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WELL-POSEDNESS AND REGULARITY FOR A POLYCONVEX

ENERGY

Wilfrid Gangbo1, Matt Jacobs2,* and Inwon Kim1

Abstract. We prove the existence, uniqueness, and regularity of minimizers of a polyconvex functional

in two and three dimensions, which corresponds to the H
1
-projection of measure-preserving maps.

Our result introduces a new criteria on the uniqueness of the minimizer, based on the smallness of

the lagrange multiplier. No estimate on the second derivatives of the pressure is needed to get a

unique global minimizer. As an application, we construct a minimizing movement scheme to construct

L
r
-solutions of the Navier–Stokes equation (NSE) for a short time interval.
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1. Introduction

A problem of interest in nonlinear elasticity theory is the existence, uniqueness, and the characterization of
the minimizers for variational problems of the form

inf
Z2U

nZ

⌦

⇣
j(x,DZ)� F · Z

⌘
dx
o
. (1.1)

Here, ⌦ ⇢ Rd is a bounded and open set with smooth boundary, j : Rd ⇥ Rd⇥d ! R [ {+1} is a lower semi-
continuous function, U is some appropriately chosen function space, and F : ⌦ ! Rd is a fixed function. In
the context of nonlinear elasticity theory, ⌦ represents a reference configuration occupied by an elastic body,
j represents the so-called stored energy density of the material, F is an applied force, and Z represents the
deformation undergone by the elastic body.

If we further assume that j is a polyconvex functional (cf. [6]), then the theory of the calculus of variations
developed by Morrey [39] gives robust results on the existence of minimizers to problem (1.1). On the other
hand, the uniqueness and regularity properties of minimizers or their characterizations in terms of a system of
PDEs, remain a major challenge when j fails to be convex (cf. [8] for a summary of a list of unsolved problems
and [15, 25, 33, 36, 40, 42, 44] for some partial results and counterexamples). We refer the reader to [1, 22, 23]
for partial regularity results (up to a set of small measure) for a class of so-called quasiconvex stored energy
density functions.
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An important example of polyconvexity arises in the study of incompressible materials. Incompressibility
can be encoded by requiring that the admissible set of deformation maps satisfies the determinant constraint
det(DZ) = 1 everywhere. If we let Di↵ id(⌦) denote the set of maps X : ⌦̄ ! ⌦̄ that are volume preserving
C

1–di↵eomorphisms such that X|@⌦ = id, then the constraint functional

�(Z) =

(
0 if Z 2 Di↵ id(⌦);

+1 otherwise,

is not convex with respect to Z, but is a convex function of det(DZ) (hence, � is polyconvex).
In this paper, we are interested in studying a particular incompressible polyconvex functional. Given an

H
1(⌦) map S : ⌦ ! ⌦, the so-called H

1
-projection problem seeks the closest incompressible map to S in a

weighted H
1 norm. More explicitly, given a parameter a > 0, one wishes to find a minimizer of the problem

Ja(Z) := �(Z) +
1

2
kZ � Sk2

L2(⌦)
+

a

2
kDZ �DSk2

L2(⌦)
. (1.2)

Here we measure the norm of the matrix DZ �DS using the Frobenius norm. Note that since we are forced
to choose Z 2 Di↵ id(⌦), the term 1

2
kZ � Sk2

L2(⌦)
is equivalent to �Z · S, thus the H

1 projection problem can

be put into the form of problem (1.1). The intriguing problem (1.2) dates back to the work of Lord Kelvin and
continues to generate a lot of interest (cf. e.g. [9, 12, 14] and the discussion on the Navier–Stokes equations
below).

The di�culty of problem (1.2) lies in the non-convexity of the constraint setDi↵ id(⌦). Worse yet, in dimension
d = 3, the H

1 coercivity of the functional is not su�cient to deduce weak convergence of the determinant.
When Z 2 W

1,d(⌦,Rd), the pointwise determinant of DZ agrees with its distributional determinant, commonly
denoted by

Det(DZ) := r · V [Z],

where V [Z] 2 L
1 and

V [Z]i := (�1)i+1
@

@xi

✓
Z

1
@(Z2, · · · , Zd)

@(x1, · · · , xi�1, xi+1, · · · , xd)

◆

When Z 2 L
1 \W

1,d�1 we still have V [Z] 2 L
1 and for ' su�ciently smooth, we have

(',Det(DZ)) = �
�
r', V [Z]

�
. (1.3)

However, under the mere assumption that Z 2 W
1,d�1(⌦,Rd), we may have Det(DZ) 6⌘ det(DZ) unless

additional conditions are imposed on adj(DZ). When d = 3 and Z 2 H
1(⌦,Rd), to ensure that the iden-

tify det(DZ) = Det(DZ) holds, thanks to [40], it su�ces to require that adj(DZ) 2 L
3
2 . In our context, we

are working with functionals Ja : H1 ! [0,+1] which are merely bounded from below by cakZk2
H1 for some

ca > 0, but they fail to satisfy the property

8c > 0, 9✓c |
�
Z 2 H

1 : Ja(Z)  c
 
⇢
n
Z 2 H

1 : kZkH1 + kadj(DZ)k
L

3
2
 ✓c

o
. (1.4)

Therefore, Ja(Z) < +1 does not imply that det(DZ) = Det(DZ) and we cannot apply the theory of weak
lower semicontinuity developed in any of the following well-known works on polyconvexity [15, 25, 36, 40, 42]
to Ja. Thus, although (1.2) is a polyconvex problem, previously known theory cannot even ensure the existence

of a minimizer.
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In this paper, we will develop a theory that allows us to deduce the existence and uniqueness of minimizers
to the H

1-projection problem under a mild regularity assumption on the data S. Our main result in this paper
can be summarized as follows:

In dimensions d 2 {2, 3}, if r > d and S is su�ciently close to the identity in W
2,r(⌦), then there exists a

unique minimizer Z
⇤ 2 W

2,r

id := {Z 2 W
2,r(⌦) : Z|@⌦ = id} of the H

1
-projection problem (1.2).

To give a more detailed explanation of our result, let us introduce the Euler-Lagrange equation associated to
(1.2). Formally, the tangent space to a point Z 2 Di↵ id(⌦) is the space {v �Z : v 2 C

1
0
(⌦), r · v = 0}. Therefore,

any critical point of (1.2) must satisfy the equation

(Z � S) · v(Z) + a(DZ �DS) : D(v(Z)) = 0,

for every smooth divergence free vector field v vanishing on the boundary. Equivalently, every critical point Z
must have a corresponding scalar function p : ⌦ ! R such that

(I � a�)(Z � S) +rp(Z) = 0, (1.5)

where the equation should be interpreted distributionally. As it turns out, one can also understand p as a
Lagrange multiplier for the determinant constraint. If we define the Lagrangian

L(Z, q) = 1

2
kZ � Sk2

L2(⌦)
+

a

2
kDZ �DSk2

L2(⌦)
+

Z

⌦

q(x)
�
| det(DZ(x))|� 1

�
dx, (1.6)

then if Z 2 W
1,d

id (⌦) the equations �ZL(Z, q) = 0 and �qL(Z, q) = 0 correspond to

(I � a�)(Z � S) +D
T
�
cof(DZ)q

�
= 0, det(DZ) = 1, (1.7)

respectively. Thanks to the Null-Lagrangian identity D
T cof(DZ) = 0, the equations (1.5) and (1.7) can be

transformed into one another through the relation q = p(Z).

Remark 1.1. One may note that the Lagrangian in (1.6) appears to enforce the constraint | det(DZ)|  1 rather
than det(DZ) = 1 (when q � 0). Of course, this distinction is irrelevant if one only focuses on maps Z 2 Di↵.
However, as it turns out, our arguments are strong enough to guarantee that there is a unique minimizer of (1.6)
that remains the unique minimizer even when the C

1 di↵eomorphism constraint is relaxed to | det(DZ)|  1
(see Rem. 3.5 for details). In addition, we find it easier to work with | det(DZ)| as compared to det(DZ), as
| det(DZ)| has better coercivity properties. In particular, the analog of Lemma 3.1 does not hold in dimension
3 if one replaces | det | by det.

To prove our main theorem, we develop a new regularity condition on critical points (Z⇤
, q

⇤) (i.e. solutions
to equation (1.7)) that guarantee that Z

⇤ is the unique solution to the H
1-projection problem. When q

⇤ is
bounded in L

1 and the singular values of DZ
⇤ are uniformly bounded away from zero, we are able to show that

the Lagrangian L(Z, q⇤) has a previously undiscovered convexity property (cf. Lem. 3.1 and Prop. 3.4). This
property allows us to conclude that Z⇤ is the unique minimizer of the relaxed problem Z 7! L(Z, q⇤), and hence
the original problem Z 7! sup

q
L(Z, q). Let us note that although the focus is on H

1 projection problem in this
work, our strategy can be generalized to other polyconvex problems in both compressible and incompressible
non-linear elasticity. In particular, our strategy should extend to problems where one has the decomposition
j(x,DZ) = kDZk2

L2(⌦)
+ `(DZ, x), where ` is some polyconvex function and it is possible to obtain bounds on

the dual variables associated to ` (i.e. the analogue of q⇤).
Of course, our regularity condition is only useful if there actually exist critical points with the required

properties. In order to find such points, we employ Ekeland’s variational principle (EVP) [34, 35] to derive a
version of implicit function theorem for (1.7). While the use of the implicit function theorem to find critical
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points is quite well-known in the calculus of variations literature (see for instance [37] for a similar incompressible
problem), the use of EVP is much less common albeit its powerful nature. Our EVP-based approach is fully
quantitative and does not require exactly inverting a linear operator. Indeed, the allowance for error in our
approach considerably simplifies the required calculations. As long as S is close enough to the identity in
W

2,r(⌦), we are able to use EVP to produce a critical point (Z⇤
, q

⇤) 2 W
2,r

id (⌦) ⇥ W
1,r(⌦) with su�cient

regularity to conclude that Z⇤ is the unique minimizer.
To illustrate the significance of our quantitative result beyond stationary variational problems, we apply

our main result to develop a discrete-in-time minimizing movements scheme to generate mild solutions of
the incompressible Navier Stokes equations. Indeed, our particular interest in the H

1-projection problem is
rooted in the connection to Navier–Stokes. This connection can be traced back to Arnold’s celebrated geometric
interpretation of the incompressible Euler equations [4]. In [13], Brenier gave a very concrete reinterpretation of
Arnold’s idea as a projection problem. First one lets the fluid evolve for a short time taking into account inertia
only (i.e. evolve the Lagrangian flow map X by the equation @ttX = 0), then the resulting fluid configuration
is then projected back onto the space Di↵(⌦). Given a sequence of fluid configurations {X0, X1, . . . , Xn} and a
time step ⌧ > 0, Brenier’s scheme finds the next fluid configuration by solving the variational problem

Xn+1 2 argmin
X2Di↵(⌦)

1

2
kX �Xn

⌧
� Xn �Xn�1

⌧
k2
L2(⌦)

. (1.8)

The problem tries to find an incompressible map Xn+1, whose velocity Xn+1�Xn

⌧
best matches the velocity at

the previous time step Xn�Xn�1

⌧
, or in other words, the incompressible map with the least L2 acceleration [26].

In fact, problem (1.8) can be viewed as the L
2 analogue of problem (1.2).

The H
1 projection problem appears when one wishes to extend the Brenier formalism to the Navier–Stokes

equations (2.7). In Lagrangian coordinates, the no-slip Navier–Stokes equations take the form

@ttX � µ�v(X) +rp(X) = 0, @tX = v(X), det(DX) = 1, X|@⌦ = id, (1.9)

where µ > 0 is a parameter that represents the viscosity of the fluid. As one can see from the above equation,
it is somewhat awkward to express viscous forces in Lagrangian coordinates. For this reason, when given a
sequence of fluid configurations {X0, . . . , Xn}, it is more natural to find the next fluid configuration Xn+1 by
decomposing Xn+1 = Zn+1 �Xn and solving for Zn+1. The map Zn+1 will be determined by solving the viscous
analogue of Brenier’s problem

Zn+1 = argmin
Z2Di↵id(⌦)

1

2
kZ �Xn �Xn

⌧
� Xn �Xn�1

⌧
k2
L2(⌦)

+
µ⌧

2
kDZ � I

⌧
k2
L2(⌦)

, (1.10)

where I is the identity matrix. In contrast to (1.8), Problem (1.10) attempts to evolve the fluid by finding
the incompressible map that simultaneously minimizes both the L

2 acceleration of the fluid and the viscous
dissipation term µ⌧

2
kDZ�I

⌧
k2
L2(⌦)

, which measures the instantaneous loss of kinetic energy to heat. Let us note
that this scheme is closely related to the discrete-in-time variational scheme for the Navier–Stokes equations
proposed in [31], however, their scheme searched for solutions in Eulerian coordinates rather than Lagrangian
coordinates (they attempt to find the velocity field at the next time step rather than the flow map). As a result,
their variational problem is quite di↵erent from ours, in particular, their problem is strongly convex, and hence
the existence, uniqueness, and regularity of minimizers are all straightforward in their setting.

As one might expect, problem (1.10) is equivalent to a special case of the H
1-projection problem. Indeed, if

one chooses a = µ⌧ and sets S = id+ ⌧v, where v solves

(I � µ⌧�)v =
�Xn �Xn�1

⌧

�
�X�1

n
, v|@⌦ = 0,
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then (1.10) and (1.2) are identical up to an irrelevant constant term. Note that the term
�
Xn�Xn�1

⌧

�
�X�1

n
in

the above equation roughly corresponds to the Eulerian vector field at time n⌧ . Hence, S 2 W
2,r(⌦) roughly

corresponds to the vector field being an element of Lr. As we shall show in the final section of the paper, our
W

2,r theory for the H
1 projection problem allows us to build short-time Eulerian and Lagrangian solutions to

the Navier–Stokes equations starting from L
r initial data.

