paper makes the following contributions:

* A novel system architecture that incorporates a single-
machine database within a distributed database to “tur-
bocharge” the performance under skewed workloads.

» TurboDB, the first design that leverages this new architec-
ture using HCC and Phalanx to ensure the correctness of
the combination while retaining the performance benefits
of the turbo.

* An implementation and evaluation that shows TurboDB
outperforms a representative distributed database by up to
an order of magnitude under skewed workloads.

2 Background and Motivation

This section provides background on distributed databases
and then discusses the challenge of skewed workloads.

2.1 Distributed Databases

Front-end client machines translate user requests into transac-
tions whose requests are executed on the servers that store the
data. Databases run concurrency control protocols to ensure
that transactions appear to take effect in an order that satisfies
specific consistency guarantees. TurboDB provides process-
ordered serializability [16,40], which guarantees there exists
a total order amongst committed transactions, and the total
order respects the order in which clients issue transactions.
Process-ordered serializability is stronger than snapshot isola-
tion and plain serializability [44].

Fault tolerance. Distributed databases tolerate server fail-
ures by replicating each server onto multiple replicas through
consensus protocols such as Raft [43].

2.2 The Challenge of Skewed Workloads

Many real-world workloads are highly skewed [2,4,8-10, 28,
62]. For instance, Facebook’s TAO reports the most popular
data items are queried several orders of magnitude more often
than other objects [3, 9], and Twitter’s Twemcache reports
an even higher skew [62]. Skewed workloads are difficult in
general and particularly adversarial to distributed databases.

First, skewed workloads introduce more conflicts—i.e., con-
current transactions access overlapping (popular) data items
with at least one write—in a distributed setting, because dis-
tributed concurrency control must coordinate multiple servers,
thus prolonging transaction execution due to network trans-
mission times. The longer the execution, the more likely it
is that transactions conflict. Conflicts often result in aborts,
which are especially expensive as retrying distributed transac-
tions takes a long time, due to network delays.

Second, the overall performance of the database is limited
by its performance on the few popular data items as they are
accessed by most requests. As a result, the excessive aborts
and prolonged execution, due to distributed concurrency con-
trol that often incurs multiple rounds of inter-machine com-
munication, on the popular data have a disproportionately
large negative effect on the overall performance.

A natural solution. Single-machine databases can better
handle skewed workloads because their local concurrency
control executes conflicting transactions more efficiently by
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Figure 1: TurboDB designs Hybrid Concurrency Control (HCC) to integrate the turbo and servers. The requests on popular keys
are mostly sent to the turbo, which runs local concurrency control and a specialized replication protocol. Less popular requests
are processed by servers running distributed concurrency control and a standard replication protocol.

employing techniques that are infeasible in a distributed set-
ting, such as memory fences [58], shared lock tables [1], and
single-threaded timestamping [23]. Because no cross-server
coordination is needed, transactions can be processed in one
stop within the machine, thus greatly shortening the execu-
tion time and, in turn, reducing conflicts. These performance
multipliers, i.e., local concurrency control and one-stop exe-
cution, enable fast processing of popular data items, lifting
the performance bottleneck of the overall database.

3 Design Overview

TurboDB is built on a hybrid architecture that incorporates
a single-machine database as the turbo. The turbo leverages
its performance multipliers to efficiently execute transactions
that contend on popular data, enhancing overall performance
under skewed workloads.

3.1 A Hybrid Architecture

As shown in Figure 1, TurboDB is built on a standard dis-
tributed database and dedicates one of its storage servers to
running a single-machine database (the turbo). The turbo
and remaining servers run local and distributed concurrency
control protocols, respectively. The turbo can send/receive
requests to/from all the servers through RPCs. The servers, as
part of the distributed database, are made fault tolerant using
standard techniques. The turbo is made fault tolerant through
a special technique: Phalanx Replication (§5).

Data placement. To leverage the turbo’s performance multi-
pliers for skewed workloads, TurboDB co-locates many popu-
lar keys on the turbo. The more popular keys the turbo stores,
the greater performance improvement it brings to the system.
Given the capacity and load on the turbo, some popular keys
may remain on the servers. The information on data locations,

i.e., the mapping of a key to the server or turbo that stores it, is
stored on each server and can be kept up-to-date via standard
techniques, e.g., Zookeeper [66].

3.2 Transaction Life Cycle

As shown in Figure 1, the overall flow of TurboDB executing
a transaction with its hybrid architecture is as follows:

@ A client receives a user request and translates it into a
transaction. The client sends the transaction to one of
the servers, and this server will serve as the coordinator
for processing this transaction.

® The coordinator executes the transaction following Hy-
brid Concurrency Control (§4) by sending its requests to
the servers and/or turbo which store the data this trans-
action accesses.

©® Committed transactions replicate their state on servers
through the standard technique the distributed database
uses, e.g., Raft, and replicate their state on the turbo
through Phalanx (§5).

® The coordinator replies to the client with the results of
the transaction after it is committed and replicated, and
the client then replies to the user.

Limitations. First, TurboDB assumes that data popularity
does not change significantly or abruptly over time, i.e., data
popularity changes on relatively slow timescales compared to
how fast data can be migrated. To deal with changes in data
popularity, TurboDB relies on existing techniques to migrate
data between the turbo and servers. Second, co-locating pop-
ular keys on the turbo would make it more difficult to react to
load spikes, i.e., sudden increases in request rate, and less re-
silient to failures or slowdowns. TurboDB partially mitigates
this issue by not oversubscribing the turbo, i.e., it reserves
enough CPUs and memory for moderate load increases.
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As the first step in exploring a hybrid database architecture,
TurboDB focuses on its core design challenges. We leave
investigating the above limitations to future work.

