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WELL-POSEDNESS AND REGULARITY FOR A POLYCONVEX
ENERGY

WILFRID GANGBO!, MATT JACOBS?* AND INWON KiMm!

Abstract. We prove the existence, uniqueness, and regularity of minimizers of a polyconvex functional
in two and three dimensions, which corresponds to the H'-projection of measure-preserving maps.
Our result introduces a new criteria on the uniqueness of the minimizer, based on the smallness of
the lagrange multiplier. No estimate on the second derivatives of the pressure is needed to get a
unique global minimizer. As an application, we construct a minimizing movement scheme to construct
L"-solutions of the Navier—Stokes equation (NSE) for a short time interval.
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1. INTRODUCTION

A problem of interest in nonlinear elasticity theory is the existence, uniqueness, and the characterization of
the minimizers for variational problems of the form

Zingl{/g(j(x,DZ) —F-Z)dx}. (1.1)

Here, Q C R is a bounded and open set with smooth boundary, j : R? x R¥*? — R U {4+oc} is a lower semi-
continuous function, I is some appropriately chosen function space, and F : Q — R? is a fixed function. In
the context of nonlinear elasticity theory, {2 represents a reference configuration occupied by an elastic body,
j represents the so-called stored energy density of the material, F' is an applied force, and Z represents the
deformation undergone by the elastic body.

If we further assume that j is a polyconvex functional (cf. [6]), then the theory of the calculus of variations
developed by Morrey [39] gives robust results on the existence of minimizers to problem (1.1). On the other
hand, the uniqueness and regularity properties of minimizers or their characterizations in terms of a system of
PDEs, remain a major challenge when j fails to be convex (cf. [8] for a summary of a list of unsolved problems
and [15, 25, 33, 36, 40, 42, 44] for some partial results and counterexamples). We refer the reader to [1, 22, 23]
for partial regularity results (up to a set of small measure) for a class of so-called quasiconvex stored energy
density functions.
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An important example of polyconvexity arises in the study of incompressible materials. Incompressibility
can be encoded by requiring that the admissible set of deformation maps satisfies the determinant constraint
det(DZ) = 1 everywhere. If we let Diffiq(Q2) denote the set of maps X : Q — € that are volume preserving
C'—diffeomorphisms such that X|so = id, then the constraint functional

0 if Z e Diffiq(Q2 ;
x(2) ={ - Pilal)
400 otherwise,

is not convex with respect to Z, but is a convex function of det(DZ) (hence, x is polyconvex).

In this paper, we are interested in studying a particular incompressible polyconvex functional. Given an
HY(Q) map S : Q — Q, the so-called H'-projection problem seeks the closest incompressible map to S in a
weighted H' norm. More explicitly, given a parameter a > 0, one wishes to find a minimizer of the problem

1 a
Ja(2) = X(Z) + 517 = SRy + 5IDZ — DS|sca. (12)

Here we measure the norm of the matrix DZ — DS using the Frobenius norm. Note that since we are forced
to choose Z € Diffiq(€2), the term 1|2 — S||2LQ(Q) is equivalent to —Z - S, thus the H! projection problem can
be put into the form of problem (1.1). The intriguing problem (1.2) dates back to the work of Lord Kelvin and
continues to generate a lot of interest (cf. e.g. [9, 12, 14] and the discussion on the Navier-Stokes equations
below).

The difficulty of problem (1.2) lies in the non-convexity of the constraint set Diff;q(2). Worse yet, in dimension
d = 3, the H' coercivity of the functional is not sufficient to deduce weak convergence of the determinant.
When Z € Wh4(Q, R4), the pointwise determinant of DZ agrees with its distributional determinant, commonly
denoted by

Det(DZ) :=V - V[Z],

where V[Z] € L' and

viz) = 0 (2

NZ2,- -+ Za)
633‘1'

L1, Ti41, 7xd)
When Z € L N W14=1 we still have V[Z] € L! and for ¢ sufficiently smooth, we have
(¢, Det(DZ)) = —(Ve, V[Z]). (1.3)

However, under the mere assumption that Z € Wh4=1(Q,RY), we may have Det(DZ) # det(DZ) unless
additional conditions are imposed on adj(DZ). When d = 3 and Z € H'(Q,R%), to ensure that the iden-
tify det(DZ) = Det(DZ) holds, thanks to [40], it suffices to require that adj(DZ) € L2. In our context, we
are working with functionals J, : H* — [0, +oc] which are merely bounded from below by ¢,||Z]|%, for some
cq > 0, but they fail to satisfy the property

Ve>0,30.| {ZeH' :J,(Z)<c} C {Z €H' || Z||lg + adj(D2)] 5 < 9C}. (1.4)

Therefore, J,(Z) < +00 does not imply that det(DZ) = Det(DZ) and we cannot apply the theory of weak
lower semicontinuity developed in any of the following well-known works on polyconvexity [15, 25, 36, 40, 42]
to J,. Thus, although (1.2) is a polyconvex problem, previously known theory cannot even ensure the ezistence
of a minimizer.
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In this paper, we will develop a theory that allows us to deduce the existence and uniqueness of minimizers
to the H'-projection problem under a mild regularity assumption on the data S. Our main result in this paper
can be summarized as follows:

In dimensions d € {2, 3;2}, if r > d and S is sufficiently close to the identity in W>"(Q), then there exists a
unique minimizer Z* € Wi == {2 € W2"(Q) : Z|oo = id} of the H'-projection problem (1.2).

1

To give a more detailed explanation of our result, let us introduce the Euler-Lagrange equation associated to
(1.2). Formally, the tangent space to a point Z € Diff;q(£) is the space {voZ : v € C}(2), V-v = 0}. Therefore,
any critical point of (1.2) must satisfy the equation

(Z — 8)-v(Z) + a(DZ — DS) : D(v(Z)) =0,

for every smooth divergence free vector field v vanishing on the boundary. Equivalently, every critical point Z
must have a corresponding scalar function p : 2 — R such that

(I—aA)(Z—S)+Vp(Z) =0, (1.5)

where the equation should be interpreted distributionally. As it turns out, one can also understand p as a
Lagrange multiplier for the determinant constraint. If we define the Lagrangian

1 a
L(Z,q) = §||Z — S| 72) + §HDZ — DS|[72(0) +/QQ($)(| det(DZ(x))| - 1) d, (1.6)

then if Z € Wi{i’d(Q) the equations 6z L(Z,q) = 0 and §,L£(Z, q) = 0 correspond to
(I —aA)(Z —S)+ D" (cof(DZ)q) =0, det(DZ) =1, (1.7)

respectively. Thanks to the Null-Lagrangian identity D cof(DZ) = 0, the equations (1.5) and (1.7) can be
transformed into one another through the relation ¢ = p(Z2).

Remark 1.1. One may note that the Lagrangian in (1.6) appears to enforce the constraint | det(DZ)| < 1 rather
than det(DZ) = 1 (when ¢ > 0). Of course, this distinction is irrelevant if one only focuses on maps Z € Diff.
However, as it turns out, our arguments are strong enough to guarantee that there is a unique minimizer of (1.6)
that remains the unique minimizer even when the C! diffeomorphism constraint is relaxed to |det(DZ)| < 1
(see Rem. 3.5 for details). In addition, we find it easier to work with |det(DZ)| as compared to det(DZ), as
| det(DZ)| has better coercivity properties. In particular, the analog of Lemma 3.1 does not hold in dimension
3 if one replaces | det | by det.

To prove our main theorem, we develop a new regularity condition on critical points (Z*, ¢*) (i.e. solutions
to equation (1.7)) that guarantee that Z* is the unique solution to the H!-projection problem. When ¢* is
bounded in L*° and the singular values of DZ* are uniformly bounded away from zero, we are able to show that
the Lagrangian £(Z,¢*) has a previously undiscovered convexity property (cf. Lem. 3.1 and Prop. 3.4). This
property allows us to conclude that Z* is the unique minimizer of the relaxed problem Z — L£(Z, ¢*), and hence
the original problem Z + sup, £(Z, q). Let us note that although the focus is on H ! projection problem in this
work, our strategy can be generalized to other polyconvex problems in both compressible and incompressible
non-linear elasticity. In particular, our strategy should extend to problems where one has the decomposition
jlx,DZ) = ||DZ||%2(Q) +¢(DZ,x), where ¢ is some polyconvex function and it is possible to obtain bounds on
the dual variables associated to £ (i.e. the analogue of ¢*).

Of course, our regularity condition is only useful if there actually exist critical points with the required
properties. In order to find such points, we employ Ekeland’s variational principle (EVP) [34, 35] to derive a
version of implicit function theorem for (1.7). While the use of the implicit function theorem to find critical
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points is quite well-known in the calculus of variations literature (see for instance [37] for a similar incompressible
problem), the use of EVP is much less common albeit its powerful nature. Our EVP-based approach is fully
quantitative and does not require exactly inverting a linear operator. Indeed, the allowance for error in our
approach considerably simplifies the required calculations. As long as S is close enough to the identity in
W27 (Q), we are able to use EVP to produce a critical point (Z*,¢*) € W' (Q) x W7 (Q) with sufficient
regularity to conclude that Z* is the unique minimizer.

To illustrate the significance of our quantitative result beyond stationary variational problems, we apply
our main result to develop a discrete-in-time minimizing movements scheme to generate mild solutions of
the incompressible Navier Stokes equations. Indeed, our particular interest in the H'-projection problem is
rooted in the connection to Navier—Stokes. This connection can be traced back to Arnold’s celebrated geometric
interpretation of the incompressible Euler equations [4]. In [13], Brenier gave a very concrete reinterpretation of
Arnold’s idea as a projection problem. First one lets the fluid evolve for a short time taking into account inertia
only (i.e. evolve the Lagrangian flow map X by the equation 9, X = 0), then the resulting fluid configuration
is then projected back onto the space Diff(Q2). Given a sequence of fluid configurations { Xy, X1,...,X,,} and a
time step 7 > 0, Brenier’s scheme finds the next fluid configuration by solving the variational problem

X — Xn Xn - Xn—l

1
Xpt1 € argmin —|| ||2L2(Q). (1.8)
X eDiff(Q) T
The problem tries to find an incompressible map X,,;1, whose velocity M best matches the velocity at

the previous time step @, or in other words, the incompressible map with the least L? acceleration [26].

In fact, problem (1.8) can be viewed as the L? analogue of problem (1.2).
The H' projection problem appears when one wishes to extend the Brenier formalism to the Navier-Stokes
equations (2.7). In Lagrangian coordinates, the no-slip Navier—Stokes equations take the form

OuX —pAv(X)+Vp(X) =0, X =v(X), det(DX)=1, Xloq=id, (1.9)

where p > 0 is a parameter that represents the viscosity of the fluid. As one can see from the above equation,
it is somewhat awkward to express viscous forces in Lagrangian coordinates. For this reason, when given a
sequence of fluid configurations {Xj,...,X,}, it is more natural to find the next fluid configuration X, ; by
decomposing X,, 11 = Z,, 41 0 X, and solving for Z,, 1. The map Z,,;1 will be determined by solving the viscous
analogue of Brenier’s problem

. 1 ZoX, -X, X, —Xn
Zny1 = argmin —|| -
Z€Diffiq (Q) T

ur  DZ —1
H%2(9) + 7”?”%‘2(9)7 (1.10)

where T is the identity matrix. In contrast to (1.8), Problem (1.10) attempts to evolve the fluid by finding
the incompressible map that simultaneously minimizes both the L? acceleration of the fluid and the viscous
dissipation term 4T ||2Z=L|2, (> Which measures the instantaneous loss of kinetic energy to heat. Let us note
that this scheme is closely related to the discrete-in-time variational scheme for the Navier—-Stokes equations
proposed in [31], however, their scheme searched for solutions in Eulerian coordinates rather than Lagrangian
coordinates (they attempt to find the velocity field at the next time step rather than the flow map). As a result,
their variational problem is quite different from ours, in particular, their problem is strongly convex, and hence
the existence, uniqueness, and regularity of minimizers are all straightforward in their setting.