2. Summary of main results

In this subsection, we give precise statements of the main results obtained in this paper. We begin with our
uniqueness result, which produces a su�cient condition for critical points (Z⇤

, q
⇤) of (1.7) to be the unique

minimizer of the H
1 projection problem.

Theorem 2.1 (Uniqueness). Suppose that d 2 {2, 3} and there exists a pair (Z⇤
, q

⇤) 2 W
1,d(⌦) ⇥ L

1(⌦)
satisfying (1.7). If there exists a constant � > 0 such that the singular values of DZ

⇤
are larger than � almost

everywhere and

kq⇤ � q̂kL1(⌦)  a�
2
�
2 + 3(1 +

p
3)
��1

, (2.1)

where q̂ = 1

|⌦|
R
⌦
q(x) dx, then Z

⇤
is the unique global minimizer of (1.2).

As we noted earlier, we shall prove Theorem 2.1 by showing that the Lagrangian (1.6) has a novel convexity
property. In particular, we shall show that it is possible to control the concavity of the determinant termR
⌦
q(x)| det(DZ(x))| dx. If we let B(Z,Z0, q) denote the Bregman divergence [10]

B(Z,Z0, q) :=

Z

⌦

q(x)
⇣
| det(DZ)|� | det(DZ0)|� sgn(det(DZ0)) cof(DZ0)) : (DZ �DZ0)

⌘
(x) dx, (2.2)

then, when d  3, we prove the inequality

� B(Z,Z0, q) 
c

2�(DZ0)2
kq det(DZ0)kL1(⌦)kDZ �DZ0k2L2(⌦)

for q � 0, (2.3)

where c = 1+ 3

2
(1 +

p
3) and �(DZ0) is a lower bound on the smallest singular value of DZ0. Thus, we see that

it is possible to control the concavity of Z 7!
R
⌦
q(x)| det(DZ(x))| dx with H

1(⌦), as long as we are at a base
point (Z0, q) that is not too irregular. Indeed, we shall obtain our uniqueness result by controlling the concavity
of Z 7!

R
⌦
q(x)| det(DZ(x))| dx at the critical point (Z⇤

, q
⇤) with the H

1 term Z 7! a

2
kDZ �DSk2

L2(⌦)
.

Beyond the application to the H
1 projection problem, the inequality (2.3) is useful for more general

polyconvex variational problems in nonlinear elasticity. This is due to the fact that terms of the formR
⌦
q(x)| det(DZ(x))| dx can be made to appear in any polyconvex problem involving determinants.
Our uniqueness result is complemented by the following theorem, which guarantees the existence of critical

points to (1.7) that satisfy the conditions of Theorem 2.1 when S is close to the identity in W
2,r(⌦). Taken

together, Theorems 2.1 and 2.2 guarantee that the H
1 projection problem has a unique solution when S is

su�ciently close to the identity in W
2,r(⌦).

Theorem 2.2 (Existence). For d 2 {2, 3} and r 2 (d,1), let us define

u
⇤ := argmin

u2H
1
0 (⌦),r·u=0

kS � id� uk2
L2(⌦)

+ akD(S � id� u)k2
L2(⌦)

, (2.4)

and

� := k(I � a�)(S � id)kLr(⌦), �
0 := k(I � a�)(S � id� u

⇤)kLr(⌦). (2.5)
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If �, a
� d+r

2r �, a
�1
�
0
and a

� d+3r
2r �

2 = a
� d+r

2r �(a�1
�) are su�ciently small, then there exists Z

⇤ 2 W
2,r(⌦) and

q
⇤ 2 W

1,r(⌦) that satisfy the hypotheses of Theorem 2.1. Furthermore,

k(I � a�)(Z⇤ � S)kLr(⌦) . �
0 + a

� d+r
2r �

2
.

Remark 2.3. Here and in what follows, we shall use the notation . to denote an inequality that holds up to
a constant factor depending only on d and r.

Remark 2.4. The constants in above result can be derived explicitly from our arguments in Section 6.

Remark 2.5. One may wonder if a similar result holds when W
2,r(⌦) is replaced by a di↵erent Banach space

X of maps from ⌦ to ⌦ (if S is close to the identity in X, can one find a critical point Z
⇤ 2 X?). In our

argument we use three crucial properties of W 2,r(⌦), namely that W 2,r(⌦) embeds into W
1,1(⌦), it is closed

with respect to composition, and that ��1
@
2

ij
is a bounded operator from W

2,r(⌦) to itself. We suspect that
this result would hold for any space X with those three properties. However, we anticipate that the argument
would need to overcome additional technical di�culties if X is a space weaker than W

2,r(⌦).

In general, it is not so simple to estimate �0 from the data S alone. Nonetheless, �0 must always be bounded
by a constant multiple of � (cf. Lem. 4.2), hence, one can also restate Theorem 2.2 in the following simpler but
weaker form.

Theorem 2.6. Suppose that r > d 2 {2, 3}. Define � as in Theorem 2.2. If �, a
� d+r

2r � and a
�1
� are su�ciently

small, then there exists Z
⇤ 2 W

2,r(⌦) and q
⇤ 2 W

1,r(⌦) that satisfy the hypotheses of Theorem 2.1.

Let us briefly discuss previously known results in the literature. By appealing to abstract results in convex
duality [41], one can deduce that there exists a dense set D ⇢ H

1(⌦) such that the H
1 projection problem has

at most one minimizer when S 2 D. Unfortunately, there is no known characterization of this set beyond its
denseness, which limits its practical usefulness (for instance the interior of this set may be empty). Furthermore,
this result is silent on the question of existence. In contrast, our result shows that a unique solution exists for
maps S in an entire ball around the identity in W

2,r(⌦).
Several authors have considered existence and uniqueness of minimizers to polyconvex problems of the form

(1.1) in more concrete settings. In three dimensions, [37] studied the existence of regular critical points to
(1.1) in the incompressible case U = Di↵id(⌦) under the assumption that the applied force F was small in an
appropriate space. Building on this, in [47], Zhang showed that when j has the form

j(x,M) = G(x,M) + b

⇣
|M |r + |cof(M)|s

⌘
, (2.6)

for some polyconvex function G : ⌦⇥Rd⇥d ! R and some parameters b > 0, r � 2 and s � r/(r � 1), then the
critical points from [37] are in fact the unique global minimizers of (1.1) provided that they satisfy certain norm
bounds. The presence of the term |cof(M)|s in (2.6) was essential for [47], where cof(M) denotes the cofactor
matrix of M . The resulting bound on the cofactor matrix allows a much better control over determinants, thanks
to the fundamental identity M

T cof(M) = det(M)I. Indeed, conditions in [47] imply that the determinant map
Z 7! det(DZ) is weakly continuous along any minimizing sequence for (1.1). Hence, the existence of minimizers
for such functionals follows from the standard theory. Clearly, these results do not apply to the H

1 projection
problem: the projection functional (1.2) does not a↵ord any control on the cofactor matrix of DZ.

In [27], the notion of �-convexity [3] is used to provide a su�cient condition for a critical point of (1.1) to be
the unique global minimizer of the problem. While their result could be applied to the H1-projection problem, it
requires strong bounds on the optimal Lagrange multiplier q⇤. In particular, it is necessary that the eigenvalues
of D2

q
⇤ are uniformly bounded from below. Since there is no apparent mechanism in the H1 projection problem

that encourages �-convexity of q⇤, it seems unlikely that such a property can be obtained without showing that
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q
⇤ 2 W

2,1(⌦). This is two full derivatives stronger than our condition, and hence, considerably more di�cult
to satisfy.

2.1. Applications to Navier–Stokes

Finally, in the last section of this paper, we use the H
1 projection problem to construct solutions to no-slip

Navier–Stokes equations:

@tv � µ�v + v ·rv +rp = 0, r · v = 0 in ⌦⇥ (0, T ), v = 0 on @⌦⇥ (0, T ), (2.7)

with initial data v0 2 L
r(⌦).

For technical reasons, we shall use a slightly di↵erent scheme than the one given in (1.10). Given an initial
divergence free velocity v0 and a time step ⌧ , we will construct discrete-in-time approximations to the Navier–
Stokes equations using the H

1 projection problem by iterating the following scheme:

(I � µ⌧�)Sn+1,⌧ = id+ ⌧vn,⌧ , Sn+1,⌧ |@⌦ = id; (2.8)

Zn+1,⌧ 2 argmin
Z2Di↵id(⌦)

1

2
kZ � Sn+1,⌧k2L2(⌦)

+
µ⌧

2
kDZ �DSn+1k2L2(⌦)

; (2.9)

wn+1,⌧ := Zn+1#vn,⌧ ; (2.10)

vn+1,⌧ := e�µ⌧A
wn+1. (2.11)

Here A is the so called Stokes operator, and vn+1,⌧ is the solution to the parabolic equation

@tv +Av = 0, r · v = 0, v|@⌦ = 0,

at time ⌧ starting from the initial data wn+1,⌧ . Using the scheme, we shall also define the Lagrangian flow maps

Xn+1,⌧ = Zn+1,⌧ �Xn,⌧ .

Our main result on Navier–Stokes can then be summarized as follows.

Theorem 2.7. Let v0 2 L
r(⌦) with r > d 2 {2, 3}. Then there exists a time T

⇤
> 0 depending only on

kv0kLr(⌦), r, d and the viscosity µ in (2.7) such that the following holds:

(a) The scheme (2.8-2.11) is well-defined and generates discrete velocities vn,⌧ that are uniformly bounded in

L
r(⌦) for 0  n⌧  T

⇤
.

(b) The discrete velocities converge in L
2([0, T ⇤] ⇥ ⌦)) as ⌧ ! 0 to the unique mild solution v 2

L
1([0, T ⇤], Lr(⌦) \ L

1((0, T ⇤];W 1,1
0

(⌦)) of the Eulerian Navier–Stokes equation (2.7).
(c) The discrete Lagrangian flow maps converge in L

1([0, T ⇤] ⇥ ⌦) as ⌧ ! 0 to the unique solution of the

Lagrangian Navier–Stokes equation (1.9).

The solution v and X in above theorem satisfies stronger regularity properties than those listed above: see
Remark 7.10.
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3. A new sufficient conditions for being a minimizer: proof of
Theorem 2.1

To prove Theorem 2.1, we will show that our assumption on the pair (Z⇤
, q

⇤) guarantees that Ja lies above
a convex parabola centered at Z⇤ and touches the parabola at Z⇤. In other words, we will obtain the inequality
Ja(Z) � Ja(Z⇤)+ 1

2
kZ�Z

⇤kL2(⌦), see (3.3). The argument involves two key steps. First, we relax the constraint
on det(DZ) by introducing q

⇤ as a Lagrange multiplier, see (3.1). We then show that the non-convexity of the
Lagrange multiplier term

R
⌦
q
⇤| det(DZ)| is dominated by the quadratic term a

2
kDZ�DSk2

L2(⌦)
by establishing

the Bregman divergence bound in (2.3). This bound is the consequence of an interesting matrix inequality that
holds in dimensions 2 and 3 (Lem. 3.1). Though the matrix inequality is elementary, it plays an essential role
in our argument that we believe is worth highlighting.

Lemma 3.1. Let M,A 2 Rd⇥d
. In two dimensions,

⇣
sgn(det(A)) cof(A)� sgn(det(M)) cof(M)

⌘
: (A�M) � � | det(M)|

�2
|A�M |2.

In three dimensions,

⇣
sgn(det(A)) cof(A)� sgn(det(M)) cof(M)

⌘
: (A�M) � �

�
1 +

3

2
(1 +

p
3)
� | det(M)|

�2
|A�M |2

where � is the smallest singular value of M .

Remark 3.2. As a polynomial of degree d, the restriction of the determinant function to any bounded convex
subset of the set of Rd⇥d, is �-convex. When d = 2, we can choose � = �1 independently of the convex set. This
means,

�
cof(A)� cof(M)

�
: (A�M) � �|A�M |2 A,M 2 R2⇥2

.

Remark 3.3. There is no analogous inequality when d � 4. Indeed, if we choose M = I and A = ↵I � (↵ �
↵
1�d)ed ⌦ ed, then as ↵ ! 1, the left-hand-side of the inequality scales like �↵d�1 while the right-hand-side

scales like �↵2.

Proof. Thanks to the density of diagonalizable nonsingular matrices, we can assume without loss of generality
that A and M are nonsingular and diagonalizable. Thus, we can factor A = BM for some matrix B. We then
have

⇣
sgn(det(A)) cof(A)� sgn(det(M)) cof(M)

⌘
: (A�M) = | det(M)|

⇣
sgn(det(B)) cof(B)� I

⌘
: (B � I).

Expanding out the product and using the fact that cof(B)T = det(B)B�1, the right-hand-side is equal to

| det(M)|
�
d| det(B)|+ d� tr(B)� | det(B)|tr(B�1)

�
.

Since � is the smallest singular value of M , we have

|A�M |2 � �
2|B � I|2.
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Hence, given any constant c > 0, we obtain

⇣
sgn(det(A)) cof(A)� sgn(det(M)) cof(M)

⌘
: (A�M) + c

| det(M)|
�2

|A�M |2 �

| det(M)|
�
c|B � I|2 + d| det(B)|+ d� tr(B)� | det(B)|tr(B�1)

�
.