Core challenges. The core challenges in TurboDB’s use
of a hybrid architecture are ensuring correctness and fault
tolerance while preserving the high performance of the turbo.

4 Hybrid Concurrency Control

This section explains Hybrid Concurrency Control (HCC),
which orchestrates the local and distributed concurrency con-
trol protocols co-existing in TurboDB’s architecture. HCC
ensures the system as a whole is process-ordered serializable,
without significantly sacrificing the turbo’s performance.

4.1 HCC Insight

HCC ensures consistency across the whole system by coordi-
nating the local and distributed concurrency control protocols.
A naive design would use traditional two-phase locking (with
two-phase commit) across the turbo and servers to handle
transactions that access both databases. While this ensures
that transactions are serialized, it negates the performance ben-
efits of using the turbo. Locking popular keys, even for one
RTT across phases, prolongs the transaction’s lifetime and
reduces concurrency, sacrificing one-stop execution (§2.2).

To maintain the performance multipliers of the turbo, we
apply a specialized two-phase protocol (consisting of the
execute and commit phases) that does not acquire distributed
locks on the turbo in the execute phase and employs finale
commit, which is a serial two-step mechanism, in the commit
phase to reduce unnecessary aborts on the turbo and enable
one-stop execution.

To provide process-ordered serializability, HCC leverages
timestamp ordering [7] to ensure that both local and dis-
tributed concurrency control protocols commit all requests
of a transaction at the same timestamp, which represents the
transaction’s serialization point. HCC thus assumes both local
and distributed protocols are timestamp-based, which is true
of many existing protocols [14,37,41,54,58].

4.2 The Execute Phase

The client starts a transaction by generating a unique times-
tamp, a combination of the client’s ID and the current time.
Timestamps generated by the same client are strictly increas-
ing. The client sends the transaction and timestamp to a server,
which acts as the transaction’s coordinator. The timestamp is
used to inform the local and distributed protocols to commit
all requests of this transaction at this timestamp.

Algorithm 4.1 shows the coordinator logic. In the execute
phase, the coordinator buffers writes locally, and issues read
requests (lines 3—12). The values returned by these reads may
be used to complete any missing key dependencies, e.g., the

Algorithm 4.1: Transaction coordinator logic

1 Function HYBRIDCONCURRENCYCONTROL(%x, ?) :

2 results <— {} // transaction results
// Begin the execute phase

3 for req in tx.read_set do

4 if req.key on turbo then

5 res, is_aborted <+ LOCALCC(req, t, “read_only”)

// remove turbo reads

6 tx.read_set <— tx.read_set — req

7 else

8 | res, is_aborted < DISTRIBUTEDCC(reg, 1)
9 if is_aborted is true then

10 L exit(tx.abort)

11 results <— results U res

12 UPDATEKEYDEPENDENCIES(tx, res)

// Begin the commit phase
13 hot_set + {}
14 for req in tx.write_set do
// read_set now only has server reads

15 if req.key on turbo then

16 hot_set < hot_set U req

17 continue

// Send writes required by DistCC

18 res, is_aborted <— DISTRIBUTEDCC(regq, t)

19 if is_aborted is true then

20 L exit(tx.abort)

21 results < results U res
2 for req in hot_set do

23 res, is_aborted < LOCALCC(req, t, “finale_commit’™)
24 if is_aborted is true then

25 SENDABORTMSGTOSERVERS(lx)

26 exit(tx.abort)

27 results < results U res
28 SENDCOMMITMSGTOSERVERS(%x)
29 return results

value returned by a read request determines what to read/write
in another request (line 12). The coordinator sends each re-
quest and the timestamp to either a server or the turbo, based
on the up-to-date key-location mapping it stores (lines 4—8).

Each server executes reads following the distributed con-
currency control protocol. The turbo, in contrast, encapsulates
these reads as a standalone read-only transaction so that ac-
tive locks are not left behind after the execute phase, ensuring
that these reads do not block other transactions on the turbo.
Specifically, the turbo executes the “read-only transaction”
with its local concurrency control, by returning the values at
the specified timestamp. Each key accessed by these reads
stores a piece of metadata, which records that “transaction zx
read this key at timestamp ¢.” This metadata will be used in the
commit phase if the same transaction updates the same keys.
In such cases, this metadata signals to the turbo that the reads
(which were executed as a standalone read-only transaction)
in the first phase and the writes in the second phase are from
the same transaction, and the turbo will handle the commit
accordingly. We discuss the details next.
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4.3 The Commit Phase

After all reads are executed and key dependencies are re-
solved, the transaction enters the commit phase (lines 13—
29). A naive design would send the remaining requests, i.e.,
buffered writes, to the turbo and servers in parallel, commit-
ting them with corresponding concurrency control protocols.
However, this would cause unnecessary aborts on the turbo,
e.g., when the turbo commits its part of the transaction, but the
distributed concurrency control aborts the other part, the trans-
action as a whole must be aborted, wasting the work on the
turbo. Moreover, trying to commit in parallel requires extra co-
ordination between the turbo and servers, which would result
in prolonged execution on the turbo and forfeit its one-stop
execution. Therefore, HCC enforces a serial commit order: it
first attempts to commit on the servers before attempting to
commit on the turbo.

