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Abstract—Learning the principal eigenfunctions of a kernel
is at the core of many machine-learning problems. Common
methods usually deal with symmetric kernels based on Mercer’s
Theorem. However, in the communication systems, the channel
kernel is usually asymmetric due to the inconsistencies between
the uplink and the downlink propagation environment. In this
paper, we propose an explainable Neural Network for extract-
ing eigenfunctions from generic multi-dimensional asymmetric
channel kernels based on a recent method called High Order
Generalized Mercer’s Theorem (HOGMT), by decomposing it
into jointly orthogonal eigenfunctions. The proposed neural net-
work based approach is efficient and can be easily implemented
compared to the conventional SVD based solutions used for eigen
decomposition. We also discuss the effect of different hyper-
parameters on the training time, constraint satisfaction, and
overall performance. Finally, we show that multiplexing using
these eigenfunctions mitigates interference across all the available
Degrees of Freedom (DoF), both mathematically as well as via
neural network based system-level simulations.

Keywords—Eigen-decomposition, Multi-dimensional channel,
Interference cancellation, Neural Networks.

I. INTRODUCTION

The conventional waveform design techniques usually treat
the interference separately, such as SVD-based precoding to
cancel Inter-Antenna Interference (IAI) [1], OFDM modu-
lation to avoid Inter-Symbol Interference (ISI) and OFDM
detector to mitigate Inter-Carrier Interference (ICI) [2], [3].
Recently, Orthogonal Time Frequency Modulation (OTFS) [4]
has been proposed to cancel joint interference in the time-
frequency domain but still requires additional processing at
the receiver to mitigate Inter-Doppler Interference (IDI) for
rapidly time-varying channels [5], [6]. These methods explore
the orthogonality in a specific domain instead of joint orthogo-
nality across all the DoF due to the limitations of mathematical
tools. Both Fourier Transfer (FT) and Symplectic Fourier
Transform (SFT) can only find orthogonal bases in the time,
frequency and delay-Doppler domain but cannot incorporate
joint orthogonality in the space domain. Similarly, SVD-based
precoding only decomposes independent channel matrices to
achieve orthogonality in the space domain but fails to capture
any joint interference over space-time dimensions [7].

A foundational exposition of representing multi-dimensional
channels by its asymmetric kernel from first principles, which
maps data symbols from the transmitter to the receiver,
can be found in [8]–[10]. Recently, High Order Generalized
Mercer’s Theorem (HOGMT) [11], [12] has been proposed
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Figure 1: Paper outline: contributions and novelty

to decompose a multi-dimensional asymmetric kernel into
jointly orthogonal eigenfunctions (reviewed in Section II).
Specifically, it has been proven that decomposing the channel
kernel by HOGMT and multiplexing data symbols using the
constituent eigenfunctions result in transmission over inde-
pendent orthogonal subchannels in the eigen-domain, thereby
avoiding interference from other symbols across all the DoF.

In contrast to Fourier bases, commonly used in OFDM and
OTFS, eigenfunctions are not pre-defined and are strictly un-
structured [16], which makes them computationally expensive
for practical purposes. In general, a multi-dimensional channel
kernel is represented as a tensor instead of separate matrices to
capture the joint interference across the dimensions. Decom-
posing this tensor by HOGMT by existing linear algebraic
implementations, suffers from extremely high computational
complexity [12], which limits its adoption for real-time signal
processing in next Generation (xG) wireless networks.

Neural Network (NN) provides an advantage over linear
techniques by inherently extracting non-linear relationships
among hidden variables, while keeping the computational
burden within manageable limits. This motivates us to em-
brace NN to implement practical HOGMT-based eigenwave
multiplexing. NNs have been used to replace certain blocks
in communication systems for optimized performance for a
given dataset [17]–[22]. However, current NN-based eigen
decomposition methods aim to learn the format and proper-
ties of the eigenvectors [23] without explaining the internal
mechanisms of how the output converges to eigen components
(e.g., vectors, tensors or functions), which trains NNs as
black-box systems. Furthermore, any random process like
a multi-dimensional asymmetric channel kernel requires an
infinite number of eigenfunctions for accurate characterization
and reconstruction [24]. In contrast, practical implementations
will only provide a finite number of eigenfunctions that
approximates the kernel. Meanwhile, stringent requirements
on reliability and throughput in xG wireless propagation



Table I: Multi-dimensional asymmetric channel kernels in wireless communication

Channel type Signal domain Interference type Input-output relation of channel kernel
MIMO [12], [13] Space-time domain IAI-ISI r(u, t) =

RR
KH(u, t;u0, t0)s(u0, t0)du0dt0

MIMO-OFDM [7], [14] Space-frequency domain IAI-ICI r(u, f) =
RR

KB(u, f ;u0, f 0)s(u0, f 0)du0df 0

MIMO-OTFS [14], [15] Space-delay-Doppler domain IAI-IDI r(u, ⌧, ⌫) =
RR

KDD(u, ⌧, ⌫;u0, ⌧ 0, ⌫0)s(u, ⌧ 0, ⌫0)du0d⌧ 0d⌫0

General multi-dimensional channel All the DoF All the DoF r(Z) =
R
K(Z;�)s(�) d�

environments [13], [25], [26] demands provable performance
guarantees for transceivers over a variety of channels. There-
fore, the optimality of kernel approximation by a finite number
of eigenfunctions and the explainability of the NN-based eigen
decomposition method are paramount design goals.

Figure 1 shows the contributions of this work and their
connection to the necessary foundational concepts. In order
to design a NN that is applicable to a wide variety of
channels, an expression for a generic kernel is necessary. At
the same time, it is imperative to prove that the output of
the NN that approximates HOGMT, indeed converges to the
eigenfunctions. This makes the implementation explainable
and optimal. These steps ultimately allow for implementing
practical multiplexing using eigenfunctions. Since the eigen-
functions represent waveforms at its DoF, it is convenient to
refer to them as eigenwaves in the context of multiplexing.
Therefore, the contributions of this paper are as follows:

• We deduce the expression for channel kernels for MIMO,
MIMO-OFDM and MIMO-OTFS channels and formulate
the kernel for any generic multi-dimensional channel.

• We prove that HOGMT approximation for multi-
dimensional asymmetric kernel is optimal in MMSE.