It is now clear that the lower bound only depends on det(M) and the eigenvalues of B.
Let us now show that

f(B) := c|B � I|2 + d| det(B)|+ d� tr(B)� | det(B)|tr(B�1)

is nonnegative once c is su�ciently large. It is clear that f is a function of the eigenvalues of B and that it is
minimized when the eigenvalues are nonnegative. Therefore, we shall assume that B is a diagonal matrix with
nonnegative eigenvalues in the rest of the argument.

In two dimensions, | det(B)|tr(B�1) = tr(B). It is then easy to check that f has a single critical point at
B = I. When c > 1, f is coercive, thus, I must be the unique minimizer when restricted to diagonal matrices.
Since f(I) = 0, we obtain the desired inequality in two dimensions by letting c ! 1.

In three dimensions, we have the inequality

| det(B)|tr(B�1)  |B � I|2 + 2tr(B)� 3.

This follows from the fact that |B � I|2 + 2tr(B)� 3 = |B|2 and | det(B)|tr(B�1) = 1

2
(tr(B)2 � |B|2). Hence,

the inequality is equivalent to 1

2
tr(B)2  3

2
|B|2, which is a consequence of Jensen’s inequality.

Thus,

f(B) � g(B) := (c� 1)|B � I|2 + 3| det(B)|� 3tr(B) + 6.

As long as c � 1, g is coercive.
Now consider h(B) := (c� 1)|B � I|2 � 3tr(B) + 6, which lies below g, and set

h̄(t) = (c� 1)|t� 1|2 � 3t+ 2, t � 0.

When c > 1, h is strictly convex and has a unique global minimum over diagonal matrices at its critical point
B0 := aI where a := 1 + 3

2(c�1)
. Similarly, h̄ has a unique global minimizer at a. For

B = diag(x1, x2, x3), B̃ =: diag
⇣
min{a, x1},min{a, x2},min{a, x3}

⌘

with nonnegative entries, we have

h(B̃) =
3X

i=1

h̄
�
min{a, xi}

�


3X

i=1

h̄(xi) = h(B).

The previous inequality is strict unless B̃ = B. Since det(B̃)  det(B) we can conclude that g(B̃)  g(B) and
again the latter inequality is strict unless B̃ = B. Therefore, any minimizer of g must have eigenvalues bounded
in [0, 1 + 3

2(c�1)
].

By direct calculation, the Hessian of g is diagonally dominant when restricted to the set of diagonal matrices
whose eigenvalues are bounded in [0, c�1

3
]. Thus, g must be convex in this region. This region is guaranteed to
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contain the minimizer of g as soon as 1+ 3

2(c�1)
 c�1

3
which is equivalent to c � 1+ 3

2
(1+

p
3). In this case, the

critical point of g at C = I must be the global minimum with value g(I) = 0. Therefore, in three dimensions,
it follows that

⇣
sgn(det(A)) cof(A)� sgn(det(M)) cof(M)

⌘
: (A�M) +

�
1 +

3

2
(1 +

p
3)
� | det(M)|

�2
|A�M |2 � 0,

which is the desired result.

With the matrix inequality in hand, we can prove Proposition 3.4, which establishes the uniqueness of
minimizers for the Lagrangian relaxation (1.6). This produces Theorem 2.1 as an immediate consequence.

Proposition 3.4. Let d 2 {2, 3} and let

L(Z, q) := 1

2
kZ � Sk2

L2(⌦)
+

a

2
kDZ �DSk2

L2(⌦)
+

Z

⌦

q(x)(| det
�
DZ(x)

�
|� 1) dx. (3.1)

Suppose that Z
⇤ 2 Di↵ id(⌦) and q

⇤ 2 L
1(⌦) solve (1.7) and the singular values of DZ

⇤
are uniformly bounded

from below by some � > 0. Set q̄ := q
⇤ � c, where c 2 R is the largest constant so that q̄ � 0. If kq̄kL1 

a�
2
�
1 + 3

2
(1 +

p
3)
��1

, then Z
⇤
is the unique global minimizer of L(·, q̄) among functions in W

1,d(⌦).

Proof. Let Z be some arbitrary element of W 1,d

id (⌦). Calculating the Z variation of L, we see that

�ZL(Z, q̄)(�) =
Z

⌦

✓
(Z � S) · �+

⇣
DZ �DS + q̄ sgn(det(DZ)) cof(DZ)

⌘
: D�

◆
dx,

where � 2 W
1,d

0
(⌦) is an arbitrary perturbation. Since (Z⇤

, q
⇤) solves (1.7), it follows that �ZL(Z⇤

, q̄) ⌘ 0.
Hence,

L(Z, q̄)� L(Z⇤
, q̄) = L(Z, q̄)� L(Z⇤

, q̄)� �ZL(Z⇤
, q̄)(Z � Z

⇤
) =

1

2
kZ � Z

⇤k2L2(⌦)
+

a

2
kDZ �DZ

⇤k2L2(⌦)
+ B(Z,Z⇤

, q̄),

where we recall the definition of B(Z,Z⇤
, q̄) from (2.2). Applying the Fundamental Theorem of Calculus, we

have

B(Z,Z⇤
, q̄) =

Z

⌦

q̄(x)

Z
1

0

1

t

⇣
sgn

�
det(DZt(x))

�
cof

�
DZt(x)

�
� cof

�
DZ

⇤(x)
�⌘

:
�
DZt(x)�DZ

⇤(x)
�
dx dt,

where Zt = tZ + (1 � t)Z⇤ and we have used the fact that 1

t
(DZt �DZ

⇤) = (DZ �DZ
⇤). Now Lemma 3.1

combined with the L
1 bound on q̄ implies that

L(Z, q̄) � L(Z⇤
, q̄) +

1

2
kZ � Z

⇤k2
L2(⌦)

. (3.2)

Proof of Theorem 2.1. Let Z0 be some arbitrary element of Di↵id(⌦). Since det(DZ0) = 1 everywhere, it follows
that

�(Z0) � sup
q2L1(⌦)

Z

⌦

q(x)
�
det(DZ0(x))� 1

�
dx = sup

q2L1(⌦)

Z

⌦

q(x)
�
| det(DZ0(x))|� 1

�
dx.
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Therefore,

Ja(Z0) � sup
q2L1(⌦)

L(Z0, q) � L(Z0, q̄),

where q̄ is defined as in Proposition 3.4. Using Proposition 3.4 and the fact that Ja(Z⇤) = L(Z⇤
, q̄), we can

conclude that

Ja(Z0) � Ja(Z
⇤) +

1

2
kZ � Z0k2L2(⌦)

. (3.3)

Remark 3.5. Note that the Theorem still holds if we replace � with a functional �̃ enforcing the constraint
| det(DZ0)|  1. Indeed, we have

�̃(Z0) � sup
q2L1(⌦),q�0

Z

⌦

q(x)(| det(DZ0)|� 1) � L(Z0, q̄)

since we chose q̄ to be everywhere nonnegative and the rest of the argument goes through without modification.
Thus, Theorem 2.1 continues to hold even if the di↵eomorphism constraint is weakened to | det(DZ)|  1.

4. Preliminaries for the proof of Theorem 2.2

It remains to prove the existence of the solution pair (Z⇤
, q

⇤) that satisfies the hypothesis of Theorem 2.1.
In this section, we will introduce a number of basic results that will play an important role in our subsequent
analysis. We begin by introducing a special operator that will allow us to simplify equation (1.7).

Changing a base point for an operator. Given any operator L from a subset of functions on ⌦ to another
subset of functions on ⌦, whenever Z : ⌦̄ ! ⌦̄ is invertible, we define

LZ(f) := L

⇣
f � Z�1

⌘
� Z.

The operator LZ can be expressed in terms of the pull–back operator.
Leray projection operator P. We set

Vid :=
n
w 2 L

2(⌦;Rd) : (w,r�) = 0 for all � 2 C
1(⌦;R)

o

The Leray projection P : L2(⌦,Rd) ! Vid is the orthogonal projection of L2(⌦) onto Vid. When @⌦ is of class
C

1,1, we have from Theorem 1 of [38] (also [43], [43]) that

kP(�)kW l,r(⌦) . k�kW l,r(⌦) 8l 2 {0, · · · , k} 8� 2 W
k,r(⌦), 8r 2 (1,1). (4.1)

The Projection operator PZ . Given a map Z 2 Di↵id(⌦) we can introduce the operator PZ from the
Leray projection, using the change of base point formula. Note that PZ can also be understood as an orthogonal
projection. If we define the space

VZ :=
n
w 2 L

2(⌦;Rd) : (w,r�(Z)) = 0 for all � 2 C
1(⌦;R)

o
,
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one can readily check that w 2 VZ if and only if w � Z
�1 2 Vid. It then follows that PZ is the orthogonal

projection of L2(⌦;Rd) onto VZ .
Now that we have defined PZ , we can use it to simplify equation (1.7) by eliminating the pressure/Lagrange

multiplier variable q. This is accomplished in the following lemma.

Lemma 4.1. If Z 2 Di↵id(⌦) solves the equation

PZ(I � a�)(Z � S) = 0, (4.2)

then there exists q : ⌦ ! R such that (Z, q) is a solution to equation (1.7). Furthermore, q can be recovered

explicitly from the formula

rq = �DZ
T (I � a�)(Z � S).

Proof. Since PZ is the orthogonal projection of L2(⌦) onto the space VZ , the condition PZ(I � a�)(Z � S) = 0
implies that

⇣
(I � a�)(Z � S), v � Z

⌘
= 0,

for every divergence free vector field v with zero normal component. As we noted in the introduction, this is
equivalent to the existence of a scalar function q : ⌦ ! R such that

(I � a�)(Z � S) +D
T (cof(DZ)q) = 0.

To recover q, we use the fact that DT (cof(DZ)q) = cof(DZ)rq and DZ
T cof(DZ) = det(DZ)I = I.

In the process of finding solutions to (4.2), we shall need to be able to invert the equations

PZ(I � a�)u = w, r · u = 0, u|@⌦ = 0

where w 2 VZ and Z 2 Di↵id(⌦) are given and u is unknown. In the special case where Z = id, this is known as
the Stokes resolvent problem. This problem plays an important role in the study of the Navier–Stokes equations
and will reappear throughout the rest of our paper.

The Stokes operator and the Stokes resolvent problem. For 1 < p < 1, let

Kp := {u 2 W
2,p(⌦,Rd) \W

1,p

0
(⌦,Rd) : r · u = 0 in ⌦}.

The Stokes operator

A := �P� : Kp ! L
p(⌦) (4.3)

is defined to be the negative of the composition of the Leray projection and the Laplace operator. For well-
posedness and regularity properties of this operator, see for instance [46],[28]. Using the Stokes operator, we
can rewrite the Stokes resolvent problem for a given w as follows:

(I + aA)u+ w = 0, r · u = 0, u|@⌦ = 0. (4.4)

The following Lemma on the solvability and regularity of the Stokes resolvent problem will be essential to our
critical point analysis, and will reappear again when we consider the Navier–Stokes equations.
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Lemma 4.2 (Thm. 1.2, [24]). If w 2 L
p(⌦), then there exists a solution u 2 Kp to equation (4.4), a scalar

function f : ⌦ ! R and a constant C̄p such that

(I � a�)u+rf + w = 0

and

kukLp(⌦) + akD2
ukLp(⌦) + krfkLp(⌦)  C̄pkwkLp(⌦). (4.5)

5. EVP and the main ideas for the proof of Theorem 2.2

Now we have converted the critical point equation (1.7) into the simplified form (4.2). As mentioned in the
introduction, we will now use a version of the implicit function theorem based on Ekeland’s variational principle
(EVP). These ideas are first introduced in an abstract setting.

5.1. EVP and the implicit function theorem

Proposition 5.1 (Ekeland variational principle [34]). Let (T , dist) be a complete metric space and let F : T !
R [ {+1} be a lower semicontinuous function that is bounded below and is not identically 1. If x0 2 T such

that F (x0)  ✏+ infT F for some ✏ > 0, then for all � > 0 there exists x� 2 T such that

F (x�)  F (x0), dist(x0, x�)  �, and F (x�) < F (x) +
✏

�
dist(x, x�) 8x 2 T \ {x�}.

In order to use EVP to solve (4.2), we need to convert the question of finding zeros into a variational problem.
This is accomplished in the following abstract lemma, which is an adaptation of Ekeland’s argument from [35]
that is well-suited to our setting.

Lemma 5.2. Suppose that X ,Y are Banach spaces and � : X ! Y is a continuous and Frechet di↵erentiable

map. Given a closed proper subset M ⇢ X , we define a function F : X ! R [ {+1} such that

F (x) :=

(
k�(x)kY if x 2 M,

+1 otherwise

Given a point x0 2 M and � > 0, let x� 2 X be the point provided by Ekeland’s variational principle such that

F (x�)  F (x0), kx0 � x�kX  �, and F (x�) < F (x) +
F (x0)

�
kx� x�kX 8x 2 X \ {x�}.

If F (x�) 6= 0 and � : [0, 1] ! M is a C
1
path such that �(0) = x�, �

0(0) = F (x�)v for some vector v 2 X , then

� 1 + k�(x�)

F (x�)
+ d�(x�; v)kY � �F (x0)

�
kvkX , (5.1)

where d�(x�; v) is the Frechet derivative of � at x� in the direction of v.

Proof. Let us first note that it is valid to apply EVP to F , since F is nonnegative, lower semicontinuous, and
not identically infinity. EVP implies that

F (�(t))� F (x�) > �F (x0)

�
k�(t)� x�kX
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for all t > 0. By the triangle inequality

F (�(t))  (1� t)k�(x�)kY + tk�(x�) + F (x�)d�(x�, v)kY + k�(�(t))� �(x�)� tF (x�)d�(x�; v)kY .