Finale commit. The coordinator divides the buffered writes
into cool and hot sets, which update the servers and the turbo,
respectively (lines 13—17). The coordinator sends the cool
set and the timestamp to the servers and attempts to commit
these writes at the specified timestamp through distributed
concurrency control, e.g., two-phase commit (2PC) could be
involved. Other messages as part of the distributed concur-
rency control, e.g., prepare messages for reads, may be sent
together, depending on the specific protocol (lines 18-21).

If at least one server decides to abort this transaction, e.g.,
at the end of the prepare phase of 2PC, the coordinator aborts
this transaction without (unnecessarily) attempting to commit
the hot set (lines 19 and 20). If the servers agree to commit the
transaction, the coordinator sends the hot set and the times-
tamp to the turbo and attempts to commit these writes at the
timestamp through local concurrency control (lines 22-27). If
the turbo cannot commit a write because some requests have
read the key at this timestamp, the turbo checks if the most
recent reads are from the same transaction as this write, e.g.,
the “read-only transaction” in the execute phase, and allows
the write to commit in this case.

If the turbo commits the hot set, the coordinator then sends
a commit message to each involved server to finally commit
this transaction (line 28); otherwise, the transaction is aborted,
and an abort message is sent to each server (line 25). If the
transaction commits, the coordinator can respond to the client
without waiting for the acknowledgments of the commit mes-
sages (line 29), reducing latency by one RTT, a technique
used in many systems, e.g., CockroachDB. If the transaction
is aborted, it will be retried by the coordinator (lines 24-26).

Finale commit enforces a serial commit order: trying to
commit the cool set on servers — servers are ready to commit
— trying to commit the hot set on the turbo — the turbo
commits — the servers commit. This serial order preserves the
turbo’s performance multipliers by ensuring that a transaction
does not compete for resources on the turbo if it cannot be
committed on the servers and that each transaction updates

Distributed CC

writes(A) Ready Commit R
o & b .
Server {B} read,(B) Prepare Ready mmit
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Figure 2: tx has 2 reads and 2 writes where the return value of
read; determines which key writez updates. HCC integrates
distributed concurrency control that may hold locks across
phases and local concurrency control that does not.

the turbo at most once at the commit time, thus preserving
one-stop execution.

Figure 2 shows an example execution. Transaction #x has
four requests that include a key dependency: read; deter-
mines which key write; updates. Keys A and B are on two
servers while C and D are stored on the turbo. In the execute
phase, read; is executed by local concurrency control as a
standalone read-only transaction without leaving behind locks
while read, holds an active lock following distributed con-
currency control (e.g., 2PL). write4 is sent to the turbo in the
commit phase only if read, and write; are ready to commit
on the servers, which will finally commit read, and writes if
the turbo commits writey.

4.4 Correctness of HCC

This section explains why HCC enforces process-ordered seri-
alizability and ensures that transactions eventually terminate.

HCC is safe. HCC guarantees process-ordered serializability
by satisfying the following requirements: (1) there exists
a total order among all transactions, and (2) the total order
respects the process order (§2.1).

First, HCC guarantees (1) by committing all requests of
each transaction at the same timestamp, assigned by the client
at the transaction’s start. Specifically, the pre-assigned times-
tamp is used by the reads in the execute phase to retrieve
values, by the servers to commit the cool set, and by the turbo
to commit the hot set. Therefore, the timestamp is the serial-
ization point of each transaction, and the timestamp order is
the transactions’ commit order. Because timestamps uniquely
identify each transaction (§4.2), and timestamp order is a total
order, transactions’ commit order is total.

Second, HCC guarantees (2). Because each client generates
timestamps in a strictly increasing manner (§4.2), later-issued
transactions must have larger timestamps than any previously
issued transactions by the same client, thus must appear later
in the total order, respecting the process order.
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HCC is live. Distributed concurrency control guarantees that
the requests executed on the servers do not deadlock. Local
concurrency control guarantees that the requests executed on
the turbo do not deadlock. HCC'’s finale commit enforces a
serial commit order between the servers and turbo, i.e., all
transactions follow the same access order: servers — the
turbo, thus transactions that access both servers and the turbo
do not deadlock. Therefore, HCC guarantees that transactions
eventually terminate.

S Phalanx Replication

Another core challenge of TurboDB’s hybrid architecture
is correctly replicating the turbo for fault tolerance without
trading off its performance multipliers.

5.1 Phalanx Insight

A naive solution would be deploying a standard consensus
protocol designed for distributed systems, i.e. Raft. However,
recent work on single-machine databases [26,32,46,51] has
shown that doing so significantly degrades the database’s per-
formance. They thus propose special techniques to replicate
such databases. Specifically, they assign transactions strictly
increasing timestamps and ensure that transactions are both
committed and replicated in this timestamp order. Leveraging
this timestamp order, these techniques remove most of the
replication work from the critical path of transaction execu-
tion, preserving good performance. While Phalanx leverages
the insight of these techniques, it cannot, however, directly
apply them to TurboDB’s hybrid setting.

The challenge is that these techniques require transactions
be timestamped in strictly increasing order, which is straight-
forward for single-machine databases, which have full control
over transactions. In contrast, as part of a hybrid database,
the turbo passively accepts transactions whose timestamps
have been predetermined by the clients. Due to network asyn-
chrony, the turbo may have to execute transactions whose pre-
determined timestamps are smaller than any it has previously
seen. Phalanx must tackle this unique timestamp challenge.