• We design low-complexity, fully connected NN to de-
compose generic multi-dimensional asymmetric kernels
into their eigenfunctions based on HOGMT.

• We propose a top-N eigenwave multiplexing method that
mitigates interference across all DoF. We also give the
error analysis with respect to approximate eigenfunctions
and evaluate using NN based system-level simulations.

II. ASYMMETRIC CHANNEL KERNEL

We begin by deducing the kernels for three known multi-
dimensional channels from elementary principles of linear
time-varying (LTV) channels, which is followed by a general
formulation for multi-dimensional asymmetric channel kernel.
These formulations are summarized in Table I. We also
provide a refresher on kernel decomposition using HOGMT to
contextualize the contributions of this work without ambiguity.

A. Channel Kernel Formulation

1) Case 1: MIMO (4-D) Channel Kernel

In LTV, the transmitted signal s(t) is impacted by the
underlying physics of the channel, described by path delays
and Doppler shift to produce the received signal r(t) [10] as,

r(t) =
XP

p=1
hps(t� ⌧p)e

j2⇡⌫pt (1)
where hp, ⌧p and ⌫p are the path attenuation factor, time delay
and Doppler shift for path p, respectively. We omit the noise

term for simplicity. Then (1) is expressed in terms of the
overall delay ⌧ and Doppler shift ⌫ as

r(t) =

ZZ
SH(⌫, ⌧)s(t�⌧)ej2⇡⌫t d⌧ d⌫ (2)

=

Z
h(t, ⌧)s(t�⌧) d⌧ (3)

where SH(⌫, ⌧) is the (Doppler-delay) spreading function,
which describes the combined attenuation factor for all paths
in the delay-Doppler domain. The time-varying impulse re-
sponse h(t, ⌧) is related to SH(⌫, ⌧) as,

h(t, ⌧)=

Z
SH(⌫, ⌧)ej2⇡t⌫ d⌫ (4)

Extending h(t, ⌧) to MIMO case, Hu,u0(t, ⌧) denotes the time-
varying impulse response between the u0-th transmit antenna
and the u-th received antenna. Therefore, the multi-user (or
multi-antenna) version of h(t, ⌧) [13] is a tensor,

H(t, ⌧) =

2

64
H1,1(t, ⌧) · · · H1,u0(t, ⌧)

...
. . .

...
Hu,1(t, ⌧) · · · Hu,u0(t, ⌧)

3

75 (5)

and the received signal in (3) is extended as,
ru(t) =

Z X
u0
Hu,u0(t, ⌧)su0(t� ⌧)d⌧

=

Z X
u0
Ku,u0(t, t0)su0(t0)dt0 (6)

where Ku,u0(t, t0)=Hu,u0(t, t�t0) is the 4-D MIMO channel
kernel following the definition of kernel in [8], [10]. Then, (6)
can be rewritten using the kernel as1,

r(u, t) =

ZZ
KH(u, t;u0, t0)s(u0, t0) du0 dt0 (7)

In general, H(t, ⌧) is asymmetric since the downlink and
uplink channel can not be strictly the same, which makes the
kernel KH(u, t;u0, t0) asymmetric in practice.

2) Case 2: MIMO-OFDM (4-D) Channel Kernel

Proposition 1. The continuous form of OFDM input-output
relation for LTV, in the frequency domain is given by,

r(f) =

Z
b(f, ⌫)s(f � ⌫)d⌫ (8)

where b(f, ⌫)2 is the (frequency domain) transfer function [8].
Further, the continuous form of the input-output relation using
the MIMO-OFDM kernel, KB(u, f ;u0, f 0) is given by,

r(u, f) =

ZZ
KB(u, f ;u

0, f 0)s(u0, f 0) du0 df 0 (9)
1Note that (7) represents the 2-D convolution integral over space and time

DoF at the Tx and Rx, where t0=t�⌧ and u0 are the variables at the Tx.
2(8) is an archaic form of frequency domain input-output relation for LTV

channels in [8], which defines b(f, ⌫) as ”Input Spectrum Output Spectrum
relation”. Since this formulation predates OFDM, we believe that it is
necessary to prove (8) for MIMO-OFDM in LTV channels using contemporary
formulations for OFDM in the literature based on DFT/IDFT.
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Proof. For notational compactness, rewrite (3) in matrix form,
r = hs, where h is the time-domain channel matrix. Then the
frequency domain input-output relation is given by multiplying
both sides by the M-point DFT matrix, FM on both sides.

FMr| {z }
ř

= FMhš = FMhF
H

M| {z }
b

FMs|{z}
š

=) ř = bš (10)

Note that FMhF
H

M
is the SFT of h as shown in Figure 2 and

in [14]. Then the continuous form of b is given by,
b(f, ⌫) =

ZZ
h(t, ⌧)ej2⇡(t⌫�f⌧) dt d⌧ (11)

Meanwhile, both ř and š represent the signals in the frequency
domain. Therefore, using (11) we can derive the OFDM input-
output relation for LTV channels as,

r(f) =

Z
b(f, ⌫)s(f � ⌫)d⌫ (12)

Furthermore, extending b(f, ⌫) to the MIMO case as B(f, ⌫),

ru(f) =

Z X

u0

Bu,u0(f, ⌫)su0(f � ⌫)d⌫ (13)

Similarly, the kernel input-output relation is given as
r(u, f) =

ZZ
KB(u, f ;u

0, f 0)s(u0, f 0) du0 df 0 (14)
This follows in the same spirit as defining (7) using (6).

3) Case 3: MIMO-OTFS (6-D) Channel Kernel

In the literature, OTFS is often written using the Zak
representation [14], [15] of (1) as,
Zr(⌧, ⌫) =

XP

p=1
hpe

j2⇡vp(⌧�⌧p)Zs(⌧ � ⌧p, ⌫ � ⌫p) (15)
where Zr(⌧, ⌫) is the Zak transform of r(t) given by,

Zr(⌧, ⌫) ,
p

T
X

k

r(⌧ + kT )e�j2⇡k⌫T (16)

where T is the symbol duration. Denote r(⌧, ⌫) = Zr(⌧, ⌫)
and s(⌧, ⌫) = Zs(⌧, ⌫) and rewrite (15) as,

r(⌧, ⌫) =

ZZ
hdd(⌧, ⌫; ⌧

0, ⌫0)s(⌧ � ⌧ 0, ⌫ � ⌫0) d⌧ 0 d⌫0 (17)

where hdd(⌧, ⌫; ⌧ 0, ⌫0)d⌧ 0d⌫0 describes the combined path
gains for all paths in the delay and Doppler-shift range
(⌧ 0, ⌧ 0 + d⌧ 0) and (⌫0, ⌫0 + d⌫0) respectively.

