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Abstract

We consider the problem of predicting how the
likelihood of an outcome of interest for a pa-
tient changes over time as we observe more of
the patient’s data. To solve this problem, we
propose a supervised contrastive learning frame-
work that learns an embedding representation
for each time step of a patient time series. Our
framework learns the embedding space to have
the following properties: (1) nearby points in
the embedding space have similar predicted class
probabilities, (2) adjacent time steps of the same
time series map to nearby points in the embed-
ding space, and (3) time steps with very different
raw feature vectors map to far apart regions of
the embedding space. To achieve property (3),
we employ a nearest neighbor pairing mechanism
in the raw feature space. This mechanism also
serves as an alternative to “data augmentation”,
a key ingredient of contrastive learning, which
lacks a standard procedure that is adequately re-
alistic for clinical tabular data, to our knowledge.
We demonstrate that our approach outperforms
state-of-the-art baselines in predicting mortality
of septic patients (MIMIC-III dataset) and track-
ing progression of cognitive impairment (ADNI
dataset). Our method also consistently recovers
the correct synthetic dataset embedding struc-
ture across experiments, a feat not achieved by
baselines. Our ablation experiments show the
pivotal role of our nearest neighbor pairing.
Keywords: contrastive learning, time series
analysis, nearest neighbors

1. Introduction

Modeling disease progression patterns of patients is
crucial for developing treatment strategies. Under-
standing and learning these patterns from longitudinal
tabular data, commonly found in healthcare, can be
challenging. These time series often vary in length,
exhibit irregular sampling, and have many missing
entries. To this end, various methods have emerged
in recent years to model such tabular time series data.
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These methods can broadly be categorized into those
that focus only on predicting patient outcomes (e.g.,
Choi et al. 2016; Ma et al. 2017; Devlin et al. 2019;
Mollura et al. 2021), and those that jointly cluster
patients and predict their outcomes (e.g., Lee and Van
Der Schaar 2020; Lee et al. 2020; Huang et al. 2021;
Carr et al. 2021; Aguiar et al. 2022; Qin et al. 2023).

The mentioned approaches have several limitations.
Specifically, prediction-focused models often struggle
to differentiate patients with differing characteristics
but the same outcome. For instance, predicting in-
hospital mortality from patient time series may yield
the same risk for an elderly patient with liver dysfunc-
tion and a young patient with renal failure, despite
them needing different treatments. In such a case,
coarse prediction labels (e.g., in-hospital mortality
which encompass diverse underlying causes) do not
encourage prediction-centric models to capture clini-
cally relevant details. This is because the model is not
required to recognize the semantic differences between
these two patients directly to achieve high prediction
power. We term this challenge as capturing “raw
feature heterogeneity”, where distinguishing patients
with identical classification outcomes and contrasting
raw features becomes a difficulty.

For models that jointly cluster patients and predict
their outcomes, these models tend to be less accurate
than models solely focused on prediction. For example,
in the supervised temporal clustering models by Lee
and Van Der Schaar (2020) and Aguiar et al. (2022),
a prediction neural network is first initialized, after
which a clustering module is then added to approx-
imate the encoding representation of the prediction
model. This approximation incurs some loss in infor-
mation such that using a patient’s assigned cluster
to predict the patient’s outcome has worse accuracy
than using the original prediction network.

The supervised temporal clustering models by Lee
and Van Der Schaar (2020) and Aguiar et al. (2022)
are also learned in a manner that arguably depends
too much on user-specified design choices. Specifically
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these models employ k-means for initializing clusters,
where the user must specify the number of clusters to
use. Using a different clustering algorithm or number
of clusters could drastically change the results. This
situation may demand costly model re-training if a
user finds the learned clusters to be hard to interpret,
or either too fine or too coarse.

Our contributions. To address the issue of raw
feature heterogeneity (distinguishing between patients
with the same outcome who look quite different) and
to avoid the issues encountered with clustering models,
our main contribution in this paper is to propose a
framework for modeling variable-length tabular time
series data called Temporal Supervised Contrastive
Learning (TEMPORAL-SCL), which does not use clus-
tering during model training due to the challenges
stated earlier.

Our core innovation lies in adopting an embedding-
centric paradigm that builds off from the fundamental
concept of contrastive learning (Le-Khac et al., 2020)
which the goal is to learn an embedding representa-
tion where “similar” data points exhibit proximate
embedding vectors, while “dissimilar” data point have
distant embeddings. Building on top of Khosla et al.
(2020), our embedding-centric approach allows us to
impose a structured representation that encapsulates
the crucial properties outlined in the introduction for
capturing the raw feature heterogeneity while main-
taining high predictive power.

TEMPORAL-SCL learns an embedding vector at
each time step of a time series. The embedding space
has the following properties:

o (Predictive) Each time step’s embedding vector
helps predict classification outcomes for both the
static outcome case where a single patient time
series is associated with a single class, and the dy-
namic outcome case where a single patient time
series has a time-varying classification label.

o (Temporally smooth) Embedding vectors of adjacent
time steps within the same patient time series tend
to be near each other.

e (Diverse in capturing raw feature heterogeneity)
Embedding vectors of dissimilar raw inputs tend
to map to separate regions of the embedding space,
even when sharing the same classification outcome.

We achieve the last property using a nearest neighbor

pairing mechanism.

We show that TEMPORAL-SCL works well in prac-
tice. In two real clinical datasets, TEMPORAL-SCL
outperforms various baselines including state-of-the-
art methods such as transformers, and removing

the nearest neighbor pairing mechanism leads to
noticeably lower accuracy. In a synthetic dataset
with known ground truth embedding space struc-
ture, TEMPORAL-SCL consistently recovers the cor-
rect structure (100% success in 10 experimental re-
peats with different random seeds) whereas no base-
line tested achieves this; removing nearest neighbor
pairing makes our method’s correct recovery rate 0%.
We also propose a clustering-based heatmap visu-
alization of the learned embedding space, relating
it to raw features and to prediction outcomes. The
clustering involved happens only after model training
and is purely for the purposes of visualization, where
our visualization strategy is agnostic to the choice of
clustering algorithm used or the number of clusters.

2. Background

We state the time series prediction setup we study in
Section 2.1. Our proposed method is based on super-
vised contrastive learning (Khosla et al., 2020), which
we review in Section 2.2. For any positive integer k,
we regularly use the notation [k] £ {1,2,...,k}.

2.1. Problem Setup

Training data. We assume that the training data
consist of NV patients with different time series. For
the i-th patient (with ¢ € [N]), we observe L; time
steps, where at each time step, we keep track of D
features (e.g., clinical measurements). Specifically,
we denote the i-th patient’s feature vector at time
step £ € [L;] (sorted chronologically) as xge) € RP.
Moreover, we know the time-step times, where the
i-th patient’s time at the ¢-th time step is tl@) e R.
This notation allows for features to be static, i.e., a
feature could stay constant across time.

We further assume that every time step of a time
series belongs to one of C' different classes, i.e., the set
of classes is [C]. In the dynamic outcome case, where
the classification label varies over time, we assume that
we know the classification label yy) € [C] for every
patient i € [N] for every time step ¢ € [L;]. For the
static outcome case, we only know the classification
label at the final time step per time series: we know
y! ¥ € [C] for all i € [N], and at earlier time steps
< L;, we set yy) = “?”, which could be thought of
as an additional “unknown” class.

Prediction task. Given a test time series, suppose
that we observe the feature vector x, € RP at a single
time step. We aim to predict the target label y. € [C]
corresponding to x,. In the dynamic outcome setting,
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this target label is for the same time step as x,. In
the static outcome setting, this target label is for the
label of final time step in the test time series.

We focus on predicting the classification outcome
for each time step. This captures the extreme case
of a test time series consisting of a single time step.
For example, this could happen in a clinical setup
if a patient enters a new hospital for which we see
measurements of this patient for the first time. Our
real-world clinical dataset experiments later reveal
that our model outperforms baselines that leverage
complete historical observations.

Importantly, although we focus on prediction given
a single time step’s feature vector x,, our problem
setup allows for a feature in x, to capture historical in-
formation (e.g., a feature in x, could be the maximum
observed white blood count over the past 4 hours).

2.2. Supervised Contrastive Learning (SCL)

SCL learns an embedding representation of the data
so that “similar” data points have embedding vectors
that have higher cosine similarity compared to those
of “dissimilar” data points. Data points are “similar”
if they have the same classification label. As this
framework was originally developed without temporal
structure, we drop superscripts previously used to
indicate dependence on time.

Notation. We use f to denote the so-called en-
coder network, where given any point x in the raw
input feature space, its embedding representation is
f(x). This embedding representation is constrained
to be a d-dimensional Euclidean vector with norm 1,
also referred to as a hyperspherical embedding. Thus,
[f(x)|] = 1. We denote this hyperspherical out-
put space as S4! £ {z € R?st. |z]| = 1}. For
u,v € S, the cosine similarity between u and v is
% = (u,v), where (-,-) denotes the dot product.

We also denote g as the predictor network that
maps the embedding output of the encoder in S?~!
to a probability distribution space over C' classes.