Since � is Frechet di↵erentiable, we have

lim
t!0

t
�1k�(�(t))� �(x�)� tF (x�)d�(x�; v)kY = 0.

Therefore,

lim
t!0+

F (�(t))� F (x�)

t
 �F (x�) + k�(x�) + F (x�)d�(x�; v)kY .

Hence, it follows that

�F (x�) + k�(x�) + F (x�)d�(x�; v)kY � �F (x�)
F (x0)

�
kvkX .

Dividing both sides by F (x�) gives the result.

It is not immediately obvious how one can use Lemma 5.2 to find zeros of a map �. However, note that
because k�(x�)

F (x�)
kY = 1, the Lemma essentially gives a bound on the steepest descent rate of F at x� when

F (x�) 6= 0. If we can show that this bound is impossible for some � > 0, then it follows that F (x�) = 0 and
hence �(x�) = 0. For example, under the usual assumptions for the implicit function theorem (i.e. M = X and
v 7! d�(x, v) is a linear bijection with a uniformly continuous inverse for all x in a neighborhood of x0), we can

choose v = �d�(x�,
�(x�)

F (x�)
)�1, which is the steepest descent direction for F at x�. With this choice, the slope

inequality will fail as long as F (x0) is su�ciently small and � is chosen appropriately.
On the other hand, there is no reason that one needs to invert v 7! d�(x, v) exactly. As long as we can find a

(valid) direction v where the inequality (5.1) fails, we will have found a zero of �. Indeed, this is the advantage
of the EVP based approach — we are allowed to make some error when we attempt to invert v 7! d�(x, v).
Furthermore, when we make a choice for � we will have the guarantee that the solution x� is at most distance
� away from the starting point x0 in the X norm. This gives us complete quantitative control on the solution.
Finally, this approach makes it very convenient to enforce a nonlinear constraint on the solution set. If M 6= ?,
then one just needs to ensure that the descent direction v is chosen to be in the “tangent space” of M at x�.

5.2. Adapting the arguments to our setting

To apply Lemma 5.2 to find zeros of (4.2), we need to give appropriate choices for the spaces X ,Y,M and
the map �. Once these have been chosen, we shall define F as in Lemma 5.2.

We shall take X = W
2,r

id (⌦) with a modified norm that depends on the parameter a > 0. More precisely we
take

X = Xa; Y = L
r(⌦); and M = W

2,r

id (⌦) \Di↵id(⌦), (5.2)

where Xa has its elements the same as W 2,r

id (⌦) with the norm

kZkXa := kZkLr(⌦) + akD2
ZkLr(⌦). (5.3)
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Note that by setting M = W
2,r

id (⌦)\Di↵id(⌦) we will ensure that any points produced by EVP will satisfy the
determinant constraint det(DZ) = 1. Finally, since we wish to solve (4.2), we shall define

�(Z) := PZ(I � a�)(Z � S), (5.4)

which is clearly a map from W
2,r(⌦) into L

r(⌦). More precisely, PZ is a map from W
2,r(⌦) into VZ \ L

r(⌦).

To contradict the inequality (5.1), we shall need to minimize k�(Z�)

F (Z�)
+d�(Z�; v)kLr(⌦). Note that �(Z�)

F (Z�)
must

take the form

�(Z�)

F (Z�)
= w(Z�) (5.5)

where w 2 L
r(⌦) \ V is a divergence free vector field such that kwkLr(⌦) = 1. Hence, we must be able to find a

solution v that approximately solves the equation

d�(Z�; v) = �w(Z�) (5.6)

for a given divergence free vector field w with unit Lr norm.
Luckily, �(Z) is very nearly a linear map, the only nonlinear behavior comes from the operator PZ . Hence,

apart from the contribution coming from PZ , the Frechet derivative of � is trivial. Given a point Z 2 M, let

dP(Z; v) = lim
t!0+

PZ+tv � PZ

t

denote the Frechet derivative of PZ in the direction of a vector v 2 W
2,r(⌦). We can then write equation (5.6)

as

d�(Z; v) = PZ(I � a�)v + dP(Z; v)(I � a�)(Z � S). (5.7)

The second term in the Frechet derivative of � is rather annoying to work with. Thus, rather than try to invert
the full expression (5.7), we will just treat the second term as an error term and try to approximately solve

PZ(I � a�)v = �w(Z�). (5.8)

However, even this simplified expression is tricky to solve explicitly due to the combination of the operators
PZ and (I � a�). Indeed, PZ is a linear operator with base point Z, while (I � a�) is a linear operator with
base point at the identity, thus their composition is rather complicated. To simplify matters, we shall let u be
a solution to the Stokes resolvent problem

(I +A)u = �w, r · u = 0, u|@⌦ = id

and choose v = u �Z�. This choice of v will not exactly solve (5.8), hence, this leads to a second source of error
that we shall also need to control.

The above considerations are now summarized in the following Proposition, which simplifies Lemma 5.2 and
converts it into our specific setting.
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Proposition 5.3. Given a point Z̃ 2 M and some � > 0, let Z� be the point chosen by Ekeland’s variational

principle starting from Z̃. If F (Z�) 6= 0, then for w given in (5.5) we have

� 1+ akPZ�

�
�(u �Z�)� (�u) �Z�

�
kLr(⌦) + kdP(Z�;u �Z�)kr,rk(I � a�)(Z� �S)kLr(⌦) � �F (Z̃)

�
ku �Z�kXa ,

(5.9)
where u solves the Stokes resolvent problem (4.4) and

kdP(Z�;u � Z�)kr,r := sup
kfkLr(⌦)1

kdP(Z�;u � Z�)fkLr(⌦). (5.10)

Proof. u is a divergence free vector field vanishing on @⌦. Therefore, thanks to the construction in Appendix B,
there exists a C

1 curve Z(t) : [0, 1] ! M such that Z(0) = Z� and Z
0(0) = u(Z�). Now we can apply Lemma 5.2

to obtain the inequality

�1 + kw � Z� + d�(Z�;u � Z�)kLr(⌦) � �F (Z̃)

�
ku � Z�kXa .

Using equation (5.7), the triangle inequality, and the definition of the operator norm kdP(Z�;u � Z�)kr,r, it
follows that

�1+ kw �Z� + PZ�(I � a�)(u �Z�)kLr(⌦) + kdP(Z�;u �Z�)kr,rk(I � a�)(Z� � S)kLr(⌦) � �F (Z̃)

�
ku �Z�kXa .

Finally, we note that

�w � Z� =
�
(I + aA)u

�
� Z� = PZ�

⇥
(I � a�)u � Z�

⇤
.

Thus,

w � Z� + PZ�(I � a�)(u � Z�) = aPZ�

�
�(u � Z�)� (�u) � Z�

�
.

6. Estimates and the proof of Theorem 2.2

In this section, we will complete the proof of Theorem 2.2 by estimating the various quantities in (5.9) and
choosing an appropriate starting point Z̃.

6.1. Estimates

We begin by estimating the operator norm kdP(Z�;u � Z�)kr,r. We will do this by estimating the di↵erence

kPZ1 � PZ2kr,r

for arbitrary maps Z1, Z2 2 Di↵id(⌦). To start, we will consider the case where one of the maps is the identity.

Lemma 6.1. If Z 2 Di↵ id(⌦), then for r 2 (1,1)

kPZ � Pkr,r 
�
kI �DZkL1(⌦) + kcof(DZ)� IkL1(⌦)

�
kPk2

r,r
.
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Proof. Fix some function f 2 L
r(⌦) and let ⇠ be a smooth test function. We use the Hodge decomposition to

write

f = w +r', w := Pf, ⇠ = ⇣ +r , ⇣ := P⇠.

Now if we test (PZ � P)f against ⇠ � Z we have

(PZf � Pf, ⇠ � Z) = (f, ⇣(Z))� (w, ⇠(Z))

If we expand f and ⇠ in terms of their decompositions, the term (w, ⇣(Z)) appears in both expressions, so we
arrive at

(r', ⇣(Z))� (w,r (Z))

Now we estimate each term separately. Pushing forward by Z we see that

(r', ⇣(Z)) = (r'(Z�1), ⇣).

The closely related quantity, (r(' � Z�1), ⇣), vanishes. From the fact r(' � Z�1) = cof(DZ)r'(Z�1) we see
that

(r'(Z�1), ⇣) = ((I � cof(DZ))r'(Z�1), ⇣)

Similar arguments reveal that

�(w,r (Z)) = �
�
w, (I �DZ

T )r (Z)
�

Therefore

(PZf � Pf, ⇠ � Z) 
⇣
kI �DZkL1(⌦) + kcof(DZ)� IkL1(⌦)

⌘
kfkLr(⌦)k⇠kLr0 (⌦)

kPkr,rkPkr0,r0

Since P is self adjoint, by duality, kPkr,r = kPkr0,r0 . f and ⇠ were arbitrary, so we can conclude the result.

Corollary 6.2. Suppose Zi 2 Di↵ id(⌦) for i = 1, 2. Then for r 2 (1,1) we have

kPZ1 � PZ2kr 
⇣
kDZ1 cof(DZ2)

T � IkL1(⌦) + kcof(DZ1)DZ
T

2
� IkL1(⌦)

⌘
kPk2

r,r
.

Furthermore, if u 2 C
1
0
(⌦) is divergence free, then

kdP(Z;u � Z)kr,r  2kPk2
r,r

kDukL1(⌦)

for any Z 2 Di↵ id(⌦).

Proof. Fix some function f 2 L
r(⌦) and let g = f � Z2. Writing things in terms of g we have PZ1f = (P(g �

Z2 � (Z1)�1)) � Z1 and PZ2f = (Pg) � Z2. Therefore,

kPZ2f � PZ1fkLr(⌦) = k(Pg � PY g) � Z2kLr(⌦)



18 W. GANGBO ET AL.

where Y = Z1 � Z�1

2
. Since Z2 is measure preserving, we have

k(Pg � PY g) � Z2kLr(⌦) = kPg � PY gkLr(⌦).

From the previous Lemma we get the bound

kPg � PY gkLr(⌦) 
�
kDY � IkL1(⌦) + kcof(DY )� IkL1(⌦)

�
kgkLr(⌦)kPk2r,r.

We can then compute DY (Z2) = DZ1 cof(DZ2)T and cof(DY (Z2)) = cof(DZ1)DZ
T

2
. Recalling that g = f �

Z
�1

2
, we can conclude that

�
kDY � IkL1(⌦) + kcof(DY )� IkL1(⌦)

�
kgkLr(⌦)


�
kDZ1 cof(DZ2)

T � IkL1(⌦) + kcof(DZ1)DZ
T

2
� IkL1(⌦)

�
kfkLr(⌦).

Since f is arbitrary, we can conclude the first result.
For the second result, using Appendix B, we can construct a C

1 curve Z(t) : [0, 1] ! M such that Z(0) = Z

and Z
0(0) = u � Z. We then have

kPZ(t) � PZkr 
⇣
kDZ(t) cof(DZ)T � IkL1(⌦) + kcof(DZ(t))DZ

T � IkL1(⌦)

⌘
kPk2

r,r
.

Therefore,

kdP(Z;u � Z)kr,r  lim
t!0+

t
�1

⇣
kDZ(t) cof(DZ)T � IkL1(⌦) + kcof(DZ(t))DZ

T � IkL1(⌦)

⌘
kPk2

r,r
.

We can then write

DZ(t) = DZ + tDu(Z)DZ + o(t),

and

cof(DZ(t))DZ
T � I = cof(DZ(t))

�
DZ

T �DZ(t)T
�
.

Thus,

lim
t!0+

t
�1

⇣
kDZ(t) cof(DZ)T � IkL1(⌦) + kcof(DZ(t))DZ

T � IkL1(⌦)

⌘
= 2kDukL1(⌦),

and the second result now follows.

We will use the following lemma to estimate the remaining terms in (6.1) involving u.

Lemma 6.3. If f 2 W
2,r(⌦) is a scalar function and Z 2 M then for any indices 1  i, j  d, we have

k@2
i,j
(f � Z)� (@2

i,j
f) � ZkLr(⌦)  krfkL1(⌦)k@2i,jZkLr(⌦) + kD2

fkLr(⌦)k@iZ ⌦ @jZ � ei ⌦ ejkL1(⌦)

and we have

k�(f � Z)� (�f) � ZkLr(⌦)  krfkL1(⌦)k�ZkLr(⌦) + kD2
fkLr(⌦)kDZDZ

T � IkL1(⌦)



WELL-POSEDNESS AND REGULARITY FOR A POLYCONVEX ENERGY 19

where ei is the i
th

standard basis vector.

Proof. Computing directly, we have

@
2

i,j
(f � Z) = D

2
f(Z) : @iZ ⌦ @jZ +rf(Z) · @2

i,j
Z.

Writing @2
i,j
f = D

2
f : ei ⌦ ej , we see that

@
2

i,j
(f � Z)� (@2

i,j
f) � Z = D

2
f(Z) : (@iZ ⌦ @jZ � ei ⌦ ej) +rf(Z) · @2

i,j
Z.

Hence,

�(f � Z)� (�f) � Z = D
2
f(Z) : (DZDZ

T � I) +rf(Z) ·�Z

The result now follows from Holder’s inequality and the fact that Z is a measure preserving map.

We can now state a version of Proposition 5.3 that eliminates the dependence on the Stokes resolvent solution
u. Recall that M is given in (5.2).