In the following subsections, we first explain the techniques
Phalanx uses to preserve the performance of the turbo, then
detail the timestamp challenges and Phalanx’s timestamp man-
agement that tackles the challenges.

5.2 Protocol Basics

Phalanx arranges its replicas in a chain. The head of the chain
is the primary; the rest are backups; and the last backup is the
tail. The primary is the only replica that communicates with
servers and runs local concurrency control, e.g., the “turbo”
in Section 4 is this primary replica. Phalanx sequentially prop-
agates the turbo’s log, i.e., a sequence of committed updates
grouped by transactions, down the chain to each backup. Once

the tail receives the log, it sends the primary an acknowledg-
ment (ack). Each backup applies the log’s updates in an order
specified by Phalanx (§5.3).

As a variant of primary-backup [59], Phalanx tolerates f
failures with f + 1 replicas while a coordination service, e.g.,
ZooKeeper [66], may be used to detect failures and handle
membership changes in the replica group.

Decoupled replication. Phalanx preserves the turbo’s per-
formance multipliers by decoupling replication from transac-
tion execution, shielding execution from replication delays
as much as possible. Specifically, when the primary com-
mits a transaction, it makes its effect immediately visible
to future transactions (not yet to users), buffers its response
into a response queue, and appends its committed updates
to a replication log. The updates in the replication log are
asynchronously propagated to the backups, while the primary
continues to execute future transactions, i.e., replication does
not block transaction execution. The responses of commit-
ted transactions are released by the response queue (i.e., they
are sent to their coordinators) in order when these transac-
tions’ updates have been applied by all backups, i.e., when
the primary receives an ack that indicates the completion of
replication from the tail.

Allowing the primary to execute future transactions without
being blocked by the replication of committed transactions
best utilizes the turbo’s performance multipliers. It is safe to
make committed transactions visible to future transactions
before they are replicated, i.e., there is no risk of cascading
aborts, because they will certainly commit (the finale-commit
guarantees that the turbo being ready to commit the trans-
action’s hot set implies that its cool set must have first been
ready to commit on the servers; neither side will abort). More-
over, their results will be visible to the users only after they
are successfully replicated.

Per-core replication. Phalanx partitions the replication log
across CPU cores. Each core propagates its sub-logs in paral-
lel, reducing inter-core synchronization. Algorithm 5.1 shows
the pseudocode. For simplicity, the pseudocode illustrates the
primary and backups propagating a single log entry, but our
implementation batches entries for performance. When the
replication of a transaction starts (line 34), the primary finds
an available core, e.g., core 3, and appends a new entry to
core 3’s sub-log (lines 36-37). This new entry contains this
transaction’s updates and commit timestamp. Periodically,
core 3 propagates new entries to the next replica in the chain
(line 41). When the next backup receives these new entries
(Algorithm 5.2), it appends them to the sub-log for which
its own core 3 is responsible and then propagates these en-
tries to the next replica (lines 46-50). Due to a one-to-one
correspondence between cores across all replicas (Figure 3),
sub-logs managed by the same core become (eventually) iden-
tical across all replicas. The primary’s replication log is stored
on all backups and partitioned across cores in the same way.
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Algorithm 5.1: Phalanx primary handling requests

Algorithm 5.2: Backup receives propagated entry

30 Function HANDLEREQUEST(coord, req_msg) :

// Receive a request msg from a coordinator
31 req <— req_msg.req; t < req_msg.t; flag_str < req_msg.flag
32 res, is_aborted <— LOCALCC(req, t, flag_str)
33 if not is_aborted then
34 response_queue. APPEND(coord, res, t)
// Find a core i to start replication
35 if req is update then
36 log_entry; < {req, t}
37 sublog;. APPEND(log_entry;)
38 unacked_entries; <— unacked_entries; + log_entry;
// Update core i’s fy
39 core;.ty + min{core;.ty, 1}
// Update the global Frontline if needed
40 1y < min{ty, core;.t;}
// Propagate entry to the next replica
] tail_ack; < next_backup PROPAGATE(log_entry;, tf)
// Once receiving the ack
2 unacked_entries; < unacked_entries; — log_entry;
43 core; .ty < min{unacked_entries;.t}
44 tr < min{Vt, € cores.t;}

Decoupled log replay. When a backup receives new log
entries, it appends these entries to its own sub-log of the
corresponding core (line 46), which eventually replays the
sub-log, i.e., the core applies the updates in its sub-log to the
backup’s database (lines 51-54). The backup propagates the
new entries to the next backup without waiting for its local
replay to complete (line 50). When these new entries finally
reach the tail, the tail replays them and sends an ack to the
primary, indicating that all backups have received these new
log entries. Algorithm 5.2 shows the pseudocode.

When the primary receives the ack (line 41), the transac-
tions associated with these new entries are considered safe,
i.e., their state is stored on all backups and will be replayed by
each backup. Yet, Phalanx must ensure a correct log-replay
order before the transactions’ responses can be returned to
their coordinators. That is, Phalanx must guarantee that the
transactions take effect on each backup in the same order as
the primary, enabling backups to seamlessly and correctly
take over the primary’s role if the primary fails. Phalanx lever-
ages timestamps to enforce such a log-replay order, and the
next section explains a unique challenge Phalanx must tackle
and how Phalanx overcomes it.