SIMPLE-SCL. For ease of exposition, we present
a simplified version of SCL that we call SIMPLE-
SCL, which does not use data augmentation (since
our experiments later will be on tabular data with-
out data augmentation as generating realistic fake
patient data is challenging in the clinical setting).
We learn the encoder f using minibatch gradient de-
scent. For a minibatch of B training points x1,...,Xp
with corresponding classification labels yi,...,yp,
we denote the embedding vectors of these points as
z1 = f(X1),...,2p = f(xp). Since we want points

with the same label to have high cosine similarity, we
keep track of which points have the same label. To
do this, we let P(i) denote the set of points with the
same label as the i-th point, excluding the ¢-th point:

P@) £ {je[B]st.y; =y and j £i}. (1)

Next, we define the following ratio:
O (% Vo R

D ke(B] st ki XP((Zis28)/T)

where the constant 7 > 0 is a user-specified hyper-
parameter. The key idea is that if the i-th and j-th
points have the same label (so j € P(i)), then we
want W(4, j;7) to be large: the numerator being large
means that cosine similarity (z;,z;) is large while the
denominator provides a normalization to ensure that
U(i,7;7) € [0,1]. Then to encourage ¥(i,j;7) to be
large for all ¢ € [B] and j € P(¢), we minimize the loss

1
A P
LSimple—SCLl - - Z , m Z IOg\I/(’L,], T)‘
i€[B] s.t. |[P(i)|>1 JEP(4) ( )
3

The original SCL uses a loss of the same form but
with data augmentation (see Appendix A.1).

Lastly, in line with Khosla et al. (2020), after the
encoder is learned, we train a predictor network g
to map the resulting embeddings to a probability
distribution over all classes.

3. Method

We now introduce TEMPORAL-SCL, our temporal
adaptation of SCL. It consists of three networks: an
encoder f, a predictor g, and a temporal network h.
We give a high-level overview of these networks in
Section 3.1 and how they are trained and used for
prediction in Section 3.2. We propose a method for
visualizing embedding vectors in Section 3.5.

3.1. Overview of TEMPORAL-SCL’s Networks

Encoder network f. We aim to learn an embedding
representation of every time step of each time series.
Just as in Section 2.2, this amounts to learning an
encoder network f that maps from the raw feature
vector space (now for just a single time step) to the
hyperspherical space S?~! (Fig. 3.1(a)). Since we now
account for time steps, we add superscripts: we let
ZZ(-Z) £ f (xl(-e)) denote the embedding vector of the i-th
data point’s feature vector at time step £.

Aside from using time steps, the major difference
between TEMPORAL-SCL and SIMPLE-SCL is that
for TEMPORAL-SCL, feature vectors are considered
similar if they simultaneously have similar outcomes
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(i.e., classification labels yz(e)) and similar input feature
vectors (unlike with SIMPLE-SCL, where similarity is

purely based on classification labels).

Predictor network g. To ensure the embedding
space’s predictive power of the outcome, we train
predictor network g mapping S?~! to a probability
distribution space over C classes (Fig. 3.1(¢)).
Temporal network h. To encourage two adjacent
) (£+1)
(] (3
map to embedding vectors ZED and ZZ(»HI) that are
closeby, we learn a temporal network A that predicts
how embedding vectors change over time (Fig. 3.1(b)).
For the i-th training time series, we define the duration
5O 2 4D 40 for ¢ € [L; — 1]. Then h takes
as input the sequence (Z(-l) (5-(1)), el (ZZ(-Z), 61@) and

T 0

time steps in the same time series x; ’ and x to

outputs a prediction for ZEHI). We ask that zEHl) and
h((zgl), (51@), cee (ZZ@), 51@)) be close (using squared
Euclidean distance loss). Thus, h aims to make the
next time step’s embedding vector predictable based
on all previous time steps and could be thought of as a
regularization term. A similar temporal regularization
strategy was used by Lee et al. (2019).

3.2. Overview of Training and Prediction

Training. We train TEMPORAL-SCL in three phases:

1. (Pre-training) We initialize the embedding space
by pre-training the encoder f using data at the
individual time step level and SIMPLE-SCL. Note
that during this phase, we do not model nor use
temporal structure, and we effectively treat the
different time steps as separate. We explain this
phase in more detail in Section 3.3, and our ex-
periments later show that this phase significantly
improves the model’s prediction accuracy.

2. (Encoder and temporal network training) After pre-
training the encoder f, we account for temporal
structure by jointly training f and the temporal
network h. Details of this phase are in Section 3.4.

3. (Learning the predictor network) At this point, we
treat the encoder f as fixed, so we can compute all
the training embedding vectors at different time
steps (the zgé) variables). In the dynamic outcome
case, we learn the predictor network g by treating
the de) variables as input feature vectors and the

corresponding yy) variables as target labels, min-

imizing cross-entropy loss. In the static outcome

case, we instead set the target label for zgz)

be the final time step’s label yiLi). As this phase

to
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Figure 3.1: Overview of TEMPORAL-SCL
amounts to standard neural net classifier training
with cross-entropy loss, we omit further details.

For ease of exposition, we explain the first two phases
in Sections 3.3 and 3.4 only for the dynamic outcome
case that we described in Section 2.1; the static out-
come case is very similar and covered in Appendix A.2.

Prediction. At test time, we are given a feature
vector x, € RP for a single time step. To make a
prediction for x,, we first compute the embedding
vector of x, given by z, £ f (x4). Then the predicted
class probabilities are precisely given by ¢(z.).

3.3. Pre-training the Encoder

We now explain how we adapt SIMPLE-SCL to time se-
ries data and to encourage learned embedding vectors
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to be diverse in capturing raw feature heterogeneity.
The latter uses a nearest neighbor pairing mechanism.
We first pre-train our encoder network f following
a similar process as the SIMPLE-SCL encoder, with
specific modifications described below.

SIMPLE-SCL encoder with time steps. Encoder
of TEMPORAL-SCL, f, has the same structure as
SIMPLE-SCL encoder. We define every time step
: ; : . (O (0
of every time series as its own snapshot: (Xi Y ).
Thus, we take the “training data” of our encoder net-

work to be all the snapshots: Uz 1 Uz 1{( - ,yl(é))}

Nearest neighbor pairing for identifying similar
snapshots. Whereas SIMPLE-SCL (that did not have
time steps) considered two points to be similar if they
share the same classification outcome, we now instead
consider two snapshots to be similar if they share
the same classification outcome and their raw feature
vectors are “close to each other”. We use random
sampling to find pairs of similar snapshots:

1. Initialize the set of snapshot pairs to be empty: £ + 0.
2. For each class c € [C]:
(a) Let the set A. consist of all snapshots with label c.
(b) While |Ac| > 2:
i. Choose snapshot (x; @ yy)) randomly from A..
ii. (Nearest neighbor search) Among the other snap-
shots in A, find the one whose feature vector
is closest to xy) (e.g., using Euclidean distance).
Denote the snapshot found as (x (, ), yl(,e >).
iii. Add snapshot pair ((x; ® yf[)),( EZ ),y(,e ))) to £.
E ),y(z)) and ( » >,y(,£ )) from A..

To sample a minibatch of B data points for minibatch
gradient descent, where we assume that B is even, we
randomly choose B/2 pairs from the set £; denote the
set of these B/2 pairs as Epaten. Note that the B/2
pairs in &paen correspond to a total of B different
snapshots; denote the set of these B snapshots as
Vbatch- Then the loss we use for minibatch gradient
descent during pre-training is

iv. Remove (x

LSCL-snapshots =
exp((f(x{”), f(x\)) /7)
-2 log < 0) @
(xO 4 ©), ; exp((f(x; "), f(x; "))/7)
(x(;) (1[ ))) (Xff, )7y(/£/ )) S Vbatch
Lot 6 70 AG)

€ Sbatch

For simplicity, our experiments later use Euclidean
distance to find nearest neighbors (we standardize
features to control for scale differences), efficiently
computed using fast approximate nearest neighbor
search software (Malkov and Yashunin, 2018).

Ablation. Later on in our experiments, we conduct
ablation experiments where we do not use nearest
neighbor pairing. The only change is that in step 2(b),
steps i. and ii. are replaced by randomly choosing two
different snapshots (xl(-f),yl@)) and (x (,e ),yflz /
A, to pair up (uniformly at random).

)) from

Note on data augmentation. A key component
of contrastive learning is data augmentation (see the
review by Le-Khac et al. (2020)), a procedure that
creates perturbed versions of data points (e.g., when
working with images, we could randomly rotate, trans-
late, and crop an image). Since we work with tabular
data, a challenge arises in that to the best of our
knowledge, there is no widely accepted, clinically suit-
able data augmentation method for such data. Thus,
our presentation of TEMPORAL-SCL is without data
augmentation; in fact, the nearest neighbor pairing
mechanism proposed above is also a substitute for
data augmentation. While we do not use data aug-
mentation, we point out that if it is available, adding
it is trivial. The simplest way is that before each train-
ing epoch, we apply data augmentation to the original
training dataset to get a fresh augmented training
dataset, which we use with our nearest neighbor pair-
ing procedure. More details are in Appendix A.3.