Proposition 6.4. Given a point Z̃ 2 M and some � > 0, let Z� be the point chosen by Ekeland’s variational

principle starting from Z̃. Define

Ka := sup
f2W 2,r(⌦)

kDfkL1(⌦)

kfkXa

.

and

Cr := max(kPkr,r, C̄r),

where C̄r is the constant in (4.5). If F (Z�) 6= 0, then

� 1 + C
2

r

⇣
kDZ�DZ

T

�
� IkL1(⌦) + aKak�Z�kLr(⌦)

⌘
+ 2KaC

3

r
k(I � a�)(Z� � S)kLr(⌦)

� �Cr

F (Z̃)

�

⇣
1 +

dX

i,j=1

k@iZ� ⌦ @jZ� � ei ⌦ ejkL1(⌦) + aKakD2
Z�kLr(⌦)

⌘
(6.1)

Proof. Let u and w be defined as in Proposition 5.3, and recall that we have the inequality

�1+ akPkr,rk�(u �Z�)� (�u) �Z�kLr(⌦) + kdP(Z�;u �Z�)kr,rk(I � a�)(Z� � S)kLr(⌦) � �F (Z̃)

�
ku �Z�kXa .

Since

ku � Z�kXa = ku � Z�kLr(⌦) + akD2(u � Z�)kLr(⌦),

we can use the measure preserving property of Z� and the triangle inequality to estimate

ku � Z�kXa  kukXa + ak(D2
u) � Z� �D

2(u � Z�)kLr(⌦).
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Thanks to Lemma 6.3, we have

k�(u � Z�)� (�u) � Z�kLr(⌦)  kDZ�DZ
T

�
� IkL1(⌦)kD2

ukLr(⌦) + kDukL1(⌦)k�Z�kLr(⌦),

and

k(D2
u) � Z� �D

2(u � Z�)kLr(⌦)  kD2
ukLr(⌦)

dX

i,j=1

k@iZ� ⌦ @jZ� � ei ⌦ ejkL1(⌦) + kDukL1(⌦)kD2
Z�kLr(⌦)

Thus,

ak�(u � Z�)� (�u) � Z�kLr(⌦)  kukXa

⇣
kDZ�DZ

T

�
� IkL1(⌦) + aKak�Z�kLr(⌦)

⌘
,

and

ak(D2
u) � Z� �D

2(u � Z�)kLr(⌦)  kukXa

� dX

i,j=1

k@iZ� ⌦ @jZ� � ei ⌦ ejkL1(⌦) + aKakD2
Z�kLr(⌦)

�
.

From Corollary 6.2, we have

kdP(Z�;u � Z�)kr,r  2kPk2
r,r

kDukL1(⌦)  2KakPk2r,rkukXa

From the definition of u and w, and the bound (4.5), we have

kukXa  C̄rkwkLr(⌦) = C̄r.

Thus, combining our work, we can conclude that

�1 + kPkr,rC̄r

⇣
kDZ�DZ

T

�
� IkL1(⌦) + aKak�Z�kLr(⌦)

⌘
+ 2KakPk2r,rC̄rk(I � a�)(Z� � S)kLr(⌦)

� �C̄r

F (Z̃)

�

⇣
1 +

dX

i,j=1

k@iZ� ⌦ @jZ� � ei ⌦ ejkL1(⌦) + aKakD2
Z�kLr(⌦)

⌘

The result now follows from the definition of Cr.

We conclude this subsection with an estimate for Ka.

Lemma 6.5. If Ka is defined as in Proposition 6.4, then

Ka . a
� d+r

2r . (6.2)

Proof. By the Gagliardo-Nirenberg interpolation inequality, we have

kDfkL1(⌦) . kD2
fk

d+r
2r

Lr(⌦)
kfk

r�d
2r

Lr(⌦)
 a

� d+r
2r kfkXa .

Hence, Ka . a
� d+r

2r .
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6.2. Construction of the starting point Z̃ and the proof of Theorem 2.2

In order to prove the failure of inequality (6.1), it remains to choose an appropriate starting point Z̃.
Let us define u

⇤ to be the solution to the Stokes resolvent problem

(I + aA)u⇤ + P(I ��)(id� S) = 0, r · u⇤ = 0, u
⇤|@⌦ = 0. (6.3)

We now apply Lemma 4.2 to obtain that

ku⇤kLr(⌦) + kaD2
u
⇤kLr(⌦) . k(I � a�)(S � id)kLr(⌦). (6.4)

Thus,

k(I � a�)(S � id� u
⇤)kLr(⌦) . k(I � a�)(S � id)kLr(⌦). (6.5)

We shall now use this u⇤ to construct the starting point Z̃.

Proposition 6.6. Suppose that Y : [0,1)⇥ ⌦ ! ⌦ is a map that satisfies

Y (t, x) = id+

Z
t

0

u
⇤(Y (s, x)) ds, det(DY (t, x)) = 1,

where u
⇤
is defined as in (6.3). If we set Z̃(x) := Y (1, x) then

kZ̃ � idkXa  Cr� + �
2
Ka

⇣
1 + Cr

�
1 +m0(�CrKa)

�⌘

and

F (Z̃)  Cr�
2
Ka

⇣
1 + Cr

�
1 +m0(�CrKa)

�⌘
. (6.6)

Here Ka and Cr are defined as in Proposition 6.4, � := k((I � a�)(S � id)kLr(⌦) and

m0(t) := t

⇣
1 + Cr

�
2et + 2te2t + t

2e3t
�⌘

.

Note that Ka has an upper bound by (6.2).

Proof. We begin by noticing that u⇤ must solve the equation

P(I � a�)(S � id� u
⇤) = 0. (6.7)

By triangle inequality,

kZ̃ � id� u
⇤kXa 

Z
1

0

ku⇤ � Y (s, ·)� u
⇤kXa ds.

By Lemma B.1 and Corollary 6.2,

F (Z̃)  kP(I � a�)(Z̃ � S)kLr(⌦) + kDZ̃ � IkL1(⌦)kZ̃ � SkXa .
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We can then estimate

kZ̃ � SkXa  kS � id� u
⇤kXa + kZ̃ � id� u

⇤kXa  Cr� +

Z
1

0

ku⇤ � Y (s, ·)� u
⇤kXa ds.

By (6.7) we have

P(I � a�)(Z̃ � S) = P(I � a�)(Z̃ � id� u
⇤),

which gives us

kP(I � a�)(Z̃ � S)kLr(⌦)  Cr

Z
1

0

ku⇤ � Y (s, ·)� u
⇤kXa ds.

Focusing on the term
R
1

0
ku⇤ � Y (s, ·)� u

⇤kXa ds, we have the bound

R
1

0
ku⇤ � Y (s, ·)� u

⇤kXa ds 
R
1

0
kDu

⇤kL1(⌦)kY (s, ·)� idkLr(⌦) + ak�(u⇤ � Y (s, ·)� u
⇤)kLr(⌦) ds

 1

2
kDu

⇤kL1(⌦)ku⇤kLr(⌦) +
R
1

0
ak�(u⇤ � Y (s, ·)� u

⇤)kLr(⌦) ds.

A direct calculation gives the estimate

Z
1

0

ak�(u⇤ � Y (s, ·)� u
⇤)kLr(⌦) ds


Z

1

0

ak�Y (s, ·)kLr(⌦)kDu
⇤kL1(⌦) + akD2

u
⇤kLr(⌦)kDY (s, ·)� IkL1(⌦)(1 + kDY (s, ·)� IkL1(⌦)) ds.

It is straightforward to obtain the estimates

kDY (t, ·)� IkL1(⌦) 
Z

t

0

kDu
⇤kL1(⌦)(1 + kDY (t, ·)� IkL1(⌦)) ds.

and

k�Y (t, ·)kLr(⌦) 
Z

t

0

kDu
⇤kL1(⌦)k�Y (s, ·)kLr(⌦) + kD2

u
⇤kLr(⌦)kDY (s, ·)DY

T (s, ·)kL1(⌦).

Hence, Gronwall’s inequality gives us

kDY (t, ·)� IkL1(⌦)  tkDu
⇤kL1(⌦) exp(tkDu

⇤kL1(⌦)),

and

k�Y (t, ·)kLr(⌦)  kD2
u
⇤kLr(⌦)

2X

j=0

�
tkDu

⇤kL1(⌦)

�j
exp((j + 1)tkDu

⇤kL1(⌦)).
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By Lemma 4.2 and the definition of Ka, we have

ku⇤kXa  Cr�, kDu
⇤kL1(⌦)  CrKa�.

Putting together our computations we get

Z
1

0

ku⇤ � Y (s, ·)� u
⇤kXa ds  Cr�

2
Ka

⇣
1 + 2Cre

Cr�Ka + 2Cr�Kae
2Cr�Ka + Cr(Cr�Ka)

2e3Cr�Ka

⌘
, (6.8)

and our estimates of F (Z̃) and kZ̃ � idkXa now follow.

Now we are ready to prove the existence of a point Z 2 Di↵ id(⌦) such that the critical point equation (4.2)
is satisfied. We shall proceed by combining Propositions 6.4 and 6.6, and estimating the remaining quantities
in terms of a and �.

Theorem 6.7. If � and a
� d+r

2r � are su�ciently small (depending on d and r only), then there exists a constant

� > 0 and a point Z� 2 Xa such that

F (Z�) = 0 and � . �
2
a
� d+r

2r .

Proof. For each � > 0, let Z� be the point provided by Ekeland’s variational principle starting from the point
Z̃ constructed in Proposition 6.6. If F (Z�) 6= 0, then Proposition 6.4 provides us with the “slope inequality”

�1 + C
2

r

⇣
kDZ�DZ

T

�
� IkL1(⌦) + aKak�Z�kLr(⌦)

⌘
+ 2KaC

3

r
k(I � a�)(Z� � S)kLr(⌦)

� �Cr

F (Z̃)

�

⇣
1 +

dX

i,j=1

k@iZ� ⌦ @jZ� � ei ⌦ ejkL1(⌦) + aKakD2
Z�kLr(⌦)

⌘

Our goal is to rewrite this inequality in terms of � and a to derive a contradiction when � and a
� d+r

2r � are small
enough.

Let us choose � := �0F (Z̃) for some constant �0 > 0, and set

b1 := kZ� � idkXa .

Recall that � is positive since 0 < F (Z�)  F (Z̃). We can then write

k(I � a�)(Z� � S)kLr(⌦)  � + kZ� � idkXa = � + b1,

kDZ�DZ
T

�
� IkL1(⌦)  KakZ� � idkXa

�
2 +KakZ� � idkXa

�
= Kab1(2 +Kab1),

and

dX

i,j=1

k@iZ� ⌦ @jZ� � ei ⌦ ejkL1(⌦)  d
2
KakZ� � idkXa

�
2 +KakZ� � idkXa

�
= d

2
Kab1(2 +Kab1).

We also note that

akD2
Z�kLr(⌦) = akD2(Z� � id)kLr(⌦)  b1,



24 W. GANGBO ET AL.

and hence

aKak�Z�kLr(⌦)  Kab1

Using these bounds, the slope inequality can now be written as

�1 + C
2

r

⇣
Kab1(2 +Kab1) +Kab1

⌘
+ 2KaC

3

r
(� + b1) � �Cr

�0

⇣
1 + d

2
Kab1(2 +Kab1) +Kab1

⌘

Dropping constants and rearranging, we have shown that

1� �
�1

0
. Ka(� + b1) +Kab1(2 +Kab1) +Kab1 + �

�1

0

⇣
Kab1(2 +Kab1) +Kab1

⌘
. (6.9)

Let us now define

b2 := Kab1.

Using the above calculations, we can rewrite (6.9) as

1� �
�1

0
. Ka� + b

2

2
+ b2 + �

�1

0
(b2 + b

2

2
) (6.10)

Since kZ� � Z̃kXa  �, as long as a�
d+r
2r � are su�ciently small, Proposition 6.6 yields

b1 = kZ� � idkXa  �+ kZ̃ � idkXa . �+ � +Ka�
2
.

Moreover, Proposition 6.6 and Lemma 6.5 yields that

Ka . a
� d+r

2r and � = �0F (Z̃) . �0Ka�
2 . �0a

� d+r
2r �

2
.

Hence we see that Kab1 . a
� d+r

2r � + (a�
d+r
2r �)2.

Thus, when a
� d+r

2r � is su�ciently small, (6.10) fails for �0 = 2. Hence, we can deduce by contradiction that
F (Z�) = 0 when � = �0F (Z̃). The conclusion of the theorem follows from the bounds on F (Z̃) and Ka.

Proof of Theorem 2.2. . When �, a�
d+r
2r � and a

� d+3r
2r �

2 are su�ciently small, Theorem 6.7 yields a point Z�

such that

F (Z�) = 0 and kZ� � Z̃kXa  � = ��
2
a
� d+r

2r , (6.11)

where Z̃ is as given in Proposition 6.6. Since F (Z�) = 0 and Z� 2 W
2,r(⌦) we know that

(I � a�)(Z� � S) +D
T (cof(DZ)q⇤) = 0,

for some function q
⇤ 2 W

1,r(⌦). Theorem 2.2 will now follow from Theorem 2.1 if we can show that kq⇤kL1(⌦) 
a�

2(2 + 3(1 +
p
3))�1, where � is the smallest singular value of DZ�.