Following similar extensions for MIMO as in previous cases
and defining the kernel, (17) is written using the MIMO-OTFS
kernel in the space-delay-Doppler domain as,
r(u, ⌧, ⌫)=

ZZ
KDD(u, ⌧, ⌫;u0, ⌧ 0, ⌫0)s(u0, ⌧ 0, ⌫0)du0d⌧ 0d⌫0

(18)
Interpretation: The received OTFS symbol at an antenna (u)
is the integral of the channel kernel, KDD multiplying all the
OTFS symbols over the space-delay-Doppler domain that are
responsible for IAI and IDI. For a single-path, delay-Doppler
channel, if the Doppler shift and delay are integer multiples

of the time and frequency grids, then the kernel is 0 at other
symbols, meaning there is no IDI [15]. However, this is not
realistic as: 1) The perfect division of time-frequency grids is
not practical; 2) For multi-path delay-Doppler channels, as the
delay and Doppler shifts are different on each path, there is
no common factor satisfying the integer multiple requirement.
Therefore, any practical MIMO-OTFS system will have IDI
and IAI and hence we include that in the kernel formulation.

B. General Multi-dimensional Asymmetric Channel Kernel

Based on the kernel formulations above, the input-output
relation of any wireless channel (without considering noise)
can be modeled as a mapping of the signal at the transmitter
to the signal at the receiver by a channel kernel, K as,
r(⇣1,. . .,⇣P ) =Z
. . .

Z
K(⇣1,. . .,⇣P ;�1,. . .,�Q)s(�1,. . .,�Q)d�1. . .d�Q (19)

where (⇣1,. . .,⇣P ) and (�1,. . .,�Q) are the degrees of free-
dom (e.g., space, time, frequency, delay, Doppler, etc.) at
the receiver and the transmitter, respectively. In general, for
communication systems P=Q. For brevity, henceforth we
denote Z=(⇣1,. . .,⇣P ) and �=(�1,. . .,�Q), rewriting (19) as,

r(Z) =

Z
K(Z;�)s(�) d� (20)

In general, (20) is applicable to any higher-dimensional kernel
that may incorporate joint interference between any number of
DoFs that are unique to a particular communication paradigm
such as scattering angles, polarizations, etc. [27], [28].
Interpretation: At the transmitter the signal, s(Z) is trans-
mitted in Z domain (also the transmitter DoFs), which is
converted to the signal in � domain s(�) during convolution.
The convolution (during propagation over LTV), projects s(�)
on to the channel kernel K, which transfers the signals
to the Z domain (DoF at the receiver) as r(Z) with the
interference across � domain (DoF). Special cases of this
kernel interpretation are seen in (7), (14) and (18).

C. Kernel Decomposition

A generalized version of Mercer’s Theorem, called High
Order Generalized Mercer’s Theorem (HOGMT) has been
recently proposed in [12]. This presents a mathematically
principled approach to decompose multi-dimensional asym-
metric channel kernels like in (20), into low-dimension, jointly
orthogonal eigenfunctions, which is expressed as,

K(Z;�) =
1X

n=1

�n n(Z)�n(�) (21)

where E{�n�0
n
}=�n�nn0 . �n is the n-th eigenvalue and

 n(Z) and �n(�) are orthonormal eigenfunctions, i,e.,Z
�n(�)�

⇤
n0(�)d�=�nn0 and

Z
 n(Z) ⇤

n0(Z)dZ=�nn0 (22)
These eigenfunctions are referred as dual eigenfunctions that
exhibit the important duality property,Z

K(Z;�)�⇤
n
(�) d� = �n n(Z) (23)

This property is critical for using the eigenfunctions as



independent subchannels in practice. (23) suggests that when
one of the eigenfunctions is transmitted through a multi-
dimensional channel kernel, it is transferred to it’s dual
eigenfunction, scaled only the corresponding eigenvalue (or
subchannel gain). Therefore, the orthonormality and duality
of the eigenfunction, unambiguously allows us to design
subchannels in the eigen-domain that achieves independent
flat-fading at the receiver. Note that in this context, each
subchannel is a pair of dual eigenfunctions, �n(�) and  n(Z).

III. LEARNING TO DECOMPOSE CHANNEL KERNEL

A. Kernel Approximation by Finite Eigenfunctions

HOGMT provides us a mathematical tool to decompose any
kernel into an infinite number of eigenfunctions. However,
in reality, we can only utilize a finite number of eigen-
functions to approximate the kernel. To achieve maximum
energy efficiency, it is desirable to use the least number of
eigen components to approximate (most part of) the kernel.
Therefore, the general approximation problem is formulated
as minimizing the number of eigenfunctions, N that limits
the kernel approximation error below some threshold,

argmin
K̂

N s.t kK(Z;�)� K̂(Z;�)k2 < ✏ (24)

where, K̂(Z;�)=
P

N

n=1 knfn(Z)gn(�) is the approximate
kernel, {fn} and {gn} are two sets of arbitrary orthonromal
bases and kn is the projection of the kernel onto the bases.

However, in practice the number of eigenfunctions is fixed.
Then (24) is equivalent to the MMSE problem for a fixed N ,

argmin
K̂

E
�
kK(Z;�)� K̂(Z;�)k2

 
(25)

We solve this problem by proving that the approximate
kernel, K̂ reconstructed from the eigenfunctions obtained
using HOGMT is optimal in MMSE sense, which is given
in Theorem 1. The choice and trade-offs regarding N are
discussed in Section IV and evaluated in Section VI-B.

Theorem 1. (Eigenfunction approximation for asymmetric
kernel) If K(Z;�) be an asymmetric kernel, approximating
it using eigenfunctions decomposed by HOGMT solves (25).