As one might expect, problem (1.10) is equivalent to a special case of the H!-projection problem. Indeed, if
one chooses a = ur and sets S = id + Tv, where v solves

Xn - Xn—l
T

(I —prA)v = ( )OX_l7 v|oa =0,

n
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then (1.10) and (1.2) are identical up to an irrelevant constant term. Note that the term (% o X1
the above equation roughly corresponds to the Eulerian vector field at time n7. Hence, S € W27 (Q) roughly
corresponds to the vector field being an element of L". As we shall show in the final section of the paper, our
W27 theory for the H! projection problem allows us to build short-time Eulerian and Lagrangian solutions to
the Navier—Stokes equations starting from L" initial data.

2. SUMMARY OF MAIN RESULTS

In this subsection, we give precise statements of the main results obtained in this paper. We begin with our
uniqueness result, which produces a sufficient condition for critical points (Z*,¢*) of (1.7) to be the unique
minimizer of the H! projection problem.

Theorem 2.1 (Uniqueness). Suppose that d € {2,3} and there exists a pair (Z*,q*) € WH4(Q) x L*°(Q)
satisfying (1.7). If there exists a constant o > 0 such that the singular values of DZ* are larger than o almost
everywhere and

lg* = dll ooy < ad?(2+3(1+3)) 7, (2.1)

where § = Iﬁl\ Joa(z)dx, then Z* is the unique global minimizer of (1.2).

As we noted earlier, we shall prove Theorem 2.1 by showing that the Lagrangian (1.6) has a novel convexity
property In particular, we shall show that it is possible to control the concavity of the determinant term
Jqa(x)|det(DZ(z))|dx. If we let B(Z, Zy,q) denote the Bregman divergence [10]

B(Z, Zo,q) == /Q q(m)<|det(DZ)|—|det(DZ0)\—sgn(det(DZo))cof(DZo)) : (DZ—DZO))(x) de,  (2.2)

then, when d < 3, we prove the inequality

C
—B(Z, 7 < —
B( ) 07Q) = 2J(DZ(])2||

qdet(DZo)|| L) IPDZ — DZg||72()  for ¢ >0, (2.3)
where ¢ = 14 2(1+V/3) and 0(DZ) is a lower bound on the smallest singular value of DZy. Thus, we see that
it is possible to control the concavity of Z — [, q(z)|det(DZ(x))| dz with H'(Q), as long as we are at a base
point (Zp, ¢) that is not too irregular. Indeed, we shall obtain our uniqueness result by controlling the concavity
of Z — [, q(z)|det(DZ(x))|dz at the critical point (Z*,¢*) with the H! term Z — %||DZ — DS||%2(Q).

Beyond the application to the H' projection problem, the inequality (2.3) is useful for more general
polyconvex variational problems in nonlinear elasticity. This is due to the fact that terms of the form
fQ q(x)| det(DZ(z))| dz can be made to appear in any polyconvex problem involving determinants.

Our uniqueness result is complemented by the following theorem, which guarantees the existence of critical
points to (1.7) that satisfy the conditions of Theorem 2.1 when S is close to the identity in W27 (Q). Taken
together, Theorems 2.1 and 2.2 guarantee that the H' projection problem has a unique solution when S is
sufficiently close to the identity in W27 (Q).

Theorem 2.2 (Existence). Ford € {2,3} and r € (d,00), let us define

u*:= argmin |S—id— u||%2(9) +a||D(S —id — u)||%2(9), (2.4)
we HY(Q),V-u=0

and

0 :=|(I = aA)(S —id)|Lr), ¢ =1 —ad)(S —id—u")|[Lr (o). (2.5)
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If 6, a= 576, a1 and a= 5" 62 = a_%é(a_%?) are sufficiently small, then there exists Z* € W27 (Q) and
q* € WHT(Q) that satisfy the hypotheses of Theorem 2.1. Furthermore,

" _dir
(I —al)(Z* = 8S)|Lr) SO +a2r 52,

Remark 2.3. Here and in what follows, we shall use the notation < to denote an inequality that holds up to
a constant factor depending only on d and r.

Remark 2.4. The constants in above result can be derived explicitly from our arguments in Section 6.

Remark 2.5. One may wonder if a similar result holds when W?27(Q) is replaced by a different Banach space
X of maps from Q to Q (if S is close to the identity in X, can one find a critical point Z* € X?). In our
argument we use three crucial properties of W27 (Q), namely that W27 (£2) embeds into W°°(Q), it is closed
with respect to composition, and that A‘lafj is a bounded operator from W?27(Q) to itself. We suspect that
this result would hold for any space X with those three properties. However, we anticipate that the argument
would need to overcome additional technical difficulties if X is a space weaker than W27 (Q).

In general, it is not so simple to estimate §’ from the data S alone. Nonetheless, ¢’ must always be bounded
by a constant multiple of ¢ (cf. Lem. 4.2), hence, one can also restate Theorem 2.2 in the following simpler but
weaker form.

Theorem 2.6. Suppose that r > d € {2,3}. Define § as in Theorem 2.2. If 4, a8 and =18 are sufficiently
small, then there exists Z* € W2 (Q) and ¢* € WY7T(Q) that satisfy the hypotheses of Theorem 2.1.

Let us briefly discuss previously known results in the literature. By appealing to abstract results in convex
duality [41], one can deduce that there exists a dense set D C H*(f2) such that the H! projection problem has
at most one minimizer when S € D. Unfortunately, there is no known characterization of this set beyond its
denseness, which limits its practical usefulness (for instance the interior of this set may be empty). Furthermore,
this result is silent on the question of existence. In contrast, our result shows that a unique solution exists for
maps S in an entire ball around the identity in W27 ().

Several authors have considered existence and uniqueness of minimizers to polyconvex problems of the form
(1.1) in more concrete settings. In three dimensions, [37] studied the existence of regular critical points to
(1.1) in the incompressible case U = Difliq(2) under the assumption that the applied force F was small in an
appropriate space. Building on this, in [47], Zhang showed that when j has the form

e, M) = Gla, M)+ b(IM" + [cof (M)]*), (2.6)

for some polyconvex function G : Q2 x R4*¢ — R and some parameters b > 0, » > 2 and s > r/(r — 1), then the
critical points from [37] are in fact the unique global minimizers of (1.1) provided that they satisfy certain norm
bounds. The presence of the term |cof(M)|® in (2.6) was essential for [47], where cof (M) denotes the cofactor
matrix of M. The resulting bound on the cofactor matrix allows a much better control over determinants, thanks
to the fundamental identity M7 cof(M) = det(M)I. Indeed, conditions in [47] imply that the determinant map
Z — det(DZ) is weakly continuous along any minimizing sequence for (1.1). Hence, the existence of minimizers
for such functionals follows from the standard theory. Clearly, these results do not apply to the H! projection
problem: the projection functional (1.2) does not afford any control on the cofactor matrix of DZ.

In [27], the notion of A-convexity [3] is used to provide a sufficient condition for a critical point of (1.1) to be
the unique global minimizer of the problem. While their result could be applied to the H!-projection problem, it
requires strong bounds on the optimal Lagrange multiplier ¢*. In particular, it is necessary that the eigenvalues
of D?¢* are uniformly bounded from below. Since there is no apparent mechanism in the H' projection problem
that encourages A-convexity of ¢*, it seems unlikely that such a property can be obtained without showing that
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q* € W2°(Q). This is two full derivatives stronger than our condition, and hence, considerably more difficult
to satisfy.

2.1. Applications to Navier—Stokes

Finally, in the last section of this paper, we use the H! projection problem to construct solutions to no-slip
Navier—Stokes equations:

Ov—pAv+v-Vo+Vp=0, V-o=0 inQx(0,7), v=0ondQx(0,T), (2.7)

with initial data vy € L"().

For technical reasons, we shall use a slightly different scheme than the one given in (1.10). Given an initial
divergence free velocity vy and a time step 7, we will construct discrete-in-time approximations to the Navier—
Stokes equations using the H' projection problem by iterating the following scheme:

(I - NTA)Sn+1,T =id + TUn,r, Sn+1,‘r|6§2 = ld, (28)
1 2 uT 5
Znt1,r € argmin §||Z - STL+1,T||L2(Q) + 7||DZ - DS7L+1||L2(Q)§ (2.9)
Z€Diffia (Q)
Wn41,7 *= Ln+1#Un,r; (210)
Un+1,7 ‘= eil“—Awn-&-L (211)

Here A is the so called Stokes operator, and v,41 - is the solution to the parabolic equation
v+ Av =0, V-v=0, wvlgg=0,
at time 7 starting from the initial data wy,+1 -. Using the scheme, we shall also define the Lagrangian flow maps
Xnt1,r = Zny1,7© X 7

Our main result on Navier—Stokes can then be summarized as follows.

Theorem 2.7. Let vg € L"(Q) with r > d € {2,3}. Then there ezists a time T* > 0 depending only on
lvol|Lr (), 7, d and the viscosity p in (2.7) such that the following holds:

(a) The scheme (2.8-2.11) is well-defined and generates discrete velocities vy, » that are uniformly bounded in
L™(Q) for 0 < nr < T*.

(b) The discrete wvelocities converge in L2([0,T*] x Q)) as 7 — 0 to the unique mild solution v €
Loo([0,T*], L7 () N LY((0, T*]); Wy () of the Bulerian Navier-Stokes equation (2.7).

(c) The discrete Lagrangian flow maps converge in L'([0,T*] x Q) as 7 — 0 to the unique solution of the
Lagrangian Navier—Stokes equation (1.9).

The solution v and X in above theorem satisfies stronger regularity properties than those listed above: see
Remark 7.10.
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3. A NEW SUFFICIENT CONDITIONS FOR BEING A MINIMIZER: PROOF OF
THEOREM 2.1

To prove Theorem 2.1, we will show that our assumption on the pair (Z*,¢*) guarantees that J, lies above
a convex parabola centered at Z* and touches the parabola at Z*. In other words, we will obtain the inequality
Jo(Z2) = Jo(Z*) + 1|1 Z — Z*|| 12(), see (3.3). The argument involves two key steps. First, we relax the constraint
on det(DZ) by introducing ¢* as a Lagrange multiplier, see (3.1). We then show that the non-convexity of the
Lagrange multiplier term [, ¢*|det(DZ)| is dominated by the quadratic term %||DZ — DS||2L2(Q) by establishing
the Bregman divergence bound in (2.3). This bound is the consequence of an interesting matrix inequality that
holds in dimensions 2 and 3 (Lem. 3.1). Though the matrix inequality is elementary, it plays an essential role
in our argument that we believe is worth highlighting.

