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Abstract—Eigenfunctions are widely used to characterize ker-
nels in many data-driven analyses. In machine learning, eigen-
function decomposition is primarily based on Mercer’s theorem,
which requires the kernel to be symmetric. This is difficult
to satisfy in communication systems as the channel kernel is
usually asymmetric due to the different downlink and uplink
propagation environments. High Order Generalized Mercer’s
Theorem (HOGMT) provides a principled way to decompose
any multi-dimensional asymmetric kernel into eigenfunctions. To
manage the complexity of the eigen-decomposition, we propose
an equivalent Neural Network (NN) for decomposing a gen-
eral channel kernel. This is further improved by applying the
Augmented Lagrangian Method (ALM) to reduce the training
time and parameter tuning, which avoids additional tuning
rounds when the size of the kernel or the number of eigen-
components change depending on the wireless environment. We
validate the adaptability of the proposed NN and its accu-
racy using simulations in PyTorch. The code is available at
https://github.com/ZBZouw/HOGMT-ALM/tree/main.
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I. INTRODUCTION

Eigen-decomposition is at the core of many communication
system problems such as equalization, channel characteriza-
tion and Channel State Information (CSI) feedback. In the
Multiple-Input Multiple-Output (MIMO) systems, Singular
Value Decomposition (SVD)-based precoding decomposes the
spatial channel matrix into eigenvectors that are used as
parallel channels to achieve sum rate capacity [1]. However,
spatial channel matrices fail to capture joint interference
over multiple dimensions'. Therefore, in Linear Time-Varying
(LTV) channels designing waveforms using eigenfunctions of
the channel is known to be optimal [2]. However, eigen-
decomposition by Mercer’s theorem is only limited to the
symmetric kernels 2, which is not always satisfied as the
wireless channel kernel is a random operator [5].

Multi-dimensional Kkernels and its decomposition: The
general wireless channel is represented as an asymmetric
kernel from first principles [6], [7], which reflects the map-
ping relation from the transmitter and the receiver. Recently,
High Order Generalized Mercer’s Theorem (HOGMT) [8] has
been proposed as a mathematical technique to decompose
multi-dimensional asymmetric kernel into jointly orthogonal

Tn the context of the channel representation, multi-dimension includes
time, space, frequency, delay-Doppler domains, etc.

2A kernel satisfying K (z,y)=K (y, z) is considered as symmetric. Oth-
erwise, it is an asymmetric kernel [3], [4].
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Figure 1: Partial representations of the spatio-temporal chan-
nel, and the decomposed spatio-temporal eigenfunctions.

eigenfunctions. This enables precoding and modulation using
eigenfunctions to transmit symbols over independent orthog-
onal subchannels in the eigen-domain, avoiding interference
from other symbols across all the DoF. Figure 1 shows an
example of eigen-decomposition by HOGMT, where “time-
domain” shows the time-delay profile, the space-domain shows
the channel gain between MIMO antennas and the space-
time-domain shows the delay profile across antennas. Unlike
1-dimensional eigenvectors in the MIMO (spatial) channel
matrix, the spatio-temporal eigenfunctions are represented by
2-dimensional waveforms to achieve joint orthogonality in the
time-space-domain. In contrast to Fourier bases, commonly
used in OFDM and OTFS, eigenfunctions are not pre-defined,
resulting in the following open problem [5, Chapter 2.5]:
“Eigenfunctions are strictly unstructured, which makes them
computationally expensive for practical purposes.”

Neural Network (NN) offers a distinct edge over linear
methods as it inherently captures non-linear relationships
among hidden variables with practical computational complex-
ity. This encourages us to adopt NNs for the implementing
eigen-decomposition by HOGMT. Current NN-based eigen-
decomposition methods are based on Mercer’s theorem or
SVD, which provide eigenfunctions of symmetric kernels
or the eigenvectors of a spatial channel matrix [9]. Conse-
quently, these methods are incapable of decomposing multi-
dimensional asymmetric channel kernels, as seen in rapidly
time-varying MIMO channel kernels, MIMO-OFDM channel
kernels, MIMO-OTFS channel kernels [10]. Meanwhile, exist-
ing NNs often treat constraints of a given optimization problem
as a fixed penalty, which suffer from exhaustive tuning when



the size of the channel kernel and the number of eigenfunctions
change. In this work, we adopt the Augmented Lagrangian
Method (ALM) [11] to automatically adapt the Lagrange
multiplier during the training process, making the NN adapt
to various wireless scenarios. Therefore, the contributions of
this paper are as follows:

« We design a baseline NN (HOGMT-Base) to decompose
multi-dimensional channel kernels based on HOGMT.