3.4. Encoder and Temporal Network Training
In the second stage of training a TEMPORAL-SCL
model, we jointly train the encoder and temporal
networks by minimizing the overall loss

(4)
where Liemp-reg iS & temporal smoothness loss term
(to be defined shortly), and o > 0 is a hyperparameter
that trades off between the two losses on the right-

hand side. Recall that for the i-th training data point,
) & (41 _

Loverall = LSCL—snapshots + aLtemp—reg;

we previously defined the time duration 655

tl@) for{=1,2,...,L; — 1. Moreover, h takes as input

the sequence {(z; (t) 5(t)) ¢_, and outputs a prediction

for ZEZH). We ask that zgu_l) and h({(z; ) 5(t 1)
be close by squared Euclidean distance, across all data
points and time steps:

N L;—1 h Et ,d(t) ¢ —Z(£+1) 2
Liemp- reg E: Z H l ZL,)}j_ll) : H
z 1 4=1 z

3.5. Visualizing Embedding Vectors
To find common patterns in the learned embedding
space, we cluster on the different snapshots’ em-

bedding vectors (the zge) variables) after training a
TEMPORAL-SCL model. We have found standard ag-
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Figure 3.2: Heatmap showing how features (rows) vary across clusters (columns) for the sepsis cohort of the
MIMIC dataset. Heatmap intensity values can be thought of as the conditional probability of
seeing a feature value (row) conditioned on being in a cluster (column); these probabilities are
estimated using test set snapshots. Columns are ordered left to right in increasing fraction of test
set snapshots that come from a time series that has a final outcome of death.

glomerative clustering (Murtagh and Contreras, 2012)
to work well here and this approach trivially allows
the user to adjust the granularity of clusters as needed,
even from fitting the clustering model once. The idea
is that we start with every snapshot’s embedding vec-
tor as its own cluster and keep merging the closest
two clusters (e.g., using complete linkage to decide on
which two clusters are closest) until we are left with a
single cluster that contains all the snapshots’ embed-
ding vectors. In conducting this procedure, we store
each intermediate clustering result. Then the user
could use our visualization strategy (to be described
next) with any intermediate clustering result, ranging
from fine- to coarse-grain clusters.

To visualize any cluster assignment of the snapshot
embedding vectors (the clustering method need not
be agglomerative clustering), we make a heatmap
inspired by Li et al. (2020), where columns correspond
to different clusters and rows correspond to features.!
The intensity value at the ¢-th row and j-th column
is the fraction of test set snapshots that have the i-th
row’s feature value among test set snapshots in the
j-th column’s cluster (i.e., a conditional probability
of seeing a feature value given being in a cluster). An
example is shown in Fig. 3.2; details on the dataset
used and model training are in Section 4.2. We show
the “top” 5 features, where we rank features based on
the maximum observed difference across clusters.?

1. Note that we discretize continuous features into bins. This
discretization is only used during visualization and not used
when training the TEMPORAL-SCL model.

2. Per row in the heatmap, compute the difference between
the largest and smallest intensity values across the row,
and rank rows using these differences, where we keep rows
that correspond to the same underlying feature together.

4. Experiments

We benchmark TEMPORAL-SCL on tabular time se-
ries data: a synthetic dataset with known ground
truth embedding space structure (Section 4.1), and
two standard real clinical datasets with unknown em-
bedding space structure (Section 4.2). We also exam-
ine how TEMPORAL-SCL works without pre-training
and, separately, without nearest neighbor pairing.

As baselines, we use (a) purely supervised methods:
logistic regression, an LSTM (Hochreiter and Schmid-
huber, 1997), RETAIN (Choi et al., 2016), Dipole
(Ma et al., 2017), a BERT-based transformer (De-
vlin et al., 2019); (b) temporal predictive clustering
methods: AC-TPC (Lee and Van Der Schaar, 2020)
and T-Phenotype (Qin et al., 2023); and (c) Self-
Supervised Learning and Contrastive Learning based
model: SMD-SSL (Raghu et al., 2023) with SimCLR
loss (Chen et al., 2020) and VICReg loss (Bardes
et al., 2021), and SIMPLE-SCL (treating snapshots
as separate data points and without nearest neighbor
pairing). Details on baselines are in Appendix A.4.1.

For all datasets, we randomly split the data into
60% training, 20% validation, and 20% test sets. This
split is done at the patient level so the presented test
set results are all on patients not encountered during
training. Details of our training including network
types and hyperparameter grids, and an explanation
of evaluation metrics are in Appendix A.4.2. 3

4.1. Synthetic Data

Data. We generate a 2D dataset where every patient
time series has exactly 3 time steps. For simplicity,

3. Our code is available at:
https://github.com/Shahriarnz14/
Temporal-Supervised-Contrastive-Learning
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(a) Ground truth

(b) Transformer

(¢) T-Phenotype
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(no NN pairing)

Figure 4.1: Synthetic dataset: panel (a) shows the only 4 possible time series trajectories (each true embedding
vector state has a unique color-shape combination; there are 10 such states); every time series has
3 time steps and belongs to one of two classes red/blue. Panels (b)-(e) show learned embedding
spaces of four methods; only TEMPORAL-SCL correctly recovers the 10 ground truth states. A
version of this figure with embeddings of all methods evaluated is in Fig. A.3.

we only consider the static outcome case so that each
time series has a single label (one of two classes: red
or blue). The points are all on a 2D circle, where the
only 4 possible time series in the embedding space
are shown in Fig. 4.1(a). For example, one possible
patient time series is “® — V¥V — *”. There are a
total of 10 true embedding vector locations, which
could be thought of as cluster centers. Note that we
take the embedding space and raw feature space to be
the same. When we generate synthetic time series,
each point is based on one of the 10 true ground
truth embedding vector locations with Gaussian noise
added. We randomly sample 200 of each of the 4
possible trajectories so that we have a total of 800
time series. See Appendix A.4.3 for details.

Experimental results. We use a 3D embedding
space for all methods despite the ground truth be-
ing 2D.* Fig. 4.1 depicts the test data projected onto
a 3D embedding space of a few different methods
(in the appendix, Fig. A.3 has visualizations across
all methods evaluated). We report test set accuracy
scores for predicting red/blue (area under the ROC
curve, area under precision recall curve), silhouette
index (SI) using ground truth cluster centers as clus-
ter labels, and lastly a qualitative analysis of whether
all 10 clusters were recovered across the 10 experi-
mental repeats (this is a qualitative visual check) in
Table 4.1. Additionally, we also investigate a differ-
ent downstream task focusing on cluster prediction
accuracy. In this task, we freeze the encoder network,
previously trained on the synthetic data, and task the

4. Confining the embedding space to 2D markedly degraded
performance across all methods. We speculate that this
due to “over-specification”, aligned with findings in studies
like Livni et al. (2014) that suggest that training larger-
than-necessary neural networks results in easier training.

model with predicting the cluster location for each
timestep. This experiment is used to evaluate the
model’s ability to be used for different downstream
tasks and evaluate whether the trained encoder can
correctly identify the cluster of origin for each data
point within the synthetic dataset’s defined 10 clusters
(as shown in Fig. 4.1(a)). The cluster prediction accu-
racy is reported alongside other results in Table 4.1.
The main finding from our synthetic data experi-
ment is that while most methods yield similar, optimal
prediction scores, only the full version of TEMPORAL-
SCL consistently recovers all 10 clusters. This is
evident in the high silhouette index (0.98) our full
model achieves, closely matching the ground truth SI
of 0.982. This claim is further supported by visual
examination of Fig. 4.1 (also see the last column of
Table 4.1 and appendix Fig. A.3). No other method
evaluated consistently recovers all 10 ground truth
clusters. Notably, removing nearest neighbor pairing
from TEMPORAL-SCL leads to a 0% recovery rate of
ground truth clusters. Lastly, our full model is the
only one among all baselines and ablations to achieve
100% accuracy in the downstream task of cluster pre-
diction. This result highlights our model’s ability to
accurately identify cluster origins and provides empir-
ical evidence of the versatility of the learned encoder
representations for a different downstream task.

4.2. Real Clinical Data

Data. We use two standard datasets:

e MIMIC (static outcome case). We employ time
series data of septic patients from the MIMIC-III
dataset (v1.4) (Johnson et al., 2018) following the
same procedure as Komorowski et al. (2018) to
identify 18,354 patients with sepsis onset based on
Sepsis-3 criteria. The prediction task among this
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Table 4.1: Synthetic data test set metrics (mean +
std. dev. across 10 experiments) and qual-
itative assessment of successful ground
truth cluster recovery across experiments.