Note that

kDZ� � IkL1(⌦)  Ka(�+ kZ̃ � idkXa) . a
� d+r

2r �,
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Thus,

� � 1� ✓d,ra
� d+r

2r � (6.12)

for some constant ✓d,r > 0.
Define p

⇤ := q
⇤ � Z�1

�
and note that kq⇤kL1(⌦) = kp⇤kL1(⌦). We have D

T (cof(DZ)rq) = rp
⇤(Z�). Since

Z� is measure preserving, we have

krp
⇤kLr(⌦) = k(I � a�)(Z� � S)kLr(⌦)  �+ k(I � a�)(Z̃ � S)kLr(⌦).

Recalling the definition of u⇤ from (6.3) and

�
0 := kS � id� u

⇤kXa

we have

k(I � a�)(Z̃ � S)kLr(⌦)  �
0 + k(I � a�)(Z̃ � id� u

⇤)kLr(⌦).

Since k(I � a�)(Z̃ � id� u
⇤)kLr(⌦) is bounded by the quantity on the left hand side of (6.8), we can conclude

that

k(I � a�)(Z̃ � S)kLr(⌦) . �
0 + a

� d+r
2r �

2
,

when � and a
� d+r

2r � are su�ciently small. In particular from (6.11) it follows that

k(I � a�)(Z� � S)kLr(⌦)  �
0 + a

� d+r
2r �

2
.

It is now clear from (6.12) and the Poincaré-Wirtinger inequality that

���p⇤ �
1

|⌦|

Z

⌦

p
⇤(x)dx

���
L1(⌦)

 a�
2
�
2 + 3(1 +

p
3)
��1

will hold as long as a�1(�0 + a
� d+r

2r �
2) is su�ciently small.

7. Application to Navier–Stokes equation

In this section we prove Theorem 2.7. For a given initial data v0 2 L
r(⌦;Rd) with r > d, we will construct

discrete-time solutions that generates the unique mild solution of the Navier–Stokes equations (2.7) as well as
the associated Lagrangian flow (1.9).

7.1. The discrete scheme: Lagrangian and Eulerian viewpoint

Let A denote the Stokes operator introduced in (4.3). We begin by recalling the discrete-in-time scheme to
construct Lagrangian and Eulerian solutions to the Navier–Stokes equations. Given an initial velocity v0, we
set v0,⌧ = v0 and iterate the following steps:

(I � µ⌧�)Sn+1,⌧ = id+ ⌧vn,⌧ , Sn+1,⌧ |@⌦ = id, (7.1)
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Zn+1,⌧ 2 argmin
Z2Di↵id(⌦)

1

2
kZ � Sn+1,⌧k2L2(⌦)

+
µ⌧

2
kDZ �DSn+1,⌧k2L2(⌦)

, (7.2)

wn+1,⌧ := vn,⌧ � Z�1

n+1,⌧
, (7.3)

vn+1,⌧ := e�µ⌧A
wn+1. (7.4)

Note that vn,⌧ has zero trace on @⌦ from the definition. It will also be useful to define the quantity

ṽn+1,⌧ =
Zn+1,⌧ � id

⌧
, (7.5)

which will play a role in our subsequent analysis, even though its computation is not required for the scheme.
Due to Theorem 2.2, Zn+1,⌧ exists as long as kvnkLr(⌦) is bounded (see Lem. 7.1), which makes the scheme

well-defined. We shall also use the scheme to construct discrete-in-time Lagrangian solutions Xn,⌧ by setting
X0,⌧ = id and iterating

Xn+1,⌧ = Zn+1,⌧ �Xn,⌧ . (7.6)

Note that the steps (7.3) and (7.4) can be understood as a splitting scheme for Navier–Stokes. Step (7.3)
accounts for the transportation of the velocity field, while step (7.4) accounts for the linear parts of the equation.
The non-standard aspect of this scheme is that we advect the vector field with the projection map Zn+1,⌧ . This
lends a great deal of stability, since it makes the scheme much more implicit. Furthermore, Zn+1,⌧ is measure
preserving, thus, we will see that the scheme automatically satisfies a discrete version of the energy dissipation
inequality and the Navier–Stokes Duhamel formula (see Lems. 7.3 and 7.13).

Our ultimate aim is to show that the velocity iterates vn+1,⌧ and the Lagrangian maps Xn+1,⌧ converge
to Eulerian and Lagrangian solutions of Navier–Stokes respectively as ⌧ tends to zero. To that end we will
introduce piecewise constant interpolations v⌧ , Z⌧ , X⌧ , ṽ⌧ defined as follows: for U denoting v, Z,X and ṽ,

U⌧ (t, x) := Un+1,⌧ (x) if n⌧  t < (n+ 1)⌧. (7.7)

Now we are ready to analyze the scheme. Let us begin by translating the estimates from Section 5 into our
current setting. The following statement is a direct consequence of Theorem 2.2. Note that here we have

a = µ⌧, � = ⌧kvN�1,⌧kLr(⌦) and �
0 = 0.

Lemma 7.1. There exists a constant C > 0 only depending on r such that the following holds. Suppose that

(7.1–7.4) are well-defined for 0  n  N � 1 and suppose that vN�1,⌧ satisfies

kvN�1,⌧kLr(⌦)  Cµ
d+3r
4r ⌧

d�r
4r (7.8)

for some constant C > 0. If C is su�ciently small then vN,⌧ is well-defined by the scheme.

Since r > d, Lemma 7.1 will follow if we can show that kvn,⌧kLr(⌦) is uniformly bounded with respect to ⌧ .

This is what we will show in Section 6.3 for a finite time period 0  n  [T
⇤

⌧
]. To this end we first present a

preliminary estimate that connects ṽ and v.
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Proposition 7.2. Given some ⌧ > 0, let {vn,⌧ , Zn,⌧ , ṽn,⌧}n�0 be the sequence of iterates generated by (7.1–7.6).

If vn,⌧ satisfies the L
r
norm bound from Lemma 7.1, then

kṽn+1,⌧kLr(⌦) . kvn,⌧kLr(⌦) + µ
� d+r

2r ⌧
1� d+r

2r kvn,⌧k2Lr(⌦)
. (7.9)

Furthermore, if vn,⌧ 2 H
1(⌦) then

kṽn+1,⌧ � vn,⌧kL2(⌦) . (µ⌧)1/2kDvn,⌧kL2(⌦) + µ
� d+r

2r ⌧
1� d+r

2r kvn,⌧k2Lr(⌦)
. (7.10)

Proof. Let Z̃n+1,⌧ be the reference point from Proposition 6.6 constructed from the map Sn+1,⌧ . By the triangle
inequality, we have

kṽn+1,⌧kLr(⌦) = kZn+1,⌧ � id

⌧
kLr(⌦)  kZn+1,⌧ � Z̃n+1,⌧

⌧
kLr(⌦) + k Z̃n+1 � id

⌧
kLr(⌦).

Clearly,

kZn+1,⌧ � Z̃n+1,⌧

⌧
kLr(⌦)  kZn+1,⌧ � Z̃n+1,⌧

⌧
kXµ⌧ .

Thanks to Theorem 6.7, we must have

kZn+1,⌧ � Z̃n+1,⌧

⌧
kXµ⌧ . µ

� d+r
2r ⌧

1� d+r
2r kvn,⌧k2Lr(⌦)

.

If we let u⇤
n+1,⌧

denote the solution to the Stokes resolvent problem

(I + µ⌧A)u⇤
n+1,⌧

= vn,⌧ , r · u⇤
n+1,⌧

= 0, u
⇤
n+1,⌧

|@⌦ = 0,

then it is clear from the reference point construction in Proposition 6.6 that

k Z̃n+1 � id

⌧
kLr(⌦)  ku⇤

n+1,⌧
kLr(⌦) . kvn,⌧kLr(⌦),

where the last inequality follows from Lemma 4.2. Therefore,

kṽn+1,⌧kLr(⌦) . µ
� d+r

2r ⌧
1� d+r

2r kvn,⌧k2Lr(⌦)
+ kvn,⌧kLr(⌦)

Now we turn to the second statement. Following a similar idea to the above, we can estimate

kṽn+1,⌧ � vn,⌧kL2(⌦)  kZn+1,⌧ � Z̃n+1,⌧

⌧
kL2(⌦) + k Z̃n+1,⌧ � id

⌧
� u

⇤
n+1,⌧

kL2(⌦) + ku⇤
n+1,⌧

� vn,⌧kL2(⌦).

Dominating L
2 by Xµ⌧ (where we recall that k'kXa = k'kLr(⌦) + akD2

'kLr(⌦) for some r 2 (d,1)) we can
estimate

kZn+1,⌧ � Z̃n+1,⌧

⌧
kL2(⌦) . kZn+1,⌧ � Z̃n+1,⌧

⌧
kXµ⌧ . µ

� d+r
2r ⌧

1� d+r
2r kvn,⌧k2Lr(⌦)

.
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Again, from the construction of the reference point, it is immediate that

k Z̃n+1,⌧ � id

⌧
� u

⇤
n+1,⌧

kL2(⌦) ds  ⌧kDu
⇤
n,⌧

kL1(⌦)ku⇤
n,⌧

kL2(⌦).

The Sobolev inequalities and Lemma 4.2, then give

⌧kDu
⇤
n,⌧

kL1(⌦)ku⇤
n,⌧

kL2(⌦) . µ
� d+r

2r ⌧
1� d+r

2r kvn,⌧k2Lr(⌦)
.

Finally, we can use the equation satisfied by u
⇤
n+1,⌧

to compute

ku⇤
n+1,⌧

�vn,⌧k2L2(⌦)
= µ⌧

�
Au

⇤
n+1,⌧

, u
⇤
n+1,⌧

�vn,⌧ ) = µ⌧
�
Du

⇤
n+1,⌧

, Dvn,⌧ )�µ⌧kDu
⇤
n+1,⌧

k2
L2(⌦)

 µ⌧

2
kDvn,⌧k2L2(⌦)

.

Combining these estimates we get the second result.

Note that the bounds obtained in Proposition 7.2 present a superlinear growth in ⌧ , and thus they cannot
be iterated to generate a uniform bound. This is because the one-step estimates do not take into account
the regularizing e↵ect of the viscosity in the Navier–Stokes equation. In the next subsection we will utilize an
approximate Duhamel’s fomula to obtain an improved estimate that leverages the regularization e↵ect over time
(see Lem. 7.5).

7.2. Energy dissipation and Duhamel’s formula

In this subsection, we will establish discrete analogues of the well-known Navier–Stokes energy dissipation
inequality and Duhamel formula. In the following two lemmas, we assume that the scheme (7.1-7.4) is well
defined for all iterates 1  n < N⌧ . Note that N⌧ � 1 due to Lemma 7.1.

Lemma 7.3 (Approximate energy dissipation inequality).

kvn+1,⌧k2L2(⌦)
+ 2µ⌧kDvn+1,⌧k2L2(⌦)

 kvn,⌧k2L2(⌦)
for 1  n < N⌧ (7.11)

and

kvn+1,⌧k2L2(⌦)
+ 2µ⌧

n+1X

j=m+1

kDvj,⌧k2L2(⌦)
 kvm,⌧k2L2(⌦)

for 1  m  n < N⌧ . (7.12)

Proof. Let h(t) := ke�µtAPwn+1,⌧k2L2(⌦)
. Di↵erentiating in time and then integrating by parts, we have h

0(t) =

�2µkDe�µtAPwn+1k2L2(⌦)
. Therefore,

h(⌧) +

Z
⌧

0

2µkDe�µtAPwn+1k2L2(⌦)
dt  h(0).

Integrating the time derivative of the non-stationary stokes equation against itself, one also has

2µ⌧kDvn+1,⌧k2L2(⌦)
 2µ

Z
⌧

0

kDe�sAPwn+1k2L2(⌦)
ds.
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Thus, we can conclude that

kvn+1,⌧k2L2(⌦)
+ 2µ⌧kDvn+1,⌧k2L2(⌦)

 kPwn+1,⌧k2L2(⌦)
 kwn+1,⌧k2L2(⌦)

Finally, using the definition of wn+1,⌧ we have

kwn+1kL2(⌦) = kZn+1#vn,⌧kL2(⌦)  kvn,⌧kL2(⌦).

Combining our work, we obtain the first result. The second result follows from iteration.

Next, we will show that our scheme satisfies a discrete analogue of the Navier–Stokes Duhamel formula. The
Duhamel formula will play the central role in our subsequent analysis. Indeed, we will characterize our solution
using the Duhamel formula and we will also use it to obtain a short time bound on the velocity L

r norm.

Lemma 7.4 (Approximate Duhamel formula). If f : ⌦ ! Rd
is a smooth divergence free vector field that

vanishes on @⌦, then for any n < N⌧ we have

(vn+1,⌧ , f) = (v0, fn+1) +
nX

k=0

⇣
vk,⌧ , fn+1�k � Zk+1,⌧ � fn+1�k

⌘
, (7.13)

where fk = e�⌧kµA
f .

Proof. Let f : ⌦ ! Rd be a smooth divergence free vector field that vanishes on @⌦ and set f1 := e�⌧µA
f. From

integration by parts and using the definition of wn+1,⌧ , we see that

(vn+1,⌧ , f) =
�
wn+1,⌧ , f1

�
= (vn,⌧ , f1 � Zn+1,⌧ ).

Thus, we can conclude that

(vn+1,⌧ , f) = (vn,⌧ , f1) +
⇣
vn,⌧ , f1 � Zn+1,⌧ � f1

⌘
. (7.14)

Iterating this argument, we get the above result.

7.3. Lr
norm control

Based on the Duhamel formula, we will now show that there exists a time T
⇤
> 0 such that kvn,⌧kLr(⌦) is

bounded independently of ⌧ for all 0  n  N⌧ := bT
⇤

⌧
c. This will establish (7.8) for all iterates in the range

0  n  N⌧ := bT
⇤

⌧
c once ⌧ is su�ciently small.