Lemma 3.1. Let M, A € R¥™?, In two dimensions,

)||A—M‘2

(Sgn(det(A)) cof (A) — sgn(det(M))cof(M)) S(A— M) > _\de%

In three dimensions,

| det(

(sgn(det(A))cof(A) fsgn(det(M))cof(M)) C(A-M)>—(1+ (1 +v3) A Mia— mp

where o is the smallest singular value of M.

Remark 3.2. As a polynomial of degree d, the restriction of the determinant function to any bounded convex
subset of the set of R, is A-convex. When d = 2, we can choose A = —1 independently of the convex set. This
means,

(cof (A) — cof (M)) : (A— M) > —|A— M|? A, M € R?*2,
Remark 3.3. There is no analogous inequality when d > 4. Indeed, if we choose M =T and A = ol — (o —

al_d)ed ® eq, then as o — oo, the left-hand-side of the inequality scales like —a?~! while the right-hand-side
scales like —a?.

Proof. Thanks to the density of diagonalizable nonsingular matrices, we can assume without loss of generality
that A and M are nonsingular and diagonalizable. Thus, we can factor A = BM for some matrix B. We then
have

((sen(det(4)) cof(4) — sgn(det(M)) cof (M) ) : (A — M) = | det(M)| ( sgn(det(B)) cof (B) — ) : (B - I).
Expanding out the product and using the fact that cof(B)? = det(B)B~!, the right-hand-side is equal to
|det(M)|(d| det(B)| + d — tr(B) — | det(B)|tr(B™")).
Since o is the smallest singular value of M, we have

|A— M>> o B -1
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Hence, given any constant ¢ > 0, we obtain

o

(sgn(det(A)) cof (A) — sgn(det(M)) cof(M)) (A — M)

|det(M)|(c| B — I|? + d| det(B)| + d — tr(B) — | det(B)[tr(B™")).

It is now clear that the lower bound only depends on det(M) and the eigenvalues of B.
Let us now show that

f(B) :=¢|B — I* + d|det(B)| +d — tr(B) — | det(B)|tr(B™")

is nonnegative once c is sufficiently large. It is clear that f is a function of the eigenvalues of B and that it is
minimized when the eigenvalues are nonnegative. Therefore, we shall assume that B is a diagonal matrix with
nonnegative eigenvalues in the rest of the argument.

In two dimensions, |det(B)|tr(B~1) = tr(B). It is then easy to check that f has a single critical point at
B =1. When ¢ > 1, f is coercive, thus, I must be the unique minimizer when restricted to diagonal matrices.
Since f(I) =0, we obtain the desired inequality in two dimensions by letting ¢ — 1.

In three dimensions, we have the inequality

|det(B)|tr(B~') < |B — I|* + 2tr(B) — 3.

This follows from the fact that |B — I|? + 2tr(B) — 3 = |B|? and | det(B)|tr(B~') = 1(tr(B)? — | B|?). Hence,
the inequality is equivalent to 1¢r(B)? < 3|B|?, which is a consequence of Jensen’s inequality.
Thus,

f(B) > g(B) := (¢ — 1)|B — I|> + 3| det(B)| — 3tr(B) + 6.

As long as ¢ > 1, g is coercive.
Now consider h(B) := (c — 1)|B — I|?> — 3tr(B) + 6, which lies below g, and set

h(t) = (c — )|t — 1> = 3t + 2, t>0.

When ¢ > 1, h is strictly convex and has a unique global minimum over diagonal matrices at its critical point

By := al where a := 1+ -2—. Similarly, A has a unique global minimizer at a. For
2(c=1) g

B = diag(z1, z2, x3), B =: diag (min{a, x1}, min{a, x2}7min{a,x3})

with nonnegative entries, we have
~ 3 — 3 _
h(B) = h(min{a,2;}) <> h(z;) = h(B).
=1 i=1

The previous inequality is strict unless B = B. Since det(B) < det(B) we can conclude that g(B) < g(B) and
again the latter inequality is strict unless B = B. Therefore, any minimizer of g must have eigenvalues bounded
in 0,1+ 525

By direct calculation, the Hessian of g is diagonally dominant when restricted to the set of diagonal matrices

whose eigenvalues are bounded in [0, Cgl]. Thus, g must be convex in this region. This region is guaranteed to
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contain the minimizer of g as soon as 1+ 2(c T < <=1 which is equivalent to ¢ > 1+ 3 (1 +1+/3). In this case, the

critical point of g at C' = I must be the global minimum with value g(I) = 0. Therefore7 in three dimensions,
it follows that

| det(

(sgn(det(A)) cof (A) — sgn(det(M)) cof(M)) S(A= M)+ (1+ (1 +v3) A Nia— >,

which is the desired result. O

With the matrix inequality in hand, we can prove Proposition 3.4, which establishes the uniqueness of
minimizers for the Lagrangian relaxation (1.6). This produces Theorem 2.1 as an immediate consequence.

Proposition 3.4. Let d € {2,3} and let

1 a
L(Z,q) = §||Z - S||i2(n) + §||DZ - DSH%?(Q) + /Q q(z)(|det (DZ(x))| - 1) da- (3.1)
Suppose that Z* € Diffiq(Q) and ¢* € L>(Q) solve (1.7) and the singular values of DZ* are uniformly bounded

from below by some o > 0. Set § := ¢* — ¢, where ¢ € R is the largest constant so that ¢ > 0. If ||G||p= <
o?(1+3(1+ \/5))_1, then Z* is the unique global minimizer of L(-,q) among functions in W14(Q).

Proof. Let Z be some arbitrary element of Wild’d(Q). Calculating the Z variation of £, we see that
07L(Z,q)(p) = / ((Z -S) o+ (DZ — DS + gsgn(det(DZ)) cof(DZ)) : D(;S) dez,
Q

where ¢ € W;(Q) is an arbitrary perturbation. Since (Z*,q*) solves (1.7), it follows that §,£(Z*,q) = 0.
Hence,

— * = = * = k= * ]- * * * =
L(2,q) = L(Z",q) = L(2,9) = £(Z",9) = 62L(2",9)(Z — Z°) = SI|Z = Z'|[32(0) + 5|DZ = DZ|[3200) + B(Z, 2", ),

where we recall the definition of B(Z, Z*,q) from (2.2). Applying the Fundamental Theorem of Calculus, we
have

B(Z,Z°.5) = /Q 4(2) /0 %(sgn(det(DZt(x))) cof (DZy(x)) — cof (DZ*(2)) ) : (DZy(x) ~ DZ*(x)) durd,

where Z, = tZ + (1 — t)Z* and we have used the fact that $(DZ, — DZ*) = (DZ — DZ*). Now Lemma 3.1
combined with the L bound on ¢ implies that

_ * = 1 *
L(Z,q) > L(Z",q) + §||Z -7 ||2L2(Q)~ (3.2)

O

Proof of Theorem 2.1. Let Zy be some arbitrary element of Diff;q(€2). Since det(DZy) = 1 everywhere, it follows
that

x(Zy) > sup / q(x)(det(DZo(x)) - 1) dxr = sup / q(x)(\ det(DZy(x))| — 1) dx

geL(Q2) JQ qeL () JQ
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Therefore,

Ja(ZO) Z sup E(Z()?q) Z E(Z07CY)7
qeEL (D)

where g is defined as in Proposition 3.4. Using Proposition 3.4 and the fact that J,(Z*) = £L(Z*, ), we can
conclude that

" 1
Jao(Z0) 2 Jo(Z") + 512 = Zol3a(a)- (33)

O

Remark 3.5. Note that the Theorem still holds if we replace x with a functional x enforcing the constraint
| det(DZy)| < 1. Indeed, we have

WZo) = sup t/wmmaw%»fnza%@>
QELl(Q),qZO Q

since we chose ¢ to be everywhere nonnegative and the rest of the argument goes through without modification.
Thus, Theorem 2.1 continues to hold even if the diffeomorphism constraint is weakened to |det(DZ)| < 1.

4. PRELIMINARIES FOR THE PROOF OF THEOREM 2.2

It remains to prove the existence of the solution pair (Z*,¢*) that satisfies the hypothesis of Theorem 2.1.
In this section, we will introduce a number of basic results that will play an important role in our subsequent
analysis. We begin by introducing a special operator that will allow us to simplify equation (1.7).

Changing a base point for an operator. Given any operator L from a subset of functions on €) to another
subset of functions on 2, whenever Z : Q — Q is invertible, we define

Ly(f) = L(foz—l) o Z.

The operator Lz can be expressed in terms of the pull-back operator.
Leray projection operator P. We set

Viq i= {w € LX(RY) : (w, V) =0 for all ¢ € C“(Q;R)}

The Leray projection P : L?(Q, R%) — Viq is the orthogonal projection of L?(£2) onto Viq. When 9 is of class
CY1, we have from Theorem 1 of [38] (also [43], [43]) that

IP@)lwir) S llollwer@y — VEE€{0,-- K} Vo e WH(Q), Vr € (1,00). (4.1)
The Projection operator P;. Given a map Z € Diff;q(2) we can introduce the operator Pz from the

Leray projection, using the change of base point formula. Note that Pz can also be understood as an orthogonal
projection. If we define the space

Vg = {w € L*(RY) : (w,Vp(Z)) =0 for all ¢ € CW(Q;R)},
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one can readily check that w € Vz if and only if wo Z~! € Viq. It then follows that P, is the orthogonal
projection of L2(Q;R?) onto V.

Now that we have defined Py, we can use it to simplify equation (1.7) by eliminating the pressure/Lagrange
multiplier variable ¢g. This is accomplished in the following lemma.

Lemma 4.1. If Z € Diftiq(Q) solves the equation
Pz(I —aA)(Z - S) =0, (4.2)

then there exists q : Q@ — R such that (Z,q) is a solution to equation (1.7). Furthermore, q¢ can be recovered
explicitly from the formula

Vq=-DZT(I —al)(Z - S).

Proof. Since Py is the orthogonal projection of L?(£2) onto the space Vz, the condition Pz (I —aA)(Z — S) =0
implies that

((IfaA)(Zf 5),voz) =0,

for every divergence free vector field v with zero normal component. As we noted in the introduction, this is
equivalent to the existence of a scalar function ¢ : 2 — R such that

(I —alA)(Z —S)+ D" (cof(DZ)q) = 0.
To recover q, we use the fact that DT (cof(DZ)q) = cof(DZ)Vq and DZT cof(DZ) = det(DZ)I = I. O
In the process of finding solutions to (4.2), we shall need to be able to invert the equations
Py(I—aAu=w, V-u=0, u|spo=0
where w € Vz and Z € Diff;q(2) are given and u is unknown. In the special case where Z = id, this is known as
the Stokes resolvent problem. This problem plays an important role in the study of the Navier—Stokes equations

and will reappear throughout the rest of our paper.
The Stokes operator and the Stokes resolvent problem. For 1 < p < oo, let

K, = {uec W*P(Q,R) NW,P(Q,RY) : V-u=0in Q}.
The Stokes operator
A:=-PA: K, — LP(Q) (4.3)
is defined to be the negative of the composition of the Leray projection and the Laplace operator. For well-
posedness and regularity properties of this operator, see for instance [46],[28]. Using the Stokes operator, we
can rewrite the Stokes resolvent problem for a given w as follows:

(I+aAd)u+w=0, V-u=0, ulsgg=0. (4.4)

The following Lemma on the solvability and regularity of the Stokes resolvent problem will be essential to our
critical point analysis, and will reappear again when we consider the Navier—Stokes equations.
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Lemma 4.2 (Thm. 1.2, [24]). If w € LP(Q), then there exists a solution u € K, to equation (4.4), a scalar
function f:Q — R and a constant C}, such that

(I—aA)u+Vf+w=0
and

lull o0y + al D*ull Loy + IV Fll o) < Cpllwlizr(e)- (4.5)

5. EVP AND THE MAIN IDEAS FOR THE PROOF OF THEOREM 2.2

Now we have converted the critical point equation (1.7) into the simplified form (4.2). As mentioned in the
introduction, we will now use a version of the implicit function theorem based on Ekeland’s variational principle
(EVP). These ideas are first introduced in an abstract setting.