Cluster Prediction

Model AUROC AUPRC  Silhouette Index A Recovery
Accuracy
Logistic Regression 0.90£0.01 0.90+0.00  0.09+0.01 0.60+0.06 X
LSTM 0.95£0.01 0.9540.00  0.09£0.01 0.60£0.05 X
RETAIN 0.95£0.01 0954000  0.3340.06 0.69+0.06
DIPOLE 0.95+0.01 0.95£0.00  0.30£0.06 0.6940.04
Transformer:BERT 0.95+0.01 095000  0.11=£0.01 0.67+0.03 X
AC-TPC 0.95£0.01 0.9540.00  0.09£0.01 0.77£0.03 X
T-Phenotype 0.95£0.01 095000  0.4940.32 0.81£0.03
SMD-SSL + SimCLR (Frozen) 0.84+0.01 0.83+0.00  0.1540.05 0.61£0.02
SMD-SSL + VICReg (Frozen) 0.79£0.01 0.79£0.00  0.12£0.05 0.60+0.03
SMD-SSL -+ SimCLR (Fine-tune) 0.94=+0.01 094000  0.39£0.10 0.78+0.04
SMD-SSL + VICReg (Fine-tune) 0.95£0.01 095+0.00 0244012 0.73£0.04
SiMPLE-SCL 0.93£0.01 0.9440.01 0.19£0.01 0.64£0.06 X
TEMPORAL-SCL (PT:v/, NN:X, TR:X) 0.94-£0.01 0.94+£0.00  0.24:£0.01 0.6240.06 X
TEMPORAL-SCL (PT:X, NN:v/, TR:X) 0.94£0.01 0.95+0.00  0.82+0.01 0.84£0.05
TEMPORAL-SCL (PT:X, NN:X, TR:v/) 0.95+£0.01 0.95+0.00  0.40+0.01 0.57+£0.04 X
TEMPORAL-SCL (PT:X, NN:v/, TR:v') 0.95+0.01 0.94+0.00  0.86+0.00 0.91£0.06
TEMPORAL-SCL (PT:v/, NN:X, TR:v') 0.95+0.01 0.95£0.00  0.55+0.01 0.56+0.05 X
TEMPORAL-SCL (PT:v/, NN:v/, TR:X) 0.95+0.01 0.95+0.00  0.92+0.01 0.85+0.03
TEMPORAL-SCL (Full) 0.95+0.01 0.95+0.00  0.98+0.00 1.00+0.00 v

PT: Pre-Training, NN: Nearest Neighbor pairing, TR: Temporal Network
X: No correct recovery of the embedding structure.
: Partial clustering structure found, but not a completely correct
recovery of the embedding structure.
v/: Completely correct recovery of the embedding structure.

sepsis cohort is ICU visit mortality, where only the
final outcome label is known (yZ(Li)) determined by
death within 48h of the final observation (= 1) or
death within 90 days of the final observation (= 2)
versus discharge (= 0).

e ADNI (dynamic outcome case). We also evaluate
our approach using the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset (Petersen et al.,
2010), encompassing 11,651 hospital visits across
1,346 patients, tracking AD progression through
6-month interval follow-ups. Our prediction task
mirrors Lee et al. (2020) for multiclass classifica-
tion of every time step (y!) among three diagnostic
groups: normal brain function (= 0), mild cognitive
impairment (= 1), and AD (= 2). This setup covers
the dynamic outcome case where the label at both
terminal and non-terminal time steps are known.
We further predict cognitive impairment status 6
months and 1 year in advance in Appendix A.5.6.

More details on the datasets and how we preprocess
them (including imputation) are in Appendix A.4.4.

Experimental results. Accuracy scores for methods
evaluated are in Table 4.2. In both MIMIC and ADNI
datasets, TEMPORAL-SCL (the full model without ab-
lation) yields strong results, outperforming all baseline
approaches. Omitting pre-training from TEMPORAL-
SCL substantially decreases accuracy. Meanwhile, ex-
cluding nearest neighbor pairing shows accuracy closer
to the full model in MIMIC but significantly lower
in ADNI. We suspect that all models typically work
better in ADNI vs MIMIC due to the ADNI dataset

having less missing data and less feature noise (e.g.,
ADNI has memory assessments as features whereas
MIMIC has lab exams, which tend to be noisier).

We expand our analysis of the heatmap visualiza-
tion in Section 3.5 for the complete TEMPORAL-SCL
model trained on MIMIC. A more comprehensive
version of Fig. 3.2, encompassing all features, is in
Appendix A.5.2, with clustering details outlined in
Appendix A.4.5. For the sepsis cohort in MIMIC, our
visualization reveals that higher AST, lactate, ALT,
and INR levels appear associated with higher mor-
tality risk. Moreover, lower bicarbonate levels also
appear associated with higher mortality risk. These
model-derived insights agree with clinical literature on
sepsis (Nesseler et al., 2012; Villar et al., 2019), where
abnormal biomarker ranges correlate with heightened
sepsis-related mortality.

We also applied our heatmap visualization to the
TEMPORAL-SCL model for ADNI. The full heatmap
and analysis are in Appendix A.5.3. In brief, for
ADNI, TEMPORAL-SCL reveals a correlation between
low Rey Auditory Verbal Learning Test (RAVLT)
Immediate scores, high RAVLT Forgetting scores, and
high Clinical Dementia Rating — Sum of Boxes (CDR-
SB) values with increased Alzheimer’s disease risk. We
cross-verified these results with Alzheimer’s disease
literature (O'Bryant et al., 2008; Moradi et al., 2017),
confirming our model’s captured correlations.

Importantly, our heatmap visualizations can show
when two clusters have similar outcomes (e.g., similar
in-hospital mortality rates in the case of MIMIC data)
but different patient characteristics. For example,
in Fig. 3.2, clusters with mortality risks of 0.737 and
0.740 showcase distinct patient traits within physiolog-
ical features, despite similar mortality rates. Similarly,
the clusters with mortality risks of 0.492 and 0.523
also have different patient characteristics.

Ablation studies. While we have already pointed
out the importance of pre-training and of nearest
neighbor pairing in TEMPORAL-SCL, we provide more
detailed ablation experiment results on both synthetic
and the real clinical datasets in Appendix A.5.5.

5. Discussion

We have proposed a variable-length tabular time series
framework called TEMPORAL-SCL that outperforms
state-of-the-art models on two clinical datasets and on
a synthetic dataset with known ground truth structure.
A key ingredient to the success of TEMPORAL-SCL
is the nearest neighbor pairing mechanism. We fur-
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Table 4.2: Real data test set accuracy (mean + std. dev. across 10 experiments).

MIMIC dataset

ADNI dataset

Model
AUROC AUPRC AUROC AUPRC
Logistic Regression 0.74540.003  0.499+0.008 0.845+0.006 0.67640.009
LSTM 0.767£0.003  0.509+0.005 0.947+0.002 0.82340.005
RETAIN 0.7304+0.010 0.431+0.006 0.884+0.012 0.79540.016
DIPOLE 0.767+0.004 0.453£0.003 0.9584+0.006 0.824+0.009
Transformer:BERT 0.76940.005 0.509+0.003 0.959+0.002 0.92240.003
AC-TPC 0.703£0.006  0.432+0.007 0.839+0.013 0.68140.017
T-Phenotype 0.730£0.005 0.451+0.004 0.926+0.034 0.82240.068
SMD-SSL + SimCLR (Frozen) 0.692+0.002 0.457+0.005 0.803+0.015 0.65840.009
SMD-SSL + VICReg (Frozen) 0.673+0.001  0.429+0.005 0.81940.018 0.653+0.009
SMD-SSL + SimCLR (Fine-tune) 0.770£0.006 0.511+£0.010 0.966+0.014 0.92940.010
SMD-SSL + VICReg (Fine-tune) 0.748+0.008 0.499+0.009 0.867+0.012 0.67240.011
SIMPLE-SCL 0.7534£0.005 0.498+0.003 0.947+0.001 0.89440.015
TEMPORAL-SCL (PT:v/, NN:X, TR:X) 0.752£0.002 0.4984+0.001 0.947+0.001 0.894+0.014
TEMPORAL-SCL (PT:X, NN:/, TR:X) 0.770£0.002 0.5164+0.003 0.987+0.001 0.8994+0.011
TEMPORAL-SCL (PT:X, NN:X, TR:v) 0.766+0.001 0.508+0.002 0.950+0.002 0.785+0.015
TEMPORAL-SCL (PT:X, NN:/, TR:/) 0.754+0.006 0.499+0.003 0.967+0.002 0.900+0.017
TEMPORAL-SCL (PT:v/, NN:X, TR:v) 0.767+£0.002 0.5114+0.002 0.951+0.002 0.7624+0.010
TEMPORAL-SCL (PT:v/, NN:v/, TR:X) 0.770£0.002 0.5184+0.003 0.988+0.001 0.9034+0.011
TEMPORAL-SCL (Full) 0.773+0.002 0.520+0.003 0.990+0.004 0.936+0.014
PT: Pre-Training, NN: Nearest Neighbor pairing, TR: Temporal Network
ther suggested a visualization strategy to help probe Acknowledgments

TEMPORAL-SCL’s embedding space.