Proof. Denote ✏N = E
�
kK(Z;�) � K̂(Z;�)k2

 
. Then the

total ✏N across all DoF is given by,ZZ
✏N dZ d�

=

ZZ
E
�⇥
K(Z;�)�

NX

n=1

knfn(Z)gn(�)
⇤2 

dZ d�

=

ZZ
E
�⇥
K(Z;�)

⇤2 
dZ d��

NX

n=1

E
�
k2
n

 
(26)

As the first term is unrelated to the choice of {fn} and {gn},
the problem in (25) is equivalent to maximizing the second
term in (26) with the following constraints,

argmax
{fn},{gn}

NX

n=1

E
�
k2
n

 

s.t. hfn, fn0i=�nn0 , hgn, gn0i=�nn0

(27)

Now, since by definition, kn is the projection of the kernel
onto the bases, we rewrite the objective function in (27) as,

NX

n=1

E
⇢ZZ

K(Z;�)f⇤
n
(Z)g⇤

n
(�) dZ d�

�2�
(28)

Since maximizing a squared term is equivalent to maximizing
its absolute value, we introduce a Lagrangian multiplier 1

2�n
associated with the constraint for fn and maximize E as,

E =
NX

n=1

E
⇢����

ZZ
K(Z;�)f⇤

n
(Z)g⇤

n
(�) dZ d�

�
1

2
�n

✓Z
fn(Z)f⇤

n
(Z) dZ � 1

◆����

�
(29)

Differentiating with respect to each f⇤
n

and setting the deriva-
tive to 0 yields,

@E

@f⇤
n
(Z)

=

E
⇢����

Z ✓Z
K(Z;�)g⇤

n
(�) d�� �nfn(Z)

◆
dZ

����

�
= 0

(30)
which is satisfied whenZ

K(Z;�)g⇤
n
(�) d�=�nfn(Z) (31)

(31) proves that the dual eigenfunctions obtained from
HOGMT with the property in (23) is indeed a solution to
the problem posed in (25) 3.

The symmetric channel kernel is a special case of the
asymmetric case. Therefore, Theorem 1 has a degenerate
case for approximating symmetric kernels using the Mercer’s
theorem [24] as shown in Corollary 1.

Corollary 1. (Degrade to the symmetric case) Specifically,
if the kernel K(Z;�) is symmetric, then decomposing by
Mercer’s theorem minimizes the kernel approximation error.

Proof. For a symmetric kernel, we have the decomposition,

K̂(Z;�)=
NX

n=1

knfn(Z)fn(�) (32)

Following the steps in proof of Theorem 1, we haveZ
K(Z;�)f⇤

n
(�) d�=�nfn(Z) (33)

which is the very definition of the eigenfunction fn, hence
suggesting (32) approximated by Mercer’s theorem resulting
in MMSE of the approximate kernel K̂.

Since, Theorem 1 generalizes Corollary 1, we always con-
sider asymmetric kernel in our analysis, unless otherwise
specified. It also shows that the approximate kernel defined
by finite number of eigenfunctions decomposed by HOGMT
is optimal. This satisfies the optimality requirement highlighted
in Section I. Theorem 1 also paves the way towards a compu-
tationally tractable method to extract these eigenfunctions in
practice. Unlike time-invariant channels, where complex expo-
nentials are eigenfunctions and easily implemented by Fourier

3Note that introducing Lagrangian multiplier for gn and deriving with
respect to each g⇤n results in the dual form of (31) which reinforces the
duality property of fn and gn, leading to the same proof of optimality.



methods, there are no fixed eigenfunctions for general LTV
channels. This has been one of the impediments for practical
implementations [16]. Therefore, empowered by Theorem 1,
we postulate that a neural network that minimizes the MSE
of the approximate channel kernel is guaranteed to produce
output that converges to finite set of eigenfunctions. This
makes the proposed NN-based implementation of HOGMT
explainable, another desired property mentioned in Section I.

B. HOGMT-NN: Neural Network for HOGMT

As postulated above, we design a NN called HOGMT-NN
whose outputs converge to finite number eigenfunctions ob-
tained by HOGMT. This is made possible by formulation of a
regularized loss function for the NN as shown in Corollary 2.

Corollary 2. (Equivalent NN for HOGMT) HOGMT-NN min-
imizes the regularized MSE loss in (34),

L=J+⌦1+⌦2 (34)

where, J=
1

B

BX

b=1

kKb �
P

N

n=1 �̂n,b�̂n,b ⌦  ̂n,bk
2

kKbk
2

(35)

⌦1=P1
1

B

BX

b=1

NX

n=1

NX

n0 6=n

|h�̂n,b, �̂n0,bi| (36)

⌦2=P2
1

B

BX

b=1

NX

n=1

NX

n0 6=n

|h ̂n,b,  ̂n0,bi| (37)

such that the outputs {�̂n,b}
N

n=1 and { ̂n,b}
N

n=1 converge to
eigenfunctions of the kernel Kb, while �̂n,b = �̂2

n,b
converge

to eigenvalues. P1 and P2 are the penalty coefficients and B
is the batch size. ⌦ denotes Kronecker product.

Proof. From Theorem 1 we learned that an arbitrary set of
orthogonal bases must be eigenfunctions, in order to approxi-
mate a channel kernel in MMSE sense. A careful observation
reveals that the MMSE problem in (25) is equivalent to the
MSE loss function, J and the corresponding orthogonality
constraints are equivalent to the regularization factors ⌦1 and
⌦2 of HOGMT-NN. Therefore, the output of HOGMT-NN must
converge to finite (N ) eigenfunctions and eigenvalues of the
input kernel Kb.