5.1. EVP and the implicit function theorem

Proposition 5.1 (Ekeland variational principle [34]). Let (T, dist) be a complete metric space and let F': T —
R U {400} be a lower semicontinuous function that is bounded below and is not identically co. If xg € T such
that F(zg) < e +inf7 F for some € > 0, then for all A\ > 0 there exists xx € T such that

F(z)) < F(zo), dist(mg,zy) < A, and  F(z)) < F(z)+ ;dist(x,x,\) Vo e T\ {za}.

In order to use EVP to solve (4.2), we need to convert the question of finding zeros into a variational problem.
This is accomplished in the following abstract lemma, which is an adaptation of Ekeland’s argument from [35]
that is well-suited to our setting.

Lemma 5.2. Suppose that X,) are Banach spaces and ® : X — Y is a continuous and Frechet differentiable
map. Given a closed proper subset M C X, we define a function F : X — R U {400} such that

Fz) = {||‘1>($)||y if e M,

+00 otherwise

Given a point xg € M and A > 0, let x) € X be the point provided by Ekeland’s variational principle such that

F(xo)
A

F(zy) < F(x0), [lwo —2alla <A, and  F(zy) < F(r) + lz —azallx  VzeX\{za}.

If F(x)) # 0 and v : [0,1] = M is a C' path such that v(0) = zx, 7/(0) = F(z\)v for some vector v € X, then

®(zy)
F(xy)

B o)y = — 2 |y, (5.1)

-1
+] .

where d®(xy;v) is the Frechet derivative of ® at xy in the direction of v.

Proof. Let us first note that it is valid to apply EVP to F, since F' is nonnegative, lower semicontinuous, and
not identically infinity. EVP implies that

F(xo)

F(y(t) = F(zx) > ——5

17 (t) — zallx
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for all £ > 0. By the triangle inequality
F(y(@) < (L =t)[|@(xx)lly + tP(zx) + F(zx)d®(zx, v)lly + [2((2) — ©(z) — tF(22)dD(zx;v)]|y-
Since ® is Frechet differentiable, we have

lim ¢4 [[@(y(t)) — () — tF(22)dD (@5 )|y = 0.

Therefore,

F(v(t)) - F
lim ZOO) = F@) g 18(s) + Fl)d® (s )|y,
t—0+ t
Hence, it follows that

F(xo)
A

—F(ax) + [[@(x2) + F22)d®(zx;0)|ly = —F(25) [0l x-

Dividing both sides by F'(x)) gives the result. O

It is not immediately obvious how one can use Lemma 5.2 to find zeros of a map ®. However, note that
because || }{;Eiig ly = 1, the Lemma essentially gives a bound on the steepest descent rate of F' at x) when
F(zy) # 0. If we can show that this bound is impossible for some A > 0, then it follows that F(x)) = 0 and
hence ®(x)) = 0. For example, under the usual assumptions for the implicit function theorem (i.e. M = X and

v+ d®(x,v) is a linear bijection with a uniformly continuous inverse for all z in a neighborhood of z(), we can

choose v = —d®(zy, ?Eii%)_l, which is the steepest descent direction for F' at z). With this choice, the slope
inequality will fail as long as F(zo) is sufficiently small and A is chosen appropriately.

On the other hand, there is no reason that one needs to invert v — d®(x, v) exactly. As long as we can find a
(valid) direction v where the inequality (5.1) fails, we will have found a zero of ®. Indeed, this is the advantage
of the EVP based approach — we are allowed to make some error when we attempt to invert v — d®(z,v).
Furthermore, when we make a choice for A we will have the guarantee that the solution x) is at most distance
A away from the starting point zg in the X norm. This gives us complete quantitative control on the solution.
Finally, this approach makes it very convenient to enforce a nonlinear constraint on the solution set. If M # &,
then one just needs to ensure that the descent direction v is chosen to be in the “tangent space” of M at x).

5.2. Adapting the arguments to our setting

To apply Lemma 5.2 to find zeros of (4.2), we need to give appropriate choices for the spaces X', Y, M and
the map ®. Once these have been chosen, we shall define F' as in Lemma 5.2.

We shall take X = Wi%i’r(Q) with a modified norm that depends on the parameter a > 0. More precisely we
take

X =X,; YV=L"(Q); and M = W25 (Q) N Diffia(Q), (5.2)
where X, has its elements the same as Wiﬁr(Q) with the norm

1Z]|x, = 11Z|lzr@) + all D*Z| o). (5-3)



WELL-POSEDNESS AND REGULARITY FOR A POLYCONVEX ENERGY 15

Note that by setting M = Wii’r(Q) N Diff;a () we will ensure that any points produced by EVP will satisfy the
determinant constraint det(DZ) = 1. Finally, since we wish to solve (4.2), we shall define

O(Z) =Pyl —al)(Z - 8), (5.4)

which is clearly a map from W27 (Q) into L"(Q2). More precisely, Pz is a map from W7 (Q) into Vz N L"(Q).

To contradict the inequality (5.1), we shall need to minimize || ;};gi; +d®(Zx;v)||Lr(q)- Note that ?gi% must
take the form
(Z»)
= Z .
Fzy) " 59

where w € L"(Q) NV is a divergence free vector field such that ||w| ) = 1. Hence, we must be able to find a
solution v that approximately solves the equation

d®(Zx;v) = —w(Z») (5.6)

for a given divergence free vector field w with unit L" norm.
Luckily, ®(Z) is very nearly a linear map, the only nonlinear behavior comes from the operator Pz. Hence,
apart from the contribution coming from Py, the Frechet derivative of ® is trivial. Given a point Z € M, let

dP(Z;v) = lim+ w
=0

denote the Frechet derivative of Pz in the direction of a vector v € W27 (€2). We can then write equation (5.6)
as

Ad®(Z;v) =Pz (I — al)v + dP(Z;v)(I — aA)(Z — S). (5.7)

The second term in the Frechet derivative of ® is rather annoying to work with. Thus, rather than try to invert
the full expression (5.7), we will just treat the second term as an error term and try to approximately solve

Pz (I — aA)v = —w(Zy). (5.8)

However, even this simplified expression is tricky to solve explicitly due to the combination of the operators
P, and (I —aA). Indeed, Pz is a linear operator with base point Z, while (I — aA) is a linear operator with
base point at the identity, thus their composition is rather complicated. To simplify matters, we shall let u be
a solution to the Stokes resolvent problem

I+ Au=—-w, V-u=0, u|pg=1id

and choose v = u o Z. This choice of v will not exactly solve (5.8), hence, this leads to a second source of error
that we shall also need to control.

The above considerations are now summarized in the following Proposition, which simplifies Lemma 5.2 and
converts it into our specific setting.
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Proposition 5.3. Given a point Z € M and some X\ > 0, let Zy be the point chosen by Ekeland’s variational
principle starting from Z. If F(Zy) # 0, then for w given in (5.5) we have

— 1 +CLHPZ,\ (A(uo Z)\) — (Au) [¢] Z)\)| Lr(Q) —|— HdP(Z)\, uo Z)\)HT’TH(I— aA)(Z,\ — S)| Lr(Q) Z — ) Huo Z)\Hgga,
(5.9)
where u solves the Stokes resolvent problem (4.4) and
|dP(Zx;uo Z))|lrr:=  sup  |[[dP(Zx;uo Z))f|Lr)- (5.10)
[[fllr o)<l

Proof. wu is a divergence free vector field vanishing on 9€2. Therefore, thanks to the construction in Appendix B,
there exists a C1 curve Z(t) : [0,1] — M such that Z(0) = Z, and Z’(0) = u(Z,). Now we can apply Lemma 5.2
to obtain the inequality

F(Z
14 lwo Zy+d®(Zy;uo Z))] ()\ )Hqu)\HXa.

Lr(Q) = —

Using equation (5.7), the triangle inequality, and the definition of the operator norm ||dP(Zx;u o Zy)||,r, it
follows that

F(Z)
A

L4 lwo Zx+ Pz, (I —al)(uo Zy)|r() + [|dP(Zx; wo Z3)[lrr[[(1 = al)(Zx = S)l[Lr@) = — [uwo Zy]|x,-

Finally, we note that
—wo 4y = ((I + aA)u) 0Zyx =Py, [(I —alA)uo Z)\].
Thus,

wo 2y +PZA(I_ aA)(qu)\) = aPZ)\(A(UOZ)\) - (Au) OZ,\).

6. ESTIMATES AND THE PROOF OF THEOREM 2.2

In this section, we will complete the proof of Theorem 2.2 by estimating the various quantities in (5.9) and
choosing an appropriate starting point Z.

6.1. Estimates
We begin by estimating the operator norm ||[dP(Zy;u o Zy)||,,-. We will do this by estimating the difference

”]le - ]PZQ ”T,T

for arbitrary maps Z1, Zy € Diffiq(Q2). To start, we will consider the case where one of the maps is the identity.

Lemma 6.1. If Z € Dift;q(2), then forr € (1,00)

[Pz =Pl < (I = DZ|| L) + |[cof (DZ) — I|| Lo (0)) [P

2
T
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Proof. Fix some function f € L"(92) and let £ be a smooth test function. We use the Hodge decomposition to
write

f=w+Vep, w:=Pf £=¢+Vy, (=P
Now if we test (Pz — P)f against £ o Z we have
(]P)Zf_]P).ﬂgOZ) = (faC(Z))_(wag(Z))

If we expand f and & in terms of their decompositions, the term (w,((Z)) appears in both expressions, so we
arrive at

Now we estimate each term separately. Pushing forward by Z we see that
(Ve,¢(2)) = (Vo(Z71),0).

The closely related quantity, (V(p o Z71), (), vanishes. From the fact V(¢ o Z71) = cof (DZ)Vp(Z~1) we see
that

(Ve(Z71),0) = ((I = cof (D2))Vp(Z71), )
Similar arguments reveal that
~(w,V¥(2)) = —(w,(I - DZ")V¥(2))
Therefore

(P2f = Pf,€02) < (IT = DZ|l1=(@) + lcof(DZ) = Tll (e ) I e €l Loy P s [P

Since P is self adjoint, by duality, |P||,» = ||P||, . f and & were arbitrary, so we can conclude the result. O

Corollary 6.2. Suppose Z; € Diffiq(Q) for i =1,2. Then for r € (1,00) we have
1Pz, =Pzl < (IDZ1 cof (DZ2)" = Iz (o) + cof(DZ1)DZ — Il|~ () ) IPI,

Furthermore, if u € C}(Q) is divergence free, then

ldP(Z; w0 Z)|lr, < 2||PII7

Dul| 0 ()

il

for any Z € Diff;q(Q).

