
Robust and Versatile Bipedal Jumping Control
through Reinforcement Learning

Zhongyu Li1, Xue Bin Peng2, Pieter Abbeel1, Sergey Levine1, Glen Berseth3,4, and Koushil Sreenath1
1University of California, Berkeley, 2Simon Fraser University, 3Université de Montréal, 4Mila

Email: zhongyu li@berkeley.edu, xbpeng@sfu.ca, pabbeel@cs.berkeley.edu, svlevine@eecs.berkeley.edu,
glen.berseth@mila.quebec, koushils@berkeley.edu

0.44m

0° -55°

(a) (b) (c)

Flight Phase

Fig. 1: Representative dynamic jumping maneuvers performed by a bipedal robot Cassie using the proposed goal-conditioned control policies.
From left to right: (a) the robot jumps over 1.4 m and lands at the given target; (b) the robot jumps to a target that is 0.88 m in front of the
robot and 0.44 m above the ground, and (c) the robot jumps in place while turning 55◦ with a command to turn 60◦ in place. The policies
are trained in simulation and deployed on the hardware without further tuning. Video is at: https://youtu.be/aAPSZ2QFB-E.

Abstract—This work aims to push the limits of agility for
bipedal robots by enabling a torque-controlled bipedal robot to
perform robust and versatile dynamic jumps in the real world.
We present a reinforcement learning framework for training
a robot to accomplish a large variety of jumping tasks, such
as jumping to different locations and directions. To improve
performance on these challenging tasks, we develop a new policy
structure that encodes the robot’s long-term input/output (I/O)
history while also providing direct access to a short-term I/O
history. In order to train a versatile jumping policy, we utilize
a multi-stage training scheme that includes different training
stages for different objectives. After multi-stage training, the
policy can be directly transferred to a real bipedal Cassie robot.
Training on different tasks and exploring more diverse scenarios
lead to highly robust policies that can exploit the diverse set
of learned maneuvers to recover from perturbations or poor
landings during real-world deployment. Such robustness in the
proposed policy enables Cassie to succeed in completing a variety
of challenging jump tasks in the real world, such as standing long
jumps, jumping onto elevated platforms, and multi-axes jumps.

I. INTRODUCTION

One question that has been lingering since the first creation
of bipedal robots is: how can we enable such complex robots
to traverse complex environments using agile and robust
maneuvers [23, 53]? For example, creating agile controllers
that enable bipedal robots to jump over a given distance
or onto different elevations can enable greater mobility in
unstructured environments. However, jumping is a challenging
skill to control for bipedal robots. During a standing jump, the
robot needs to push its body off the ground and break contact,
leap into a flight phase where the robot is underactuated, and
then make contact again when it lands on its legs. During

landing, the robot needs to not only recover from the large
impact impulse, but also stick the landing and remain standing.
All of these events occur within a very short amount of time
(typically less than 2 seconds). These events lead to a hybrid
system that switches between modes with different contact
configurations (e.g., taking-off, flight, and landing). Planning
and controlling such discontinuous dynamics, especially for a
high-dimensional, nonlinear, and underactuated bipedal robot
present a very challenging task [52]. This challenge is further
compounded when the robot needs to accurately land on a
given target, where the robot will have to produce the precise
translational and angular momentum at take-off in order to
land at the desired location [73].

Model-based optimal control (OC) frameworks have made
notable progress in controlling bipedal robots, including jump-
ing, but they depend on carefully crafted models of the robot
and the complex contact dynamics [30, 39, 57]. These meth-
ods typically require manual design of task-specific control
structures [9, 20, 76], and simplified dynamics models, which
provides only a coarse approximation of the robot’s full-order
dynamics. Furthermore, pre-defined or pre-computed contact
sequences are often needed to reduce online optimization
complexity [46, 47, 71]. Such limitations have restricted
previous model-based methods to only performing a fixed hop
on torque-controlled bipedal robots like Cassie [71, 72]. By
leveraging the robot’s full-order dynamics, model-free rein-
forcement learning (RL) has shown some success in highly-
dynamic locomotion control on quadrupedal robots [26, 42,
49]. However, compared to quadrupeds that are inherently

https://youtu.be/aAPSZ2QFB-E

TABLE I: Benchmark with previous work tackling jumping control using optimal control (OC) or reinforcement learning (RL) on the bipedal
robot Cassie in the real world.

Controlled Apex Longest Maximum Leap Distance
Landing Pose Foot Clearence Flight Phase Forward Backward Lateral Turning Elevation

Aperiodic Hop by OC [71] No 0.18m 0.42s ∼0.5m* 0m 0m 0◦ 0m
Aperiodic Hop by OC [72] No 0.15m 0.33s* ∼0.3m* 0m 0m 0◦ 0m
Periodic Hop by RL [60] No ∼0.16m* 0.33s* ∼0.5m* 0m 0m 0◦ ∼0.15m*

Ours (Aperiodic Jump by RL) Yes 0.47m 0.58s 1.4m -0.3m ±0.3m ±55◦ 0.44m
*Not provided in the paper and the listed value is roughly estimated based on the comparison with the background environment in the accompanying video.

more stable, RL-based methods still struggle when applied to
bipedal robots for more dynamic and aggressive maneuvers
in the real world. Given that the most relevant prior RL-
based system is only able to perform periodic hopping on
Cassie [60], it remains an open question how more dynamic
bipedal skills can be achieved in the real world, such as
standing long jumps that could be more challenging than
periodic motions [20, Sec. I].

A. Objective of this Paper

In this paper, our objective is to explore the possibility
of creating a robust and versatile jumping controller for a
bipedal robot that enables it to land at different target locations,
as shown in Fig. 1, and validating the advantages brought
by learning with different maneuvers using reinforcement
learning. We refer a skill to a kind of legged locomotion
method, such as walking, jumping, or running. We further
denote a task as using a locomotion skill to accomplish a goal.
For instance, one task could be the task of walking (skill) at
a desired speed (goal), or as in this work, achieving the task
of jumping (skill) to a target configuration (goal). We use the
term goal-conditioned to refer to a policy that can perform a
variety of jumping tasks, such as jumping over various desired
distances and/or directions, conditioned on the given goal.
We hypothesize that, by exploring different jumping tasks, a
versatile jumping controller can be more robust as it allows
the robot to leverage more diverse learned tasks to maintain
stability during dynamic maneuvers. For example, in order to
recover from a large ground impulse on landing, the robot
can quickly switch to another learned task, such as a hop
to a different location, which can allow for a more graceful
recovery than simply continuing with the original behavior.

B. Contributions

The core contribution of this work is the the development
of the first system that enables a life-sized torque-controlled
bipedal robot to perform versatile jumping maneuvers with
controlled landing locations in the real world. The robot is first
trained in simulation with reinforcement learning and domain
randomization. Training does not require an explicit contact
sequence, and the learning algorithm automatically develops
different contact sequences for different jumping goals. In
order to successfully transfer the learned skill for such dy-
namic maneuvers from simulation to the real world, we utilize
two new design decisions. First, we present a new policy
structure that encodes the robot’s long-term Input-Output (I/O)
history while also providing direct access to a short-term I/O
history. By training the model in an end-to-end manner, we

show that such a structure can outperform previously proposed
architectures (Fig. 5). Second, we demonstrate that training the
controller for a diverse range of goals improves the robustness
of the controller by using the maneuvers learned from different
jumping tasks to recover from unstable states. We show that
this robustness cannot be easily obtained by training only for a
single jumping goal (Fig. 6). Combining these two techniques,
we enable the bipedal Cassie robot to perform (1) several
aggressive jumps, such as a long jump (1.4m ahead) and a
high jump onto a 0.44m-tall platform (Fig. 1), (2) various
agile multi-axes bipedal jumps (Fig. 7, Fig. 9), and (3) to
utilize diverse learned jumping maneuvers to recover from
external perturbations or impacts (Fig. 9), in the real world.
We hope this paper can serve as a step forward for enabling
more diverse, dynamic, and robust legged locomotion skills.

II. RELATED WORK

Prior work tackling dynamic locomotion skills such as
jumping with legged robots can be broadly categorized as cor-
responding to model-based optimal control (OC) and model-
free reinforcement learning (RL). Table I compares our work
with the most related prior efforts on the bipedal robot Cassie.

1) Model-based optimal control for legged jumping: Prior
model-based methods for legged jumping control usually build
up a layered optimization scheme, which includes offline
trajectory optimization with detailed models of the robot’s
dynamics and ground contacts [10, 12, 46, 63], and online
controllers that leverage simplified models of the robot’s
dynamics [45, 55, 65, 72]. In order to optimize trajec-
tories for jumping, which needs to switch among modes
with different underlying dynamics, there are two commonly
employed solutions: (i) relying on human-specified contact
sequences [9, 19, 29, 47, 71], which is not scalable to different
jump distances and/or directions, or (ii) leveraging contact-
implicit optimization [8, 14, 33, 52, 77] which plans through
contacts to avoid breaking the trajectory or using computa-
tionally expensive mixed-integer programming [1, 11, 12].
However, due to the computational challenges of optimization,
both of the above-mentioned methods are still limited to
offline computation for legged robots. As we show in this
work, by training with different jumping goals offline, Cassie
can automatically generate the appropriate contact sequences
during online execution for achieving robust jumping.

In the case of controllers for aperiodic dynamic jumps, many
previous efforts required a separate landing controller to stabi-
lize the robot from the large landing impacts [20, 25, 46, 71].
However, this approach usually requires a contact estimator
and needs to fuse the noisy robot proprioceptive measurements

to estimate the contact states, which on its own could be a chal-
lenging problem [22, 38, 51]. Furthermore, while there are a
few prior attempts addressing precise jumping control on low-
dimensional single-legged robots [66, 73] and a quadrupedal
robot [45], mostly in simulation [45, 66], most prior work on
bipedal jumping only focus on single vertical jumps with the
landing location not controlled [20, 65, 71, 72]. In this work,
the proposed jumping controller demonstrates the capacity to
control the landing pose of the bipedal robot without position
feedback or explicit contact estimation.

2) Model-free RL for legged locomotion control: In recent
years, we have seen exciting progress in using deep RL to learn
locomotion controllers for quadrupedal robots [5, 16, 34, 40]
and bipedal robots [7, 37, 54, 59, 70, 75] in the real world.
Since it is challenging in general to learn a single policy with
RL to perform various tasks [28], many prior works focus on
learning a single-goal policy [6, 42, 49, 74] for legged robots,
such as just forward walking at a constant speed [16, 31, 69].
There have been efforts to obtain more versatile policies, such
as walking at different velocities using different gaits, while
following different commands [17, 18, 35, 54], which requires
more extensive tuning due to the lack of a gait prior. Providing
the robot with different reference motions for different goals
can be helpful, but requires additional parameterization of the
reference motions (e.g., a gait library) [3, 24, 27, 37], policy
distillation [70], or a motion prior [15, 50, 67]. There is also a
line of research to explicitly provide contact sequences for
legged robots [4, 41, 58, 60]. However, such methods are
prescriptive and provide little opportunity for the robot to
deviate from the contact plan, limiting the flexibility with
which it can respond to perturbations. In this work, we show
that a versatile policy can enhance the robustness of a jumping
policy by intelligently employing a variety of learned tasks to
react to perturbations.