5.3 Timestamp Challenges & Frontline

Existing solutions execute and replicate transactions in a
monotonically increasing timestamp order to ensure that once
a transaction finishes, all the transactions before it (e.g., ones
whose values this transaction may have read) must have been
replicated and returned to their users, since they have smaller
timestamps than the current transaction. Yet, the turbo has
no control over timestamp generation and thus cannot expect
timestamps to be monotonically increasing. Transactions are

45 Function PROPAGATE(new_entry, ty):
// Rppend new log entry, then propagate

46 sublog;. APPEND(new_entry)
47 if this is tail then
// Tail acks to the primary
48 SENDACK(to:primary, new_entry, ty)
49 else
// Propagate down the chain
50 | next_backup.PROPAGATE(new_entry, iy)
// Rpply sublog entries up to fy (i.e., t<ty)
51 for entry in sublog; do
52 if entry.t <ty then
// Bpply entry to the database
53 this. APPLY (entry)
// Remove replayed entry from sublog
54 sublog; < sublog; — entry

Algorithm 5.3: Primary releases buffered responses

55 Function RELEASEBUFFRESPS():

// Periodically invoked by the primary
56 for resp in response_queue do
57 coord < resp.coord; res < resp.res; t < resp.t
58 if resp.t <ty then
// Releases and removes response
59 SENDRESPONSE(to.coord, res, t)
60 response_queue <— response_queue — resp

timestamped by the client machines and may arrive at the
turbo in any order. Thus, naively applying existing solutions
to TurboDB may lead to two issues.

First, out-of-order timestamps may incur unnecessary stalls,
because the system cannot replicate a transaction until it is
certain that no future transaction with a smaller timestamp
will arrive. That is, later-arriving transactions with smaller
timestamps block the replication of earlier transactions that
have larger timestamps. For example, in Figure 3, w3 arrives
later than wy or w» but has a smaller timestamp, then it blocks
wi and wy from replicating. Even worse, the system can never
be certain when such transactions (e.g., w3) may arrive or if
they even exist.

Second, we cannot naively disobey the timestamp order,
lest incorrect behavior arise during failover, as shown in Fig-
ure 3. Let’s say w; and w, belong to fx; and 7x, and have
timestamps 8 and 10, respectively. If 7x, reads the value writ-
ten by w; (from 7x;), then we must ensure that by the time
txy’s wy is replicated w; must have replayed on all replicas
and will not be lost in f failures of f 41 replicas. Otherwise,
since tx; and tx; may be handled by different cores, backups
may potentially replay w, without replaying wj. If the pri-
mary then fails, no backup (or the new primary) will have
applied wj to the database. As a result, future transactions
will only observe w», but not wy, which violates serializability.
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This shows that Phalanx must replicate w; and w, in their
timestamp order to preserve the dependencies between them,
e.g., wy depends on wy.

Design insight. Phalanx selectively obeys the timestamp or-
der. It replays and returns transactions in timestamp order
only when necessary: when there exist dependencies among
transactions. We say that transaction 7x, depends on transac-
tion 7x; (denoted tx; = txp) if their requests access the same
key(s), and at least one is an update. Since HCC (§4) guar-
antees that a dependent (¢x;) always has a larger timestamp
than the transaction it depends on (zx;), Phalanx can preserve
dependencies by replaying them in their strictly increasing
timestamp order. If a transaction does not depend on another,
i.e., tx] # txp and fxp # tx1, Phalanx can replay them in any
order, avoiding unnecessary stalls.

Frontline. Phalanx enables selective timestamp ordering by
designing Frontline, a timestamp tracking technique. Each
core on the primary keeps track of #;, which is the timestamp
of the most recent, safe transaction (log entry) in this core’s
sub-log. A transaction is safe if it has been appended to the
logs of all backups. A core updates its #; when it receives
the ack of its propagated entries from the tail. The frontline
ty is the minimum #, across all cores. f represents a thresh-
old timestamp at which all transactions in the database with
timestamps less than or equal to 77 are safe.

When a core of the primary begins propagating log en-
tries, it piggybacks the current frontline #; with them. Upon
receiving both the entries and ¢/ (line 45), the backup core
appends the new entries to its sub-log and continues propagat-
ing both the entries and ¢ to the next backup (line 50). This
backup then replays all entries whose timestamps are less
than #y, i.e., these entries (updates) are applied to the database
(lines 51-54). Log replay is uninterruptible, that is, cores will
not handle new entries until the current replay is complete.
Replayed updates are then removed from the sub-log. The tail
sends an ack to the primary when it has appended these new
entries to its log (lines 47-48).

When the primary’s core receives the ack, it updates its
core-local safe time #; and cross-core frontline ¢y accordingly
(lines 43—44). The primary periodically loops through the
buffered response queue to release the responses of transac-
tions whose timestamps are less than or equal to f (algo-
rithm 5.3). These responses are released to their correspond-
ing coordinators in their timestamp order.

When the transactions received by the primary happen to
have monotonically increasing timestamps, ; and ¢ are ad-
vanced monotonically, similar to existing techniques. When
the primary receives a new, out-of-order transaction whose
timestamp is smaller than that of earlier transactions and
the current ¢, the primary immediately lowers ¢ and the
corresponding core’s t; below the transaction’s timestamp
(lines 39-40). By immediately lowering #;, Phalanx prevents
the primary from prematurely releasing the responses of fu-

/ Backup N\

(Next primary)

f Primary \
----------------------

o
)
(o]
N
E
A 4
o3
9 |
o !
N

'

1
E

t=10
...................
W, Core 3:
_— t=5
Real time

Figure 3: Writes operations wy, wp, w3 from transactions £xi,
txp, and tx3 (not shown), respectively, being replicated in each
core’s sub-log.

ture transactions that may depend on this out-of-order trans-
action. That is, any future dependent transaction will only be
released after the out-of-order transaction is finished. Algo-
rithm 5.3 shows pseudocode for releasing buffered responses.