« We improve the baseline model to HOGMT-ALM by
incorporating ALM to adapt to different kernel types and
number of eigenfunctions.

« We provide a complexity comparison with the SoTA to
show the efficiency of HOGMT-ALM.

o« We define a metric, soft orthogonality to measure the
degree of the orthogonality of the eigenfunctions. This is
used to evaluate the accuracy of the models in PyTorch.

II. PRELIMINARIES AND BACKGROUND
A. General Channel Kernel

The time and space-domain continuous input-output rela-
tions for LTV channel [12] is given by,

r(t):/g(t,r)s(t—r) dr: r(u):/h(u,k)s(u—k) dk (1)

where ¢(¢,7) and h(u, k) are transfer functions in the time and
space-domains. By Fourier transform, the time-domain can be
transferred to the frequency-domain resulting in the transfer
function for OFDM. However, the general form of the input-
output relation of LTV channels is expressed as,

Z):/H(Z;F)s(Z—F) dF:/K(Z; Z)s(2") dZ' (2)

where H(Z;T') is the multi-dimensional transfer function
(e.g., in the time-varying MIMO channel: (Z;")=(u, t; k, 7),
while in the MIMO-OFDM system, (Z;1)=(u, f;k,v)).
K(Z,Z'\=H(Z,Z—Z') is the general channel kernel as de-
fined in [6], [12]. Note that K (Z, Z') is considered asymmet-
ric for the general channel, i.e., K(X,Y)£AK(Y, X).

B. High Order Generalized Mercer’s Theorem

Kernel decomposition Mercer’s theorem is formulated as,

= Abn(t)en(t) 3)

where, ¢,, denotes the eigenfunction and ), is the corre-
sponding eigenvalue. HOGMT generalizes Mercer’s Theorem
to multi-dimensional asymmetric kernels in (2), into low-
dimension, jointly orthogonal eigenfunctions expressed as,

Zonwn

where E{c,0,}= )\n(;,m/. )\n is the n-th eigenvalue and
¥, (Z) and ¢,,(Z’) are orthonormal eigenfunctions, i,e.,

/qbn 242 b [0n(2)0

)on(Z') “)

2)dZ=6pn (5)

These eigenfunctions are referred as dual eigenfunctions that
exhibit the important duality property,

/KZZ

This property indicates that the eigenfunctions are trans-
ferred to their dual eigenfunction scaled only by the channel
gains when transmitting over the channel.

ZI) dZ/_O'nQZ}n( ) (6)

C. Augmented Lagrangian Method

ALM [11] is an adaptive technique to solve an equality-
constrained optimization problem. Consider an optimization

problem under M constraints
minimize F(x) st.:e(x)=0, Vi=1,2,....,.M (7)

where €R"™. The corresponding Lagrangian function is,
M
L(z,0)2F(z) + > ajci(x) (8)
i=1
where a £ [a1,ag,...,ap|" are the Lagrange multipliers.
ALM modifies (7) in to the following problem,

o I 9
minimize F'(z) + =||c(x
(@ + 5 le(a)] o
subject to: ¢;(x)=0, Vi=1,2,..., M
where, " is the penalty parameter and
c(x)2[c1(x), ca(),...,ear(z)]T€ERM.  Therefore,  the
Lagrangian function of (9) is given by,

M
L,(z,a) & F(z) + a x)||? + Zaici(x) (10)

i=1

(10) is called the augmented Lagrange function. It can be
shown that, both problems (7) and (9) share the same optimum
solution z* and the optimum Lagrange multipliers a* [11]. In
all, ALM transforms the constrained optimization in (7) into
an unconstrained problem in (10).

ITII. KERNEL DECOMPOSITION WITH NN
A. Approximating Kernel with Finite Eigenfunctions

Theoretically, both Mercer’s Theorem and HOGMT de-
compose the kernel into infinite eigenfunctions. However, we
can only operate a finite number of eigenfunctions in reality.
Therefore, we convert the kernel decomposition problem to
the approximation problem by N eigenfunctions as

argmin - E{||K(Z;2') - K(Z; Z))|IP} (D)
K
where K (Z;Z') is the approximated kernel as
N
Z/):Zand}n(z)én(zl) (12)
with the orthogonal consteri:nlts
/qbn ZNdZ' =6 /wn 2)dZ=0pyn (13)
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Figure 2: Performance of HOGMT-Base changes over number of eigenfunctions /N and penalty «. Dashed and solid lines
indicate the convergence of the NN during training and testing respectively.