Proof. Fix some function f € L"(2) and let g = f o Z5. Writing things in terms of g we have Pz, f = (P(g o
Zyo(Z1)71Y)) o Zy and Py, f = (Pg) o Zy. Therefore,

1Pz, f =Pz fllLr@) = |(Pg — Pyg) o Z2| 1 ()
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where Y = Z; 0 Z5 1. Since Z, is measure preserving, we have
|(Pg — Pyg) o Zs|ro) = [IPg — PygllLr(a)-
From the previous Lemma we get the bound
[Pg — Py gllr) < (IDY = Il + lcof (DY) = Il (o) 9]l () Pl

We can then compute DY (Z) = DZ; cof(DZ;)T and cof (DY (Z3)) = cof(DZ,)DZ¥. Recalling that g = f o
Zy ', we can conclude that

(IDY = I g (q) + [lcof (DY) = I[| o= 0)) 9l L7 ()
<(IDZy cof (DZ3)" — I|| 1o () + llcof (DZ1)DZ3 — || ) 1] (-
Since f is arbitrary, we can conclude the first result.

For the second result, using Appendix B, we can construct a C! curve Z(t) : [0,1] — M such that Z(0) = Z
and Z'(0) = wo Z. We then have

Pz — Pzl < (HDZ(t) cof (DZ)" = I|| () + [lcof (DZ(t)) DZT — IHL°°(Q)> )17,
Therefore,
|dB(Z:uwo 2)y, < lim 7 (IIDZ () cof(DZ)T — I e + cof (DZ()DZT = I|L(a» ) I
We can then write
DZ(t) = DZ +tDu(Z)DZ + o(t),
and
cof(DZ(t))DZ" — I = cof(DZ(t))(DZ" — DZ(t)").
Thus,

lim ¢ (|DZ(t) cof(D2)" ~ Iz (0) + [cof(DZ(H)DZT ~ I||1~(e)) = 2 D10,

t—0+

and the second result now follows.
We will use the following lemma to estimate the remaining terms in (6.1) involving w.
Lemma 6.3. If f € W27(Q) is a scalar function and Z € M then for any indices 1 < i,j < d, we have
107,;(f 0 Z) — (0}, £) 0 ZlLr) S IV FllLee @07 ;21 ey + 1D fllLr@10:2 ® ;2 — e @ €| 1= ()
and we have

[A(f o Z) = (Af) o Zllr@) < [V fllz=@llAZ]

@) + 1D fllLr @ |DZDZ" — 1| (q)



WELL-POSEDNESS AND REGULARITY FOR A POLYCONVEX ENERGY 19

where e; is the it" standard basis vector.

Proof. Computing directly, we have
,(foZ)=Df(2):0,Z200;Z+V[(Z) 0},Z.
Writing 97 f = D*f : e; ® e, we see that
(foZ)—(0},f)oZ=D>f(Z): (:ZR®Z —e;®e;)+V[f(Z) 0},Z.
Hence,
A(foZ)—(Af)oZ=D*f(Z):(DZDZT —1)+Vf(Z) AZ
The result now follows from Holder’s inequality and the fact that Z is a measure preserving map. O

We can now state a version of Proposition 5.3 that eliminates the dependence on the Stokes resolvent solution
u. Recall that M is given in (5.2).

Proposition 6.4. Given a point Z € M and some X > 0, let Zy be the point chosen by Ekeland’s variational
principle starting from Z. Define

D oo
K. = sup IDfll Lo~ (o)
few2r@)  Ifllx,

and
C, = max(||P|,., C),

where C, is the constant in (4.5). If F(Z) # 0, then

—1+C2(IDZ\DZ] — I~ () + aKallAZ) | Lr(ey ) +2KaC2I(I = aA)(Zy = 8)|1r(oy

5 d
F(Z
Z *CT(T(l + Z ||8ZZ>\ (%9 ﬁjZA —e; ® 6j||LOO(Q) + aKa||D2Z)\||Lr(Q)) (61)

ij=1

Proof. Let u and w be defined as in Proposition 5.3, and recall that we have the inequality

—L+a|P[, |A(uo Zy) = (Au) 0 Zy|

Lr(@) + ldP(Zx;uo Zy) |l [[(I — ald)(Zx = 5)|

Lr(@) 2~ [wo Zx] x, -

F(Z)
A
Since
luo Zx|lx, = lluo Zx|Lr () + allD*(uo Z))| L)

we can use the measure preserving property of Z, and the triangle inequality to estimate

luo Zxllx, < llullx, +al(D*u) 0 Zy — D*(uo Z))| Lr )
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Thanks to Lemma 6.3, we have

[A(uo Z)) — (Au) o Zx|1r) < [|DZADZS — I|| o) | Dull Lr o) + |1 Dul| o () 1A ZA]| L (02),

and
d
I(D*u) 0 Zy = D*(uo Z3) | pri) < [ID%ulliro) Y 10:2x © 0,25 — i @ ¢jl|os () + [ Dull Los 0 | D* Zal| (e
ij=1
Thus,
allAwo Zy) = (Au) o ZyLrioy < llullx, (IDZADZT = Il () + aKallAZ (@) )
and
d
2 2 2
al|(D*u) 0 Zx — D*(uo Z))|1r(e) < lullx, ( D 10:2x © 0,25 — € ® €| (0 + aKa| D> Zx | Lr () -
Q=1

From Corollary 6.2, we have
[dP(Zx;wo Zo) v < 2|P)17 | Dull e () < 2Ka|[P7, [l x,
From the definition of u and w, and the bound (4.5), we have
lullx, < Crllwllz-(9) = C--
Thus, combining our work, we can conclude that

-1+ ||P||m(7r(||DZADZAT — Iz + aKaHAZAIILm)) + 2K, |[P|17,Co (T — al)(Zx = 9) |- (o)

5 d
- F(Z) 9
> —CTT (1 + ..ZlHaiZ)\ ® 0;Z\ — e; ® e () + aKq||D Z,\HLr(Q))
i,j=
The result now follows from the definition of C,. O]

We conclude this subsection with an estimate for K.

Lemma 6.5. If K, is defined as in Proposition 6.4, then

_d+r
K,Sa 2.

(6.2)

Proof. By the Gagliardo-Nirenberg interpolation inequality, we have

r

d+r —d
1Dl S ID I Fry Il gy < @

d+r
27

fllx,

_dir
Hence, K, S a2 . O
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6.2. Construction of the starting point Z and the proof of Theorem 2.2

In order to prove the failure of inequality (6.1), it remains to choose an appropriate starting point Z.
Let us define u* to be the solution to the Stokes resolvent problem

(I +aA)yu*+P(I -A)id - S) =0, V-u*=0, u*|sq=0. (6.3)
We now apply Lemma 4.2 to obtain that
[u* (| () + laD?*u* || ey S (I = aA)(S —id)]|-(q)- (6.4)
Thus,
1L = aA)(S —id — u*)||Lr() S (I — aA)(S —id)| - (0)- (6.5)

We shall now use this u* to construct the starting point Z.

Proposition 6.6. Suppose that' Y :[0,00) X Q — Q is a map that satisfies
t
Y(t,z) =id +/ u*(Y(s,x))ds, det(DY(t,x)) =1,
0

where u* is defined as in (6.3). If we set Z(x) ==Y (1,z) then
1Z ~idllx, < €6+ PKa(1+ G, (14 mo(6C, K.) )
and
F(Z) < O Ky (14 Co(1+ mo(3C,K,)) ). (6.6)
Here K, and C.. are defined as in Proposition 6.4, 6 := ||((I —aA)(S —id)||zr) and
mo(t) i= ¢(1+ Cp (2" + 2™ 4 12™) ).

Note that K, has an upper bound by (6.2).

Proof. We begin by noticing that u* must solve the equation
P(I — aA)(S—id —u") =0. (6.7)
By triangle inequality,

1
12 —id — u*| x, g/ [u* o Y (s,) — u* ||, ds.
0

By Lemma B.1 and Corollary 6.2,

F(Z) <P = aA)(Z = S)ll1r@) + IDZ = 1| 1= @) Z = S| .-
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We can then estimate
R R 1
1Z = S||x, < IS —id —u*|x, +[|Z —id — u*[|x, < Cr6 +/ [u" oY (s, ) —u"[|x, ds.
0
By (6.7) we have
P(I —aA)(Z - S) =P(I — aA)(Z —id — u*),

which gives us
R 1
IP(I —aA)(Z = S)||Lr) < CT/ |u* oY (s, ) —u*|x, ds.
0
Focusing on the term f01||u* oY (s, ) — u*||x, ds, we have the bound
1 * * 1 * : * *
Jollwm oY (s,) = u'llx, ds < [y [[Du”||zoe @ [[Y (s,7) = id|zr () + all A(u" 0 Y (s, ") — u*)|[ o) ds

* * 1 * *
< lIDu* || poo oy w*lor () + fy allA(u* 0 Y (s, ) — u*)||1r(q) ds.

A direct calculation gives the estimate

1
/ Al A 0 Y (5,) —u) | ey ds
0

1
< / al| AY (s, )| @) 1D || oo () + al D*u* || e () DY (s, ) — Il oo () (1 + [ DY (5,-) = I|| Lo (q)) ds.
0
It is straightforward to obtain the estimates
t
DY (t,-) = I|| (o) S/O [ Du” || Lo () (1 + |DY (L, -) — I][Lo(a)) ds.
and

L@ + [ID*u* || r @) DY (s, ) DY (s, )| oo ()

t
AV (o < [ 100 1 |AY s.0)

Hence, Gronwall’s inequality gives us
DY (") = Il|pe (o) < tl|[Du”||L~ (o) exp(t|Du’|[ L= (q)),

and

2
IAY (£, ) L) < 1D%u* L) D, (DU || L))’ exp((f + D Du || s a))-
j=0
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By Lemma 4.2 and the definition of K,, we have
Hu*||Xa S CT(S, ||Du*||Loo(Q) § CTKG(S.

Putting together our computations we get
1 <
/ lu* 0 Y(s, ) — u*||x, ds < OTcSQKa(l + 20, eC7Ke 4 20, 5K ,e2Cr0Ka 4 cr(craKa)%SCrﬁKa), (6.8)
0

and our estimates of F(Z) and ||Z — id|| x, now follow. O

Now we are ready to prove the existence of a point Z € Diff;q(€2) such that the critical point equation (4.2)
is satisfied. We shall proceed by combining Propositions 6.4 and 6.6, and estimating the remaining quantities
in terms of a and J.

Theorem 6.7. If 6 and a= 56 are sufficiently small (depending on d and r only), then there exists a constant
A >0 and a point Z) € X, such that

d+r
.