3) Sim-to-real transfer for legged robots: To tackle sim-to-
real transfer for RL-based methods, some works have sought
to directly train policies directly in the real world [21, 62, 68],
but most of the prior work, especially for dynamic skills,
leverages a simulator to train the legged robot with extensive
dynamics randomization [48] and then zero-shot transfer to
the real world [16, 31, 34, 37, 60] or finetune with real-
world data [27, 49, 61]. Since performing rollout on the
hardware of human-scale bipedal robots is expensive, we use
the zero-shot transfer method. In order to realize this, there
are two widely-adopted techniques: (i) end-to-end training a
policy by providing the robot with a proprioceptive short-
term history [16, 24, 37] or long-term history [48, 58, 59],
(ii) teacher-student training that first obtains a teacher policy
with privileged information of the environment by RL, then
uses this policy to supervise the training of a student policy
that only has access of onboard-available observations [18,
26, 31, 34, 40, 75], which shows advantages over the end-to-
end training method [31, 32]. However, here we show that,
for the dynamic control of bipedal robots, by training the
robot in an end-to-end way with a newly-proposed policy
structure, we can realize a better learning performance over the

teacher-student method which separates the training process
and results in increased training time and data.

III. BACKGROUND AND PRELIMINARIES

In this section, we provide a brief introduction to our
experimental platform, Cassie and the background of goal-
conditioned reinforcement learning.

A. Floating-base Model of Cassie

We use Cassie as the experimental platform in this work.
Cassie (see Fig. 1) is a life-sized bipedal robot and is around
1.1 meter tall, with a weight of 31 Kg. It is a dynamic and
underactuated system, with 5 actuated motors (abduction q1,
rotation q2, thigh q3, knee q4, and toe q7) and 2 passive joints
(shin q5 and tarsus q6) connected by leaf springs on its Left and
Right leg. We denote the motor positions as qm = [q

L/R
1,2,3,4,7] ∈

R10. The 6 degree of freedom (DoF) floating base (pelvis) can
be represented with translational positions (sagittal qx, lateral
qy , vertical qz) and rotational positions (roll qψ , pitch qθ, and
yaw qϕ). In total, the robot has 20 DoFs q ∈ R20. For more
details about Cassie’s configuration, we refer readers to [71,
Fig. 2]. The observable joint positions on Cassie are denoted
as qo = [qψ,θ,ϕ,qm, q̇x,y,z, q̇m] ∈ R26, which can be obtained
from onboard joint encoders and IMUs, while the base linear
velocity q̇x,y,z can be estimated with an EKF [70].

B. RL Background and Goal-Conditioned Policy

We formulate the locomotion control problem as a Markov
decision process (MDP). At each timestep t, the agent (i.e.,
the robot) observes the environment state st, and the policy π
produces a distribution over the actions, π(at|st), conditioned
on the state. The agent then executes the action at sampled
from the policy, interacts with the environment, makes an
observation of the environment’s new states st+1, and receives
a reward rt. The objective of RL is to maximize the expected
accumulative reward (return) the agent received over the
course of an episode E[ΣTt=0γ

trt] where γ is a discount factor
and T is the episode length. In order to obtain a policy that
can accomplish different goals, we provide a goal c which
parameterizes the task and the policy π(at|st, c) is then also
conditioned on the given goal c to perform different tasks.

Task Parameterization: In our jumping task, the goal c spec-
ifies target commands for a desired jump c = [cx, cy, cz, cϕ],
which consists of the target location cx,y on the horizontal
plane, elevation cz in the vertical direction, and turning direc-
tion cϕ after the agent lands, calculated based on the robot’s
pose before the jump, i.e., in the local frame of robot’s starting
pose. Please note that the change in elevation cz is defined as
the change of the floor height, instead of the change of the
robot’s base height.

IV. MULTI-STAGE TRAINING FOR VERSATILE JUMPS

We now describe our multi-stage training framework for
developing goal-conditioned jumping policies. The training
environment is developed in a simulation of Cassie using
MuJoCo [13, 64].

Single Jump
Animation

Single-Goal
Training

Dynamics
Randomization

Dynamics
Randomization

Zero-Shot Transfer Multi-Goal Training

Fig. 2: The schematic to train the robot to perform versatile jumping
skills in the real world starting with a reference motion of a single
jumping animation. This framework consists of three stages. In the
first stage, we focus on training the robot to imitate the animation
while performing a single jump from scratch. After the robot is
good at achieving the single goal, we randomize the goal (to land at
different locations and different turning directions/elevations) that is
assigned to the robot during each training episode. After these two
stages of training, we extensively randomize the dynamics properties
of the environment in simulation in order to improve the robustness
of the robot during the zero-shot transfer from sim to real.

A. Overview of the Multi-Stage Training Schematic

Our goal is to develop a locomotion control policy for
jumping skills that can perform targeted jumps to different
locations. However, due to the challenging nature of jumping,
it can be difficult to directly train a policy to perform a
large variety of jumps from scratch. We observed that training
policies from scratch to perform a large variety of jumps tends
to lead to the robot adopting very conservative behaviors or
even failing to learn to jump. Therefore, we use a multi-stage
training scheme that consists of 3 stages, as illustrated in
Fig. 2: (1) single-goal training, (2) multi-goal training, and (3)
dynamics randomization. All stages of training are performed
in simulation, but as we show in our experiments, the resulting
models can then be directly deployed on a real Cassie robot.
In Stage 1, the model is trained on a single goal c, i.e.,
jumping in place. This stage of training results in a policy
that is trained from scratch to specialize in a single task in
simulation. Next, in Stage 2, the goal c is randomized every
episode to train the robot to jump to different targets. In this
stage, the focus is primarily on performing the commanded
task in the simulated environment. Finally, in Stage 3, we
introduce extensive domain randomization on the simulation
environment, while also randomizing the goal, in order to
improve the robustness and generalization of the policy for
sim-to-real transfer. At each stage, the reward and episode
designs of the MDP may vary in order to produce more
effective policies for the objectives of the given stage.

In the rest of this section, we focus on explaining the
details of Stages 2&3 in training, which share the same reward
and episode design and cover both multi-goal training and
domain randomization. Stage 1 training, which is different in
the choice of hyperparameters, is detailed in Appendix A.

B. Reference Motion

To initialize the training process, we provide a single
jumping reference motion. The reference motion is a human-

TABLE II: A list of components of reward rt which is a weighted
summation of the listed items. The weight of each term is scheduled
based on the jumping phase and training stage.

Reward Component r
Weight w

Stage 1 Stage 2, 3
t ≤ TJ t > TJ t ≤ TJ t > TJ

Reference Motion Tracking
Motion position: r(qm,qrm(t)) 15 15 7.5 15
Pelvis height: r(qz, qrz(t) + cz) 5 5 3 3
Foot height: r(ez, erz(t) + cz) 10 10 10 10

Task Completion
Pelvis position: r(qx,y, cx,y) 12.5 12.5 15 15
Pelvis velocity: r(q̇x,y, q̇dx,y) 0 3 12.5 12.5

Orientation: r(qψ,θ,ϕ, [0, 0, cϕ]) 12.5 12.5 10 10
Angular rate: r(qψ,θ,ϕ, [0, 0, q̇dϕ]) 3 3 10 10

Smoothing
Ground Impact: r(Fz, 0) 5 0 10 0

Torque Consumption: r(τ , 0) 3 3 3 15
Motor velocity: r(q̇m, 0) 0 15 0 25
Joint acceleration: r(q̈, 0) 3 10 0 5

Change of action: r(at, at+1) 0 0 10 10

authored animation of Cassie jumping in place, created in a 3D
creation suite [36], as presented in Fig. 2. This animated jump
has an apex foot height of 0.5 m and an apex pelvis height of
1.1 m and has a timespan TJ of 1.66 second (i.e., TJ = 1.66).
This reference motion is only a kinematically-feasible motion
for the agent and is not optimized to be dynamically feasible.
After the end of the jumping animation, the reference motion
will be set to a fixed standing pose for the robot.

C. Reward

The design of the reward function is important to encourage
the robot to jump with agility. We further spilt the reward
within a stage into two phases: before landing (t ≤ TJ)
and after (t > TJ), and the reward needs to vary based on
these phases because the desired robot’s behavior is different:
performing aggressive jump versus stationary standing.

We here define a function:

r(u, v) = exp(−α||u− v||22) (1)

where r(u, v) ∈ (0, 1] defines a reward component that
encourage the two vector u and v to be as close as possible,
scaled by α > 0 that balance the units. The reward rt the agent
receives at each timstep is a weighted summation of different
components, rt = (w/||w||1)T r ∈ [0, 1]. The component
vector r and weight vector w are detailed in Table II. The
reward used here consists of three main components: reference
motion tracking, task completion, and smoothing term.

The agent is encouraged to track the reference motor
position by r(qm,qrm(t)), pelvis height by r(qz, q

r
z(t) + cz),

and foot height r(ez, erz(t)+cz) at current timestep t. However,
as recorded in Table II, the reference motion tracking term
has a relatively small weight during the multi-goal training
because we want the agent to infer diverse maneuvers, such
as jumping to different locations, and the jumping-in-place
reference motion may be no longer reasonable.

The task completion reward, on the contrary, is designed to
dominate others during multi-goal training. We first include
the r(qx,y, cx,y) and r(qψ,θ,ϕ, [0, 0, cϕ]) to encourage the agent
to reach the desired location and orientation and stay there

after it lands in order to accomplish the assigned task c.
Furthermore, pelvis linear velocity tracking r(q̇x,y, q̇

d
x,y) and

angular rate tracking r(q̇ψ,θ,ϕ, [0, 0, q̇
d
ϕ]) are introduced to

shape the sparse task reward, where q̇dx,y = cx,y/TJ and
q̇dϕ = cϕ/TJ . Moreover, although the task does not include
the pelvis roll and pitch angle qψ,θ, minimizing them to zero
can help to stabilize the robot’s pelvis.

We further introduce a smoothing term that is less important
than task completion but with a larger weight than the motion
tracking term. For example, we encourage the robot to produce
less ground impact force Fz during its jump by r(Fz, 0), to
damp the body’s oscillation after it lands by motor velocity
reward r(q̇m, 0) and joint acceleration reward r(q̈, 0), and to
be more energy efficient by r(τ , 0). Moreover, the importance
of having a stationary standing pose is highlighted by having
a relatively large weight on torque consumption and motor
velocity reward after the robot lands (t > TJ). This is because
the introduction of dynamics randomization in Stage 3 will
make the environment noisy and cause oscillation in body pose
during standing. We also introduce an additional component
in Stages 2&3, the change of action reward r(at,at+1), to
further smooth the aggressive maneuver the robot may conduct
to jump over a long distance.