In this work, we focus on asymmetric kernels unless other-
wise specified because the symmetric kernel is just a special
case of that. Unlike Fourier methods that provide complex
exponentials as subcarriers, which are independent in time-
invariant channels only, eigenfunctions of the channel kernel
remain independent in all types of channels. However, since
the eigenfunctions are not pre-defined, computing these require
high computational complexity, which limits their practical
implementation [13]. We postulate that the output of a neural
network that solves the MMSE problem in (11) converges to
eigenfunctions, making it practical.

B. HOGMT-Base: Implementing HOGMT with NN

We design an equivalent NN, HOGMT-Base with the
equality-constrained objective function (14a) to solve (11),
whose outputs converge to the eigenfunctions decomposed by
HOGMT from the universal approximation theorem [15], [16].

2
L=T+> i (14a)

where «; is the penalty for the constraint 2; and J is the
MSE optimization in (11)

s
sz

where K, is the input kernel. B is the batch size. {2; and s
are the regularizations for the orthogonality constraints in (13),

1Un b\Ilnb & (I)n b”
(1K [[?

(14b)

B N N

= ZZZH s @) (140)
b=1 n=1n’#n
B N # . )

EZZ Z (B Tl (140)
b=1 n= ln’;én

Comparing (14a) and (8), £ is a Lagrange function with a;
as multipliers.

The total loss is a general evaluation metric for NN,
which depends on the sum of all eigenvalues for eigen-
decomposition [17]. However, in the communication systems,
orthogonality is the most critical metric for interference can-
cellation. However, any NN-based method cannot achieve

strict orthogonality as this hard decision will limit the freedom
of the output space and lead to over-fitting. Therefore, we
define a new metric, soft orthogonality as follows,

Definition 1. Soft orthoganality of the eigenfunction set {®},

Z Z (@, ©)|

n=1n'#n

0(®) = (15)
where O(@):O indicates that the eigenfunctions obtained from

the NN, {®} are strictly orthogonal. Similarly, O(V) denotes
the soft orthogonality for eigenfunctions {U}.

We validate this baseline model, using spatio-temporal
channel kernels, which is detailed in Section V. Figure 2 shows
the performance of HOGMT-Base for N=10 and N=15
cases, with two penalty values for each. Although it shows
convergence with respect to both the total loss and the soft
orthogonality with appropriate penalties, it has two limitations:

(a) The choice of the penalty («;) greatly affects the perfor-
mance of HOGMT-Base even for the same value of V.
For example, in Figure 2a, for N=10, the total loss for
a=0.01 converges but that for «=0.05, does not.

(b) If N changes, the same penalty cannot ensure conver-
gence. For example, in Figure 2a, 2b and 2c we find that
the total loss for V=10 and N =15 are not comparable for
the same a=0.01. This will require tuning of the penalty
to @=0.005 for similar performance.

These limitations motivate us to design an adaptive version of
HOGMT-Base, which ensures the convergence of the eigen-
functions without unnecessary tuning for different scenarios.

IV. ADAPTIVE NEURAL NETWORK BASED ON ALM
A. HOGMT-ALM: ALM Based NN for HOGMT

In practice, both the required number of eigenfunctions and
the channel environment (such as users) may vary, leading to
different kernel sizes and N, which require changes in the NN
architecture and tuning of the Lagrange multiplier (penalty),
«. The fundamental reason is that any «, is no longer optimal
for the Lagrangian function when its optimal solution changes
for a different input. Therefore, training HOGMT-Base with a



Table I: Complexity of eigen-decomposition methods. HOGMT-ALM and HOGMT-Base both have the least complexity

Channel Kernel Type Method Complexity Parameters
Spatial channel matrix SVD O(min(N¢ N2, N2N;))
H e CNexNr SVD-DNN [9] O(max(2N2N;N,,2N?N?2,2N?N?2))
HOSVD [14] O(Ngmax(LyLt Ly, Ly Lt Ly, Ly Ly Ly )3) | N: Number of eigen-components
Spatio-temporal channel tensor HOGMT [8] O(min(Ly Lt (Ly Lyr)?, (L Lt)? Ly Lyr)) Ng: The order of dimensions
K € CLuxLtxXL,/ XLy TOE—REae O@NNLLuLiLy Ly) Nr,: Number of layers
HOGMT-ALM O@RNNLLyL¢L,s L)

fixed penalty for different kernel types does not guarantee con-
vergence, which requires dynamic adaptation of the Lagrange
multipliers during the training. Therefore, we incorporate the
ALM method and modify the objective of HOGMT-Base as,