We highlight some of the limitations of our work
that in turn suggest future research directions. First,
we make predictions only for single time steps. Ex-
tending our framework to make predictions for an
entire time series would make it more useful as it
can use the entire information available at predic-
tion time. Next, while we have demonstrated that
nearest neighbor pairing works well, we do not un-
derstand when and why. For future work, we could
empirically try different distance functions that can
be used to answer the former question and also study
an unsupervised TEMPORAL-SCL variant (nearest
neighbor pairing could still be used by ignoring labels)
or TEMPORAL-SCL with other label information (e.g.,
survival analysis labels). Lastly, our proposed strat-
egy for visualizing the embedding space also focuses
on individual time steps. Figuring out a visualiza-
tion strategy that considers entire trajectories, even
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sion support.
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Appendix A. Appendix

This appendix is structured as follows. In Section A.1,
we compare the Simple-SCL method with the original
Supervised Contrastive Learning (SCL), highlighting
the use of data augmentation in SCL. Section A.2 out-
lines adaptations for static outcome cases in Temporal-
SCL, focusing on encoder pre-training and joint train-
ing modifications. In Section A.3, we discuss how in
our model we can integrate data augmentation with
nearest neighbor pairing.

In Section A.4, we delve into the details of our exper-
iments and our model setup. Section A.4.1 provides an
overview of the baselines used in our experiments, cat-
egorized into purely-supervised, predictive clustering,
and self-supervised learning methods. Detailed ex-
perimental setup, including training hyperparameters
and evaluation metrics, are presented in Section A.4.2,
while our synthetic data generation is outlined in Sec-
tion A.4.3 and our specific approaches for real-world
datasets like MIMIC and ADNI, and data imputation
strategies are discussed in Section A.4.4. Section A.4.5
discusses the strategy for clustering on the embedding
space for visualization.

Finally, Section A.5 delves into the details of the
results from synthetic and real data experiments. In
Section A.5.1, we present more comprehensive results
from our synthetic data experiments. Sections A.5.2
and A.5.3 focus on visualizing embedding clusters
for MIMIC and ADNI datasets, respectively. Sec-
tion A.5.4 compares these visualizations with those
derived from raw features. Lastly, in Section A.5.5,
we assesse the impact of different model components
and in Section A.5.6 we present an additional exper-
iment on future cognitive impairment prediction in

the ADNI dataset.

A.1. SIMPLE-SCL vs the Original SCL

The original SCL uses data augmentation: in the
loss function Lgcr,, instead of using the batch of B
points (x1,91),-..,(XB,yns), we instead use a freshly
generated batch of 2B points (x},41), ..., (X55,Y55)-
Specifically, each original data point x; is randomly
augmented once to get x5, ; and then x; is randomly
augmented a second time to get x5;; the augmented
points x5, ; and x5, have labels y}, ; and y5;, both
set to be the same as y;.

A.2. Handling the Static Outcome Case

To train a TEMPORAL-SCL model for the static out-
come case described in Section 2.1, there are some
small modifications to what we described for pre-
training the encoder (Section 3.3) and the joint en-
coder and temporal network training (Section 3.4).

Pre-training the encoder. In the dynamic out-
come case (i.e., the classification outcome changes
over time), we use the procedure stated in Section 3.3.
However, in the static outcome case (i.e., the classi-
fication label is for the final time step only), during
the pre-training phase, we only use the snapshot cor-
responding to the final time step per training time
series. This is because we are not sure of what the
true labels should be prior to the final time step, so
for the pre-training we focus learning the embedding
vectors based on time steps where we know the labels.

Encoder and temporal network training. Once
again, in the dynamic outcome case, we use the pro-
cedure stated in Section 3.4. However, in the static
outcome case, for the joint optimization phase, we use
all snapshots (unlike during pre-training). As a re-
minder, snapshots that do not correspond to the final
time step of a time series has the classification label
“?” which as stated in Section 2 could be thought of as
an additional “unknown” class. The idea is that now
that we are accounting for temporal structure, despite
us not knowing the labels prior to the final time step,
we still want to encourage temporal smoothness of
embedding vectors across time steps.

A.3. Combining Data Augmentation with
Nearest Neighbor Pairing

When data augmentation is available, nearest neigh-
bor pairing can be run using an augmented training
dataset. We keep track of what the original N raw
time series are prior to any data augmentation. Per
training epoch, we use a different random augmenta-
tion of every original training time series and treat
the augmented set of N time series as a “fresh” set
of training feature vectors for that epoch (prior to
running our nearest neighbor pairing procedure).
Alternatively, we can adopt the approach used in the
original SCL, which involves pairing two random aug-
mentations of the same raw input. This would require
generating two random augmentations per training
time series in each epoch. In fact, combining these two
strategies for contrastive learning on images has been
previously done (Dwibedi et al., 2021); however, this
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earlier work finds nearest neighbors in the embedding
space rather than the raw feature space and has not
been extended to variable-length irregularly sampled
temporal data like the data we experiment on.

A.4. More Details on Experiments
A.4.1. BASELINES

In this section we describe the baselines used for our ex-
periments. We divide these baselines into 3 subgroups
of: (a) Purely-supervised, (b) Predictive clustering,
and (c) Self-supervised learning and contrastive learn-
ing methods.

e Purely-Supervised Baselines

Logistic regression. For this simple baseline, our
training data has each timestep as an individual dat-
apoint with the true label of each timestep being the
final timestep outcome of its corresponding sequence.
We run logistic regression on raw features of every
timestep in the training set.

Long short-term memory (LSTM). We train
a multilayer LSTM (Hochreiter and Schmidhuber,
1997) on the sequences of the raw features in the
training set and their corresponding outcome label
and take the hidden layer of the final timestep and
pass it through a linear layer to predict the outcome
of the corresponding sequence. After the training is
completed, we run our model on the validation set
and get the probability of the positive outcome (not
surviving) for each sequence.

Reverse Time Attention Model (RETAIN).
Choi et al. (2016) proposed an interpretable predic-
tive model for healthcare using reverse time attention
mechanism. Their proposed model is based on a two-
level neural attention model. It detects influential past
visits and significant clinical variables within those
visits by mimicking physician practice. The model at-
tends to the EHR data in a reverse time order, giving
higher attention to recent clinical measurements.
Diagnosis prediction in healthcare via
attention-based bidirectional recurrent neural
networks (DIPOLE). Ma et al. (2017) propose
a model that utilizes bidirectional recurrent neural
networks to remember all the information of both
the past visits and the future visits. The authors
introduce three attention mechanisms to measure
the relationships of different visits for the prediction.
Dipole uses the attention mechanism to interpret the
prediction results it generates.

Transformer: Bidirectional Encoder Represen-
tations from Transformers (BERT). We train a
BERT-based (Devlin et al., 2019) model from scratch
to encode the time-series data of our experiments to
predict the final outcome of each time-series.

e Predictive-Clustering Baselines

Actor-Critic Temporal Predictive Clustering
(AC-TPC). Lee and Van Der Schaar (2020) proposed
an actor-critic approach from reinforcement learning
for temporal predictive clustering (AC-TPC) where
each cluster consists of patients with similar future
outcomes of interest. In this approach an RNN-based
encoder and multi-layer perceptron predictor network
are first trained to initialize time series embeddings.
After initialization, a selector network and an embed-
ding dictionary are jointly optimized with the encoder
and predictor networks to obtain a representative em-
bedding for each timestep, considering the outcome
in the subsequent timestep. During inference at each
timestep, the encoder maps a sequence into a latent
embedding. Subsequently, the selector network as-
signs a cluster to this latent embedding. The centroid
of the cluster assigned to the latent embedding is
stored in the embedding dictionary and used by the
predictor network to make predictions regarding the
future outcome of interest.

T-Phenotype. Qin et al. (2023) proposed a method
for temporal clustering designed to uncover predictive
temporal patterns from labeled time-series data, aid-
ing in understanding disease progression. This method
focuses on processing multivariate time-series data to
extract predictive patterns and associate them with
relevant clinical progression markers. At the heart of
T-Phenotype is the utilization of the Laplace trans-
form for representation learning, which transforms
variable-length, irregularly sampled time-series data
into a consistent and unified embedding in the fre-
quency domain. This transformation is crucial for
handling the inherent variability and complexity of
clinical data. The model further includes a path-based
similarity score, a novel metric to assess the relation-
ship between temporal patterns and specific disease
statuses. This score is instrumental in determining
the relevance and predictive power of identified pat-
terns. T-Phenotype then employs a graph-constrained
K-means clustering process, guided by the path-based
similarity graph, to categorize patients into distinct
phenotypes. These phenotypes are defined by their
unique temporal patterns, providing insights into dif-
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ferent trajectories of disease progression and offering
potential for personalized patient care strategies.

e Self-Supervised Learning and Contrastive
Learning Baselines

Sequential Multi-Dimensional Self-Supervised
Learning (SMD-SSL). Raghu et al. (2023) devel-
oped Sequential Multi-Dimensional Self-Supervised
Learning (SMD-SSL) to effectively process complex
clinical time series data, particularly in settings with
abundant multimodal data like intensive care units.
This method addresses the shortcomings of traditional
self-supervised learning approaches that are limited
to unimodal data. SMD-SSL is capable of handling
both structured data, such as lab values and vital
signs, and high-dimensional physiological signals like
electrocardiograms. It employs a dual SSL loss op-
timization strategy, applying one loss at the level of
individual high-dimensional data points and another
at the overall sequence level, enabling a more nuanced
understanding of the multimodal clinical data. Cru-
cially, SMD-SSL is designed to be compatible with
different loss functions, allowing the use of either con-
trastive methods, as exemplified by SimCLR (Chen
et al., 2020), or non-contrastive approaches like VI-
CReg (Bardes et al., 2021). In our experiments, we
implement SMD-SSL using both the contrastive loss
from SimCLR and the non-contrastive loss from VI-
CReg. Following the self-supervised learning phase
with each of these loss functions, we attach a pre-
diction head to the model for our prediction tasks.
We present two variations of the model in our ex-
periments: a fine-tuned version, where the loss is
back-propagated through both the prediction head
and the main SMD-SSL encoder, and a frozen version,
in which we keep the main SMD-SSL encoder weights
constant and optimize only the prediction head.