Remark 1: Although the switching time (TJ) of the reward
is fixed and not tuned for jumping to different locations, as
we show in our experiments, the robot learns different flight
times for different targets (Fig. 7b).

D. Episode Design

Having a careful design of the reward may not be enough
since it is challenging to encourage the agent to jump. The
robot may keep failing to stabilize itself while learning to
jump. Therefore, the robot may easily adopt very conservative
but stable behaviors because it can quickly improve the return
in this way. For example, the robot may just stand or just jump
in place without completing the task, and can still have some
suboptimal return. To prevent this, we note that a cautious
design of the episode can also facilitate the training of dynamic
jumping maneuvers.

In the stages for multi-goal training, the maximum episode
length is set to 2500 timestep which lasts 76 seconds. During
such an episode, the robot is commanded to jump to a random
target after a random time interval of standing, and these
random values are uniformly sampled. The task is sampled
from cx ∼ U(−0.5, 1.5) m, cy ∼ U(−1.0, 1.0) m,
cz ∼ U(−0.5, 0.5) m, and cϕ ∼ U(−100◦, 100◦), and
standing phase distribution is U(1, 15) second. Such a “jump
↔ stand” switch is repeated. Such a design can improve the
robustness of the learned policy to different initial states by
performing repeat jumps over an episode. Moreover, compared
to Stage 1 where the agent is asked to jump at t = 0, starting
from Stage 2, there is a high probability the robot will start
with a standing skill at each episode.

The episode will be terminated earlier if the robot falls over
(pelvis height qz < 0.55 m or the tarsus joints hit the ground)

to prevent it from having further rewards. We also emphasize
the importance of foot height tracking and task completion
to the robot by terminating the episode earlier if: (i) the foot
height tracking error |ez − edz | is larger than the bound Ee
which is set at 0.32 m, or (ii) the robot does not arrive at the
given target after it lands (t > TJ) when [||qx,y−cx,y||2, |qϕ−
cϕ|] > Et where Et = [0.35 m, 35◦]. Please note that we have
a relatively small task completion error bound Et while we
have a large tolerance on the foot height tracking error Ee.
Using such a design, the robot is allowed to deviate from the
reference foot trajectory to find a better foot height trajectory
for different tasks. The robot will also have more incentive to
complete the task by landing close to the target and having
more rewards in a longer episode.

Remark 2: The larger choice of the foot tracking error
tolerance Ee also allows the robot to perform small hops after
it lands. The robot is encouraged to stand due to the foot height
tracking reward but can dynamically switch to hop, including
hopping to different places as long as staying within Et, for
better robustness. We do not specifically train or encourage
the agent to deviate from the assigned task for robustness.

In the first stage of training, a single jump introduces an
inductive bias into the policy towards performing jumping
behaviors. In later stages of training, by combining the early
termination conditions and motion imitation reward, this in-
ductive bias leads the robot to favor jumping to different
targets, instead of using other skills such as walking.

E. Dynamics Randomization

In order to succeed during the sim-to-real transfer, we
introduce extensive randomization on dynamics parameters of
the environment in Stage 3. The dynamics properties that are
randomized are listed completely in Table III in Appendix B.
During training at this stage, at each episode, the value of
each dynamics parameter is uniformly sampled from the range
listed in Table III. We consider three sources that cause the
sim-to-real gap: (1) modeling errors, (2) sensor noise, and
(3) communication delay between the high-level computer
running the RL policy and the robot’s low-level computer.

In order to robustify the policy to the modeling errors,
we randomize the floor friction, robot’s joint damping, link
mass and inertia, and the position of the link’s Center of
Mass (CoM). Specifically, to deal with the error of motor
dynamics between the simulation and hardware, we have a
larger upper bound of the joint damping (4 times the default
value) to approximate the motor aging issues on the hardware.
We also randomize the PD gains used in the joint-level PD
controllers (since our policy outputs target motor positions).
The range is ±30% of the default value. Such a change is
able to diversify the motor responses the robot is trained on
and enhance the robustness to the change of motor dynamics
during hardware deployment. Furthermore, specific to Cassie
whose leg has leaf springs to connect the passive joints q5,6,
the parameters of the springs are important because they
will have significant displacement during the taking-off and

Joint-Level
PD Controllers

State Estimator

𝛕𝐪𝑚
𝑑

𝐪𝑡
𝑟

𝐪𝑚, ሶ𝐪𝑚

𝐜

LPFMLP

CNN

𝐪𝑡−4
𝑜 : 𝐪𝑡

𝑜

𝐚𝑡−4: 𝐚𝑡−1

𝐪𝑡
𝑜, 𝐚𝑡−1

𝐪𝑡−65
𝑜 , 𝐚𝑡−66

𝐪𝑡−1
𝑜 , 𝐚𝑡−2…Long I/O

History

Short I/O
History

Reference Motion
Landing Target

𝐪𝑡
𝑜𝐚t−1

Policy 𝜋𝜃

Fig. 3: The architecture of the goal-conditioned jumping policy πθ .
The policy outputs the desired motor positions qd

m, which are used
by joint-level PD controllers to generate the motor torques τ on the
robot. The input to the policy includes the goal c, which specifies the
landing targets, the reference motion qr

t , which provides the robot
a short preview of the reference trajectory, and a short 4-timestep
history of the robot’s input (robot’s action at−1) and output (robot’s
feedback qo

t). The policy is also provided with a long-term 2-second
I/O history, which is first encoded by a 1D CNN. The policy updates
at 33 Hz while the rest runs at 2 kHz.

landing phases. Therefore, we introduce a 20% uncertainty on
spring stiffness during training. We empirically found that the
randomization of the motor dynamics and spring stiffness has
a non-trivial effect to succeed during the sim-to-real for the
bipedal jumping skills.

The sensor noise from joint encoders, IMU, and estimation
error of the base linear velocity are simulated as a Gaussian
noise whose mean is sampled in Table III at each episode.

V. TRAINING SETUP

We now build up our control policy by optimizing rein-
forcement learning through the multi-stage training pipeline.

A. Policy Architecture

Our policy πθ is represented by a deep neural network
with parameters θ. As shown in Fig. 3, it has two compo-
nents, a base network represented by a multilayer perceptron
(MLP), and a long-term history encoder represented by a 1D
convolutional neural network (CNN). The policy operates at
33 Hz. Each action at specifies the target motor positions qdm
for the robot. The action is first passed through a Low Pass
Filter (LPF) [15, 37, 49], which smooths the motor targets
before being applied to joint-level PD controllers and further
complements the smoothing rewards. The PD controllers op-
erates at 2 kHz, to generate motor torques τ ∈ R10 for driving
the movements of the joints.

The input to the policy at timestep t contains four com-
ponents: the goal c introduced in Sec. III-B, a preview of the
reference trajectory qrt , a short-term history of previous actions
and states (robot’s Input/Output), and a long-term I/O history
of the last 2-second. The preview of the reference trajectory
qrt = [qrz(t),q

r
m(t + 1),qrm(t + 4),qrm(t + 7)] provided in

the robot’s observation contains the current reference pelvis
height qrz(t) and reference motor positions qrm sampled at 1,
4, and 7 future timesteps. Providing a segment of the future
reference trajectory as input provides the policy with more
information such as future joint position, velocity and other
higher order terms, which has been used in [37, 49, 61]. To

close the control loop, we provide the robot direct access to a
short-term I/O history of the robot (qot−4:t,at−4:t−1) in the
previous 4 timesteps (about 0.12 second). The I/O history
enables the policy to infer the dynamics of the system from
past observations. The task c, reference motion qrt , and the
short-term I/O history at current timestep t are directly passed
as inputs to the base MLP.

For sim-to-real transfer, a short-term history may not be
enough to provide adequate information to control dynamic
maneuvers on a high-dimensional system. For example, during
a jump, the landing event is affected by the angular momentum
gained before the take-off, and the interval between these two
events can be much longer than the 0.12 second. Therefore, we
include an additional input in the form of a long-term I/O his-
tory of the past 2 seconds, which contains 66 timesteps of past
observations and actions measurements (qot−65:t,at−66:t−1).
The timespan of this long I/O history is designed to cover the
duration of a jump to help the policy implicitly infer the robot’s
dynamics, traveled trajectory, and contacts. To encode this long
sequence of observations, we use a 1D CNN to compress it
into a latent representation before providing it as an input to
the base MLP. As we will see in Fig. 5, both the long-term and
short-term history are needed for better learning performance.

In this work, the CNN encoder consists of 2 hidden layers
whose [kernel size, filter size, stride size] are [6, 32, 3] and
[4, 16, 2] with relu activation and no padding, respectively.
The result of the CNN is flattened and concatenated into the
inputs of the base MLP. The MLP has two hidden layers with
512 tanh units, followed by an output layer representing the
mean of a Gaussian action distribution with a fixed standard
deviation of 0.1I .

B. Training Details

Empirically, we found that simultaneously performing both
turning and jumping to different elevations is very difficult
for Cassie, which does not have a torso. Due to this hardware
limitation, we choose to train two separate goal-conditioned
policies: a flat-ground policy that is specialized for jumping
without elevation changes, i.e., cz = 0, and a discrete-terrain
policy that is trained to jump onto platforms with different
elevations without turning (cϕ = 0).

Proximal Policy Optimization (PPO) [56] is used to train
all policies πθ in simulation, with a value function represented
by a 2-layered MLP, which has an access to the ground truth
observations. Due to the differences in the complexity of the
different training stages, the three stages are trained with 6k,
12k, and 20k iterations, respectively. Each iteration collects a
batch of 65536 samples.

VI. SIMULATION VALIDATION

Having introduced our methodology for training goal-
conditioned jumping policies, we will next validate the pro-
posed method in simulation (MuJoCo). In this section, we
aim to address two questions: (1) what are the advantages of
the proposed policy architecture compared to models used in
prior work, (2) whether training with multiple tasks can further

Regress

Short I/O
History

Long I/O
History

CNN

MLP

(a) Ours

Long I/O
History Reference

Motion
CNN

MLP

Short I/O
History

(b) Residual

Long I/O
History

CNN

MLP

(c) Long History Only

Short I/O
History MLP

(d) Short History Only

Short I/O
History

Privileged
Environment
Parameters

Extrinsics MLP

MLP

(e) Expert (Teacher)

Short I/O
History

Extrinsics

Long I/O
History CNN

MLP

(f) RMA (Student)

Short I/O
History

Extrinsics

Long I/O
History

CNN

MLP

(g) A-RMA

Current
Feedback

Fig. 4: Illustration of the baseline policy structures used to train the
policy for bipedal jumping. (a) Ours: proposed structure as discussed
in detail in Fig. 3. (b) Residual policy that has the same input structure
as our method but outputs a residual term adding to the reference
motor position [34, 70]. (c) Long History Only policy that only
has the access to a long-term I/O history (we still provide robot
immediate feedback to the base, as suggested by Peng et al. [48]).
(d) Short History Only policy that is only provided with a short-
term I/O history [37]. We also compare with the RMA [31]/Teacher-
Student [34] training strategy where an (e) expert policy with access
to privileged environment information (Table III) is first trained by RL
and is later utilized to train (f) RMA (student) policy by supervised
learning. The RMA can be further finetuned using (g) A-RMA [32]
by RL. While the short I/O history is not included in the original
RMA [31] or TS [34], it is included in this benchmark to have a
fair comparison. The blocks are shaded if their parameters are not
updated. The dash lines indicate that parameters are copied.

improve the robustness of the policy over single-goal training,
by allowing the robot to utilize more diverse maneuvers to
recover from unstable states or unknown perturbations.