Lemma 7.5.

kvn+1,⌧kLr(⌦) . ke�⌧(n+1)A
v0kLr(⌦)

+⌧
nX

k=0

�
µ⌧(n+ 1� k)

�� d+r
2r

⇣
kvk,⌧k2Lr(⌦)

+ µ
� d+r

2r ⌧
1� d+r

2r kvn,⌧k3Lr(⌦)

⌘
. (7.15)

Proof. Note that vn+1,⌧ is well defined by Lemma 7.1. Let f be a smooth divergence free vector field vanishing
on @⌦, and define fk := e�⌧kµA

f as in Lemma 7.4. We first use Hölder’s inequality and second use Remark A.2
to conclude that

⇣
vk,⌧ , fn+1�k � Zk+1,⌧ � fn+1�k

⌘
 Ckvk,⌧kLr(⌦)kZk+1,⌧ � idkLr(⌦)kDfn+1�kk

L

r
r�2 (⌦)

.



30 W. GANGBO ET AL.

Taking the supremum over smooth divergence free vector fields f in the unit ball of L
r

r�1 (⌦) and using
Lemma C.1, we can conclude that

sup
r·f=0, kfk

L
r

r�1 (⌦)
1

(vn+1,⌧ , f)

. ke�⌧(n+1)A
v0kLr(⌦) + ⌧C

nX

k=0

�
µ⌧(n+ 1� k)

�� d+r
2r kvk,⌧kLr(⌦)k

Zk+1,⌧ � id

⌧
kLr(⌦),

where the first inequality is from (7.13). Note that

kvn+1,⌧kLr(⌦) = sup
kfk

L
r

r�1 (⌦)
1

(vn+1,⌧ , f) = sup
kfk

L
r

r�1 (⌦)
1

(vn+1,⌧ ,Pf),

where the last equality follows from the fact that vn+1,⌧ is divergence free. Hence,

kvn+1,⌧kLr(⌦)  kPkr sup
r·f=0, kfk

L
r

r�1 (⌦)
1

(vn+1,⌧ , f).

Applying Proposition 7.2 to kṽn+1,⌧kLr(⌦) = kZk+1,⌧�id
⌧

kLr(⌦) we obtain the result.

Proposition 7.6. There exists a time T
⇤
> 0 and some ⌧0 > 0 depending on kv0kLr(⌦), r, d and µ such that

for all 0 < ⌧  ⌧0 if ⌧(n+ 1) < T
⇤
, then sup

kn+1kvk,⌧kLr(⌦) is bounded independently of ⌧ .

Proof. From Lemma C.1 and Lemma 7.5 there exist constants C0 = C0(r, d, µ)

kvn+1,⌧kLr(⌦)  C0kv0kLr(⌦) + ⌧

nX

k=0

�
µ⌧(n+ 1� k)

��↵
⇣
kvk,⌧k2Lr(⌦)

+ µ
�↵
⌧
1�↵kvn,⌧k3Lr(⌦)

⌘
.

where ↵ := 1

2
+ d

2r
< 1. Hence if {hk}k�0 solves h0 = C0kv0kLr(⌦) and

hn+1 = h0 + ⌧C1

nX

k=0

�
µ⌧(n+ 1� k)

��↵

(h2

k
+ µ

�↵
⌧
1�↵

h
3

k
), (7.16)

then kvk,⌧kLr(⌦)  hk. Suppose that hk  M := 2h0 for k = 1, . . . , n. Then we have

hn+1  M

2
+ C1(⌧µ(n+ 1))1�↵(M2 + µ

�↵
⌧
1�↵

M
3).

This is less than M as long as

⌧(n+ 1)  TD := (
1

4C1M
)

1
1�↵ and ⌧  ⌧0 := (

µ
↵

M
)

1
1�↵ .

Thus, we see that the velocity doubling time TD is uniformly bounded from below for all ⌧ 2 [0, ⌧0]. Since TD

is a strictly positive lower bound for T ⇤, we are done.
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7.4. Convergence of the scheme to Eulerian and Lagrangian solutions

Given the existence of the critical time T ⇤
> 0 from the previous section, we at last show that the approximate

solutions v⌧ and X⌧ converge to Eulerian and Lagrangian solutions of the Navier–Stokes equations respectively.

Proposition 7.7. Let T
⇤
be as given in Proposition 7.6. Then for any T < T

⇤
the family {v⌧}⌧�0 is uniformly

bounded in

L
2

⇣
[0, T ];H1

0
(⌦)

⌘
\ L

1
⇣
[0, T ];L2(⌦)

⌘

and precompact in L
2([0, T ]⇥ ⌦).

Proof. The uniform boundedness is an immediate consequence of (7.12). Precompactness in L
2([0, T ]⇥⌦) will

follow from modifications of the Aubin-Lions Lemma in [16] if we can show that the discrete time derivatives
vn+1,⌧�vn,⌧

⌧
are uniformly bounded in some weak space.

Let Y := {g 2 W
2,r

0
(⌦) : r · g = 0}. We wish to estimate

max
0n<N

����
vn+1,⌧ � vn,⌧

⌧

����
Y⇤

.

Given f 2 Y, (7.14) gives us

✓
vn+1,⌧ � vn,⌧

⌧
, f

◆
=

✓
vn,⌧ ,

f1 � f

⌧

◆
+

✓
vn,⌧ ,

f1 � Zn+1,⌧ � f1

⌧

◆

where f1 = eµ⌧Af . Thus, it is clear that

✓
vn+1,⌧ � vn,⌧

⌧
, f

◆
. kvn,⌧kL2(⌦)kAfkL2(⌦) + kvn,⌧kL2(⌦)kṽn+1,⌧kL2(⌦)kDf1kL1(⌦)

. kfkY
✓
kvnkL2(⌦) +

3

2
kvn,⌧k2L2(⌦)

+
1

2
kvn,⌧ � ṽn+1,⌧k2L2(⌦)

◆
,

where the last inequality follows from the Sobolev inequalities. Note that

1

2
kvn,⌧ � ṽn+1,⌧k2L2(⌦)

 Jµ⌧ (Zn+1,⌧ , vn,⌧ ) +
1

2
kvn,⌧k2L2(⌦)

 Jµ⌧ (id, vn,⌧ ) +
1

2
kvn,⌧k2L2(⌦)

=
1

2
kvn,⌧k2L2(⌦)

.

where we recall that Jµ⌧ (id, vn,⌧ ) is the value of the H
1 projection problem defined in equation (1.2). Now we

can conclude that

max
0nN

����
vn+1,⌧ � vn,⌧

⌧

����
Y⇤

 sup
n

kvn,⌧kL2(⌦) + 2kvn,⌧k2L2(⌦)
 kv0kL2(⌦) + 2kv0k2L2(⌦)

,

where the final inequality follows from (7.12).

Theorem 7.8. Let T
⇤
be as given in Proposition 7.6. Then for any T < T

⇤
there exists v 2 L

1([0, T ];Lr(⌦))\
L
2([0, T ];H1

0
(⌦)) such that

lim
⌧!0

kv � v⌧kL2([0,T ]⇥⌦) = 0
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and

v(t, x) = e�µtA
v0(x)�

Z
t

0

e�µ(t�s)APr ·
�
v(s, x)⌦ v(s, x)

�
ds for a.e. in [0, T ]⇥ ⌦. (7.17)

In particular, v is an L
r
mild solution to the Navier–Stokes equations (2.7) discussed in [29].

Proof. Let us define n = n⌧ := b t

⌧
c for a given time t 2 [0, T ]. Using the approximate Duhamel formula in

Lemma 7.4, we see that for any smooth divergence free test function f whose is contained in ⌦ we have

(vn+1,⌧ , f) = (v0, fn+1) + ⌧

nX

k=0

⇣
vk,⌧ ,

fn+1�k � Zk+1,⌧ � fn+1�k

⌧

⌘
.

We can then write

(vn+1,⌧ , f) = (v0, fn+1) + ⌧

nX

k=0

⇣
vk,⌧ ⌦ vk,⌧ , Dfn+1�k

⌘
+ ✏⌧

where

✏⌧ := ⌧

nX

k=0

⇣
vk,⌧ ,

fn+1�k � Zk+1,⌧ � fn+1�k

⌧
�Dfn+1�kvk,⌧

⌘
.

Next, observe

|✏⌧ |  ⌧

nX

k=0

Z

⌦

|vk,⌧ (x)||Dfn+1�k(x)||vk,⌧ (x)� ṽk+1,⌧ | dx

+⌧2
nX

k=0

Z

⌦

Z
1

0

Z
t

0

|D2
fn+1�k

�
sZk+1,⌧ (x) + (1� s)x

�
||vk,⌧ (x)||ṽk+1,⌧ |2 ds dt dx.

Thanks to the Sobolev Embedding Theorem we have

|✏⌧ | . kD2
fn+1�kkLr(⌦)kv⌧kL2([0,T ]⇥⌦)⌧

nX

k=0

kvk,⌧ � ṽk+1,⌧k2L2(⌦)

+ ⌧kD3
fn+1�kkLr(⌦)kv⌧kL1([0,T ]⇥⌦)kṽ⌧k2L2([0,T ]⇥⌦)

. (7.18)

Using Proposition 7.2 we have

kvk,⌧ � ṽk+1,⌧kL2(⌦)  (µ⌧)1/2kDvn,⌧kL2(⌦) + µ
� d+r

2r ⌧
1� d+r

2r kvn,⌧k2Lr(⌦)
.

Combining the above bound with (7.12), we can conclude that

⌧

nX

k=0

kvk,⌧ � ṽk+1,⌧kL2(⌦)  (⌧T )1/2kv0kL2(⌦) + µ
� d+r

2r ⌧
1� d+r

2r Tkv⌧k2L1([0,T ];Lr(⌦))
.
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Recall that vk,⌧ := eµ⌧Awk,⌧ in (7.3). Thus Sobolev inequalities and Lemma C.1 yields

kv⌧kL1([0,T ]⇥⌦) . kDv⌧kL1([0,T ];Lr(⌦)) . (µ⌧)�
d+r
2r max

0kn

kwk,⌧kL2(⌦).

Recalling our argument in the proof of (7.12), we have

max
0kn

kwk,⌧kL2(⌦)  max
0kn

kvk,⌧kL2(⌦)  kv0kL2(⌦).

Plugging the above estimates into formula (7.18), we can now conclude that lim⌧!0 |✏⌧ | = 0 for all divergence
free f 2 W

3,r

0
(⌦).

By Proposition 7.7, along a subsequence v⌧ converges to v 2 L
2([0, T ] ⇥ ⌦). It is now clear that for any

divergence free f 2 L
1([0, T ];W 3,r

0
(⌦)) we have

Z
T

0

Z

⌦

v(t, x)f(t, x) dt dx = lim
j!1

Z
T

0

Z

⌦

v⌧j (t, x)f(t, x) dx dt

= lim
j!1

Z
T

0

v0(x)e
�µ⌧jbt/⌧jcAf(t, x) dt+

Z
T

0

Z
t

0

Z

⌦

v⌧j (s, x)⌦ v⌧j (s, x)De
�µ⌧jb t�s

⌧j
cA

f(t, x) ds dx dt

=

Z
T

0

v0(x)e
�µtA

f(t, x) dt+

Z
T

0

Z
t

0

Z

⌦

v(s, x)⌦ v(s, x)De�µ(t�s)A
f(t, x) ds dx dt.

Since v 2 L
2([0, T ];H1(⌦)) \ L

1([0, T ];Lr(⌦)) we have

r · (v ⌦ v) 2 L
1([0, T ]⇥ ⌦).

Hence, we can conclude that, for a.e. (t, x) 2 [0, T ]⇥ ⌦,

v(t, x) = e�µtA
v0(x)�

Z
t

0

e�µ(t�s)Ar ·
�
v(s, x)⌦ v(s, x)

�
ds.

It is a straightforward consequence of the estimates in Lemma C.1 that any L
1([0, T ];Lr(⌦)) solution to

(7.17) with r > d must be unique (see Thm. D.1). Thus, the full sequence {v⌧}⌧>0 converges to v as ⌧ ! 0.

Theorem 7.9. For T
⇤
and v as in Theorem 7.9, there is a unique X : [0, T ]⇥ ⌦ ! ⌦ such that

X(t, x) = id+

Z
t

0

v(s,X(s, x)) ds, det(DX(t, x)) = 1 a.e., (7.19)

and

lim
⌧!0

kX⌧ �XkL1([0,T ]⇥⌦) = 0.

Proof. Note that any v, solution to equation (7.17) in L
1([0, T ];Lr(⌦)) \ L

2([0, T ];H1(⌦)) is also in
L
1([0, T ];W 1,1(⌦)) (see Thm. D.1). Thus X is well-defined by (7.19).
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It remains to show that X⌧ converges to X. Recall that from (7.1-7.4)

Xn+1,⌧ (x) = id+ ⌧

nX

k=0

ṽk+1,⌧ (Xk,⌧ (x)).

and by definition

X⌧ (t, x) = id+

Z
t

0

v⌧ (s,X⌧ (s, x)) ds+ ⌧

nX

k=0

ṽk+1,⌧ (Xk,⌧ (x))� vk+1,⌧ (Xk+1,⌧ (x)).