SiMPLE-Supervised Contrastive Learning
(S1MPLE-SCL) This baseline lies under the umbrella
of embedding-centric models. SIMPLE-SCL is a
special case of the original SCL (Khosla et al., 2020)
which does not use data augmentation. Similar to
the original SCL it includes both an encoder network
that first learns the embeddings and then a predictor
network is trained on these learned embeddings to
make predictions. In our experiments that deals
with temporal data, we treat each time step as
an individual data point to train the encoder and
predictor networks. Note that SIMPLE-SCL can be
viewed as an ablation of our full TEMPORAL-SCL

model that excludes both the temporal network and
the nearest neighbor pairing mechanism.

A.4.2. EXPERIMENTAL SETUP DETAILS

For all datasets, we randomly split the data into 60%
training, 20% validation, and 20% test sets. This split
is done at the patient level. The presented results of
our experiments in the following sections would be
for holdout test patients from which no training data
was available. We train our model on the patients in
the training set, optimize the hyperparameters on the
patients in the validation set and report the results
from the holdout patient test set. We train each
method on the training set, tune hyperparameters
based on the validation set, and report evaluation
metrics on the test set. Furthermore, we choose 10
different random seeds to randomize the parameter
initialization of all the models evaluated as well as
randomizing the train/validation/test sets for each
experimental repeat.

Evaluation metrics. We use the same evaluation
metrics as Lee and Van Der Schaar (2020). To evaluate
the supervised performance of our model and the base-
lines, we use area under receiver operator character-
istic curve (AUROC) and area under precision-recall
curve (AUPRC) obtained from the label predictions
of our model and the ground-truth labels on the out-
comes of interest. We use one-vs-rest AUROC and
AUPRC. For the synthetic data experiment, we also
look at the fraction of experimental repeats that a
method recovers the ground truth structure. We also
report the Silhouette index (Rousseeuw, 1987) that
gives us a measure of how similar a member is to its
own cluster (homogeneity within a cluster) compared
to other clusters (heterogeneity across clusters).

In the ablation studies presented in Section A.5.5,
we also evaluate the unsupervised performance of dif-
ferent ablations of TEMPORAL-SCL. We cluster on
the learned hyperspherical embeddings using a com-
plete linkage Agglomerative Hierarchical Clustering
to discover discrete latent states that could be of inter-
est. We utilize three standard metrics for the scenario
when ground-truth label is known and a fourth com-
pletely unsupervised metric. The metrics used are
purity score, normalized mutual information (NMI),
adjusted rand index (ARI), and silhouette index (SI).
Purity score ranges from 0 to 1 and explains the ho-
mogeneity of each cluster with regards to the labels.
NMI ranges from 0 to 1 and is an information theo-
retic measure of mutual information shared between
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the labels and the cluster and is adjusted for the num-
ber of clusters with 1 being perfect clustering. ARI
ranges from -1 to 1 and evaluates the percentage of
correct cluster assignments where 0 corresponds to
completely random assignment and 1 being perfect
clustering. Lastly, SI is a completely unsupervised
metric ranging from -1 to 1 which provides a simulta-
neous measure of (1) how similar members of a cluster
are to their own cluster capturing the homogeneity
within a cluster and (2) how different members of
each cluster are compared to other clusters capturing
heterogeneity across different clusters.

Training hyperparameters. Table A.1 summarizes
the hyperparameters used in all our experimentations
presented in this paper.

A.4.3. SYNTHETIC DATA

We generate a 2D dataset where every time series has
exactly 3 time steps. We consider the static outcome
case so that each time series has a single label (one of
two classes: red or blue). The points are all on a 2D
circle, where the only four possible time series in the
embedding space are shown in Figure 4.1(a) and in-
clude: (i) “® — ¥ — %7 and (ii) “@ — A — +” for the
blue class and iii) “® — ¥ — *” and (iv) “B — A — +”
for the red class. We place the starting time steps (“®”,
‘W, “@”, “l’) on angular points {0°, 180°,0°,180°} of
the circle circumference as shown on Figure 4.1(a).
For these starting points we purposefully have the
starting points of the two different classes fall in the
same region. Next for the second time steps (“V7,
“A” “V7 “A”) we place them on the angular points
of {45°,135° —45°,—135°}. And finally for the ter-
minal time steps (“*7, “+7 “*x” “+7) we place them
on angular points of {80°,100°, —80° — 100°}. Given
the clashing of the two starting time steps, there are
a total of 10 true embedding locations (which could
be thought of as cluster centers). When we generate
synthetic time series, each point is based on one of
the 10 true ground truth embedding locations with
Gaussian noise (N(0,8)) added to the true angles
noted above. We randomly sample 200 of each of the
4 possible 3-time stepped trajectories so that we have
a total of 800 time series.

A.4.4. REAL DATA

Medical Information Mart for Intensive Care
(MIMIC). We consider the trajectory of septic pa-
tients using data from the Medical Information Mart

for Intensive Care (MIMIC-IIT) dataset (v1.4) (John-
son et al., 2018). We follow the same procedure as
done by Komorowski et al. (2018) to identify 18,354
septic patients among which there is an observed
mortality rate just above 20% (determined by death

within 48h of the final observation yZ(Li) =1 or death

within 90 days of the final observation nyi) = 2 ver-

sus discharge ygLi) = 0). From MIMIC, we extract
demographic, lab results, and physiological features
according to Seymour et al. (2019), resulting in 29 fea-
tures. Note that Seymour et al. group these features
as follows: (1) Hepatic: Bilirubin, AST, ALT; (2)
Hematologic: Hemoglobin, INR, Platelets; (3) Neuro-
logic: GCS; (4) Cardiovascular: Heart rate, Systolic
blood pressure, Bicarbonate, Troponin, Lactate; (5)
Pulmonary: Respiratory rate, SaO2, PaO2; (6) In-
flammatory: Temperature, ESR, WBC count, Bands,
C-Reactive protein; (7) Renal: Serum creatinine; (8)
Other: Age, Gender, Elixhauser, Albumin, Chloride,
Sodium, Glucose, BUN. We compile the measure-
ments recorded of these features in MIMIC for every
4 hours (duration of each timestep). Our tempo-
ral data extraction follows the exact experimental
procedure as Komorowski et al. (2018) that is also
adopted by Killian et al. (2020). Specifically, in the
procedure that we followed, for the septic patients
identified, we first found the time for the onset of
sepsis based on Sepsis3 Criteria as tonset, We then
gathered recorded data of our selected features from
the time tgp = max(ticu-admission, tonset — 12) to the time
ty = min(ticu—discharge Or tdeath; Lonset T 24) This re-
sults in a maximum timeline [tg, 1] of 36 hours worth
of information captured from each patient (i.e. the
maximum number of time steps would be 10 for a
single patient) from —12 hours of the onset of sepsis to
424 hours afterwards. We impute the missing values
from the population median if a measurement is not
recorded before and the previously recorded value if
the measurement is recorded in a previous timestep.
We also include a set of 26 indicators for our time-
varying features at each timestep that tracks whether
a measurement was recorded (= 1) or imputed (= 0).
This dataset represent the case where only the final
outcome-label is known and non-terminal timesteps
have unknown state-label. Figure A.1 shows the setup
for our MIMIC-Sepsis experiment.

Alzheimer’s Disease Neuroimaging Initiative
(ADNTI). We also test our method on the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset (Pe-
tersen et al., 2010). This dataset consists of a total of
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Table A.1: Training Details and Hyperparamters for Experiments.