A. Baselines
To answer the first question, we benchmark our proposed

policy architecture with several baselines illustrated in Fig. 4.
All policies are trained with multiple goals, i.e., jumping
to different landing locations and turning directions with no
change of elevation, using the training schematic shown in
Fig. 2, and are trained with 3 different random seeds. The
details of baseline models are described in Appendix C.

To address the second question, we obtained two single-
goal policies using the proposed policy structure, as detailed
below:
• Single Goal: a policy that is trained on a single jumping-in-place

task and extensive dynamics randomization as listed in Table III.
• Single Goal w/ Perturbation: a policy similar to the single-goal

policy but is also trained with a randomized perturbation wrench (6
DoF) applied on the robot pelvis. The external forces and torques
are sampled uniformly from [−20N,−5Nm] to [20N, 5Nm] and are
applied on the robot’s pelvis for a random time interval ranging
from [0.1, 2.0] second.
We compare these baselines based on two metrics: (1)

learning performance in Sec. VI-B and (2) the ability to
generalize to dynamics parameters that lie outside of the
training distributions in Sec. VI-C. These two metrics are
important for the sim-to-real transfer because the first one
shows how well the policy can perform during training and
the second evaluates robustness to changes in the environment,
which are not considered during training, as can be the case
during sim-to-real transfer.

Fig. 5: Benchmark of learning curves trained by different policy
structures in Stage 3 (multi-goal training with dynamics randomiza-
tion). The curves are the average normalized returns trained with
3 random seeds while the colored areas enclose the min and max
values obtained among different seeds. The normalized return is
calculated by the return divided by the max episode length and in
the range of [0, 1]. Our method shows similar performance as the
expert policy which is used to supervise RMAs and has access to the
privileged environment parameters. The A-RMA shows the second-
best performance but it requires significantly more samples compared
to the proposed methods, followed by RMA. The policies with short
history only or long history only show a similar learning performance
but are a bit worse than RMA in terms of returns. The residual policy
shows the worst performance because the reference motion added to
the policy’s action prevents the agent from exploring more diverse
maneuvers.

B. Policy Structure Choice

The learning curves from Stage 3 (multi-goal learning
with dynamics randomization) using our policy structure and
baselines are presented in Fig. 5. The learning curves at early
training stages (learning a single task in Stage 1 and multiple
tasks in Stage 2) are available in Fig. 10 in Appendix D. The
same hyperparameters and reward functions are used for every
training stage.

According to Fig. 5 (and Fig. 10), the residual structure
drawn as the purple curve shows the worst learning perfor-
mance over all the training stages. The reason is the reference
motion we provided is a dynamically-infeasible animation,
which may cause the robot to spend more effort learning to
correct these default motions, and prevents it from exploring
more diverse trajectories and inferring the motion that is
outside of the range of the reference motion.

The baselines using short history only (orange curve) and
long history only (blue curve) show a similar learning perfor-
mance. But if we combine these two by providing the policy
with a long history encoder and direct access to short history,
which results in our method, the learning performance can
be enhanced to a large extent, as drawn as the red curves in
Fig. 5. This showcases that, providing the policy with a long
history is not enough because the robot may need immediate
feedback which may be hidden from the long-history encoder.
Providing the policy with direct access to the short history can
address it and the agent can learn to utilize both information.

Remark 3: We note that there is other work using RNNs
with LSTM [48, 58, 59] or TCN [34] to encode the long-
term I/O history. We hypothesize that providing the policy

22N
Emergent
Lateral Jump

(i) Single Goal
(ii) Single Goal
w/ Perturbation (iii) Goal-Conditioned

(a) With Consistent Unknown Lateral Perturbation Force

(ii) Single Goal w/ Perturbation

Emergent
Forward Jumps

(iii) Goal-Conditioned

CoM (+8cm)

(i) Single Goal

(b) With Errors in Center of Mass Positions of All Links

Fig. 6: Robustness comparison among three policies which are: (i) trained with a single task (jumping in place) with dynamics randomization,
(ii) trained with a single task with dynamics randomization and random perturbation, and (iii) trained with multiple tasks with dynamics
randomization but without random perturbation (proposed). The testing scenarios are outside the training setting for all three policies. The
single-goal policies fail to stabilize the robot, even the one trained with extensive perturbations. The goal-conditioned policy which is trained
with diverse jumping tasks but without perturbation succeeds to stabilize the robot by exploiting the learned skills. The goal-conditioned
policy is able to deviate from the commands (jumping in place) and utilize a lateral jump to stay robust to the lateral external force and two
forward jumps to adapt to the forward CoM offset.

direct access to the short history is not limited to the 1D
CNN encoder but also to other neural network structures that
capture temporal information such as TCN, LSTM, GRU, and
Transformer. We choose 1D CNN in this work because it is
easier to train.

The comparison between our method and RMA/Teacher-
Student (TS) policies (green curves) is also interesting. During
the training of the goal-conditioned policy with dynamics
randomization, our method only shows a little degradation
compared to the expert policy. This actually showcases the
advantages of our method because it can be zero-shot trans-
ferred to the real world while the expert policy that requires
privileged information cannot. After training the expert policy,
RMA and A-RMA have trained with 3k iterations and 5k
iterations respectively, as shown in Fig. 5. We found that RMA
has a large degradation compared to the expert policy due to
the regression loss, and A-RMA is necessary to finetune the
base policy in order to further improve the return. RMA shows
a better return than the policy with only short history or only
long history, which is aligned with the finding from previous
work [31, 32]. However, even after A-RMA converged, the
return is a bit worse than our method, while RMA and A-RMA
require additional training and significantly more samples.

Remark 4: The original implementation of RMA [31] or
TS [34] only provides the robot’s very last I/O pair [31] or last
state feedback [34] besides the long-term history encoder. In
the implementation of RMA/TS in Fig. 4, we added the short-
term I/O history, which can improve the learning performance
in order to have a fair comparison. Furthermore, the long-
term I/O history encoder used in RMA and A-RMA is the
same as the one used in the proposed method, which shows a
better learning performance than the original encoder proposed
in [31, 32] as shown in Fig. 11b.

Summary of the Result: By the ablation study above, we
can summarize three factors that can improve the learning
performance in our case for dynamic locomotion control: (1)
using desired motion positions as the action space (in contrast
to the residual), (2) providing the policy with direct access to
the short-term I/O history in addition to a long-term robot’s
I/O history, and (3) training the policy in an end-to-end way
instead of separating the training process into teacher and
student. This combination leads to our proposed method.

C. Advantages of the Verstiale Policy

In order to validate the advantages brought by multi-goal
training, we further compare our goal-conditioned policy with
the single-goal policies. These two single-goal policies are
trained with the same amount of samples with dynamics
randomization as the proposed one, whose learning curves
are recorded in Fig. 11a. During the test in simulation, we
command the robot to perform an in-place jump in an envi-
ronment that the robot has not been trained on. As presented
in Fig. 6, we conducted two tests where (1) a consistent lateral
perturbation force is applied on the robot pelvis, and (2) the
CoM of all links are set to be +8 cm off from the default
position in all dimensions, while other dynamics parameters
are set to the default values.

During these two tests, both of the single-goal policies fail to
control the robot, while the goal-conditioned policy succeeded
to stabilize the robot and perform a jump. Specifically, the
policies trained with a single goal directly fail during standing,
even in the case where one is trained with extensive external
perturbations that “force” the robot to explore more maneuvers
by perturbing it from a nominal jump. On the contrary, the
policy trained with multiple goals, such as jumping forwards
and lateral, without perturbations during training, is able to
generalize the learned tasks, exploit them to stabilize the
robot, and pick the best jumping maneuver even if it is not
commanded. For example, while being commanded to jump in
place, the goal-conditioned policy utilizes a lateral jump that
it learned to stabilize the robot with the presence of lateral
force (Fig. 6a(iii)) and two emergent forward jumps to adapt
to the CoM errors in the forward direction (Fig. 6b(iii)). Such a
benchmark highlights the advantages of learning with multiple
tasks which makes the policy more robust.

Having conducted an extensive ablation study in simulation,
we show that the proposed policy structure and multi-goal
training significantly improve the robustness of the policy over
other policy structures or single-goal policies.

VII. EXPERIMENTS

We now deploy the goal-conditioned policies obtained in
simulation, the flat-ground policy that is trained on different
goals to jump to various locations and turning directions, and

Flight Phase

Flight Phase

0 0.2 0.4 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.4 1.6 1.8 𝑡(s)

(𝑐𝑥, 𝑐𝜙) = (−0.3m, 0°)

Flight Phase

Hop

(𝑐𝑥, 𝑐𝜙) = (0m,−60°)

(𝑐𝑥, 𝑐𝜙) = (1m, 0°)

(a) Different Jumps using the Flat-ground Policy

0 0.2 0.4 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.4 1.6 1.8

Flight Phase

Flight Phase (0.58s)

Flight Phase

(i) 𝑐𝑥, 𝑐𝑧 =(0.88, 0.44)m

(ii)(𝑐𝑥, 𝑐𝑧)=(1.4, 0)m

(iii)(𝑐𝑥, 𝑐𝑧) = (1, 0)m

𝑡(s)

(b) Different Jumps using the Discrete-terrain Policy

Fig. 7: Snapshots of Cassie performing different jumps using the proposed goal-conditioned policies. The snapshots are aligned with
timestamps. The tags in the figures indicate the given landing targets. (a) Using a single policy that is specialized on flat ground, the
robot is able to (i) jump in place while turning to −60◦, (ii) jump 0.3 m backward, and (iii) jump 1 m forward, respectively. During the
1 m jump, the robot utilizes a forward hop to reach the goal after it lands on 0.5 m after the first jump. (b) The robot utilizes a single
discrete-terrain policy to jump to different locations and elevations. The single policy can change the contact plan for different tasks. For
example, the flight phase of the 1.4 m forward jump (ii) is the longest while being the shortest when the robot jumps onto the 0.44 m high
elevation (i). The robot can land at the target (tag) with insignificant errors among all of these jumps without global position feedback.

the discrete-terrain policy that is specialized in jumping to
variable locations and elevations, on the hardware of Cassie.
As shown in Fig. 1, both policies can successfully control the
robot in the real world, without finetuning.