2 2
L= AT+ B 57 o)1 16
J+; ] Z+2;H i (16)
where, u is the penalty parameter,
A 2 i, gy )T € RPE (17)
is the vector containing the Lagrange multipliers and
B
~ ~ ~ - T
02— Z [m(¢1,b)7j(¢l,b)> o R(Pr ), j(q)K,b)}
b=1
| B ) ) . (18)
B2 37 [R(F10), 3(F10), o R c0), I (P )|
b=1
where, R(-) and J(-) are the real and imaginary parts respec-

tively. @, and Uy ; are the inner products of one pair of
(Ci)n_yb,fi)n@b) and (\i!n,b,\i/n/,b) for n#n’ respectively. There
are K=N(N — 1) pairs for such eigenfunction set.

The main idea behind HOGMT-ALM is to get the opti-
mal solution for the constrained optimization problem (11)
by unconstrained optimization of the augmented Lagrangian
function (16). This is achieved by iteratively updating the NN
model parameters and A; based on the gradient of £. During
training, the model is updated using well-known optimizers
like Stochastic Gradient Descent (SGD) or Adam, while A; is
updated as follows,

19)

where p* is used to control the learning rate of the model.

ATH=AT + b

The ALM theory requires dynamic update of p in order to
adapt to the current constraint. Otherwise, it leads to either too-
small or too-large update rate for A;. [11] provides a dynamic
update criteria for p. This update step depends on the current
conditions of the constraint. Predefined parameters §>1 and
~v<1 ensure that x4 increases when the constraints ] and €2}
does not decrease over the iterations. Therefore, by coupling
the NN training with the update of the Lagrange multipliers
in (19) and the parameter p, HOGMT-ALM can ensure that
the Lagrange multipliers are always optimized towards the
optimal NN model, which solves the problem of fixed penalty
in HOGMT-Base mentioned above.

Algorithm 1 is used for training HOGMT-ALM with an

initialization of the inputs, Ay, As, i and . Lines 3-9 are steps
for kernel processing and parameter calculation in each batch
according to (16)-(18). Lines 10-11 updates the Lagrange
multipliers according to the constraints and p, where p is
further updated in lines 12-16.

Algorithm 1 HOGMT-ALM Training

1 Inputs A" 4D 00 5

2: for i < 0 to training epochs do

3: for mini batches < 0 to data size/batch size do
4 xp < split real and imaginary parts of X,

5: Yy=NN_Model(xy)

6: Derive 6, , <i>n,b and \i'n,b for each eigenfunction
7 Calculate J according to (14b)

8 Calculate Q) and Q) according to (18)

9: end for

;AT Al g

1 AQ’H] — A 4 iy

2041 126 > (14 51 4 [24)11) then

13: M[H‘l] — /Bu[l]
14: else

15: 'u[i‘i‘l] . Iu[l]
16: end if

17: end for

B. Complexity Analysis

The computational complexity for eigenvector or eigenfunc-
tion decomposition is shown in Table I. Both SVD and DNN-
SVD are designed to decompose 2-D matrices only. While
High-Order SVD (HOSVD), HOGMT and proposed methods
decompose multi-dimensional tensors. The relationship be-
tween SVD, HOSVD and HOGMT can be found in Lemma 3
of [8]. Since both HOGMT-Base and HOGMT—-ALM use fully
connected architectures (Section V), their time complexities
are the same, which depends on the number of layers (/Vr), the
size of the input (2L, L L, Ly for a complex-valued NN) and
the size of the output (V). It’s clear that proposed NNs have
less complexity than HOSVD. Meanwhile, for a fixed N and
Ny, the complexity of both HOGMT-Base and HOGMT-ALM
increase at a much slower rate than HOGMT with increasing
size of the input tensor.

V. HOGMT-ALM IMPLEMENTATION

NN architecture: To decompose a spatio-temporal channel
kernel, K (u,t;u’,t')eCluw>*LexLu XLy wwith L= L, L Ly Ly
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elements, the HOGMT-Base is designed with 4 fully con-
nected, feed-forward layers. However, this model requires real
inputs and outputs only. As a result, the L elements of the
kernel are split into real and imaginary parts at the input. The
dimension of each layer is as follows: input and output layers
have 2L and NéN(H—LuLt—f—Lu/Lt/) nodes, respectively,
while the two hidden layers have 2L and LAL+N nodes.
The LeakyRelu activation function with a negative slope of
0.1 is used for the hidden linear layers. This is a tuned slope
and is fixed for all the NNs in this work. The architectures of
HOGMT-ALM and HOGMT-Base are kept the same for correct
evaluation and comparison.