Experiment

Synthetic Dataset

Main Network

Main Network Layer Size
Prediction Network
Temporal Module

Optimization

2-Layer FCN ReLU Activation
(input-dimension)2—16—3(embedding-space)
Linear Layer with Softmax Activation 3—2
1-Layer LSTM 3—3

Optimizer: Adam, Learning Rate: le-4,
Number of Epochs: 20, Batch-Size: 32

Experiment

MIMIC

Main Network

Main Network Layer Size
Prediction Network
Temporal Module

Optimization

2-Layer FCN ReLU Activation
(input-dimension)55—32—32(embedding-space)
Linear Layer with Softmax Activation 32—3
1-Layer LSTM 32—32

Optimizer: Adam, Learning Rate: le-4,
Number of Epochs: 100, Batch-Size: 128

Experiment

ADNI

Main Network

Main Network Layer Size
Prediction Network
Temporal Module

2-Layer FCN ReLU Activation
(input-dimension)21—50—16(embedding-space)
Linear Layer with Softmax Activation 16—3
1-Layer LSTM 16—16

Optimization

Optimizer: Adam, Learning Rate: le-4,
Number of Epochs: 100, Batch-Size: 128

11,651 hospital visits from 1,346 patients which tracks
the progression of Alzheimer’s disease via follow-up
observations at 6 months interval. Each patient has
21 variables out of which 5 are static and 16 are
time-varying. The features include information on
demographics, biomarkers of the brain function, and
cognitive test results. These static features are as
follows: (1) Demographic: Race, Ethnicity, Educa-
tion, Marital Status; (2) Genetic: APOE4. The time-
varying features include: (3) Demographic: Age, (4)
Biomarker: Entorhinal, Fusiform, Hippocampus, In-
tracranial, Mid Temp, Ventricles, Whole Brain; and
(5) Cognitive: ADAS-11, ADAS-13, Clinical Dimen-
tia Rating Sum of Boxes (CDR-SB), Mini Mental
State, Rey’s Auditory Verbal Learning Test scores
(RAVLT) Forgetting, RAVLT Immediate, RAVLT
Learning, RAVLT Percent. Following Lee and Van
Der Schaar (2020), we set our predictions on three di-
agnostic groups of normal brain functioning (ylm =0),
mild cognitive impairment (yz@ = 1), and Alzheimer’s
disease (yy) = 2). The diagnostic is known at every
timestep. This dataset represent the case where we
know the outcome-label at both terminal and non-
terminal timesteps. Figure A.2 shows the overview
for our ADNI experiment that follows Lee and Van
Der Schaar (2020) setup.

Imputation. For both real datasets of this paper,
we take the following approach to impute the missing
features in our experiments. (1) For each patient,
if at any time step feature has been recorded in a
previous time step, we use the last recorded value to
replace the missing feature. (2) If at no previous time
step a feature is recorded, we calculate the population
median of the feature among all patients and impute
the missing feature with this value. In the future work,
we aim to extend our approach to be similar to that
of Seymour et al. (2019), where multiple imputation
with chained equations was used to account for missing
data.

In our MIMIC experiments, for each timestep, we
include 26 indicators tracking measurement recording
(= 1) or imputation (= 0) for time-varying features.

A.4.5. CLUSTERING ON THE EMBEDDING SPACE
FOR OUR VISUALIZATION STRATEGY

For clustering on the embedding space, we use com-
plete linkage Agglomerative Hierarchical Clustering.
We first obtain the embedding representation of our
training dataset and then train the clustering algo-
rithm for K € {5,7,8,9,10, 14,20}. Subsequently, for
predictive cluster assignment, we train a 3-Nearest
Neighbor classifier (KNN) on the training data, utiliz-
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Figure A.1: Setup for MIMIC Experiments at Inference time from TEMPORAL-SCL: First, we extract time

series data for each patient from a time window around their sepsis onset within their complete
ICU data timeline. This time series data is transformed into multiple time steps at 4-hour
intervals. The resulting time series will have its features at each time step mapped onto the
embedding space learned by our encoder. Finally, these resulting embeddings will be passed
through our predictor network to predict the ICU mortality of each patient at every time step.

ing the cluster assignments obtained in the previous
step. We use our classifier to get the predicted cluster
assignment for the validation set.

A.5. Experimental Results Details
A.5.1. SYNTHETIC DATA RESULTS

In Figure A.3, we visualize the embedding space of
all the models tested. For all the baselines tested, we
show the 3D embedding space. For the TEMPORAL-
SCL model and its ablations where the embedding
is constrained to lie on the hypersphere, we also plot
the underlying unit hypersphere shell as well as the
embeddings.

As it can be seen here, our proposed model is the
only model that can fully recover the structure and the
10 clusters of time steps from the input raw feature
space shown in Figure 4.1(a).

A.5.2. VISUALIZING EMBEDDING CLUSTERS FOR
MIMIC

We show the full heatmap of Figure 3.2 for how the
features vary across clusters in the test set of our
MIMIC dataset in Figure A.4. This heatmap is gener-
ated from the test patient embeddings of the complete
TEMPORAL-SCL model. The heatmap uses the first
version of our model out of the 10 experimental re-
peats.

A.5.3. VISUALIZING EMBEDDING CLUSTERS FOR
ADNI

To interpret each cluster for ADNI, we plot the
heatmap how features (rows) vary across clusters for
the test patients of ADNI in Figure A.5. Columns are
ordered (left to right) in dementia rate. Here we can
also see that abnormal feature values that are corre-
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Figure A.2: Setup for ADNI Experiment at Inference time from TEMPORAL-SCL: First, we extract time
series data for each patient from their complete timeline of available data spanning all the
6-month follow-up visits. This time series data maintains the same 6-month interval time steps
as the raw data, with each time step having its own true class label representing one of the
three possible brain function states. The resulting time series will have its features at each time
step mapped onto the embedding space learned by our encoder. Subsequently, these resulting

embeddings will be passed through our predictor network to predict the brain function class of

each patient at every time step.

lated with higher risk of dementia such as irregular A.5.4. VISUALIZING EMBEDDING CLUSTERS FOR
dementia rating scores are present in clusters contain- MIMIC rrROM RAW FEATURES
ing higher proportion of AD. The heatmap uses the

first version of our model out of the 10 experimental We also tried our clustering-based heatmap visual-
repeats. ization for clusters from raw feature vectors instead
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of TEMPORAL-SCL’s embedding vectors. Using raw
features results in less useful heatmaps. For example,
in MIMIC as shown in Figure A.6, using raw feature
vectors and 20 clusters, the resulting heatmap has
high concentration in one cluster (93% of data are in
a single cluster) and the mortality rates across clusters
are nearly all below 35% (so the clusters found do
not distinguish between patients with intermediate
mortality probabilities, e.g., between 50% to 100%).
Neither of these issues arise when we cluster on our
model’s embedding vectors as shown in Figure A.4.

A.5.5. ABLATION EXPERIMENTS

We conduct an ablation study of excluding the three
modules of our framework: (1) pre-training, (2) near-
est neighbor pairing, and (3) temporal network. In-
cluding or withholding each of these modules results
in the following ablated models respectively:

1. SiMPLE-SCL
(Pre-Training: X, NN Pairing: X, Temporal: X)

2. TEMPORAL-SCL - Pretrain Only
(Pre-Training: v/, NN Pairing: X, Temporal: X)

3. TEMPORAL-SCL - NN Pairing Only
(Pre-Training: X, NN Pairing: v/, Temporal: X)

4. TEMPORAL-SCL - Temporal Only
(Pre-Training: X, NN Pairing: X, Temporal: /)

5. TEMPORAL-SCL - No Pretrain
(Pre-Training: X, NN Pairing: v/, Temporal: V)

6. TEMPORAL-SCL - No NN Pairing
(Pre-Training: v/, NN Pairing: X, Temporal: v)

7. TEMPORAL-SCL - No Temporal
(Pre-Training: v/, NN Pairing: v/, Temporal: X)

8. TEMPORAL-SCL - Full
(Pre-Training: v/, NN Pairing: v/, Temporal: v)

We observe that together, all three modules play a
key role in performance for both our synthetic and
real-world clinical datasets experiments.

Synethtic dataset. In Table 4.1, examining the
ablated models reveals the distinct contributions of
each module in our synthetic experiments. Specifi-
cally, the observed decrease in Silhouette Index (SI)
when NN pairing is absent underscores its pivotal role
in maintaining feature similarity, which is instrumen-
tal in ground truth recovery. Conversely, the model
lacking pre-training suggests that while pre-training

facilitates initial model configuration, the presence
of NN pairing and the temporal network can partly
mitigate its absence.

These results highlight the NN pairing module’s
significance in organizing the embedding space, a no-
tion further evidenced by the relatively higher SI in
the NN Pairing Only ablation (3) compared to other
single-module ablations.

The temporal network’s role, while not markedly
influencing performance metrics in isolation, proves
vital for the temporal structure within the embedding
space. This is contrasted with the SIMPLE-SCL model,
where the simultaneous absence of NN pairing and
the temporal network leads to the lowest performance
metrics, emphasizing the necessity of their collective
functionality.

The full TEMPORAL-SCL configuration exhibits
superior SI and Cluster Prediction Accuracy, demon-
strating the synergistic effect of the three modules in
both the recovery of input structure and the enhance-
ment of downstream task prediction.

In Figure A.3, we include ablations of the most
simple model (1) and ablations of single module omit-
ted (6), (7), alongside the fully-equipped model (8).
The learned embedding space from these models il-
lustrates high prediction accuracy, as evidenced by a
hyperplane nearly perfectly segregating the red data
points from the blue data points. However, the figure
also showcases the collective capacity of the modules
to recover the known ground-truth embedding vectors.
Notably, only the complete model represented in Fig-
ure 4.1(e) achieves an accurate reconstruction of the
embedding structure, evidenced by distinct, correctly
ordered clusters for each timestep.