Besides the ability to succeed in sim-to-real, in this section,
we aim to validate two hypotheses: 1) whether the policy
trained in simulation can complete the same task in the real
world, and 2) whether the goal-conditioned policy is still able
to exploit the learned tasks to stabilize the robot after being
transferred to the real world. The experiments can be best seen
in the accompanying video (https://youtu.be/aAPSZ2QFB-E).
Please note that in all of the experiments, the robot does not
have global position feedback, i.e., once it starts to move,
it does not know the distance to the landing target nor the
distance to the ground.

A. Task Completion in the Real World

We first test the flat-ground policy on the robot in three
distinct tasks: jumping in place while turning to negative 60
degrees, jumping 0.3 m backward, and jumping forward to
land at a 1 m ahead target. As recorded in Fig. 7a, controlled
by this goal-conditioned policy, the robot is able to complete
all three tasks. For example, during the turning task, the robot
rotates to −55◦ while jumping in the air, and lands at the
same place where it took off (marked by a tag on the ground
in Fig. 7a(i)). During the backward jump, different from the
previous task, the robot leans backward before taking off (0.6-
0.7 sec in Fig. 7a(ii)), and lands accurately at the target tag
on the ground. To jump 1 m forward, the robot adopts a
different maneuver where it leans forward before the flight
phase and pushes itself off the ground with a larger strength,
which results in a longer flight phase and travel distance than
the previous two tasks. We also observe that the robot first

lands at a 0.5 m landmark, but quickly conducts a forward
hop when legs touch the ground (1.6 sec in Fig. 7a(iii)), and
lands at the 1 m target tag in the last. We note that such
a consecutive jumping maneuver does not happen during the
same task in the simulation with the robot’s nominal dynamics
model. Such an experiment highlights two favorable features
of the proposed policy: it can (1) adapt to different system
dynamics (from sim to real) and (2) deviate from the reference
motion and utilize multiple contacts to complete the given task
(jumping to the target).

We then validate the discrete-terrain policy with three tasks:
Jumping 1 m ahead, 1.4 m ahead, and to a target that is
0.88 m ahead and 0.44 m above the ground, as presented
in Fig. 7b. It shows the capacity to control the robot to jump
over a distance/elevation to land on the given target accurately.
We notice that the policy is able to adjust the robot’s maneu-
vers/contact plan to jump over different distances/elevations.
For example, compared to the 1 m jump (Fig. 7b(iii)), the robot
takes off earlier while landing later during the 1.4 m jump
(Fig. 7b (ii)). Such a change is reasonable as the robot needs
a longer flight phase/larger take-off velocity in order to land at
a farther location. Furthermore, when the robot is commanded
to jump onto a 0.44 m table, the policy jumps more vertically
(0.8 sec in Fig. 7b(i)) compared to the 1.4 m jump (0.6 sec in
Fig. 7b(ii)) at the beginning of the flight phase while lifting the
robot legs much higher in order to jump higher. Note that the
robot makes contact with the platform much earlier than the
other jumps on the ground, but this single policy is still able to
stabilize the robot with different landing events. Furthermore,
all these three experiments show that the robot controlled by
the proposed policy can land accurately on the given target
(land on the tags in Fig. 7b), which is challenging. Because
the robot’s motion is ballistic in the flight phase and a small

https://youtu.be/aAPSZ2QFB-E

Abduction 𝑞1 Rotation 𝑞2 Thigh 𝑞3 Knee 𝑞4 Toe 𝑞7 Shin 𝑞5 Tarsus 𝑞6
Actuated Joints Passive Joints

Sim Real Flight Phases in Sim, Real,

L
ef

t L
eg

Po
si

tio
n

(d
eg

)
Time (s)

R
ig

ht
 L

eg
Po

si
tio

n
(d

eg
)

Time (s)

Fig. 8: The profiles of the robot’s joint positions when it is commanded to jump and turn −60◦ in place in simulation and the real world.
We observe a large deviation of the joint profiles between sim and real, e.g.. the tarsus joints which are passive and driven by leaf springs
show a significant difference during the sim-to-real transfer. Moreover, the flight phase in the real world is delayed compared with the one in
the sim. Such errors highlight a big sim-to-real gap but our policy is robust to this and succeeds in controlling the robot to the given target.

error during taking-off may result in a large deviation from
the landing target. In these experiments, the proposed policy is
able to adapt to the dynamics of the robot hardware, adjust the
robot’s pose during the take-off, and accelerate to a velocity
that can land the robot on the target.

Remark 5: During the long jump (like Fig. 7b(ii)), the robot
leans its body forward at a large angle when it is pushing off
from the ground and swings the legs forward during descent,
and rotates its body forward w.r.t. contact points after it lands.
Such a maneuver is very close to what we observed when a
human athlete performs a standing jump [44, Fig. 1A]. Similar
to humans, our robot’s long jump skill is also learned during
training, which is very different from the jumping-in-place
reference motion we provided.

B. Sim-to-Real Gap
In order to further understand the difficulty to succeed in

robot jumping experiments in Fig. 7, we take a close look
at the sim-to-real gap. We record the robot’s joint position
profiles during a jump in the simulation with the robot’s
nominal dynamics parameters and on the robot’s hardware.
The profiles for a turning task (−60◦, Fig. 7a(i)) using the flat-
ground policy is presented in Fig. 8. According to the recorded
profiles, the robot’s actual joint position has a large deviation
between the simulation (blue curves) and the real world (red
curves). For example, the maximum error on the tarsus joint
position q6 between sim and real is over 0.35 rad, which
largely affects the robot’s dynamics considering this joint is
not actuated and is driven by a leaf spring whose nominal
stiffness is 1250 Nm/rad. A similar deviation is observed in
other joints, such as rotation joints q2, thigh joints q3 and
knee joints q4, which play a critical role during a jump and
turning, and in other experiments using the discrete-terrain
policy as recorded in Fig. 12. Such a discrepancy highlights
the huge gap between the simulation and the real world but
also showcases that, despite such a large gap, our methodology
introduced in Sec. IV is able to stay robust and succeed in
controlling the robot to accomplish the task.

C. Diverse and Robust Maneuvers by the Goal-Conditioned
Policy

In order to push the limits of the proposed control policies,
we further conduct more dynamic jumping experiments as
presented in Fig. 9 and Fig. 13. As shown in Fig. 9a, using the
single flat-ground policy, the robot performs a large repertoire
of dynamic jumping maneuvers, such as jumping in place
(Fig. 9a(i)), jumping to lateral (Fig. 9a(iii)), and multi-axes
jumps such as blending lateral and forward jumps (Fig. 9a(iv))
and forward, lateral and turning (Fig. 9a(v)). In these multi-
axes jumps, the robot demonstrates more complex maneuvers.
For example, the robot leans in the lateral direction while
jumping forward and turning to land on the target that is 0.5 m
ahead, 0.2 m to robot’s left, and turned −45◦, as shown in
Fig. 9a(v). During some challenging tasks, the robot is aware
to utilize small hops to adjust its body pose after it lands with
unstable states, such as demonstrated in Fig. 9a(iv)(v).

Moreover, in order to test the robustness of the policy, we
applied a backward perturbation force on the robot’s pelvis at
its apex jumping height, as shown in Fig. 9a(ii). Due to such
a perturbation, the robot leans backward during descending,
and both of its toes pitch up after it lands, which makes the
robot underactuated w.r.t contact points. However, the robot
quickly exerts a backward hop, which is learned during the
multi-goal training, after it lands. By this hop, the robot can
adjust its body pose during the flight phase and then land
stably afterward. The goal we gave to the robot in this test
is to jump in place and it is interesting to see that the robot
deviates from it in order to recover from falling over.

Remark 6: The robot, controlled by the proposed jumping
policy, shows the ability to not rely on the pre-defined contact
plan and can break the contact after it lands and make contact
again when it needs to utilize impacts to stabilize itself.
Such a capability is similar to contact implicit trajectory
optimization [8, 14, 33, 52, 77]. While such optimization
schemes still need to be computed offline for legged robots,
our work achieves this online.

(i) (𝑐𝑥 , 𝑐𝑦 , 𝑐𝜙) = (0m, 0m, 0°) (ii) (𝑐𝑥 , 𝑐𝑦, 𝑐𝜙) = (0m, 0m, 0°), with perturbation force in the air
Force applied

Both toes pitch up

(iii) (𝑐𝑥 , 𝑐𝑦 , 𝑐𝜙) = (0m,−0.3m, 0°) (iv) (𝑐𝑥 , 𝑐𝑦, 𝑐𝜙) = (0.3m, 0.3m, 0°)

(v) (𝑐𝑥 , 𝑐𝑦 , 𝑐𝜙) = (0.5m, 0.2m,−45°)

Landing
Target

Landing Target

Flight Phase

Flight Phase

Flight Phase

Hop Second Hop

Flight Phase

Hop

Fl
ig

ht
 P

ha
se

Emergent Hop

(a) Different Jumps using the Flat-ground Policy

(i) (𝑐𝑥 , 𝑐𝑧) = (0m, 0m) (ii) (𝑐𝑥 , 𝑐𝑧) = (0.88m, 0.17m)

(iii) (𝑐𝑥 , 𝑐𝑧) = (0.88m, 0.32m) (iv) (𝑐𝑥 , 𝑐𝑧) = (0.64m, 0.32m)

Landing Target

Landing Target Landing Target

Flight Phase

(b) Different Jumps using the Discrete-terrain Policy

Fig. 9: Snapshots of various dynamic jumps performed by Cassie using the proposed policies. (a) The robot is able to perform a large
repertoire of multi-axes jumps on flat ground. It shows the ability to stabilize the robot from a backward external perturbation (ii) by
deviating from the commanded in-place jump and exploiting the maneuvers learned from backward jumping tasks. The robot also leverages
emergent hops after landing to stabilize it from a huge impact force, while being commanded to stand, like (iv) and (v). (b) Using a single
discrete-terrain policy, the robot can not only jump in place (i) but also jump to different locations with different elevations (ii) (iii) (iv).

In the additional testing of the discrete-terrain policy
demonstrated in Fig. 9b, the robot shows the ability to ac-
curately land on different given targets. While the changes in
the commanded distance and elevation are relatively small,
the policy still demonstrates the ability to adjust the robot’s
take-off maneuvers in order to jump to the given targets.

VIII. DISCUSSION OF DESIGN CHOICES FOR RL-BASED
LEGGED LOCOMOTION CONTROL

In this section, we discuss the lessons learned through
the development of jumping controllers for bipedal robots
using RL. We hope this can provide useful insights for future
endeavors on applying RL for legged locomotion.