Buffering read responses. Although only updates are repli-
cated to the backups, the primary must also buffer the re-
sponses of reads, including the reads in read-write transac-
tions and read-only transactions. The primary handles these
responses the same way that it handles update responses: it
ensures that the updates observed by these reads have been
stored on all replicas and cannot be lost in f failures.

Correctness. Phalanx guarantees that a transaction’s re-
sponse is released (i.e., this transaction is finished) only if
its updates have been inserted in the logs of all backups and
will eventually be replayed. For all transactions that have
dependencies among them: HCC guarantees that they are
timestamped in strictly increasing order, which reflects their
dependencies. The frontline’s forward movement returns them
in this order. Otherwise, Phalanx does not block the replay
of the current transaction #x; for the possible arrival of a later
transaction #x, that has a smaller timestamp, thereby avoiding
unnecessary stalls. This is safe because £x; must not depend
on tx; as tx] was executed before £x,, and £x, must not depend
on tx| because tx;’s timestamp is smaller than £x;’s, thus it is
safe to replay them in either order.

Failover. When the primary fails, the next live backup be-
comes the new primary. The new primary finishes replaying
all sub-logs up to the frontline it knows, and then discards the
remaining entries in its logs before servicing new requests.
This is safe because the responses of these discarded trans-
actions could not have been released to their coordinators.
When the coordinators query the status of these discarded
transactions, e.g., they have not received any responses for
some time, the new primary replies with abort messages that
make the coordinators abort these transactions on the servers.
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6 Evaluation

We evaluate our system to answer the following questions:

* How well does TurboDB perform, compared to a represen-
tative distributed database, under skewed workloads?

* How well does TurboDB scale performance, specifically
throughput, compared to the baseline?

* How well does TurboDB perform under different workloads
with a variety of read-to-write ratios and levels of skew?

Implementation. We build TurboDB on CockroachDB [54]
and Cicada [37], which are written in Go and C++, respec-
tively. We change ~4 K lines of Go in CockroachDB’s code-
base. We also employ Cicada’s library to implement, replicate
(i.e., implement Phalanx), and network (using gRPC [25]) a
single-machine database in ~10K lines of C++. Of those,
direct changes to Cicada’s library are 5 lines long.

Baseline. We compare TurboDB with CockroachDB, which
is a production distributed database that has been widely
adopted by industry [34]. Its distributed concurrency con-
trol technique is a combination of timestamp-ordering and
locking-based mechanisms, and it tolerates server failures
with Raft. Our experiments have fault tolerance enabled for
both TurboDB (Phalanx and Raft) and CockroachDB (Raft).

6.1 Experimental Setup

Workloads. We evaluate TurboDB under YCSB+T [17] and
TPC-C [56]. YCSB+T contains one-shot key-value transac-
tions, i.e., all requests are sent in one round in parallel as data
locations are known a priori. Our experiments use the default
parameters: 8 B key, 512B value, 10 keys per transaction, and
95% reads. There are a total of 160M keys. We vary the levels
of skew by controlling the Zipfian constant (Zipf): uniform
workloads have a Zipf of 0.01, medium-skewed workloads
have a Zipf of 0.99 (~8% of requests access the most popular
key), and high-skewed workloads have a Zipf of 1.2 (~25%
of requests access the most popular key). We also include
experiments that vary the read-to-write ratio.

TPC-C contains complex, multi-shot transactions, i.e., re-
quests must be sent in multiple steps as data read in prior steps
determines the read-/write-sets in later steps. TPC-C has five
types of transactions: New Order, Payment, Delivery, Order
Status, and Stock Level. We only implemented New Order
which has the most complex transaction logic. We have 10 dis-
tricts per warehouse and vary the level of skew by controlling
the number of warehouses that are evenly distributed across
machines. Our experiments show 64, 16, and 8 warehouses.
The fewer warehouses, the more skewed the workload is.

Data placement. For the YCSB+T experiments, we promote
hot data items to the turbo. We identify hot data items using a
simple queries-per-second (QPS) count. It promotes as many
data items to the turbo as can fit in its memory, taking care

not to oversubscribe the turbo’s CPU and memory capacity:
40M keys of 160 M. We place the remaining, cool data items
on CockroachDB, allowing its default data sharding schemes
to balance the load. For the TPC-C experiments, we manually
promote the two hottest tables—Warehouse and District—to
the turbo. The remaining tables are partitioned by warehouse
across the CockroachDB nodes.

Testbed. We run all experiments on CloudLab [22] in one
data center. Each machine has 2.0 GHz CPUs with 8 physi-
cal (16 virtual) cores, 64 GB RAM, and a 10Gbps network
interface. For YCSB+T experiments, CockroachDB has 8
servers. Raft is run among these 8 servers instead of on a
set of separate machines, as suggested by the CockroachDB
technical team. TurboDB has 8 servers that handle the work-
loads. One of the 8 servers is the turbo, and the rest runs
CockroachDB. TurboDB employs another 2 standalone ma-
chines as the backups, which do not directly handle the work-
load. Thus, TurboDB has a total of 10 server machines. The
YCSB+T scalability experiments use up to 16 servers (18
servers for TurboDB). Similarly, the TPC-C experiments have
9 servers for CockroachDB and 11 servers for TurboDB.