C. Complexity Analysis

Table II compares the complexity of eigen decomposition
methods. SVD and DNN for SVD are designed to
decompose 2-D matrices only. Given a M1 ⇥ M2

matrix, their complexity is O(min(M1M2
2 ,M

2
1M2)) and

O(max(N2M1M2, N2M2
1 , N

2M2
2 )), respectively, where

N is the number of output eigenvectors. While High-
Order SVD (HOSVD) is used in HOGMT [12] and the
proposed HOGMT-NN also decomposes multi-dimensional
tensors. The complexity of HOSVD is approximately
O(NdL3), where Nd is the order of dimensions and M
is the maximum length of dimensions for the unfolding
matrix [29]. Given a M1⇥M2⇥M3⇥M4 tensor, Nd=4
and M=max(M1M2M3,M1M2M4,M2M3M4). The

Table II: Comparing complexity of eigen decomposition

Eigen decomposition Time complexity
SVD [30] O(min(M1M2

2 ,M
2
1M2))

DNN for SVD [23] O(max(N2M1M2, N2M2
1 , N

2M2
2 ))

HOSVD [29] O(NdM3)

HOGMT [12] O(min(M1M2(M3M4)2, (M1M2)2M3M4))

HOGMT-NN O(NNLNM )

relationship between SVD, HOSVD and HOGMT is shown in
Lemma 3 of [12], where the implementation unfolds SVD with
the complexity O(min(M1M2(M3M4)2, (M1M2)2M3M4)).
Since, HOGMT-NN use fully connected architecture
(Section V), the time complexity is O(NNLNM ), where NL

is the number of layers. NM is the twice number of elements
contained in the tensor for complex-valued NN. Given the
above tensor, we have NM=2M1M2M3M4. As NM is
much less than M3, HOGMT-NN has less complexity than
HOSVD. Meanwhile, for a fixed number N and NL, we have
O(NNLNM )<O(min(M1M2(M3M4)2, (M1M2)2M3M4))
because the complexity of HOGMT-NN increases at a much
slower rate than HOGMT by unfolding SVD with respect to
the increasing size of the input tensor.

IV. COMMUNICATING USING EIGENWAVES

The concepts in Section II-C and the subsequent discussions
provide a principled approach to combine all the DoF of
the channel, embodied in its kernel, into one eigen-domain,
which is simply an alternate view of the multi-dimensional
channel. The eigen-domain is then divided into independent
subchannels, called eigenwaves, a term introduced in Sec-
tion I. Therefore, multiplexing data-symbols using eigenwaves
achieve full diversity in eigen-domain, which implies that the
scheme also achieves full diversity gain along each DoF.

Figure 3a shows transmitting signals over a 6-D channel
kernel. The ”transmission domain” may involve physical pro-
cessing blocks where signals are convolved over the multi-
dimensional channel. Since the DoF at the Tx and Rx are
the same, the transmitted symbols, x(u0, ⌧ 0, ⌫0) (different from
baseband modulated symbols) are arranged in a 3-D grid. This
3-D grid integrates over the 3-D kernel block (blue) across
its DoF (u0, ⌧ 0, ⌫0) during convolution and produces a (blue)
cube in the received 3-D symbol grid. To obtain each cube
across the DoF (u, ⌧, ⌫) at the receiver, the 3-D block kernel
with DoF (u0, ⌧ 0, ⌫0) should be arranged across DoF (u, ⌧, ⌫)
leading to a 6-D kernel tensor.

Decomposing the kernel into eigenwaves and multiplexing,
data-symbols, {sn} are transmitted over independent parallel
subchannels in the ”eigen-domain” as shown in the figure.
Figure 3b on the other hand, presents an implementation view
using HOGMT-NN for decomposing the kernel, obtained from
the Channel State Information at the Transmitter (CSIT). It
also shows the process of multiplexing and demultiplexing to
convert the baseband data-symbols between the transmission
and the eigen-domain, discussed in Sections IV-A and IV-B.

Note that, in Section III, we learned that HOGMT-NN
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Figure 3: Two views of eigenwave multiplexing: a) Transmission / Eigen-domain view of a 6-D MIMO-OTFS channel kernel
with u=u0=3, ⌧=⌧ 0=3, ⌫=⌫0=3; b) System view for practical implementation with HOGMT-NN

approximates the kernel by a finite number of eigenwaves (N )
ordered by descending eigenvalues. Therefore, transmitting
signals over eigenwaves with top-N eigenvalues achieve the
highest subchannel gains (�n). A large value of N will
increase the complexity of HOGMT-NN and utilize lower-
ranked eigenwaves (lower subchannel gain), which in turn
increases the BER. On the other hand, a small N will reduce
the throughput. There are multiple strategies for choosing N
with respect to different priorities such as memory, complexity,
BER or throughput. This trade-off is evaluated in Section VI.

A. Eigenwave Multiplexing

At the transmitter, the generic symbols x(Z) is obtained by
multiplexing the data symbols {sn} and eigenwaves {�⇤

n
(Z)}

corresponding to the Z DoF as,

x(Z) =
NX

n=1

sn�
⇤
n
(Z) (38)

The orthogonality and duality of the eigenfunctions, ensure
that the data symbols remain orthogonal from each other after
transmission over the multi-dimensional channel, while the
corresponding eigenwaves are transferred to its dual eigen-
waves by the kernel. Considering infinite eigenfunctions for
the kernel (real channel) but finite number for the transmitted
signal (practical case), and no noise (for brevity), the signal at
the receiver with � DoF is given by the convolution integral
(see the interpretation in Section II-B),

r(Z) =

Z
K(Z;�)x(�) d�

=

Z ⇢ 1X

n=1

�n n(Z)�n(�)

| {z }
decomposed kernel

NX

n0=1

sn0�⇤
n0(�)

| {z }
transmitted symbols

�
d�

=

Z ⇢ NX

n=1

�nsn n(Z) |�n(�)|
2

| {z }
=1

+
1X

n=1

NX

n0 6=n

�nsn0 n(Z)�n(�)�
⇤
n0(�)| {z }

=0

�
d�

=
NX

n=1

�nsn n(Z) (39)

Therefore, (39) shows that the received signals is essentially a
projection of the baseband symbols on the eigenspace spanned
by the eigenfunctions {�n} and the channel transfers it to its
dual eigenfunction { n}, scaled by gain of parallel subchannel
{�n}. In this process the data-symbols {sn} are still kept
independent in the eigen-domain and can be recovered by a
demultiplexing process as shown in Figure 3a.