Short-term history complements the long-term history:
Providing a long-term history of the robot’s input (policy’s
action) and/or output (measurement feedback) has been used

in many prior efforts in RL-based robotic controls [31, 34,
48, 58, 59]. While these prior systems show the advantages
of using a long-term history over only the current state feed-
back [48, 59], the advantages over a short history [37, 43, 49]
were not investigated. In this work, we demonstrate that
incorporating both short-term history and long-term history
can be beneficial. The ablation study in Fig. 5 shows that
providing only the long-term I/O history (Fig. 4c) may not
be sufficient, even when combined with observations of the
robot’s current state besides the history encoder, which is
analogous to [31, 34, 48]. The learning performance of such
a method shows no significant difference between the MLP
policy with only short-term history (Fig. 4d), as shown in
Fig. 5. Our architecture (Fig. 4a) exhibits better learning
performance because it has direct access to a short-term history
while also having a long-term history encoder. During real-

time control, the robot’s recent feedback and policy outputs
(I/O) could be more important than the observations that are
further back in time. Although it is also part of the long-
term history, such recent information can be obfuscated and
hard to extract from the compressed latent representation from
the long-term history encoder. The short-term history provides
the model with direct access to the most recent observations.
Therefore, one of the reasons the proposed method shows the
best learning performance in Fig. 5 is not the usage of long-
term history, but the combination of short-term and long-term
history. In addition to jumping, this design decision may also
benefit other locomotion skills.

Encode environment parameters or robot’s I/O history?
Although the proposed architecture (Fig. 4a), with the ex-
ception of the introduction of short I/O history, may resem-
ble the architecture of RMA [31] or Teacher/Student (TS)
framework [34] which also has a long-term history encoder
(Fig. 4e,f), the objective of the temporal encoder in this work
is different from those methods [31, 34]. The long I/O history
encoder in RMA or TS is to estimate the human-selected
environment parameters (e.g., floor friction and robot’s model
parameters) by matching the predicted extrinsics from the
teacher policy. The proposed method, in contrast, jointly trains
the long I/O history encoder with the base policy and learns
to directly utilize the robot’s past I/O trajectories for control.
The advantage is, the robot’s I/O history implicitly contains
more information besides environment parameters, such as
impact events and contact wrenches. In this way, the robot
has more freedom to extract the information from the long
I/O history without being restricted to estimating the pre-
selected environment parameters. This is the reason that the
proposed method shows improvement over RMA/TS, which
separates training into different teacher and student stages,
and also requires an additional finetuning stage by A-RMA,
which requires more training time and data, as shown in
Fig. 5. We would like to also note that, RMA/TS methods
potentially have benefits when combined with external sensors
like vision [2, 43], which the proposed one may not have.

Robustness comes from versatility: We have observed
that some of the prior RL-based locomotion controllers on
periodic walking skills show highly robust behaviors during
real-world deployment, including being robust to external
perturbations [37, 41] or change of terrains [31, 34, 43].
For aperiodic dynamic jumping skills studied in this work,
the RL-based policy also demonstrates significant robustness
such as Fig. 9a(ii). This phenomenon raises an interesting
question: where does the robustness come from and how can
we improve robustness when we are using RL for legged
locomotion control? While there has been little prior work that
studies this source of robustness, in this work, we conduct an
ablation study in Sec. VI-C. Fig. 6 clearly shows that one
source of this robustness stems from multi-goal training: the
versatile RL-based policy learned from different jumping tasks
is able to generalize the learned task to recover from the
unexpected perturbation (Fig. 6a(iii)) or deviation from the
nominal trajectory (Fig. 6b(iii)). Such robustness cannot be

easily obtained by extensive dynamics randomization when
the policy is limited to a single jumping task (Fig. 6a(i),
Fig. 6b(i)), even with additional randomization on the external
perturbation (Fig. 6a(ii), Fig. 6b(ii)). Such a result suggests
that, besides the commonly-used dynamics randomization,
diversifying the tasks, like jumping to different targets or
walking with different velocities, can further improve the
robustness of the RL-based control policy, which is a desirable
property during sim-to-real transfer.

IX. CONCLUSION

In this work, we presented an RL-based system for learning
a large variety of highly-dynamic jumping maneuvers on real-
world bipedal robots. We formulated the bipedal jumping
problem as a parameterized set of tasks, and develop a goal-
conditioned policy that is trained in simulation but can then
be deployed directly in the real world. In order to tackle
the challenging multi-goal learning problem, we utilized a
multi-stage training scheme that divides the problem into three
sub-problems and addresses each through different training
stages. We showcase that by training with multiple goals, the
robot is able to generalize the learned tasks to produce robust
emergent recovery behaviors from large landing impact forces
or unknown perturbations. The robustness acquired through
multi-goal training then also facilitates the sim-to-real transfer
process, which can not be easily acquired through single-goal
training alone. Furthermore, we present a policy architecture
that improves learning performance. Our framework enables
a real Cassie robot to perform a suite of challenging jumping
tasks, such as jumping to different locations, jumping onto dif-
ferent evaluations, and blending multi-axes movements during
a jump. A limitation we observe occasionally during some
experiments is that the robot oscillates after a jump. This
may be due to the challenges of having a single policy for
both dynamic jumps and stationary standing. In the future, it
will be interesting to combine this goal-conditioned jumping
policy with a more sophisticated perception system to traverse
complex environments with greater mobility.

ACKNOWLEDGMENTS

This work was supported in part by NSF Grant CMMI-
1944722 and Canadian Institute for Advanced Research (CI-
FAR). The authors would like to thank Dr. Ayush Agrawal,
Xuxin Cheng, Jiaming Chen, Xiaoyu Huang, Yiming Ni, Lizhi
Yang, and Bike Zhang for their gracious help.

REFERENCES

[1] Bernardo Aceituno-Cabezas, Carlos Mastalli, Hongkai
Dai, Michele Focchi, Andreea Radulescu, Darwin G
Caldwell, José Cappelletto, Juan C Grieco, Gerardo
Fernández-López, and Claudio Semini. Simultaneous
contact, gait, and motion planning for robust multilegged
locomotion via mixed-integer convex optimization. IEEE
Robotics and Automation Letters, 3(3):2531–2538, 2017.

[2] Ananye Agarwal, Ashish Kumar, Jitendra Malik, and
Deepak Pathak. Legged locomotion in challeng-
ing terrains using egocentric vision. arXiv preprint
arXiv:2211.07638, 2022.

[3] Ryan Batke, Fangzhou Yu, Jeremy Dao, Jonathan Hurst,
Ross L Hatton, Alan Fern, and Kevin Green. Optimizing
bipedal maneuvers of single rigid-body models for rein-
forcement learning. In 2022 IEEE-RAS 21st International
Conference on Humanoid Robots (Humanoids), pages
714–721, 2022.

[4] Guillaume Bellegarda and Auke Ijspeert. Cpg-rl: Learn-
ing central pattern generators for quadruped locomotion.
IEEE Robotics and Automation Letters, 7(4):12547–
12554, 2022.

[5] Guillaume Bellegarda, Yiyu Chen, Zhuochen Liu, and
Quan Nguyen. Robust high-speed running for quadruped
robots via deep reinforcement learning. In 2022
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 10364–10370, 2022.

[6] Miroslav Bogdanovic, Majid Khadiv, and Ludovic
Righetti. Model-free reinforcement learning for robust
locomotion using demonstrations from trajectory opti-
mization. Frontiers in Robotics and AI, 9, 2022.

[7] Guillermo A Castillo, Bowen Weng, Wei Zhang, and
Ayonga Hereid. Robust feedback motion policy design
using reinforcement learning on a 3d digit bipedal robot.
In 2021 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 5136–5143,
2021.

[8] Iordanis Chatzinikolaidis, Yangwei You, and Zhibin Li.
Contact-implicit trajectory optimization using an analyt-
ically solvable contact model for locomotion on variable
ground. IEEE Robotics and Automation Letters, 5(4):
6357–6364, 2020.

[9] Hua Chen, Bingheng Wang, Zejun Hong, Cong Shen,
Patrick M Wensing, and Wei Zhang. Underactuated
motion planning and control for jumping with wheeled-
bipedal robots. IEEE Robotics and Automation Letters,
6(2):747–754, 2020.

[10] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake.
Whole-body motion planning with centroidal dynamics
and full kinematics. In 2014 IEEE-RAS International
Conference on Humanoid Robots, pages 295–302, 2014.

[11] Yanran Ding, Chuanzheng Li, and Hae-Won Park. Single
leg dynamic motion planning with mixed-integer convex
optimization. In 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
1–6, 2018.

[12] Yanran Ding, Chuanzheng Li, and Hae-Won Park. Kino-
dynamic motion planning for multi-legged robot jumping
via mixed-integer convex program. In 2020 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), pages 3998–4005, 2020.

[13] OSU DRL. cassie-mujoco-sim, 2023. URL https://github.
com/osudrl/cassie-mujoco-sim.

[14] Luke Drnach and Ye Zhao. Robust trajectory optimiza-

tion over uncertain terrain with stochastic complementar-
ity. IEEE Robotics and Automation Letters, 6(2):1168–
1175, 2021.

[15] Alejandro Escontrela, Xue Bin Peng, Wenhao Yu,
Tingnan Zhang, Atil Iscen, Ken Goldberg, and Pieter
Abbeel. Adversarial motion priors make good substitutes
for complex reward functions. In 2022 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 25–32, 2022.

[16] Gilbert Feng, Hongbo Zhang, Zhongyu Li, Xue Bin
Peng, Bhuvan Basireddy, Linzhu Yue, Zhitao Song, Lizhi
Yang, Yunhui Liu, Koushil Sreenath, et al. Genloco: Gen-
eralized locomotion controllers for quadrupedal robots.
arXiv preprint arXiv:2209.05309, 2022.

[17] Zipeng Fu, Ashish Kumar, Jitendra Malik, and Deepak
Pathak. Minimizing energy consumption leads to the
emergence of gaits in legged robots. arXiv preprint
arXiv:2111.01674, 2021.

[18] Zipeng Fu, Xuxin Cheng, and Deepak Pathak. Deep
whole-body control: learning a unified policy for manipu-
lation and locomotion. arXiv preprint arXiv:2210.10044,
2022.

[19] Scott Gilroy, Derek Lau, Lizhi Yang, Ed Izaguirre,
Kristen Biermayer, Anxing Xiao, Mengti Sun, Ayush
Agrawal, Jun Zeng, Zhongyu Li, et al. Autonomous
navigation for quadrupedal robots with optimized jump-
ing through constrained obstacles. In 2021 IEEE 17th
International Conference on Automation Science and
Engineering (CASE), pages 2132–2139, 2021.