An additional set of machines generate closed-loop client
requests. Each experiment lasts 180 seconds. The first 120
warm up the system, e.g., the system shards the data. Perfor-
mance metrics are collected during the remaining 60.

6.2 Result Overview

TurboDB outperforms CockroachDB by an order of magni-
tude higher throughput and 2 x lower latency for YCSB+T,
and by 1.6x higher throughput and lower latency for TPC-
C, under skewed workloads. TurboDB scales out as well as
CockroachDB under uniform workloads and shows much bet-
ter scalability under medium and highly skewed workloads.
TurboDB shows comparable performance to CockroachDB
under uniform workloads and more significant performance
improvements while skew increases. TurboDB consistently
outperforms CockroachDB with different read-to-write ratios.

6.3 Latency & Throughput

This section compares the performance of TurboDB and Cock-
roachDB in terms of latency and throughput under YCSB+T
and TPC-C workloads.

YCSB+T. Figure 4a plots the median latency vs. throughput
graph for uniform, medium, and high skew as we increase
load on the system. The dashed horizontal line shows a me-
dian latency of 10 ms, a reasonable operating point. TurboDB
consistently outperforms CockroachDB under medium and
high skew, due to its turbo being able to efficiently execute
contended transactions. For instance, TurboDB has more than
4x lower abort rate than CockroadhDB with a Zipf of 1.2.
Although TurboDB is not designed for uniform workloads,
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Figure 5: Latency (medium and tail) and throughput of TurboDB and CockroachDB under TPC-C New Order workloads with
varying levels of skew, controlled by the number of warehouses (w).

its performance is comparable to (slightly worse than) Cock-
roachDB for these workloads, due to the design choices Tur-
boDB makes specifically for skewed workloads, e.g., finale
commit and chain-shaped replication may increase latency.

Figure 4b shows the throughput while varying the level of
skew at the operating point, i.e., a median latency of 10 ms.
TurboDB exhibits more significant throughput advantages
when skew increases, e.g., up to 17x improvements. This is
because a higher level of skew causes more transactions to
abort on CockroachDB, while TurboDB can reduce aborts
with its local concurrency control and execute these trans-
actions more quickly with its one-stop execution. Moreover,
TurboDB’s throughput increases when skew increases be-
cause more requests can benefit from the turbo, while the per-
formance of traditional databases often keeps getting worse
when the workload becomes more skewed.

Figure 4c shows the tail (p99) latency when both systems
operate at 80% of their maximum load. TurboDB exhibits
slightly higher latency on uniform and medium skewed work-
loads. This is because HCC’s serial finale commit and Pha-
lanx’s chain propagation increase latency, and this affects the
tail of the distribution more significantly. However, this la-
tency impact is offset by the latency improvements under high
skew workloads where TurboDB has 2x lower tail latency.

TPC-C New Order. Figure 5 shows the performance under
TPC-C New Order workloads, which exhibits a similar take-
away of performance improvements enabled by TurboDB

while the improvements are not as significant as that for
YCSB+T. This is because TPC-C transactions are multi-shot
and have much more complex logic than YCSB+T, and be-
cause it is non-trivial to partition TPC-C and find the right pop-
ular data items to store on the turbo. Our experiments make
the turbo store popular District tables, and we expect even
greater performance improvements with careful partitioning.
That said, TurboDB achieves consistently better performance
under medium and high skew, as shown in Figure 5a. Tur-
boDB achieves consistently higher throughput (up to 1.65x
higher) with low (64 warehouses), medium (16 warehouses),
and high skew (8 warehouses), as shown in Figure 5b. Tur-
boDB has lower tail latency for medium and high skew (up
to 1.5x lower), and slightly higher tail latency when skew is
low. The low skew setting (64 warehouses) still exhibits some
contention and is far from being uniform, and TurboDB’s
performance improvements may diminish when the number
of warehouses is sufficiently large.

6.4 Scalability

Figure 6 shows peak throughput of TurboDB and Cock-
roachDB under YCSB+T when we increase the number of
machines (and the amount of data stored) in the system. Fig-
ure 6a shows that TurboDB can scale as linearly as Cock-
roachDB under uniform workloads for which TurboDB is
not designed specifically. This shows that the overhead of
TurboDB’s design under uniform workloads does not much
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Figure 7: Additional experiments that report abort ratios, write tail latency, and throughput with different read fractions.
affect the system’s overall performance, because the workload high skew. While TurboDB has abort ratios similar to Cock-
is “easy,” i.e., uniform, and additional overhead is affordable. roachDB under uniform and medium skewed workloads, Tur-
TurboDB scales throughput significantly better than Cock- boDB has a 4x lower abort ratio under high skew, which is
roachDB under medium and highly skewed workloads, as enabled by the performance multipliers of the turbo.

shown in Figure 6b and Figure 6c. CockroachDB does not
scale under skewed workloads because it is bottlenecked on
processing contended transactions that access a small set of
popular keys. Adding more machines does not address the bot-
tleneck. In contrast, TurboDB scales throughput linearly until
the turbo reaches its capacity, i.e., when networked, replicated
Cicada is running at maximum throughput.

TurboDB’s throughput approaches that of networked, repli-
cated Cicada, denoted by the dotted horizontal line, with a
sufficient number of servers. TurboDB can sustain its through-
put and scales no worse than traditional distributed databases
after Cicada becomes the bottleneck. Moreover, TurboDB
scales up faster at higher skew because more transactions can
leverage the performance multipliers of the turbo.