Clinical datasets. We present an ablation study of
our model to see how each modification contributes to
the performance. Our full model includes pre-training
with SIMPLE-SCL, enhancing the Temporal Network
h, and using “labels+feature-similarity” for finding
the nearest neighbor pairs. We train the extra 7 ad-
ditional ablated models in this section on both our
MIMIC and ADNI datasets. Note that to discover
discrete latent states that could be of interest, we
cluster on the learned hyperspherical embeddings (the
ZEZ) variables) using a complete linkage Agglomera-
tive Hierarchical Clustering (Murtagh and Contreras,
2012). We describe our clustering approach in Ap-
pendix A.4.5. The unsupervised metrics presented
here are evaluated for the same number of clusters in
each ablation.
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Table A.2: Ablation Study: Supervised and unsupervised performance.

Supervised

Dataset Model

Unsupervised

AUROC

AUPRC Purity NMI ARI SI

SiMPLE-SCL
TEMPORAL-SCL (PT:v/, NN:X, TR:X)
TEMPORAL-SCL (PT:X, NN:v/, TR:X)
TEMPORAL-SCL (PT:X, NN:X, TR:v)
TEMPORAL-SCL (PT:X, NN:/, TR:V)
TEMPORAL-SCL (PT:v/, NN:X, TR:V)
TEMPORAL-SCL (PT:/, NN:v/, TR:X)

TEMPORAL-SCL (Full)

0.753+0.005
0.752+0.002
0.770+0.002
0.766+0.001
0.754=+0.006
0.767+0.002
0.770+0.002
0.773+0.002

MIMIC

0.49840.003
0.49840.001
0.51640.003
0.50840.002
0.4994:0.003
0.51140.002
0.5184+0.003
0.5204-0.003

0.011+£0.010
0.011+0.001
0.269+0.021
0.141+0.038
0.031£0.018
0.143+0.007
0.398+0.055
0.423+0.065

0.773+£0.005
0.770+0.005
0.78840.002
0.78940.001
0.775£0.000
0.78140.000
0.77640.001
0.79310.001

0.00740.003 0.003£0.002
0.006+0.003 0.002+0.002
0.0934+0.006 0.108+0.031
0.1114+0.003 0.096+0.008
0.00740.002 0.002£0.001
0.1124+0.007 0.150+0.034
0.0914+0.004 0.097+0.009
0.1154+0.002 0.128+0.014

SimMPLE-SCL
TEMPORAL-SCL (PT:v/, NN:X, TR:X)
TEMPORAL-SCL (PT:X, NN:/, TR:X)
TEMPORAL-SCL (PT:X, NN:X, TR:v)
TEMPORAL-SCL (PT:X, NN:/, TR:V)
TEMPORAL-SCL (PT:/, NN:X, TR:V)
TEMPORAL-SCL (PT:v/, NN:/, TR:X)

TEMPORAL-SCL (Full)

0.947+0.001
0.947+0.001
0.987+0.001
0.950+0.002
0.967+0.002
0.951+0.002
0.988+0.001
0.990-0.004

ADNI

0.89440.015
0.89440.014
0.89940.011
0.785+£0.015
0.90040.017
0.7624+0.010
0.903+0.011
0.936+0.014

0.177+0.144
0.176+0.150
0.199+0.029
0.159+0.101
0.149+0.080
0.163+0.008
0.197+0.033
0.259+0.031

0.63940.023
0.640+0.029
0.7534+0.010
0.68540.025
0.71340.095
0.74940.009
0.7534+0.011
0.7551+0.023

0.15940.058 0.230+£0.012
0.163+0.042 0.219+£0.018
0.4084+0.026 0.288+0.017
0.26240.016 0.210£0.071
0.275+0.120 0.209+£0.104
0.446+0.009 0.334+0.015
0.41540.024 0.300£0.042
0.4521+0.031 0.399-0.010

PT: Pre-Training, NN: Nearest Neighbor pairing, TR: Temporal Network

Table A.3: Future Prediction on ADNI data test set accuracy (mean =+ std. dev. across 10 experiments).

6 months in the future

Model

1 year in the future

AUROC AUPRC AUROC AUPRC
Logistic Regression 0.825+0.007 0.659£0.008 0.767+0.006 0.620£0.012
LSTM 0.880-+0.003 0.789+£0.005 0.856+0.004 0.736£0.008
RETAIN 0.882+0.010 0.793£0.016 0.867+0.013 0.740+£0.017
DIPOLE 0.940+£0.006 0.864+0.009 0.918+0.008 0.813+0.010
AC-TPC 0.823+0.011 0.702£0.016 0.804+0.014 0.679£0.020
Transformer:BERT 0.947+£0.005 0.880+£0.010 0.939+0.007 0.846+£0.011
SiMPLE-SCL 0.922+0.005 0.794£0.016 0.899+0.003 0.764£0.015
TEMPORAL-SCL (no pretrain) 0.950+0.002 0.878+0.014 0.930+0.002 0.807+£0.018
TEMPORAL-SCL (no NN pairing) 0.948+0.002 0.842+40.012 0.929+£0.002 0.800£0.011
TEMPORAL-SCL (full) 0.985+0.002 0.907+0.012 0.970+0.003 0.878+0.015

Firstly, our empirical findings show that for the
models without pre-training and without the tem-
poral network h (SIMPLE-SCL), we see a clear per-
formance drop for all supervised and unsupervised
metrics which highlights the importance of inclusion
of these modules in our model training. We also calcu-
lated the Silhouette Index (SI) of the ablated models
in the last column of Table A.2. As it can be seen
from the ablation results, with respect to the super-
vised prediction performance (AUROC, AUPRC), the
two models with and without NN pairing ((5), (8))
perform similarly. However, the main gain of using
“labels+feature similarity” comes in the unsupervised
prediction performance (Purity, NMI, ARI, SI). This
is especially apparent in the Silhouette Index score (a
measure of how similar an object is to its own cluster
compared to other clusters) where we see the great-
est boost in performance when using “labels+feature

vh

similarity” (full model (8)) instead of “labels only
(ablated model (5)) where it shows how our model
moves away from just stratifying risk (which is what
the supervised metrics are measuring) to additionally
being capable of identifying homogeneous disease phe-
notypes. These experiments together, underscore the
significance of having the different building blocks of
our model for achieving the highest performance gain
in our experiments.

Additionally, the ablation results shown in the bot-
tom portion of Table 4.2 reveal that the highest perfor-
mance gain with respect to the supervised prediction
performance (AUROC, AUPRC) is achieved by the
full TEMPORAL-SCL. In our MIMIC experiment, the
ablated model without only the nearest neighbor pair-
ing achieves the closest performance to the full model,
while in ADNI, where the prediction task seems to
be easier (as evident by the high prediction scores),
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the ablated model without pre-training and the ab-
lated model without the temporal regularization of
our temporal network are the closests to the full model
with respect to the prediction performance. These
experiments again underscore the significance of the
different building blocks of our model to achieve the
greatest performance gain in our experiments within

MIMIC and ADNI datasets.

A.5.6. ADDITIONAL EXPERIMENTS ON ADNI:
PREDICTING FUTURE COGNITIVE
IMPAIRMENT STATUS

In our experiments presented in 4.2, we followed the
same experimental paradigm of predicting the cur-
rent time step label as conducted by Lee and Van
Der Schaar (2020). In this section however we will
look at an additional prediction task for predicting
the cognitive impairment 6 months and 1 year in the
future. The results are presented in Table A.3 below.
We can see that for this prediction task again our
model outperforms other baselines.
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Figure A.4: Heatmap showing how features (rows) vary across clusters (columns) for the sepsis cohort of the
MIMIC dataset when using clustering on TEMPORAL-SCL learned embedding space. Heatmap
intensity values can be thought of as the conditional probability of seeing a feature value (row)
conditioned on being in a cluster (column); these probabilities are estimated using test set
snapshots. Columns are ordered left to right in increasing fraction of test set snapshots that
come from a time series that has a final outcome of death.
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Figure A.5: Heatmap showing how features (rows) vary across clusters (columns) for the ADNI dataset when
using clustering on TEMPORAL-SCL learned embedding space. Heatmap intensity values can be
thought of as the conditional probability of seeing a feature value (row) conditioned on being
in a cluster (column); these probabilities are estimated using test set snapshots. Columns are
ordered left to right in increasing fraction of test set snapshots that come from a time series that
has a final outcome of Alzheimer’s Disease.
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Figure A.6: Heatmap showing how features (rows) vary across clusters (columns) for the MIMIC dataset when

using clustering on the Raw features instead of model embeddings. Heatmap intensity values can
be thought of as the conditional probability of seeing a feature value (row) conditioned on being
in a cluster (column); these probabilities are estimated using test set snapshots. Columns are
ordered left to right in increasing fraction of test set snapshots that come from a time series that
has a final outcome of death.
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