Therefore, for any t 2 [0, T ], we have the estimate

kX⌧ (t, ·)�X(t, ·)kL1(⌦)  kv � v⌧kL1([0,t]⇥⌦) +

Z
t

0

kDv(s, ·)kL1(⌦)kX⌧ (s, ·)�X(s, ·)kL1(⌦) ds

+⌧
nX

k=0

kvk+1,⌧ � Zk+1,⌧ � vk+1,⌧kL1(⌦) + kvk,⌧ � ṽk+1,⌧kL1(⌦),

where we have used the fact that Xk,⌧ is measure preserving for all k and Xk+1,⌧ = Zk+1,⌧ �Xk,⌧ . Applying
Remark A.2 and Proposition 7.2, we have

⌧

nX

k=0

kvk+1,⌧ � Zk+1,⌧ � vk+1,⌧kL1(⌦) + kvk,⌧ � ṽk+1,⌧kL1(⌦)

 ⌧kDv⌧kL2([0,T ]⇥⌦)kṽ⌧kL2([0,T ]⇥⌦) + (tµ⌧)1/2kDv⌧kL2([0,T ]⇥⌦) + µ
� d+r

2r ⌧
1� d+r

2r kv⌧k2L2([0,t];Lr(⌦))
.

Now we can use Gronwall’s inequality to conclude that

kX⌧ (t, ·)�X(t, ·)kL1(⌦)  �⌧ exp(kDvkL1([0,t];L1(⌦))), with lim
⌧!0

�⌧ = 0.

Remark 7.10. Theorem D.1 yields that v 2 L
1
�
(0, T ⇤);W 1,1(⌦)

�
with v(·, 0) 2 L

r(⌦), which is enough to
conclude that X is unique and X(t, ·) is one-to-one of ⌦̄ onto itself. From here, one would use the standard
theory for (2.7) to improve the regularity properties of v to v 2 L

1
�
(0, T ⇤);C1,↵(⌦)

�
for some ↵ > 0. Since X

satisfies (7.19) with v = 0 on @⌦, we can conclude that X 2 L
1�

(0, T ⇤);Di↵id(⌦)
�
.

Appendix A. Inequalities

The following Lemma is a classical result from the theory of maximal functions which can be found in [19].

Lemma A.1. For any l 2 [1,1] and f 2 W
1,p(Rd),

|f(x)� f(y)| 
⇣
M(rf)(x) +M(rf)(y)

⌘
|x� y|, for a.e. x, y 2 Rd

.

Here, M denotes the Hardy-Littlewood maximal function. Therefore, if 1 < l  1, there exists a constant

C ⌘ Cl(d) such that kM(rf)kLl(⌦)  CkrfkLl(⌦).
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Remark A.2. Assume that ⌦ is an open bounded set of class C3. Let l 2 (1,1] and let f 2 W
1,p

0
(⌦). Denote

as f̃ 2 W
1,p(Rd) the extension of f which is identically null outside ⌦. Let g be the restriction of M(rf̃) to ⌦.

We have

kgkLl(⌦)  kM(rf̃)kLl(Rd)  C̃krf̃kLl(Rd) = C̃krfkLl(⌦)

(i) We have

|f(x)� f(y)|  (g(x) + g(y))|x� y|, for a.e. x, y 2 ⌦.

(ii) Consequently, if r > 2 and Z : ⌦ ! ⌦ preserves Lebesgue measure then

kf(Z)� fk
L

r
r�1 (⌦)

 2CkZ � idkLr(⌦)kDfk
L

r
r�2 (⌦)

Lemma A.3. Suppose that g : [0,1) ! R is an increasing function and {ak}k�0, {bk}k�0, {ck}k�0, and

{�n,k}n,k�0 are nonnegative sequences such that

an+1  cn+1a0 +
nX

k=0

�k,n g(ak)

bn+1 = b0 +
nX

k=0

�k,n g(bk).

If c = sup
k�0 ck is finite and max(c, 1)a0  b0 then an  bn for all n � 0.

Proof. By assumption a0  b0, hence it su�ces to show that ak  bk for all k  n implies that an+1  bn+1.
Using the formulas in the assumption of the Lemma, we have

an+1 � bn+1  cn+1a0 � b0 +
nX

k=0

�k,n

�
g(ak)� g(bk)

�
.

The result follows from the induction hypothesis, the monotonicity of g, and the nonnegativity of each sequence.

Appendix B. Flows on Di↵ id(⌦)

Here we provide a completely standard lemma guaranteeing the existence of certain paths in Di↵id(⌦).

Lemma B.1. For some r 2 (d,1) suppose that u 2 W
2,r(⌦,Rd) is a divergence free vector field, and let

M = Z 2 W
2,r

id (⌦) \Di↵id(⌦). If Z 2 M, there exists a flow � : R ! M such that

�(0) = Z, �
0(0) = u � Z.

Proof. Since u is divergence free and Lipschitz, there exists a solution h to the ODE

h(0) = id, h
0(0) = u.

Gronwall’s Lemma implies that

kDh(t)kL1(⌦)  exp(tkDukL1(⌦)).
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Since u 2 W
2,r

0
(⌦) is divergence free, it then follows that h|@⌦(t) = id and det(Dh(t)) ⌘ 1. Therefore h 2

Di↵id(⌦). We can then estimate

kD2
h
0(t)kLr(⌦)  kDu(h(t))kL1(⌦)kD2

h(t)kLr(⌦) + kD2
u(h(t))kLr(⌦)kDh(t)k2

L1(⌦)
.

Using the fact that h is measure preserving and the previous bound,

kD2
h
0(t)kLr(⌦)  kDukL1(⌦)kD2

h(t)kLr(⌦) + kD2
ukLr(⌦) exp(2tkDukL1(⌦)).

Therefore, by Gronwall’s Lemma, h(t) 2 W
2,r(⌦) for all finite times and so h : R ! M. Now let us set �(t) =

h(t) �Z. Since M is closed with respect to composition, we see that � : R ! M. Finally, it is clear that �(0) = Z

and �0(0) = u � Z.

Appendix C. Stokes operator estimates

We will use the following estimate on the Stokes resolvent problem.

Lemma C.1. For any q 2 [1,1), p 2 [1,1], t > 0 and any f 2 K, we have

kre�tA
fkLp(⌦) .q,d t

��kfkLq(⌦), where � =
d

2
max(q�1 � p

�1
, 0) +

1

2
. (C.1)

Proof. We have the following estimates for any 1  l  n  1. For u su�ciently smooth,

kD2
ukl  CkAukl; ([46], Chap. 1.2, Prop. 2.2) (C.2)

kAe�tA
fkl 

Cl

t
kfkl, 8f 2 K; ([29], Prop. 1.2) (C.3)

ke�tA
fkLn(⌦) 

C

tk
kfkLl(⌦), 8f 2 K, where k =

⇣
l
�1 � n

�1)
d

2
. ([30], (A)) (C.4)

To prove the lemma, we choose ↵ in the GNS inequality

kDukLp(⌦)  CkD2
uk↵

Lq(⌦)
kuk1�↵

Lq(⌦)
,

so that

1

p
� 1

d
+
⇣1
q
� 2

d

⌘
↵+

(1� ↵)

q
and ↵ 2 [1/2, 1]. (C.5)

Hence, the smallest choice we can make for ↵ is ↵ = 1

2
+ d

2
max(q�1 � p

�1
, 0).

Let u := etAf . From (C.2)–(C.3) we have

kD2
ukq  kAukq  1

t
kfkq,

and from (C.4)

kukq  Ckfkq.
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Hence we have

kDuk�  C

t↵
kfkq.

Using our choice of ↵ we conclude.

Appendix D. Navier–Stokes basic estimates

The following theorem is expected to be classical, however we were not able to locate an explicit reference.
Thus we provide a proof for the completeness.

Theorem D.1. For any v0 2 L
r(⌦) which is divergence free, there is at most one v 2 L

1([0, T ];Lr(⌦)) that

satisfies the Duhamel’s formula

v(t) = e�µtA
v0 �

Z
t

0

e�µ(t�s)APDT (v(s)⌦ v(s)) ds. (D.1)

Moreover t
d+r
2r v(x, t) 2 L

1((0, T ];W 1,1(⌦)). In particular v 2 L
1((0, T ];W 1,1(⌦)).

Proof. Let us denote �↵(t) := t
↵ and Av := kvkL1([0,T ];Lr(⌦)) < 1. We begin by showing that � d

2r
v 2

L
1((0, T ] ⇥ ⌦). Note that if � is a smooth divergence free vector field that vanishes on the boundary of ⌦

then

⇣
e�µ(t�s)APDT (v(s)⌦ v(s)),�

⌘
= �

⇣
v(s)⌦ v(s), D

�
e�µ(t�s)A

�
�⌘

.

We use Lemma C.1 to conclude that

���
⇣
e�µ(t�s)APDT (v(s)⌦ v(s)),�

⌘��� . kv(s)⌦ v(s)kLr(⌦)

�
µ(t� s))�

d+r
2r k�kL1(⌦).

Using the Duhamel formula (D.1) and (C.4), we can conclude that

kv(t)� d
2r
(t))kL1(⌦) . kv0kLr(⌦) + t

d
2r

R
t

0
(t� s)�

d+r
2r kv(s)⌦ v(s)kLr(⌦)ds

. kv0kLr(⌦) + t
d
2r

R
t

0
(t� s)�

d+r
2r kv(s)kL1(⌦)kv(s)kLr(⌦) ds.

. kv0kLr(⌦) + t
d
2r Av

R
t

0
s
� d

2r (t� s)�
d+r
2r kv(s)� d

2r
(s)kL1(⌦) ds.

Since

s
� d

2r (t� s)�
d+r
2r . t

� d+r
2r s

� d
2r�0st/2 + t

� d
2r (t� s)�

d+r
2r �t/2<s1

we have

kv(t)� d
2r
(t)kL1(⌦) . kv0kLr(⌦)

+Av

✓
t
� 1

2

Z
t/2

0

s
� d

2r kv(s)� d
2r
(s)kL1(⌦)ds+

Z
t

t/2

(t� s)�
d+r
2r kv(s)� d

2r
(s)kL1(⌦)ds

◆
.
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Choose some � < 1 such that �(d+r)

2r(��1)
< 1, this is possible since r > d. Using Hölder’s inequality, we obtain the

estimate

kv(t)� d
2r
(t)kL1(⌦) . kv0kLr(⌦) + t

��1
� � d+r

2r Avh(t)
�
�1

, (D.2)

where

h(t) :=

Z
t

0

kv(s)� d
2r
(s)k�

L1(⌦)
.

Raising both sides to the power �, and integrating over [0, t0] with t0 < T , we have

h(t0) . kv0k�Lr(⌦)
+A

�

v

Z
t0

0

t
��1� �(d+r)

2r h(t) dt.

Thus, Gronwall’s inequality implies that h stays finite in [0, T ]. Plugging this result back into (D.2) and recalling
that ��1

�
� d+r

2r
> 0, we conclude that � d

2r
v 2 L

1((0, T ]⇥ ⌦) as desired.

Next we will use the above L
1 bound to show that � 1

2
v 2 L

1((0, T ];W 1,r

0
(⌦)). Once again, using the

Duhamel formula (D.1) and Lemma C.1, we can conclude that

k� 1
2
(t)Dv(t)kLr(⌦) . kv0kLr(⌦) + t

1
2

R
t

0
(t� s)�

1
2 kv(s)kL1(⌦)kDv(s)kLr(⌦) ds.

. kv0kLr(⌦) + t
1
2 kv � d

2r
kL1((0,T ]⇥⌦)

R
t

0
s
� d+r

2r (t� s)�
1
2 k� 1

2
(s)Dv(s)kLr(⌦) ds.

We can argue as above with the same choice of � to conclude that � 1
2
v 2 L

1((0, T ];W 1,r

0
(⌦)).

Now we show � d+r
2r

v 2 L
1((0, T ];W 1,1

0
(⌦)). Again by the Duhamel formula (D.1) and Lemma C.1, we have

the estimate

k� d+r
2r

(t)Dv(t)kL1(⌦) . kv0kLr(⌦) + t
d+r
2r

Z
t

0

(t� s)�
d+r
2r kv(s)kL1(⌦)kDv(s)kLr(⌦) ds.

Using our previous work, we get the bound

k� d+r
2r

(t)Dv(t)kL1(⌦) . kv0kLr(⌦) + t
d+r
2r kv � d

2r
kL1((0,T ]⇥⌦)k� 1

2
DvkL1((0,T ];Lr(⌦))

Z
t

0

s
� d+r

2r (t� s)�
d+r
2r ds.

The expression

t
d+r
2r

Z
t

0

s
� d+r

2r (t� s)�
d+r
2r ds

is uniformly bounded for all t, therefore we obtain v � d+r
2r

2 L
1((0, T ];W 1,1

0
(⌦)) as desired.

Finally, we can prove the uniqueness of v. Suppose that ṽ 2 L
1([0, T ];Lr(⌦)) also satisfies equation (D.1).

Lemma C.1 then yields

kv(t)� ṽ(t)kL1(⌦) .
Z

t

0

(t� s)�
1
2 kv(s)� ṽ(s)kL1(⌦)

�
kv(s)kL1(⌦) + kṽ(s)kL1(⌦)

�
ds.
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Using the L
1 bounds we deduced above, we have

kv(t)� ṽ(t)kL1(⌦) .
Z

t

0

s
� d

2r (t� s)�
1
2 kv(s)� ṽ(s)kL1(⌦)ds . t

1/6kv � ṽkL3([0,t];L1(⌦)).

Hence, Ḣ(t) . t
1/2

H(t) if we set

H(t) :=

Z
t

0

kv(s)� ṽ(s)k3
L1(⌦)

ds.

Thus, H(t) . H(0)e
2
3 t

3
2
. This yields H ⌘ 0, which means that v = ṽ for 0  t  T .
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