Write latency. To fully understand TurboDB’s performance
improvements, we examine the latency of write-only transac-
tions from Figure 4b’s workload. We focus on write requests
because they lead to conflicts and because they reflect the
costs of replication as only writes are replicated through Pha-
lanx. Figure 7b shows the tail (p99) latency of write-only
transactions at different levels of skew. TurboDB has signifi-
cantly lower write latency at medium and high skew because
the turbo can execute these writes with fewer aborts and be-
cause one-stop execution avoids cross-phase locking, while
CockroachDB requires distributed locks (i.e., write intents)
that significantly prolongs the execution time.

6.5 Additional Experiments Varying read fractions. Figure 7c shows the throughput
of both systems when we vary the read-to-write ratio of the

We show more experiments with YCSB+T workloads. . )
highly skewed YCSB+T workloads (Zipf of 1.2). We nor-

Abort ratio. An important source of improvements enabled malize throughput against the maximum throughput under
by the turbo is the reduction of aborts. (Another source is the default setting of 95% reads. Both TurboDB and Cock-
the fast execution of contended transactions, enabled by one- roachDB have lower throughput with more writes, because
stop execution.) Figure 7a plots the abort ratio which is the write operations are more costly compared to reads and be-
number of the transactions that were ever aborted to the num- cause writes increase the likelihood of conflicts, and TurboDB
ber of committed transactions, under uniform, medium, and has consistently higher throughput than CockroachDB.
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7 Related Work

TurboDB builds on earlier work on single-machine databases,
distributed databases, partitioning techniques, and replication
techniques. Section 5 discussed replication techniques. We
now review each of the other categories in turn.

Single-machine databases. There exists a large body of
research on designing and building fast single-machine
databases [23, 24,29, 31, 33,37,47, 58]. Because their data
resides on one machine, these databases capitalize on readily
available global views of the system to employ sophisticated
optimizations (see discussion in §2). In contrast, in distributed
databases, global views are non-trivial to construct.

TurboDB’s design makes it possible for these optimizations
to be used in distributed systems. What’s more, TurboDB
improves its performance while retaining the distributed sys-
tem’s ability to scale system capacity to support large-scale
applications—ones that would have been too large to fitin a
single-machine database.

We highlight the constraint that TurboDB requires the turbo
(single-machine database) to employ a timestamp-based con-
currency control. That said, many existing databases would
make good candidates [29,33,37,58].

Distributed databases and systems. There also exists a
large body of work on distributed databases and distributed
systems [12,49,52,54,55,65]. Some achieve good perfor-
mance by constraining operations of a transaction to access
the same logical partition [11, 13]. These systems rely on
careful data partitioning, which may be challenging for to-
day’s complex applications to achieve. In contrast, TurboDB
requires no partitioning constraints.

Some other systems trade off strong consistency for bet-
ter performance [11, 38, 39, 42, 50]. Unfortunately, weakly
consistent transactions complicate application development,
yet, are still subject to performance degradation under skewed
workloads. In contrast, TurboDB provides strong consistency
(process-ordered serializability).

Some other systems support restricted transaction mod-
els, e.g., read-only and/or write-only transactions [21,38,39].
Unfortunately, this complicates application development. In
contrast, TurboDB supports general transactions.

Sequencers and RDMA. Some systems leverage a central-
ized component, e.g., a sequencer or a shared log, to serialize
all transactions [5, 6,30, 35, 36,55, 60]. These techniques’ in-
sights bears similarity to TurboDB’s, i.e., leveraging a power-
ful centralized entity to tackle the most challenging problems
in the system’s design. However, unlike TurboDB, they re-
quire that all transactions pass through the sequencer. Instead,
TurboDB only forwards a fraction of (popular) keys through
the turbo, enabling scalability with less internal complexity
and fewer resources than recent scalable sequencer-based
systems [18,27].

Some systems leverage specialized hardware and network
abstractions [20], e.g., RDMA and DPDK [19]. These net-
working optimizations are orthogonal to TurboDB’s perfor-
mance improvements, as TurboDB can also adopt and benefit
from them.

Partitioning techniques. One line of work handles con-
tention by partitioning the keyspace by workload access pat-
terns, i.e., keys that are likely accessed together by transac-
tions are co-located on the same machine [15,45,48,53,54,
57,61,63]. These works aim to reduce the number of nodes
that each transaction must contact—ideally, only one—such
that they are as “non-distributed” as possible. For instance,
Chiller [64] and Quro [61] co-locate keys that are both popular
and often accessed together on the same machine.

While these partitioning techniques benefit workloads
where transactions minimally access keys on different ma-
chines, their benefits diminish when no such obvious groups
of keys exist. In contrast, TurboDB’s performance benefits are
agnostic to whether the keyspace is partitionable. Even when
transactions access both the turbo and the servers, TurboDB’s
HCC and Phalanx ensure such transactions benefit from the
turbo’s performance multipliers.

8 Conclusion

Distributed databases are challenged by skewed workloads,
which are common in real-world applications. These work-
loads cause high contention, which are exacerbated by net-
work latencies. TurboDB presents a novel hybrid architec-
ture that integrates a single-machine database in a distributed
database to “turbocharge” its overall performance under
skewed workloads. TurboDB leverages the single-machine
database’s performance multipliers to efficiently execute con-
tended transactions. It introduces new designs, HCC and Pha-
lanx, that tackle the challenges of concurrency control and
replication under its hybrid architecture. Consequently, Tur-
boDB achieves up to an order of magnitude better perfor-
mance than a representative distributed database.
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