F(Z\)=0 and X< 6% =

Proof. For each A > 0, let Z be the point provided by Ekeland’s variational principle starting from the point
Z constructed in Proposition 6.6. If F/(Z)) # 0, then Proposition 6.4 provides us with the “slope inequality”

—-1+C? (||DZADZAT — 1| + a'KaHAZ)\”LT(Q)> +2K,C (I — al)(Zx = 9) |-

. d
F
> —Cr¥<1 + D 10:2x®0;Z5 — €i @ €| L) + aKaHDQZAHLr(Q))

ij=1

Our goal is to rewrite this inequality in terms of § and a to derive a contradiction when § and a~ 5§ are small
enough. R
Let us choose A := o F(Z) for some constant vy > 0, and set

b1 = HZ)\ - id”xa

Recall that A is positive since 0 < F(Zy) < F(Z). We can then write

11— ad)(Zn = )1y < 6+ 1125 — idllx, = 6+ b,

IDZADZL — I ooy < Kal|Zx — id||x, (2 + Ka|| Zx — id| x,) = Kab1 (2 + Kab1),

and

d
D 0:2x @ 0,25 — €; @ e L) < AP Kol Zx — id||x, (2 + Kal Zx — id||x,) = d”Kaby (2 + Kaby).

ij=1
We also note that

a|D*Zx|| ) = al|l D*(Zx — id)|| -0y < b1,
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and hence
aKo||AZ)|| L) < Kabr

Using these bounds, the slope inequality can now be written as

—1+C? (Kabl(Q + Kobi) + Kabl) KL OB+ by) > —F (1 + A2 Kby (2 + Koby) + Kabl)

7o
Dropping constants and rearranging, we have shown that
1—75 " S Ka(64b1) + Kab1 (2 + Kab1) + Koy + 7 ' (Kab1(2 + Kaby) + Kabl). (6.9)
Let us now define
by := K,b;.
Using the above calculations, we can rewrite (6.9) as
1= " S Kab + b5 4 by + 75 ' (b2 + b3) (6.10)

Since || Zy — Z||x, < A, as long as a~ 3§ are sufficiently small, Proposition 6.6 yields
bi =2y —id||x, <A+ [1Z —id|x, S A+ 0+ K.0%
Moreover, Proposition 6.6 and Lemma 6.5 yields that

K,Sa™ % and  A=F(2) S 70Ka8? < yoa” 5 6%

Hence we see that K, by < a= T+ (a~ £ 5)2.
Thus, when a= 55 is sufficiently small, (6.10) fails for -y = 2. Hence, we can deduce by contradiction that

F(Zy) =0 when A = v F(Z). The conclusion of the theorem follows from the bounds on F(Z) and K,.
O

Proof of Theorem 2.2. . When ¢, a= 3" and a= 5" 62 are sufficiently small, Theorem 6.7 yields a point Z)
such that

F(Zy) =0and || Zy — Z||lx, <A =~62a" 7, (6.11)
where Z is as given in Proposition 6.6. Since F(Zy) = 0 and Z, € W27 () we know that
(I —aA)(Zy—S) + D" (cof(DZ)q") = 0,

for some function ¢* € W (Q). Theorem 2.2 will now follow from Theorem 2.1 if we can show that [|¢*|| L) <

ao?(2+3(1 +/3))7!, where o is the smallest singular value of DZ,.
Note that

d+r

IDZy — Il|1~(0) < KA+ || Z —idl|x,) S a4,
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Thus,

d+r

o>1—04,a" 76 (6.12)

for some constant 64, > 0.
Define p* := ¢* o Z;'! and note that ||q*||p=(q) = [|p*||1= (). We have DT (cof(DZ)Vq) = Vp*(Z,). Since
Z is measure preserving, we have
IVP*llri@) = I = aB)(Zx = S)llLr@) < A+ (T = aBd)(Z = )|
Recalling the definition of v* from (6.3) and
§ =S —id — u*||x,
we have

11 —aB)(Z — 8) ey < & + (I —aB)(Z —id — u") | o).

Since ||(I — aA)(Z —id — u*)|| (o) is bounded by the quantity on the left hand side of (6.8), we can conclude
that

(T = alA)(Z = )| priy S & +a~ 3 &2,
when § and a~ %+ § are sufficiently small. In particular from (6.11) it follows that
(I — aA)(Zy — )| Lr(y < 6 +a~ 3 62

It is now clear from (6.12) and the Poincaré-Wirtinger inequality that

|

will hold as long as a~ (8’ + a~ % 62) is sufficiently small. O

1 -1
e — *xdx” <ac?(2+3(1+V3
P IQI/np (@)daf (2+3( )

7. APPLICATION TO NAVIER—STOKES EQUATION

In this section we prove Theorem 2.7. For a given initial data vy € L"(£;R?) with r > d, we will construct
discrete-time solutions that generates the unique mild solution of the Navier—Stokes equations (2.7) as well as
the associated Lagrangian flow (1.9).

7.1. The discrete scheme: Lagrangian and Eulerian viewpoint

Let A denote the Stokes operator introduced in (4.3). We begin by recalling the discrete-in-time scheme to
construct Lagrangian and Eulerian solutions to the Navier—Stokes equations. Given an initial velocity vg, we
set vg,r = vo and iterate the following steps:

(I - HTA)S7L+1,T =id + TUn,r, Sn+1,7|89 =id, (71)
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o1 uT
Zyp+1,r € argmin §HZ — Snt1r 2 + 7||DZ — DSni1-ll72(0) (7.2)
ZEDiffia(Q)
Wt 1r 1= Vnr © Zody s (7.3)
Uptl,r 1= eﬂ”Awn_H. (7.4)

Note that vy, r has zero trace on 02 from the definition. It will also be useful to define the quantity

Zpt1,r —id
A %‘7 (7.5)

which will play a role in our subsequent analysis, even though its computation is not required for the scheme.

Due to Theorem 2.2, Z, 11 - exists as long as [[v, || rr(q) is bounded (see Lem. 7.1), which makes the scheme
well-defined. We shall also use the scheme to construct discrete-in-time Lagrangian solutions X, , by setting
Xo,r = id and iterating

Xn-‘rl,r = 4n+1,7 © X’I’L,T' (76)

Note that the steps (7.3) and (7.4) can be understood as a splitting scheme for Navier—Stokes. Step (7.3)
accounts for the transportation of the velocity field, while step (7.4) accounts for the linear parts of the equation.
The non-standard aspect of this scheme is that we advect the vector field with the projection map Z, 41 . This
lends a great deal of stability, since it makes the scheme much more implicit. Furthermore, Z,; , is measure
preserving, thus, we will see that the scheme automatically satisfies a discrete version of the energy dissipation
inequality and the Navier—Stokes Duhamel formula (see Lems. 7.3 and 7.13).

Our ultimate aim is to show that the velocity iterates v, and the Lagrangian maps X, converge
to Eulerian and Lagrangian solutions of Navier—Stokes respectively as 7 tends to zero. To that end we will
introduce piecewise constant interpolations v, Z,, X, v, defined as follows: for U denoting v, Z, X and v,

U-(t,z) = Upy1.(x) fnr<t<(n+1)7. (7.7)

Now we are ready to analyze the scheme. Let us begin by translating the estimates from Section 5 into our
current setting. The following statement is a direct consequence of Theorem 2.2. Note that here we have

a=pr, § =7|vN_1,r|lLr () and &' = 0.

Lemma 7.1. There ezists a constant C' > 0 only depending on r such that the following holds. Suppose that
(7.1-7.4) are well-defined for 0 <n < N — 1 and suppose that vNy_1 , satisfies

d—r

d+3r
||UN—1,T||LT(Q) <Cp ar 7ar (7.8)

for some constant C' > 0. If C' is sufficiently small then vy . is well-defined by the scheme.

Since r > d, Lemma 7.1 will follow if we can show that ||v, -|/1~(q) is uniformly bounded with respect to 7.

This is what we will show in Section 6.3 for a finite time period 0 < n < [Tj*] To this end we first present a
preliminary estimate that connects v and v.
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Proposition 7.2. Given some T > 0, let {v,, +, Zy 7, Un.r fn>0 be the sequence of iterates generated by (7.1-7.6).
If vy, satisfies the L™ norm bound from Lemma 7.1, then

_d+r q_d+r
|L’"(Q) +p 2 T ||vn,7||%r(ﬂ)- (7.9)

||’Dn+1,‘r ||L'(Q) 5 anﬂ'

Furthermore, if v, . € H(Q) then

d+r 1 d+r

L2 + 17 2 T o 1) (7.10)

||77n+17‘r - UmTHLz(Q) S (“T)l/ZHDvn,T

Proof. Let Zn+1)T be the reference point from Proposition 6.6 constructed from the map S;, 41 . By the triangle
inequality, we have

3 Zni1. —id Znite — Zns, Zni1 —id
[nr1.7llz- @) = 1= lr ) < 1= ey + 1=l (-
T T T
Clearly,
Zn+1,‘r - Zn+1,r < ZnJrl,T - ZnJrl,‘r
| el ST g < | L S
Thanks to Theorem 6.7, we must have
Z +1, —Z +1, _dtr q_d+r
== |, ST T on 1)

T

If we let uy,; , denote the solution to the Stokes resolvent problem
(I + :uTA)u:,—i-l,‘r = vn-ﬁ'? v : U:L—‘,-LT = 0? U:L—‘rl,‘r‘aQ = 07

then it is clear from the reference point construction in Proposition 6.6 that

Zni1 —id
= llcr) < lupi1-ller@ S lvnrllor @),

where the last inequality follows from Lemma 4.2. Therefore,

atr 7

. _ dfr
0417 llLr) Sp™2r 777 2r HUTL,TH%T(Q) + [[vn,r Iz ()

Now we turn to the second statement. Following a similar idea to the above, we can estimate

ZnJrl,T - ZnJrl,‘r Zn+1,7' —id

10n+1,7 = Vnrllzz@) < |l z2(0) + || — Ui - lzz@) + Uit r — v llz2)-

Dominating L? by X, (where we recall that ||¢||x, = (¢l ) + al|D*¢||Lr ) for some r € (d,00)) we can
estimate
Zn+1,7' - Zn-‘rl,r < Zn-‘rl,r - Zn—i—l,T
Zatr = Fniir g Zntr = Fuir

dtr g dt
X, Spoo Tt QTTH'UTL,T”%T(Q)'
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Again, from the construction of the reference point, it is immediate that

22P¥LT —id
T

— Up i1 72 ds < Tl Duy, Lo @) llun, - |l 2 (0)-

The Sobolev inequalities and Lemma 4.2, then give

d4r dtr
_dtr g
L2y Sp™ 2T

T Dug 7l zoe oy 1 - [vn = 1)

Finally, we can use the equation satisfied by uy,,; , to compute

uT
117 = Onr () = 1T (AU 1 o Wi 7 = Unr) = 17 (Dt o Dnz) = 7 [ D o) < 55 1DV 2 l1Z2 o)
Combining these estimates we get the second result.

O

Note that the bounds obtained in Proposition 7.2 present a superlinear growth in 7, and thus they cannot
be iterated to generate a uniform bound. This is because the one-step estimates do not take into account
the regularizing effect of the viscosity in the Navier—-Stokes equation. In the next subsection we will utilize an
approximate Duhamel’s fomula to obtain an improved estimate that leverages the regularization effect over time
(see Lem. 7.5).

7.2. Energy dissipation and Duhamel’s formula

In this subsection, we will establish discrete analogues of the well-known Navier—Stokes energy dissipation
inequality and Duhamel formula. In the following two lemmas, we assume that the scheme (7.1-7.4) is well
defined for all iterates 1 < n < N,. Note that N, > 1 due to Lemma, 7.1.

Lemma 7.3 (Approximate energy dissipation inequality).