[20] Dip Goswami and Prahlad Vadakkepat. Planar bipedal
jumping gaits with stable landing. IEEE Transactions on
Robotics, 25(5):1030–1046, 2009.

[21] Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan,
George Tucker, and Sergey Levine. Learning to
walk via deep reinforcement learning. arXiv preprint
arXiv:1812.11103, 2018.

[22] Ross Hartley, Maani Ghaffari, Ryan M Eustice, and
Jessy W Grizzle. Contact-aided invariant extended
kalman filtering for robot state estimation. The Inter-
national Journal of Robotics Research, 39(4):402–430,
2020.

[23] Masato Hirose and Kenichi Ogawa. Honda humanoid
robots development. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineer-
ing Sciences, 365(1850):11–19, 2007.

[24] Xiaoyu Huang, Zhongyu Li, Yanzhen Xiang, Yiming
Ni, Yufeng Chi, Yunhao Li, Lizhi Yang, Xue Bin Peng,
and Koushil Sreenath. Creating a dynamic quadrupedal
robotic goalkeeper with reinforcement learning. arXiv
preprint arXiv:2210.04435, 2022.

[25] Se Hwan Jeon, Sangbae Kim, and Donghyun Kim.
Online optimal landing control of the mit mini cheetah.
In 2022 International Conference on Robotics and Au-
tomation (ICRA), pages 178–184, 2022.

[26] Gwanghyeon Ji, Juhyeok Mun, Hyeongjun Kim, and
Jemin Hwangbo. Concurrent training of a control policy

https://github.com/osudrl/cassie-mujoco-sim
https://github.com/osudrl/cassie-mujoco-sim

and a state estimator for dynamic and robust legged
locomotion. IEEE Robotics and Automation Letters, 7
(2):4630–4637, 2022.

[27] Yandong Ji, Zhongyu Li, Yinan Sun, Xue Bin Peng,
Sergey Levine, Glen Berseth, and Koushil Sreenath.
Hierarchical reinforcement learning for precise soccer
shooting skills using a quadrupedal robot. In 2022
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1479–1486, 2022.

[28] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar,
Benjamin Swanson, Rico Jonschkowski, Chelsea Finn,
Sergey Levine, and Karol Hausman. Mt-opt: Continuous
multi-task robotic reinforcement learning at scale. arXiv
preprint arXiv:2104.08212, 2021.

[29] Benjamin Katz, Jared Di Carlo, and Sangbae Kim. Mini
cheetah: A platform for pushing the limits of dynamic
quadruped control. In 2019 international conference
on robotics and automation (ICRA), pages 6295–6301,
2019.

[30] Daniel E Koditschek and Martin Buehler. Analysis of a
simplified hopping robot. The International Journal of
Robotics Research, 10(6):587–605, 1991.

[31] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra
Malik. Rma: Rapid motor adaptation for legged robots.
arXiv preprint arXiv:2107.04034, 2021.

[32] Ashish Kumar, Zhongyu Li, Jun Zeng, Deepak Pathak,
Koushil Sreenath, and Jitendra Malik. Adapting rapid
motor adaptation for bipedal robots. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), pages 1161–1168, 2022.

[33] Benoit Landry, Joseph Lorenzetti, Zachary Manchester,
and Marco Pavone. Bilevel optimization for planning
through contact: A semidirect method. In Robotics Re-
search: The 19th International Symposium ISRR, pages
789–804, 2022.

[34] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen,
Vladlen Koltun, and Marco Hutter. Learning quadrupedal
locomotion over challenging terrain. Science robotics, 5
(47):eabc5986, 2020.

[35] Quanyi Li, Zhenghao Peng, Haibin Wu, Lan Feng, and
Bolei Zhou. Human-ai shared control via policy dissec-
tion. arXiv preprint arXiv:2206.00152, 2022.

[36] Zhongyu Li, Christine Cummings, and Koushil Sreenath.
Animated cassie: A dynamic relatable robotic character.
In 2020 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 3739–3746,
2020.

[37] Zhongyu Li, Xuxin Cheng, Xue Bin Peng, Pieter Abbeel,
Sergey Levine, Glen Berseth, and Koushil Sreenath.
Reinforcement learning for robust parameterized loco-
motion control of bipedal robots. In 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 2811–2817, 2021.

[38] Tzu-Yuan Lin, Ray Zhang, Justin Yu, and Maani Ghaf-
fari. Legged robot state estimation using invariant kalman
filtering and learned contact events. In 5th Annual

Conference on Robot Learning, 2021.
[39] Zachary Manchester and Scott Kuindersma. Variational

contact-implicit trajectory optimization. In Robotics Re-
search: The 18th International Symposium ISRR, pages
985–1000, 2020.

[40] Gabriel Margolis, Ge Yang, Kartik Paigwar, Tao Chen,
and Pulkit Agrawal. Rapid locomotion via reinforcement
learning. In Robotics: Science and Systems, 2022.

[41] Gabriel B Margolis and Pulkit Agrawal. Walk these
ways: Tuning robot control for generalization with multi-
plicity of behavior. Conference on Robot Learning, 2022.

[42] Gabriel B Margolis, Tao Chen, Kartik Paigwar, Xiang
Fu, Donghyun Kim, Sang bae Kim, and Pulkit Agrawal.
Learning to jump from pixels. In 5th Annual Conference
on Robot Learning, 2021.

[43] Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz
Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
robust perceptive locomotion for quadrupedal robots in
the wild. Science Robotics, 7(62):eabk2822, 2022.

[44] Mark P Moresi, Elizabeth J Bradshaw, David Greene,
and Geraldine Naughton. The assessment of adolescent
female athletes using standing and reactive long jumps.
Sports Biomechanics, 10(02):73–84, 2011.

[45] Chuong Nguyen, Lingfan Bao, and Quan Nguyen. Con-
tinuous jumping for legged robots on stepping stones
via trajectory optimization and model predictive control.
arXiv preprint arXiv:2204.01147, 2022.

[46] Quan Nguyen, Matthew J Powell, Benjamin Katz, Jared
Di Carlo, and Sangbae Kim. Optimized jumping on the
mit cheetah 3 robot. In 2019 International Conference
on Robotics and Automation (ICRA), pages 7448–7454,
2019.

[47] Hae-Won Park, Patrick M Wensing, Sangbae Kim, et al.
Online planning for autonomous running jumps over
obstacles in high-speed quadrupeds. Robotics: Science
and System, 2015.

[48] Xue Bin Peng, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018
IEEE international conference on robotics and automa-
tion (ICRA), pages 3803–3810, 2018.

[49] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-
Wei Lee, Jie Tan, and Sergey Levine. Learning agile
robotic locomotion skills by imitating animals. arXiv
preprint arXiv:2004.00784, 2020.

[50] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and
Angjoo Kanazawa. Amp: Adversarial motion priors for
stylized physics-based character control. ACM Transac-
tions on Graphics (TOG), 40(4):1–20, 2021.

[51] Samuel Pfrommer, Mathew Halm, and Michael Posa.
Contactnets: Learning discontinuous contact dynamics
with smooth, implicit representations. In Conference on
Robot Learning, pages 2279–2291. PMLR, 2021.

[52] Michael Posa, Cecilia Cantu, and Russ Tedrake. A
direct method for trajectory optimization of rigid bodies
through contact. The International Journal of Robotics

Research, 33(1):69–81, 2014.
[53] M. H. Raibert, M. A. Chepponis, and H. Benjamin

Brown. Experiments in balance with a 3d one-legged
hopping machine. International Journal of Robotics
Research, 3(2):75 – 92, June 1984.

[54] Diego Rodriguez and Sven Behnke. Deepwalk: Omni-
directional bipedal gait by deep reinforcement learning.
In 2021 IEEE international conference on robotics and
automation (ICRA), pages 3033–3039, 2021.

[55] Martin Rutschmann, Brian Satzinger, Marten Byl, and
Katie Byl. Nonlinear model predictive control for rough-
terrain robot hopping. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
1859–1864, 2012.

[56] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[57] André Seyfarth, Hartmut Geyer, and Hugh Herr. Swing-
leg retraction: a simple control model for stable running.
Journal of Experimental Biology, 206(15):2547–2555,
2003.

[58] Yecheng Shao, Yongbin Jin, Xianwei Liu, Weiyan He,
Hongtao Wang, and Wei Yang. Learning free gait tran-
sition for quadruped robots via phase-guided controller.
IEEE Robotics and Automation Letters, 7(2):1230–1237,
2021.

[59] Jonah Siekmann, Srikar Valluri, Jeremy Dao, Lorenzo
Bermillo, Helei Duan, Alan Fern, and Jonathan Hurst.
Learning memory-based control for human-scale bipedal
locomotion. arXiv preprint arXiv:2006.02402, 2020.

[60] Jonah Siekmann, Yesh Godse, Alan Fern, and Jonathan
Hurst. Sim-to-real learning of all common bipedal
gaits via periodic reward composition. In 2021 IEEE
International Conference on Robotics and Automation
(ICRA), pages 7309–7315, 2021.

[61] Laura Smith, J Chase Kew, Xue Bin Peng, Sehoon Ha,
Jie Tan, and Sergey Levine. Legged robots that keep
on learning: Fine-tuning locomotion policies in the real
world. In 2022 International Conference on Robotics and
Automation (ICRA), pages 1593–1599, 2022.

[62] Laura Smith, Ilya Kostrikov, and Sergey Levine. A
walk in the park: Learning to walk in 20 minutes
with model-free reinforcement learning. arXiv preprint
arXiv:2208.07860, 2022.

[63] Zhitao Song, Linzhu Yue, Guangli Sun, Yihu Ling,
Hongshuo Wei, Linhai Gui, and Yun-Hui Liu. An optimal
motion planning framework for quadruped jumping. In
2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 11366–11373, 2022.

[64] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco:
A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots
and systems, pages 5026–5033, 2012.

[65] Barkan Ugurlu, Jody A Saglia, Nikos G Tsagarakis, and
Darwin G Caldwell. Hopping at the resonance frequency:
A trajectory generation technique for bipedal robots with

elastic joints. In 2012 IEEE International Conference on
Robotics and Automation, pages 1436–1443, 2012.

[66] Ivo Vatavuk and Zdenko Kovačić. Precise jump planning
using centroidal dynamics based bilevel optimization. In
2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 3026–3032, 2021.

[67] Eric Vollenweider, Marko Bjelonic, Victor Klemm,
Nikita Rudin, Joonho Lee, and Marco Hutter. Advanced
skills through multiple adversarial motion priors in re-
inforcement learning. arXiv preprint arXiv:2203.14912,
2022.

[68] Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken
Goldberg, and Pieter Abbeel. Daydreamer: World
models for physical robot learning. arXiv preprint
arXiv:2206.14176, 2022.

[69] Zhaoming Xie, Glen Berseth, Patrick Clary, Jonathan
Hurst, and Michiel van de Panne. Feedback control
for cassie with deep reinforcement learning. In 2018
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1241–1246, 2018.