B. Eigenwave Demultiplexing

At the receiver, the received signal r(Z) is projected back
to the baseband signal space by multiplying with the conjugate
of the dual eigenwave,

ŝn =

Z
r(Z) ⇤

n
(Z) dZ=

Z NX

n0=1

�n0sn0 n0(Z) ⇤
n
(Z) dZ

=

Z
�nsn| n(Z)|2 dZ = �nsn (40)

The symbol ŝn is an estimate of the original transmitted data
symbol, scaled by the channel gain without any interference
from other symbols along all the DoF. This is precisely the
property of a matched filter but using eigenwaves of the CSIR
decomposed by HOGMT-NN, which is highlighted in Figure 3b
as ”Eigenwave Matched Filter”. Although, we assume perfect
channel estimation and CSIT=CSIR, it is not the focus of
this work. Also, the CSIT and CSIR errors are equivalent
to the approximation error of {�̂n} and { ̂n} obtained from
HOGMT-NN, which is discussed in Sections IV-C and VI.

C. Symbol Error Analysis

Ideally, all the eigenfunctions are strictly orthogonal and
joint interference is fully canceled as in (40). However, in
practice there exist approximation errors at the output of
HOGMT-NN, resulting in a correlation (non-orthogonality)
between eigenfunctions. This can also result from any error
in CSIT. Consequently, using the correlated eigenfunctions for
demultiplexing are not perfectly matched with the duals used



for multiplexing, leading to symbol error in the transmission-
domain. So, (40) can be rewritten as,

ŝn = �̂nsn +
NX

n0 6=n

�̂n0sn0R
 ̂n0  ̂⇤

n
(41)

where R
 ̂n0  ̂⇤

n
=
R
 ̂n0(Z) ̂⇤

n
(Z)dZ is the correlation of  ̂n

and  ̂n0 , i.e., { ̂n} are not orthogonal. When if R
 ̂n0  ̂⇤

n
6=0

it serves as a measure of interference from other symbols.
Although from (41) it may appear that the interference is
only expressed by the orthogonality of { ̂n}, it is also related
to that of {�̂n}. Since the approximate eigenfunctions at
the output of HOGMT-NN also possess the duality property
according to Theorem 1, it is impossible to obtain orthogonal
{ ̂n} from non-orthogonal {�̂n} and vice-versa. Therefore,
like dual-orthogonality, dual non-orthogonality also impacts
multiplexing and demultiplexing in a similar manner.

V. HOGMT-NN IMPLEMENTATION

Based on the specifications detailed in Section III-B, we
implement HOGMT-NN with a clean state approach. The
novelty of the underlying method does not provide any base-
line NN model. So, we start with a fully-connected NN to
keep computational complexity as low as possible without
compromising the quality of the decomposition. It is also
evident from Section III-B that the size of the input and
output layers are dictated by the dimension of the channel
kernel and the number of finite eigenfunctions used to perform
eigenwave multiplexing. Both of these can be considered as
hyperparameters and need to be decided prior to training the
NN. In Section VI we explore the performance of HOGMT-NN
for different values of N and kernel dimensions.
Choice of the kernel for evaluation: We know that the
transmission-domain for both MIMO-OTFS and MIMO-
OFDM is ultimately in the space-time domain:

MIMO-OTFS: s(u, ⌧, ⌫)SFT�!s(u, t, f)
IDFT
�! s(u, t)

MIMO-OFDM: s(u, f)IDFT
�! s(u, t)

Therefore, for generality, we choose to evaluate HOGMT-NN
using the ”rapidly time-varying MIMO channels”, with the
kernel, KH(u, t;u0, t0) given in the first row of Table I. Since,
HOGMT-NN can handle tensors, HOGMT-NN is able to learn
the variation in the time domain. Also, to understand the
decomposition with changing statistics [23] the kernel is also
non-stationary. This is further explained in the dataset gener-
ation section below. Note that the choice of KH(u, t;u0, t0)
is primarily for practicality. In general, HOGMT-NN does not
constrain the dimensions of the input kernel as per Theorem 1.

A. Neural Network Architecture

Figure 4a shows the architecture of HOGMT-NN for decom-
posing the channel kernel KH(u, t;u0, t0)2CNu⇥Nt⇥Nu0⇥Nt0 .
It consists of 4 fully connected layers with number of pa-
rameters, L,Nu⇥Nt⇥Nu0⇥Nt0 . Prior to input we split the
real and imaginary parts and arrange as vectors in R2L. For
N eigenwaves, the total number of parameters for the output
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Figure 4: NN architecture and statistics of channel between
the first antenna pair (u=u0=1) in the dataset

components {�̂n, �̂n,  ̂n}
N

n=1 is Ñ,N(1+NuNt+Nu0Nt0).
The sizes of the input, first hidden, second hidden, and the
output layers are 2L, 2L, L̃,L+Ñ , and 2Ñ , respectively.
To capture negative values of the real and imaginary parts of
the kernel, LeakyRelu activation function is used. HOGMT-NN
is trained using the Adam optimizer with a learning rate
of 1⇥10�5 and mini-batch size is B=16 for all tests. For
each data sample, the real and imaginary parts are combined
and reshaped to 2-D matrix to conform to the dimension
of the transmission-domain. Then, the loss function J and
constraints ⌦1 and ⌦2 are calculated according to (35), (36)
and (37), respectively.

B. Data Generation

To train the complex-valued channel kernel KH(u, t;u0, t0),
we generated 5120 time-varying MIMO channel kernels. Each
kernel is with Nu⇥Nu0 antennas for Nt=Nt0 moments (sym-
bols), where Nu=Nu0=4 and Nt=Nt0=5 in our work. The
delay taps are randomly generated in the interval [3 5]. The
distribution of Power Delay Profile (PDP) at each moment
of the generated kernel changes over time as shown in Fig-
ure 4b for one antenna pair. A training-test split of 80%-
20% is used to evaluate the model. The code is available at
https://anonymous.4open.science/r/NNs-based-EM-D6CD.