Data Generation: We generated 5120 time-varying MIMO
channel kernels. Each kernel represents L, x L, antennas for
L;=L; moments or time indexes, where L,=L, =4 and
Li=Ly=5. The delay taps are randomly chosen between 3
and 5. The distribution of the Power Delay Profile (PDP)
at each moment changes over space and time as shown in
Figure 3a and Figure 3b, respectively. A training-test split of
80%-20% is used to evaluate the model and we do not restrict
the dimensions and size of the kernels to show the generality
of the eigen-decomposition process.

Training: Figure 4 shows how various training-related pa-
rameters are updated in every batch and epoch while training
HOGMT-ALM. The training is done as mini-batches where
the chosen mini-batch size is B=16. The Adam optimizer
with a learning rate of 1x10~° is used for training. Figure 4
shows that there are some adaptive parameters involved in the
training, such as A;, Ay and p, that depend on Q) and Q.
These parameters are updated during each epoch, relative to
the ] and Q) of the last mini-batch of the previous epoch
using (19) for A; and As and Algorithm 1 lines 12-16 for p
with v = 0.75 and 8= 1.01 and initial value for y as 0. The
initial values of A; are set to 0 as it provides flexibility in
choosing the rest of the parameters.

VI. EVALUATION AND RESULTS

Adapting to varying number of eigenfunctions: We validate
the HOGMT-ALM design using the above dataset for N=10,
N=15 and N=20 cases with the same initialization of A,
Ag, v and ~y. Figure 5 shows that both total loss and soft
orthogonality converge without tuning the penalty, which
addresses the limitation (a) above. Further, the convergence

Model Update Penalty -
------ Update | Algorithm 1
. J_ (Line # 12-16)
- -

l Update Lagrange Multipliers
Algorithm 1
(Line # 10-11)
Y

I

Each Epoch

Figure 4: Adaptive Training of HOGMT-ALM, which has two
loops: (1) The outer loop (“Each Epoch”) updates the La-
grange multipliers A; and the penalty parameter u, and (2)
The inner loop (“Each Batch”) updates the NN parameters.

remain unchanged with different N as well, which removes
limitation (b). It is also observed that unlike HOGMT-Base,
HOGMT—-ALM begins to converge around the same time (num-
ber of epochs) for all NV, which makes the convergent behavior
more predictable. From a practical system implementation
viewpoint, this property provides a reference for completion
time (in epochs) for the training, which eliminates waiting for
uncertain epochs for the model to converge when N changes.
Figure 5a shows that larger N results in smaller values of total
loss. This is because, more eigenfunctions can approximate
the kernel with higher accuracy [17]. Figure 5b and 5c show
that the two soft orthogonality constraints also converge to
less than 0.001 within 500 epochs, which cannot be otherwise
guaranteed by the baseline model, HOGMT-Base.

Adapting to degenerate cases: The above results show the
performance of HOGMT-ALM for 4-D kernels. To compare
with the SoTA, SVD-DNN [9], we generate 16X 16 spatial
channel matrices as the dataset (size =50000), since SVD
is applicable 2-D matrices only. We use the same hyper-
parameters for HOGMT-ALM as in the 4-D channel kernel
case. The penalty is set at =0.01 for both HOGMT-Base and
SVD-DNN, which is empirically the best penalty as shown in
Figure 2 for N=10 case. In Figure 6, HOGMT-Base achieves
similar performance as HOGMT-ALM in this degenerate (low-
dimension channel kernel) case with a proper penalty. How-
ever, HOGMT-ALM outperforms SVD-DNN indicating that
HOGMT-ALM is adaptive to different channel types without
tuning the penalty. Further, Figure 6b and Fig 6¢ show that
for SVD-DNN, O(®) is around 0.0275 and O(¥) is around
0.003 which further increases over epochs. It means SVD-
DNN is unable to maintain the orthogonality constraint, which
is critical for eigenfunction based waveforms. Specifically, the
large soft orthogonality will induce interference as data sym-
bols are not transmitted over independent subchannels. More
comparison for larger kernels is shown in the Appendix [18].