[ont1,7172() + 2671 Dons1 2 1720y < NvnrllZ2 (0 for1<n < N: (7.11)
and
n+1
lvnsrrllFec +20m Y I1DvlF20) < lomrlie forl<m<n<N,. (7.12)
Jj=m+1

Proof. Let h(t) := ||e_“tA]P)wn+1,T||2L2(Q). Differentiating in time and then integrating by parts, we have h/(t) =
—2u|| De™ HAPw,, | H%Q(Q). Therefore,

.
h(r) + [ 2ulDe AP, [ oy e < H(O).
0
Integrating the time derivative of the non-stationary stokes equation against itself, one also has

2u|Don ey < 20 [ D0 AP o) ds
0
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Thus, we can conclude that
[ont1,7 1720y + 267 Dvnga - 120y < IPwnt1 7720y < lwnga 1720

Finally, using the definition of w11, we have

lwns1llzz@) = [1Zns1 #Vnrll2 @) < lvn-llz2@)-

Combining our work, we obtain the first result. The second result follows from iteration. O

Next, we will show that our scheme satisfies a discrete analogue of the Navier-Stokes Duhamel formula. The
Duhamel formula will play the central role in our subsequent analysis. Indeed, we will characterize our solution
using the Duhamel formula and we will also use it to obtain a short time bound on the velocity L™ norm.

Lemma 7.4 (Approximate Duhamel formula). If f : Q — R? is a smooth divergence free vector field that
vanishes on 02, then for any n < N, we have

(Ung1,75 f) = (vo, fug1) + Z (vk,T, frot1-k 0 Ziy1,7 — fn+1—k)7 (7.13)

k=0

n

where f, = e~ TRHAf.

Proof. Let f : Q — R? be a smooth divergence free vector field that vanishes on € and set f; := e~ "4 f. From
integration by parts and using the definition of w11, ,, we see that

(Un+1,77f) = (wn+1,ﬁf1) = (Un,Ta fio Zn+1,7')'

Thus, we can conclude that

(UTLJrl;raf) = (’Un,ﬁfl) + (vn,rafl o ZnJrl,T - fl) (714)

Iterating this argument, we get the above result. O

7.3. L" norm control
Based on the Duhamel formula, we will now show that there exists a time 7% > 0 such that |[v, ||z q) is

bounded independently of 7 for all 0 <n < N, := LT?*J This will establish (7.8) for all iterates in the range
0<n<N,:= LTTJ once 7 is sufficiently small.

Lemma 7.5.

n+1)A

[vnt1,r ) S Jle™ ¢ vollLr ()

- —atr _dtr g dir
73 (e +1=0) "7 ([onalfrg) + 1= 57" F ol ). (715)
k=0

Proof. Note that v,,11,, is well defined by Lemma 7.1. Let f be a smooth divergence free vector field vanishing
on 99, and define f;, := e~ 7F#Af as in Lemma 7.4. We first use Holder’s inequality and second use Remark A.2
to conclude that

('Ukn—a Jrnt1-k © Zpy1,r — fn+1—k) < COllvkller @)1 kg1, — idHLr(Q)||Dfn+1—k||Lﬁ(Q)-
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Taking the supremum over smooth divergence free vector fields f in the unit ball of L71(Q) and using
Lemma C.1, we can conclude that

sup (anrl}T? f)

Vop=0, ISl = <1
Lr=1(Q)

n _d+r Zk T — id
S e ™ DAl iy +7C Y (pr(n+ 1= k)" [k el H%”LT(Q%
k=0

where the first inequality is from (7.13). Note that

HUnJrLTHLT(Q) = sup (Vns1,75 f) = sup (Vnt1,7,Pf),
£l <1 £l <1

_r _r
LT—1 (@) LT—1(Q)

where the last equality follows from the fact that v,,41 , is divergence free. Hence,

||vn+1,'r||LT(Q) < |IP[]- sup (UnJrl,'r»f)'
V=0, |fl - <1
LT—1(Q)

Zpq1,r—id
T

Applying Proposition 7.2 to ||Oy 41,7 | r) = || |- () we obtain the result.

O

Proposition 7.6. There exists a time T > 0 and some 170 > 0 depending on ||vo| rr(q), 7,d and p such that
for all 0 <7 <79 if T(n+ 1) < T, then supy<, 1l|vk,rllLr (o) s bounded independently of T.

Proof. From Lemma C.1 and Lemma 7.5 there exist constants Co = Cy(r, d, p)

n
|Lr@) < Collvollry + 7Y (ur(n+1 - k))_a(nvkﬂ'”QLT(Q) + M_aTl_aHUn,rH%r(Q))

an-‘rl,T
k=0
where o 1= % + 2% < 1. Hence if {hy}r>0 solves hg = Co||vol|Lr () and
hns1 =ho+7C1 Y (pr(n+1—k)) " (hi + 7' ~*h}), (7.16)

k=0

then [|vg,+||1r) < hi. Suppose that hy, < M := 2hg for k =1,...,n. Then we have

M G
hpyr < 5 + Cr(tp(n + 1))170‘(M2 + ,ufo"rl*O‘MS).

This is less than M as long as

1 G

T(n+1) <Tp := (401M>ﬁ and 7 < 70 1= (NM)E,

Thus, we see that the velocity doubling time T is uniformly bounded from below for all 7 € [0, 79]. Since Tp
is a strictly positive lower bound for 7%, we are done. O
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7.4. Convergence of the scheme to Eulerian and Lagrangian solutions

Given the existence of the critical time T* > 0 from the previous section, we at last show that the approximate
solutions v, and X, converge to Eulerian and Lagrangian solutions of the Navier—Stokes equations respectively.

Proposition 7.7. Let T* be as given in Proposition 7.6. Then for any T < T* the family {v:}r>0 is uniformly
bounded in

L2 ([o, 7; H&(Q)) nL® ([o, T; L?(Q))

and precompact in L*([0,T] x ).

Proof. The uniform boundedness is an immediate consequence of (7.12). Precompactness in L%([0,7] x Q) will
follow from modifications of the Aubin-Lions Lemma in [16] if we can show that the discrete time derivatives

fntlr P are uniformly bounded in some weak space.

Let Y :={g e Wy"(Q): V-g=0}. We wish to estimate

max Un+1,7 — Un,r

0<n<N T

y*

Given f € Y, (7.14) gives us

Un+1,7 — Un,r f S flff + (v floZn—Q—l,‘r*fl
T ) n,T - n,Ts T

where f; = e#™Af. Thus, it is clear that

Un+1,7 — Un,r ~
<T7f) < omr Lz | AR 22 + lomr 2 Bsnrll 2o DAl )

3 1 -
< 11 (lonllzzay + Sonr s + 3llonr = Snsalaey )

where the last inequality follows from the Sobolev inequalities. Note that

1

N 1 . 1 1
§||’Un,T - ’Un+1r||%2(sz) < Jur(Zng1,ryVnr) + 5“”“,7“%2(9) < Jur(id, v, r) + ivaTH%?(Q) = §||7fn,r||%2(9)~

where we recall that J,,,(id, v, ;) is the value of the H! projection problem defined in equation (1.2). Now we
can conclude that

Un+1,7 — Un,r

i, | bl + 2 ey < ol + 2Wvolfoy
where the final inequality follows from (7.12). O

Theorem 7.8. Let T* be as given in Proposition 7.6. Then for any T < T* there exists v € L*([0,T]; L™ (2)) N
L2([0,T); H3()) such that

Tim|lv = o[ L2 o, 7)x0) = 0
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and
¢
o(t,z) = e MAy(z) — / e HiI=)Apy . (v(s,z) ®v(s,x))ds  for a.e. in[0,T] x Q. (7.17)
0

In particular, v is an L™ mild solution to the Navier—-Stokes equations (2.7) discussed in [29].

Proof. Let us define n = n, := L%J for a given time ¢ € [0,T]. Using the approximate Duhamel formula in
Lemma 7.4, we see that for any smooth divergence free test function f whose is contained in {2 we have

n

n+1— o/ r— Jn+1—
(Un+1,r,f)=(vo,fn+1)+72(Ukmf 1=k © Zkt1,r — Jog1 k)

T
k=0

We can then write

(vn+1,7‘7 f) = ('UOv fnJrl) +7 Z (vk,r & Uk?,T? Dfn+1fk> + €r
k=0

where

n
Jrt1-k° Zkv1,r — far1-k
€ =T E (v;w7 - — D fni1—kvVi,r ).
k=0

Next, observe

le-| < TZ/ [k, ()| D frs1-k (@) |0k, (2) — 1,7 | d
k=09

n 1t
+72 Z/ / / |D? fri1 (sZkH,T(x) +(1- s)x)Hvk,T(x)H@kH,TF dsdtdzx.
o’ o Jo

Thanks to the Sobolev Embedding Theorem we have

n

| SID far1—rllr@llo-l 2 qorixe) ™ D _Nokr — Bt1,7 172y
k=0

+ 71D? fgr—llLr @ l0r | o o, 1% 192 72 0.1y 0y (7-18)

Using Proposition 7.2 we have

d+r 1— d+

1/2||Dvn,‘r||L2(Q) +u T e HUH»T

lvk,r = Okgr,rlln2) < (u7) |%T(Q)'

Combining the above bound with (7.12), we can conclude that

n
. _dir g dir
Y Nk — Derrllzz@) < (P12 vollz2 () + 17 2 772 Tloe |12 o 11,202 -
k=0
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Recall that vy ; := e’”Awk,T in (7.3). Thus Sobolev inequalities and Lemma C.1 yields

_dir
[vrll oo (jo,71x ) S 1DV | oo 0,357 () S (07) ™ 27 max [Jwg, -||2(q)-

0<k<n
Recalling our argument in the proof of (7.12), we have

Jmax oz < max v l22(@) < [ollzzqo.

Plugging the above estimates into formula (7.18), we can now conclude that lim,_,q |e.| = 0 for all divergence
free f € W (Q).

By Proposition 7.7, along a subsequence v, converges to v € L?([0,7T] x Q). It is now clear that for any
divergence free f € L>([0, T); W' (Q)) we have

T T
/0 /Qv(t, x)f(t,x)dtde = jlirgo/() /Q’UTj (t,z)f(t,z)dzdt

T T t t—s
= lim vo(x)e Pl A f (¢ ) dt + / / / vy, (8, 7) @ vy (8, z)De " LTTJAf(t, x)dsdxdt
o Jo JQ '

j—o0 0

T T
= / vo(z)e PAF(t, x) dt + / / / v(s,z) @ v(s,z)De M)A (¢ 2) ds da dt.
0 o Jo Ja
Since v € L2([0,T]; HY(Q)) N L*([0,T]; L™(2)) we have
V- (vew) e L([0,T] x Q).
Hence, we can conclude that, for a.e. (¢,x) € [0,T] x €,

t
U(t, .%‘) — e_'u‘tA'UO(fL‘) _ / e_lt(t—S)Av . (U(S, x) ® 'U(S, :L‘)) ds
0

It is a straightforward consequence of the estimates in Lemma C.1 that any L°([0,T]; L"(€2)) solution to
(7.17) with > d must be unique (see Thm. D.1). Thus, the full sequence {v,},~o converges to v as 7 — 0.
O

Theorem 7.9. For T* and v as in Theorem 7.9, there is a unique X : [0,T] x Q —  such that
t
X(t7) :id+/ o(s, X(5,2))ds, det(DX(t,2)) =1 ae., (7.19)
0
and
i [ X = Xl 1o, 71x0) = 0-

Proof. Note that any v, solution to equation (7.17) in L°°([0,T]; L"(Q)) N L*([0,7]; H'(R2)) is also in
L([0,T);Wt2(Q)) (see Thm. D.1). Thus X is well-defined by (7.19).
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It remains to show that X converges to X. Recall that from (7.1-7.4)
Xog1r () =id + 7Y Opp1r (X o (2)).
k=0
and by definition
t n
X, (t,x) =id + / vr (8, X (s,2))ds+ 1 Z Opt1,0 (Xp,r (1) = V1,7 (Xig1.-(2)).
0 k=0

Therefore, for any ¢ € [0,T], we have the estimate

t
12Xt -) = X(& ) L@ < llv = vrllLr o< +/O [Dv(s, )| oo () | X7 (55 -) = X (s, )| L1 ds

n

+7 § ||'Uk+l,‘r o Z’C+1,T — Vk+1,7
k=0

lLr@) + vk — Orr1,7 |l ),

where we have used the fact that X} . is measure preserving for all k and Xy11,, = Zg41,- © Xi,-. Applying
Remark A.2 and Proposition 7.2, we have

n

7Y Ivkt17© Zirr — vkt 2l + 1ok — Bhga el
k=0

d+r dtr
2r

< 7| Do | 2o, 1% 107 | 20,1y x) + ()21 Dvs || 2o, ryxa) + 17 2 74

2
”UT”L?([O,t];LT(Q))'
Now we can use Gronwall’s inequality to conclude that

1X2(t7) = X (1)l () < 8- exp([ D]l (0,2 (), with lim 8, =0.