[70] Zhaoming Xie, Patrick Clary, Jeremy Dao, Pedro Morais,
Jonanthan Hurst, and Michiel Panne. Learning locomo-
tion skills for cassie: Iterative design and sim-to-real. In
Conference on Robot Learning, pages 317–329. PMLR,
2020.

[71] Xiaobin Xiong and Aaron D Ames. Bipedal hopping:
Reduced-order model embedding via optimization-based
control. In International Conference on Intelligent
Robots and Systems (IROS), pages 3821–3828, 2018.

[72] William Yang and Michael Posa. Impact invariant
control with applications to bipedal locomotion. In 2021
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5151–5158, 2021.

[73] Justin K Yim and Ronald S Fearing. Precision jumping
limits from flight-phase control in salto-1p. In 2018
IEEE/RSJ international conference on intelligent robots
and systems (IROS), pages 2229–2236, 2018.

[74] Fangzhou Yu, Ryan Batke, Jeremy Dao, Jonathan Hurst,
Kevin Green, and Alan Fern. Dynamic bipedal maneu-
vers through sim-to-real reinforcement learning. arXiv
preprint arXiv:2207.07835, 2022.

[75] Wenhao Yu, Visak CV Kumar, Greg Turk, and C Karen
Liu. Sim-to-real transfer for biped locomotion. In 2019
ieee/rsj international conference on intelligent robots and
systems (iros), pages 3503–3510, 2019.

[76] Chi Zhang, Wei Zou, Liping Ma, and Zhiqing Wang.
Biologically inspired jumping robots: A comprehensive
review. Robotics and Autonomous Systems, 124:103362,
2020.

[77] Yifan Zhu, Zherong Pan, and Kris Hauser. Contact-
implicit trajectory optimization with learned deformable
contacts using bilevel optimization. In 2021 IEEE
International Conference on Robotics and Automation
(ICRA), pages 9921–9927, 2021.

APPENDIX

A. Training in Stage 1

1) Reward: The reward design in Stage 1 is presented in
Table II. In the first stage to initiate the training for a single
jumping goal, we incentivize the robot to imitate the jumping-
in-place animation. Therefore, the tracking rewards for motor
position and foot height have overwhelming weights over
others in order to accomplish a jump and stand still afterward.
We also include the task completion term, but since the task is
fixed in this stage, i.e., c = 0, this term is more to encourage
the robot to jump in place and stabilize its pelvis orientation.
We also have a smoothing term as a small fraction of the
reward at this stage and do not have the change of action
reward to prevent the robot from adopting a stationary behavior
at the early stage of training.

2) Episode Design: In the initial training stage, the episode
length is designed to have 750 timesteps corresponding to 23
seconds. The agent is asked to jump at t = 0 and to stand untill
the end. If we allow the robot to stand at the beginning of the
episode, the robot may focus on learning the easy standing
skill and fail to explore the jumping maneuver. Furthermore,
note that a jumping phase usually is less than 2 second but we
have a 23-second episode. This is because the robot may learn
jumping well but overlook the standing skill if the episode is
short, which may result in the robot adopting an undesirable
maneuver, such as continue hopping after landing. Having
such a long episode can give the robot more incentive to learn
a robust and stable standing skill in order to have a better
return over the episode. The early termination conditions in
Stage 1 are different than the multi-goal training stage, except
for the falling-over condition. In this stage, the foot height
tracking error bound Ee is smaller (0.22 m) while the task
completion error bound Et is much larger ([1.0, 45◦]). This is
because we want to push the robot to jump by lifting its feet
at the initial stage of training and completing the task is not
a big concern at this stage.

B. Details of Dynamics Randomization

The details of the dynamics parameters and randomization
range used in this paper are listed in Table III. Note that
the range of the noise is relatively small (such as 0.1◦ in
joint position measurement and 0.5◦ in joint velocity) because
we found that the onboard sensors on Cassie are reliable
and therefore we use a smaller bound to reduce the training
complexity. For the robot that has larger sensor noises, a larger
bound of the noise during training is recommended.

C. Details of Baseline Models

The details of the model structure we compared are listed
as follow:
• Ours (Fig. 4a): the long-term I/O history is encoded with a CNN,

while the short-term I/O history is provided directly as input to
the base MLP. The policy direct outputs desired motion positions.
The CNN encoder and the MLP base are jointly trained.

• Residual (Fig. 4b): the policy shares the same structure as the
proposed one, but the policy output is a residual term added to

TABLE III: Dynamics Randomization Range

Parameters Range
Floor Friction Ratio [0.3, 3.0]

Joint Damping [0.3, 4.0] Nms/rad
Spring Stiffness [0.8, 1.2] × default

Link Mass [0.5, 1.5] × default
Link Inertia [0.7, 1.3] × default

Pelvis (Root) CoM Position [-0.1, 0.1] m in qx,y,z
Other Link CoM Position [-0.05, 0.05] m + default

Motor PD Gains [0.7, 1.3] × default
Motor Position Noise Mean [-0.002, 0.002] rad
Motor Velocity Noise Mean [-0.01, 0.01] rad/s
Gyro Rotation Noise Mean [-0.002, 0.002] rad

Linear Velocity Estimation Error [-0.04, 0.04] m/s
Communication Delay [0, 0.025] sec

(a) Stage 1: Learning a Single Goal (b) Stage 2: Learning Multiple Goals

Fig. 10: Benchmark of learning curves trained by different policy
structures trained with 3 random seeds in the early stages. The curves
record the mean of normalized returns obtained using different seeds
and the min and max among different seeds are the boundaries of
the colored areas. The proposed method shows the best performance
during the early stages of training including learning a single goal
from scratch (Stage 1) and multiple goals in Stage 2.

the reference motor position at the current timestep, i.e., qdm =
at + qrm(t), which is used in [34, 70]. Please note that the policy
has the reference motion as input.

• Long History Only (Fig. 4c): the policy only has a long-term I/O
history encoded by a CNN, which is a baseline used in [31, 34].
Note that we still provide the robot feedback at the current timestep
directly to the MLP base, as suggested by Peng et al. [48].

• Short History Only (Fig. 4d): the policy has short I/O history
without the long-term I/O history CNN encoder, which is used
in [37] and serves as a baseline in [32].

• RMA/Teacher-Student: an expert (teacher) policy (Fig. 4e) with
access to privileged environment information (listed in Table III) is
first trained using RL. The privileged information is encoded by an
MLP into an 8D extrinsics vector. This expert policy is then used
to supervise the training of an RMA (student) policy, which uses
the base MLP copied from the expert policy, while using a long
I/O history encoder to predict the teacher’s extrinsic vector. This
two-stage training scheme is used in [31, 34] and also adopted in
other work such as [18, 26, 40].

• A-RMA (Fig. 4g): after the standard RMA training, the parameters
of the long I/O history encoder are fixed, and the base MLP is
further finetuned using RL as proposed by Kumar et al. [32]. Both
RMA and A-RMA are also provided with a short I/O history which
are newly added in this work for a fair comparison.

D. Learning Performance in Early Stages

According to Fig. 5, at the training stages without dynamics
randomization (Stage 1&2), our method shows similar, even
a bit better, learning performance compared with the expert

(a) Learning Single Goal with Do-
main Randomization

(b) Learning with Different Memory
Encoders for RMAs

Fig. 11: Additional Learning Curves.

Abduction 𝑞1 Rotation 𝑞2 Thigh 𝑞3 Knee 𝑞4 Toe 𝑞7
Actuated Joints Passive Joints

L
ef

t L
eg

Po
si

tio
n

(d
eg

)

Time (s)

R
ig

ht
 L

eg
Po

si
tio

n
(d

eg
)

Time (s)
Sim Real Flight Phases in Sim, Real,

Shin 𝑞5 Tarsus 𝑞6

Fig. 12: The profiles of the robot’s joint positions when it is
commanded to jump to 0.44 m-tall elevation while forward 0.88 m
in simulation and the real world, using the discrete-terrain policy.

(ii) (𝑐𝑥 , 𝑐𝑦, 𝑐𝜙) = (0m, 0m, 60°)(i) (𝑐𝑥 , 𝑐𝑦 , 𝑐𝜙) = (0m, 0.3m, 0°)

Landing Target

Hop

Hop

Landing Target

Landing Target

(iii) (𝑐𝑥 , 𝑐𝑦 , 𝑐𝜙) = (0.5m, 0m, 0°)

(iv) (𝑐𝑥 , 𝑐𝑦, 𝑐𝜙) = (0.7m, 0m,−45°)

Fig. 13: Additional experiments show Cassie jumping to different
targets with the single flat-ground policy.

policy which has the access to the privileged environment
information. This is because the long-term I/O history is able
to provide more information than the dynamics parameters
used in the expert policy, such as the robot’s take-off trajectory
which will be useful to determine a better landing maneuver.
Although the policy with short history only (orange curve)
shows a faster learning curve at the initial stage of training

(Stage 1, Fig. 10a), the learning performance using short
history only and long history only (blue curve) show a similar
learning performance in a more complex multi-goal training
stage (Stage 2).

E. Additional Learning Curves

The learning curves for single-goal policies with dynamics
randomization detailed in Sec. IV-E is recorded in Fig. 11a.
Training RMAs with different long-history encoders are
recorded in Fig. 11b. The RMA used in [31, 32] (Original) has
a different structure of the long-term I/O encoder (1D CNN)
than the one used in this work. It has 3 hidden layers and the
[kernel size, filter size, stride size] of each layer is [8, 32, 4],
[5, 32, 1], and [5, 32, 1], with zero padding, respectively.

F. Additional Hardware Experiments

More experiment results are presented in Fig. 12 and
Fig. 13. It shows the capacity of the flat-ground policy to
accomplish more challenging jumping tasks on the real robot
Cassie.

	Introduction
	Objective of this Paper
	Contributions

	Related Work
	Model-based optimal control for legged jumping
	Model-free RL for legged locomotion control
	Sim-to-real transfer for legged robots

	Background and Preliminaries
	Floating-base Model of Cassie
	RL Background and Goal-Conditioned Policy

	Multi-Stage Training for Versatile Jumps
	Overview of the Multi-Stage Training Schematic
	Reference Motion
	Reward
	Episode Design
	Dynamics Randomization

	Training Setup
	Policy Architecture
	Training Details

	Simulation Validation
	Baselines
	Policy Structure Choice
	Advantages of the Verstiale Policy

	Experiments
	Task Completion in the Real World
	Sim-to-Real Gap
	Diverse and Robust Maneuvers by the Goal-Conditioned Policy

	Discussion of Design Choices for RL-based Legged Locomotion Control
	Conclusion
	Appendix
	Training in Stage 1
	Reward
	Episode Design

	Details of Dynamics Randomization
	Details of Baseline Models
	Learning Performance in Early Stages
	Additional Learning Curves
	Additional Hardware Experiments