VI. RESULTS

A. HOGMT-NN Accuracy

For implementation, we set the same penalty for the reg-
ularization terms, i.e., P1=P2=P . Unlike algebraic eigen-
decomposition methods that result in strict orthogonal eigen-
vectors, eigenwaves obtained by HOGMT-NN only have soft
orthogonality, based on the efficacy of the NN. So, we define
a measure for soft orthogonality,

Definition 1. Soft orthogonality of the normalized basis func-
tion {en} is defined as

O(e) =
1

N(N � 1)

NX

n=1

NX

n0 6=n

|hen, en0i| (42)

where the best case is O(e)=0, meaning the bases is strictly
orthogonal and the worst case is O(e)=1, indicating all the
bases are the same. Specifically, we denote O(�̂) and O( ̂)
as the soft orthogonality of {�̂n} and { ̂n}, respectively.
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Figure 5: Performance of HOGMT-NN and top-N eigenwave multiplexing: (a)-(c) show the total loss L, soft orthogonality
O(�̂) and O( ̂) defined by (42) for N=10 with penalties P=0.01 and 0.02 over 500 epochs. (d) BER of top-N eigenwave
multiplexing for N=10 over SNR and O( ̂); (e)-(g) L, O(�̂) and O( ̂) for N=15 with P=0.005 and 0.01; (h) BER for
N=15; (i)-(l) L, O(�̂) and O( ̂) for N=20 with P=0.0001 and 0.005; (h) BER for N = 20.

Figures 5a-5c, Figures 5e-5g and Figures 5i-5k compare
the performance of HOGMT-NN. For all the different values of
N and P , HOGMT-NN first learns to satisfy the orthogonality
constraints of eigenwaves, which quickly fall down to near 0
over the first few epochs as shown in Figures 5b, 5c, 5f, 5g, 5j
and 5k. Since, P is small, this sudden and large drop leads
to a small decrease in the total loss in Figures 5a, 5e and 5i.
Following this, the total loss and soft orthogonality measures
for all the cases remain constant for a while until O(�̂) and
O( ̂) increase while L drops at the same time as shown, which
indicates that the orthogonality constraints are being relaxed
to lower L. Subsequently, both constraints follow similar
behavior; either both are orthogonal or both non-orthogonal,
which validates the discussion in Section IV-C.

When P is small in (34), J⇡L, since the total loss is
dominated by J . Also, from (27) we know that minimizing
J is equivalent to maximizing the sum of eigenvalues. This
negative proportionality between J and the total sum of the
eigenvalues, leads to an interesting observation. In Figure 5a,
J⇡L converges to ⇡0.3. This indicates that the sum of the
eigenvalues, also a measure of the total transmit power, of

the eigenwaves produced by HOGMT-NN in these two cases is
approximately 70% of the maximum possible value. Therefore,
from an eigenwave multiplexing stand-point, this means that
by transmitting signals with less power we incur a SNR
penalty of ⇡10 log10(0.7)=�1.5 dB at the receiver to achieve
the same BER, compared to the ideal case of transmitting
infinite eigenwaves. We believe that this small penalty is neg-
ligible compared to the gains obtained from higher throughput
and model/receiver complexity (reduced processing, memory,
and power), which would not have been possible by any other
contemporary methods in a non-stationary LTV channel. We
also find that for N=15 and 20, L is extremely small but
it also increases the soft orthogonality measure, subsequently
increasing the residual interference as shown in (41). This
indicates that the choice of N provides a clear trade-off
between penalties of SNR and residual interference.

B. Top-N Eigenwaves Multiplexing

To evaluate the accuracy of eigenwave multiplexing using
the kernel in Section V-B. The throughput is calculated for
Bw=20 Mhz and data-symbols are QPSK modulated. Fig-



Figure 6: Throughput for N=10, 15, 20

ures 5d, 5h and 5l compare the BER for N=10, 15 and 20
with varying SNR and O( ̂). Note that though {�̂n} affect
{ ̂n} and have a same behavior, { ̂n} directly contributes
to estimate symbols {ŝn} as in (41). Therefore we use O( ̂)
instead of O(�̂) as the reference. For both cases, the BER
decreases with SNR but increases with O( ̂) because higher
values of O( ̂) indicate more residual interference from other
symbols. The ideal case for eigenwave multiplexing is the
horizontal line at O( ̂)=0, meaning there is no interference
and the estimated symbol is the symbol scaled by the channel
gain with AWGN as shown in (40). Meanwhile, with larger N ,
the BER performance is worse. For the same channel kernel,
as the eigenwaves are descending ordered, the top-ranked
eigenwaves have the higher eigenvalues. Large values of N
will force the multiplexing to use lower-ranked eigenwaves
with lower eigenvalues as well, which enhances the noise at
the receiver and consequently increase the BER.

Figure 6 compares the throughput for N=10, 15 and 20. For
each N , the throughput has the same trend as the BER, with
respect to SNR and O( ̂). However, the throughput increases
with a N , which has the opposite trend from BER. The
reason being that by using more eigenwaves, more symbols
are multiplexed and transmitted during the same time interval.
Therefore, there is clear trade-off between the BER and the
throughput with respect to N .

VII. DISCUSSIONS

HOGMT-NN has to retrain for different N . Theoretically,
N is adaptive for different scenarios. For example, the error
rate for M-QAM modulated symbol transmitted over the eigen
subchannel with channel gain �N is given as

Pr(M, �s,�N ) ⇡ 4Q

✓
�N

r
3�s

M � 1

◆
(43)

where �s is the SNR. Then N is chosen as the largest integer
satisfy the constraint Pr(M, �s,�N ) < �, i.e.,

�N >
Q�1(�4 )q

3�s
M�1

(44)

which means the error probability of the symbol that is
transmitted over the N -th eigenwave should be less than the
desired quality �. This is akin to adaptive modulation and

coding in modern systems. This requires an ”adaptive NNs”
that will output eigenwaves until the eigenvalues are less than
a threshold in (44) that is set based on �s, M and �.

VIII. CONCLUSION

In this paper, we formulate a generic multi-dimensional
asymmetric channel kernel for MIMO, MIMO-OFDM and
MIMO-OTFS channels and prove the optimality of HOGMT
approximation for this generic kernel. Based on this, we design
low-complexity, fully connected and explainable HOGMT-NN
for decomposing the channel kernel into eigenwaves jointly
orthogonal cross all the DoF. Then we proposed an eigen-
wvae multiplexing method, where symbols multiplexed by
decomposed eigenwaves can independently transmit over the
subchannels in the eigen-domain, thereby mitigating the in-
terference across all the DoF. The performance with respect
to the approximation error is analyzed and evaluated. The
result shows that eigenwaves decomposed by HOGMT-NN can
achieve around 0.001 soft orthogonality for N=10. Multiplex-
ing using those achieves near-ideal BER and Throughput.