O
Remark 7.10. Theorem D.1 yields that v € L'((0,T7%); W"*(Q)) with v(-,0) € L"(£2), which is enough to

conclude that X is unique and X(¢,-) is one-to-one of {2 onto itself. From here, one would use the standard
theory for (2.7) to improve the regularity properties of v to v € L*((0,7*); C1*(£2)) for some o > 0. Since X
satisfies (7.19) with v = 0 on 9, we can conclude that X € L>((0,T*); Diffiq(2)).
APPENDIX A. INEQUALITIES
The following Lemma is a classical result from the theory of maximal functions which can be found in [19].

Lemma A.1. For anyl € [1,00] and f € W1P(R?),

@)= J@)] < (MT) @)+ M) lo~yl, for ae. a,yeR

Here, M denotes the Hardy-Littlewood maximal function. Therefore, if 1 <l < oo, there exists a constant
C = Ci(d) such that ||[M(V [l ) < CIV L)
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Remark A.2. Assume that Q is an open bounded set of class C?. Let | € (1,00] and let f € Wy (Q). Denote
as f € WHP(R?) the extension of f which is identically null outside €. Let g be the restriction of M(V f) to €.
We have

191l ) < IM(VH)lniway < CIV Fllni@ay = CIIV i
(i) We have

If(z) = f(y)] < (9(z) + 9(y))|z —y[, forae z,y€.

(ii) Consequently, if r > 2 and Z : Q — Q preserves Lebesgue measure then

1F(2) = 20 ) < 2C1Z = idll @I DS, 2

Lemma A.3. Suppose that g : [0,00) — R is an increasing function and {ag}r>0, {bk}r>0, {ck}r>0, and
{Bnk}nk>0 are nonnegative sequences such that

n
An 41 S Cn+4+10a0 + Z Bk,n g(ak)
k=0

b1 =bo+ Y Brng(bi).

k=0

If ¢ = supy>q ¢k is finite and max(c, 1)ag < by then a, < by, for alln > 0.

Proof. By assumption ag < by, hence it suffices to show that ay < by for all k¥ < n implies that a, 11 < by41.
Using the formulas in the assumption of the Lemma, we have

Qpt1 — bnt1 < Cpp1a0 — bo + Zﬁk,n(g(ak) — g(by)).
k=0

The result follows from the induction hypothesis, the monotonicity of g, and the nonnegativity of each sequence.
O

ApPENDIX B. FLows oON Diff;q(2)
Here we provide a completely standard lemma guaranteeing the existence of certain paths in Diffiq ().

Lemma B.1. For some r € (d,00) suppose that u € W™(Q,R?) is a divergence free vector field, and let
M= Z e WE(Q) N Diffia(Q). If Z € M, there exists a flow y: R — M such that

v(0)=2, ~'(0)=wuoZ.

Proof. Since u is divergence free and Lipschitz, there exists a solution A to the ODE

Gronwall’s Lemma implies that

| DA(t)| oo () < exp(t||Dul| Lo (q))-
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Since u € W2 (Q) is divergence free, it then follows that h|pq(t) = id and det(Dh(t)) = 1. Therefore h €

Diffiq (). We can then estimate
ID2H ()]l < 1Du(h(®)]| Lo @) [ D*A(E) |- @) + [ D*u(h(t)) ]| - 9) I DAO)|7 2 (g)-
Using the fact that h is measure preserving and the previous bound,

DK (t)|| -0y < [1Dul| o) [D*R(t) || - (0) + [ D*ull L) exp(2t]| Dul| Lo (o))

Therefore, by Gronwall’s Lemma, h(t) € W27 () for all finite times and so h : R — M. Now let us set (t)
h(t) o Z. Since M is closed with respect to composition, we see that v : R — M. Finally, it is clear that v(0) =

and v/ (0) =uo Z.

APPENDIX C. STOKES OPERATOR ESTIMATES
We will use the following estimate on the Stokes resolvent problem.

Lemma C.1. For any q € [1,00), p € [1,00], t > 0 and any f € K, we have

_ Y d _ _ 1
IVe™  fllri) Sqat™lf Loy, where o = 5 max(q P—p h0)+ 3

Proof. We have the following estimates for any 1 <1 < n < oco. For u sufficiently smooth,

| D2ull; < Ol Aul; ([46], Chap. 1.2, Prop. 2.2)

C
lAe™ A f|l; < 7l||f||za vieK; (29, Prop. 1.2)

¢

e~ 7] -

|

Iy, VFER,  where k=(1""=n"") (130, (A))

Lr() <
To prove the lemma, we choose a in the GNS inequality

|Dulloey < CIDull ey lulliry-

so that
1 2 1-—
)oﬂrM and o€ [1/2,1].
q

Hence, the smallest choice we can make for o is a = % + gmax(cf1 —p~10).
Let u := e*4 f. From (C.2)—(C.3) we have

1
1D%ully < [[Aullg < [ flla,
and from (C.4)

[ullg < Clfllq-

aN |l
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Hence we have
c
[1Dully < 2511 £lle-
Using our choice of a we conclude. O

APPENDIX D. NAVIER-STOKES BASIC ESTIMATES

The following theorem is expected to be classical, however we were not able to locate an explicit reference.
Thus we provide a proof for the completeness.

Theorem D.1. For any vy € L"(2) which is divergence free, there is at most one v € L>([0,T]; L"(?)) that
satisfies the Duhamel’s formula

v(t) = e MYy — /Ot e HE=DAPDT (4(s) @ v(s)) ds. (D.1)

Moreover t 57 v(z,t) € L*((0,T); WHo°(Q)). In particular v € L*((0,T]; WH°(Q)).

Proof. Let us denote 0(t) := t* and A, := |[v||ze(o,1);27()) < 00. We begin by showing that NS

L>((0,T] x Q). Note that if ¢ is a smooth d1vergence free vector field that vanishes on the boundary of 0
then

(e_”(t_s)APDT(v(s) ® v(s)), qb) =— (v(s) ® v(s), D(e_”(t_s)Aqb)).
We use Lemma C.1 to conclude that
[ (7= 4PDT (0(s) @ 0(5)), 8) | S 10(3) © 0(s) ey (1t = )~ F ]2 -
Using the Duhamel formula (D.1) and (C.4), we can conclude that

a4t _dir
lo(®) o 2 @Dl S llvollri@) + 125 5t =)~ |lo(s) © v(s)]l (@ ds

d+r

a4 ot _d+r
< llvollzry +137 [yt —s)~ ="

0(8) [l Lo (@) lv(8) | () ds-

< lvollzr (o) 113 A, fo 573" (t — s) (s) J%(S)HLOC(Q) ds.

Since

d+r _d+r
2 s Xo<s<t/2 + 1~ i (t—8)""2" Xtj2<s<1

s_%(t - s)
we have

[v(t) oa (B)llL=) S llvollLr (o)

1 t/2 d
0

0(5) 0 4 (9l e) ds+/t/2<ts>d?f 008) 7 6) oy ).
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Choose some 3 < oo such that 5 ((‘étrl)) < 1, this is possible since r > d. Using Holder’s inequality, we obtain the
estimate
B-1_ dir -1
[v(t) o a (D)l =) S llvollor@) +¢ 77 27 Ah(6) (D.2)
where

t
)= [ 1060 4 6)
0
Raising both sides to the power 3, and integrating over [0,to] with ¢y < T', we have

B(d+r)
2r

to
h(to) < l[voll3 oy + A2 / #9125 ) .

Thus, Gronwall’s inequality implies that h stays finite in [0, T']. Plugging this result back into (D.2) and recalling

that % - dz—tr > 0, we conclude that oa v € L>°((0,T] x §) as desired.

Next we will use the above L* bound to show that oiv € L>((0,T); W, "(Q)). Once again, using the
Duhamel formula (D.1) and Lemma C.1, we can conclude that

1ot a1
o @) Do) S lvollLr) + tz Jot—s) é||U(3)HL<>0(Q)||DU(5)| (@) ds.

1 t _dtr _ 1
S lvollnro) +t2 v o allze(o.mx0) Jy 572 (= 5)"2[loy(s)Du(s)||Lr(o) ds.

We can argue as above with the same choice of 3 to conclude that oyv € L>((0,T7; Wy (Q)).

Now we show Tdir¥ € L>°((0,T); Wy °°(€)). Again by the Duhamel formula (D.1) and Lemma C.1, we have
the estimate

t
dir _dar
loase () Do(t)]| Lo @) S llvollLr(e) +172 /0 (t = 5)" 2 [[u(s)l|zoe (@) | Do ()| r () ds-

Using our previous work, we get the bound

t
dir _dir _dir
Lr(Q) +t2r ||’U O’Td’r||LOO((07T]XQ)HJ%D’U||LOO((O7T];L7'(Q))‘/0 s~ ar (t — s) 27 ds.

loase (£) Do(t)|| oo ) S llvol

The expression

d+r d+r

t
t2r / s*%(tfs)* zr ds
0

is uniformly bounded for all ¢, therefore we obtain v Oasr € L((0,T); Wy () as desired.

Finally, we can prove the uniqueness of v. Suppose that o € L*([0,T]; L™(£2)) also satisfies equation (D.1).
Lemma C.1 then yields

[o@®) = o)z ) S /0 (t = )% [o(s) = 5(s)l| oy (0 (8) | o (@) + [15(8) [ e () dis.
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Using the L*° bounds we deduced above, we have

t
~ _d _1 - ~
lv(t) = o(t)[|L1 () S /0 s (t —s) 5 lv(s) —0(s)l|Lr()ds S £1/5||v — 0l £3(10,4:L (€2))-

Hence, H(t) < t'/2H(t) if we set

Thus, H(t) < H(0)e3*

H(t) = / Jo(s) = (5 2 gy ds-

(M)

. This yields H = 0, which means that v =0 for 0 <t < T. O
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