VII. DISCUSSION AND APPLICATIONS

The choice of N: As shown in Figure 5a and Table I, N
provides a trade-off between the total loss and complexity,
where total loss is inversely proportional to the sum of the



1.2 T 0.012 0.012
—N =10 - —N =10 = —N =10
@ 0.01 —N=15 \B_L 0.01 — N=15
. 2 — N=2 Q —N=20
S £ 0.008 £ 0.008
2 g Tg
Q
3 S 0.006 S 0.006
< & =
5 + 0.004 + 0.004
= o o
£ 0.002 & 0.002
3 S)
195 19}
0 0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epochs Epochs Epochs

(a) Total Loss L

(b) Soft Orthogonality O(%)

(c) Soft Orthogonality O ()

Figure 5: Performance of HOGMT—-ALM for 4-D channel kernels with N=10, 15, and 20. Dashed and solid lines indicate the
convergence of the NN during training and testing respectively

0.03 g X107
" —HOGMT-ALM ~ & —_HOGMT-ALM
—— Baseline (% 0.025 —  HOGMT-ALM 5/ ——Baseline

—~ 1 ——SVD-DNN(Test) —— Baseline g 6F \ ——SVD-DNN(Test)
2 1 £ o — SVD-DNN(Test) £ |
) = S
8 g g4l
S g 0.015 g
- S ]
£ £ 001 =
= o Q2

u‘g 0.005 $ - dg

N _ 20 40 60 80 100 n 0

0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epochs Epochs Epochs

(a) Total Loss £

(b) Soft Orthogonality O(®)

(c) Soft Orthogonality O ()

Figure 6: Performance comparison between HOGMT-ALM, HOGMT-Base, and SVD-DNN for 2-D channel kernels with N=10.
Dashed and solid lines indicate the convergence of the NN during training and testing respectively

eigenvalues according to (11). However, in some applications
such as decomposing the channel into orthogonal subchannels
and transmitting symbols using those, the gain (given by the
eigenvalue) of each subchannel (represented by the eigenfunc-
tion) is more important than sum itself. In this case, N can
be chosen as the largest integer that satisfies the a specific
limit on the eigenvalues, as shown in the example below, The
error rate for M-QAM modulated symbol transmitted over the

eigenfunction with gain o is®,

PT(Ma’Yao-N) %462 (ON V 37/M_ 1)

where v is the SNR. Given the desired error probability bound
B, then N is chosen as the largest integer satisfy the constraint
Pr(M,~,0n) < 0, ie.,

on > Q7 (B/4)/v/3v/(M~1)

which means the error probability of the symbol that is
transmitted over the N-th eigenwave should be less than .

SVD-based Precoding for MIMO channels: The eigen-
decomposition is widely applied in precoding for spatial mul-
tiplexing in the form of SVD. In practice, both HOGMT-ALM
and SVD-DNN can be employed to produce the same eigen-
functions as SVD. However, eigen-decomposition by neural

(20)

2L

3The standard approximate error rate for M-QAM modulated symbol is

given by [19] as 4Q(\/3v/M —1). It is straightforward to derive it for
symbols with the subchannel gain o as in (20)
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Figure 7: BER of SVD-based Precoding implemented by NNs

networks will lead to a non-zero value of soft orthogonality
(O(\il) in III-B), which varies depending on the objective func-
tion enforced by the NN. Figure 7 shows the general behavior
of this phenomena for decomposing a 20 X 20 MIMO channels,
where for any given SNR, the BER is lower for smaller values
of O(¥). In Figure 6, we show shows that HOGMT-ALM
achieves O(¥) ~ 0 for decomposing 2-D channel matrices,
while SVD-DNN achieves O(¥) ~ 2 x 1073, resulting in
much higher BER.

VIII. CONCLUSION

We proposed an equivalent NN called HOGMT-Base
for implementing HOGMT, which decomposes the multi-



dimensional asymmetric channel kernel into eigenfunctions.
Then we improve it to HOGMT-ALM by incorporating ALM.
Both proposed NNs achieve lower approximation error and
soft orthogonality than SoTA with lower complexity as shown
in Table I, while HOGMT—-ALM is adaptive to different kernel
types and the number of eigenfunctions. This work solves an
important open problem posed in Section I, which creates the
opportunity to apply eigenfunctions for real-time, over-the-
air communication in fast time-varying wireless channels by
employing eigenfunction-based waveforms. The adaptable and
computationally efficient NN also paves the way for prototype
hardware [19] and experimentation.
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