IX. RELATED WORK

Communications in multi-dimensional channels: The input-
output relations and analysis of MIMO-OTFS systems can be
found in [31], [32], which can be transferred to the kernel
expression as deduced in Section II-A3. The MIMO-OTFS
channel estimation is investigated in [33]–[36]. These methods
provide the CSI as the input to HOGMT-NN. The equalization
techniques for MIMO-OTFS are discussed in [37]–[39]. How-
ever, those techniques treat the interference in the space do-
main and delay-Doppler domain separately, failing to achieve
joint orthogonality. A jointly spatio-temporal precoding for
multi-dimensional channels is presented in [12]. However, this
technique utilizes eigenfunctions to construct the whole signal
instead of transmitting symbols separately, which makes it
highly energy-consuming and sensitive to CSI errors.
Eigen Approximation Problem: There are some the-
oretical works analyzing eigen approximation problems.
Karhunen–Loève Theorem (KLT) approximation is proven to
be optimal for the random process approximation by finite
eigenfunctions in [40]. Eckart–Young–Mirsky Theorem shows
that SVD is optimal for low-rank matrix approximation [41].
Nyström approximation [42] shows rank-k approximation us-
ing SVD is optimal for Symmetric Positive Semi-Definite
(SPSD) matrix. However, there is no optimality analysis for
eigenfunction approximation for multi-dimensional asymmet-
ric kernels in the literature. For the implementation of eigen
approximation, [23] present black-box NNs for SVD decom-
position, which is applicable for matrices. [43] proposed a NN-
based method for extracting eigenfunctions based on Mercer’s
Theorem However, it fails to show the optimality of eigen
approximation and is only applicable for symmetric kernels.
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Luna-Rivera, D. U. Campos-Delgado, and R. Velázquez, “A non-wssus
channel simulator for v2x communication systems,” Electronics, vol. 9,
no. 8, 2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/
8/1190

[26] A. A. Khuwaja, Y. Chen, N. Zhao, M.-S. Alouini, and P. Dobbins, “A
survey of channel modeling for uav communications,” 2018.

[27] C. Guo, F. Liu, S. Chen, C. Feng, and Z. Zeng, “Advances on Exploiting
Polarization in Wireless Communications: Channels, Technologies, and
Applications,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 1, pp. 125–166, 2017.

[28] A. Ali, E. De Carvalho, and R. W. Heath, “Linear receivers in non-
stationary massive MIMO channels with visibility regions,” IEEE Wire-
less Communications Letters, vol. 8, no. 3, pp. 885–888, 2019.

[29] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[30] G. H. Golub and C. F. van Loan, Matrix Computations, 4th ed. JHU
Press, 2013. [Online]. Available: http://www.cs.cornell.edu/cv/GVL4/
golubandvanloan.htm

[31] M. Kollengode Ramachandran and A. Chockalingam, “MIMO-OTFS
in High-Doppler Fading Channels: Signal Detection and Channel Esti-
mation,” in 2018 IEEE Global Communications Conference (GLOBE-
COM), 2018, pp. 206–212.

[32] A. RezazadehReyhani, A. Farhang, M. Ji, R. R. Chen, and B. Farhang-
Boroujeny, “Analysis of Discrete-Time MIMO OFDM-Based Orthog-
onal Time Frequency Space Modulation,” in 2018 IEEE International
Conference on Communications (ICC), 2018, pp. 1–6.

[33] S. Srivastava, R. K. Singh, A. K. Jagannatham, and L. Hanzo, “Delay-
Doppler and angular domain 4D-sparse CSI estimation in OTFS aided
MIMO systems,” IEEE Transactions on Vehicular Technology, vol. 71,
no. 12, pp. 13 447–13 452, 2022.

[34] R. Bomfin, M. Chafii, A. Nimr, and G. Fettweis, “Channel estimation
for MIMO space time coded OTFS under doubly selective channels,”
in 2021 IEEE International Conference on Communications Workshops
(ICC Workshops). IEEE, 2021, pp. 1–6.

[35] S. Srivastava, R. K. Singh, A. K. Jagannatham, A. Chockalingam, and
L. Hanzo, “OTFS transceiver design and sparse doubly-selective CSI
estimation in analog and hybrid beamforming aided mmWave MIMO
systems,” IEEE Transactions on Wireless Communications, vol. 21,
no. 12, pp. 10 902–10 917, 2022.

[36] D. Shi, W. Wang, L. You, X. Song, Y. Hong, X. Gao, and G. Fettweis,
“Deterministic pilot design and channel estimation for downlink massive
MIMO-OTFS systems in presence of the fractional Doppler,” IEEE
Transactions on Wireless Communications, vol. 20, no. 11, pp. 7151–
7165, 2021.

[37] H. Qu, G. Liu, M. A. Imran, S. Wen, and L. Zhang, “Efficient channel
equalization and symbol detection for MIMO OTFS systems,” IEEE
Transactions on Wireless Communications, vol. 21, no. 8, pp. 6672–
6686, 2022.

[38] B. C. Pandey, S. K. Mohammed, P. Raviteja, Y. Hong, and E. Viterbo,
“Low complexity precoding and detection in multi-user massive MIMO
OTFS downlink,” IEEE transactions on vehicular technology, vol. 70,
no. 5, pp. 4389–4405, 2021.

[39] B. Cao, Z. Xiang, and P. Ren, “Low complexity transmitter precoding
for MU MIMO-OTFS,” Digital Signal Processing, vol. 115, p. 103083,
2021.

[40] J. Brown, Jr, “Mean square truncation error in series expansions of
random functions,” Journal of the Society for Industrial and Applied
Mathematics, vol. 8, no. 1, pp. 28–32, 1960.

[41] G. W. Stewart, Matrix Algorithms: Volume II: Eigensystems. SIAM,
2001.

[42] C. Williams and M. Seeger, “Using the Nyström Method to Speed
Up Kernel Machines,” in Advances in Neural Information Processing
Systems, T. Leen, T. Dietterich, and V. Tresp, Eds., vol. 13. MIT
Press, 2000. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2000/file/19de10adbaa1b2ee13f77f679fa1483a-Paper.pdf

[43] Z. Deng, J. Shi, and J. Zhu, “Neuralef: Deconstructing kernels by deep
neural networks,” in International Conference on Machine Learning.
PMLR, 2022, pp. 4976–4992.


