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Key Elements of  NextG Infrastructure

2

Millimeter Wave/THz Systems

AI Fundamentals 
Robustness & Interpretability 

Interplay of  comm theory, signal proc algorithms, hardware constraints

Comm-theoretic inspiration for shaping deep neural networks for robustness

• MultiGigabit/s communication
• With pervasive availability

• Robust, high-resolution sensing
• At home, on the road

• Pervasive AI
• Cloud to edge
• Invisible plumbing to Chat GPT



NextG Comm & Sensing
(aka mmWave/THz)
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The mmWave àTHz frontier
• “Unlimited” bandwidth

- mmWave: Licensed (28 GHz), unlicensed (60 GHz)

- Towards THz (100+ GHz), regulation TBD

• Tiny wavelengths è miniaturized antenna arrays

• Unique propagation characteristics

• Silicon RFICs, low-cost packaging
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mmWave at UCSB (2005-2017): a sampling

Directional
Networking

Blockage

mmWave Picocells
Modeling, protocols, capacity

mmWave Mesh Backhaul
Routing & Resource Alloc

ADC Fundamentals

Compressive Estimation
Fundamentals, Algorithms, Demo

LoS MIMO 
Fundamentals & Demo

Short-range mmWave Imaging
New models, Proof  of  Concept mmWave Sensing

Sensor Geometries, Algorithms

NSF
QCOM, Samsung, Nokia

FB, Google



What we knew ~7 years ago

• Sweet spot is at short ranges

- In-room indoors, ~100 meters outdoors

• Simple models for sparse channels are effective

• Blockage is not a killer: simulations and experiments

• Compressive estimation for efficient channel estimation & tracking

- New super-resolution algorithms, experimental demonstrations

• LoS MIMO has huge potential: theory and prototyping

• Short-range sensing needs new models and algorithms

- Patch models for extended objects (theory and experiments)

- Exploiting geometric constraints
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Industry was talking about 5G. What next for academia?



JUMP program: ComSenTer (2018-2022) 
Communications & Sensing @ Terahertz

Can mmWave hardware be scaled to these bands?
Massive increase in #RF chains

Low-cost packaging
Silicon whenever possible, augmented by III/V

How can system designs enable/exploit hardware scale?
Hardware-signal processing co-design

Band choices avoiding oxygen absorption peaks
(140, 210, 280 GHz)



What can we do with lots of  antennas? 

• Massive MU-MIMO: the most obvious way to push boundaries

- All-digital è #users scales with #antennas

- Bottlenecks: RF impairments (nonlinearities, phase noise), ADC precision

- Secret weapon: channel sparsity, large #antennas

• LoS MIMO

- Opportunistic deployment, all-digital processing at 10s of  GHz bandwidth 

• Massive MIMO radar

- Large arrays to sidestep range versus field of  view tradeoffs
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2023 onwards: JUMP 2.0 and NSF

• Center for Ubiquitous Connectivity (CUbiC): Optical and wireless

• NSF Rings and 4D100 projects

• Wireless frontiers

- RF hardware: continue pushing boundaries (higher freqs, #antennas)

- Signal processing/VLSI: low-power, modularity, scalability

- Networking: cost-effective dense deployment

- Sensing: bridging the resolution gap in RF sensing
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Who did the work?
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Concept System: Tbps Massive MIMO @140GHz

140 GHz
Picocellular
Uplink
(10 Gbps/user,
100 simultaneous 
users)

Key bottlenecks for all-digital architectures
• Need one RF chain for each antenna.  Can we relax the specs enough that CMOS works?
• Phase noise is high at millimeter wave and THz.  Don’t things get worse as we scale to a 

large number of  antennas?
• ADC cost, power consumption and availability is limited as we scale up bandwidth
• Multiuser detection is needed, but classic architectures do not scale

Hardware/signal processing co-design is crucial



Scaling #antennas in all-digital MIMO

• Generic MIMO-OFDM does not scale

• For a large number of  antennas and/or large bandwidth, and generic
space-time block fading channel model, channel estimation is the 
bottleneck

• Luckily, the mmWave channel is not generic
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The mmWave channel is sparse

13

Even at 28 GHz!

(NIST measurements in Boulder, CO.  Charbonnier et al, TVT 2020)

Certainly at 140 GHz!

(Molisch group measurements on USC campus, Abbasi et al, TWC, to appear)



Scaling via beamspace
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Typical channel: one path is dominant

User k

Path loss Phase progression



Beamspace Representation via spatial FFT 

! = 0.5 &

…
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Upfront cost of  approximate spatial matched filtering: O(N log N) per sample
Payoff: Vastly simplified multiuser detection
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Each user’s energy is concentrated in small beamspace window
èReduced-complexity, parallelized demodulation



Antenna space vs Beamspace MU-MIMO
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Antenna space (dense) Windowed beamspace (sparse)
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Key observations
• Size of  beamspace window does not scale with #antennas
• Window size depends on load factor (#users/#antennas)
è Reduced training overhead, reduced complexity



Rethinking multiuser detection in beamspace

• Local LMMSE detection (SPAWC 2019)

- Significantly reduces complexity at low load factors

• Nonlinear interference cancellation (SPAWC 2020)

- SIC on top of  LMMSE helps push load factors higher

• Wideband space-time interference suppression (Globecom 2019)

- Space-time FFT instead of  true time delay

• Downlink precoding (Asilomar 2019)

- Applying uplink-downlink duality
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Additional insights on scaling
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Severe nonlinearities can be tolerated with scale
(hardware specs can be relaxed)

Scale can be attained with tiling
(phase noise specs can be relaxed)

How far can we go in hardware simplification?
Beamspace with 1-bit ADCs on remote radio heads?



Beamspace with 1-bit ADC

1-bit ADC well matched to low SNR and large # degrees of  
freedom (classical result: 1.96 dB penalty)

But what if  the SNR is too high?
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An example worst-case scenario

• Low-cost remote radio heads deployed densely

- Digital arrays with 1-bit ADC per element

- Beamspace processing

• Rapidly moving users with limited or no power control

• SNR per element high, #users low

è Not enough dithering, input does not look Gaussian

• Need to go back to signals and systems basics
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Severely quantized beamspace processing

• Sparse mmWave channel (single path) on linear array 

ècomplex exponential spatial response

• All-digital: 1-bit ADC on I and Q

• Input to antennas don’t look Gaussian

• è Bussgang decomposition is not accurate

What does the output of the spatial FFT look like?
Can we accurately estimate the channel?
Can we recover the modulated information? 



Fourier analysis of  “hardlimiting” in space



Déjà vu anyone?



Fourier analysis of  “hardlimiting” in space

• Analogous to passband hardlimiter literature from the 1950s (time replaced by 
space), BUT

• Complex exponentials instead of  real-valued sinusoids

• Spatial sampling è aliasing of  spatial frequencies

• Spatial windowing è spreading of  spatial frequencies

• No passband filter è need some other means of  rejecting undesired spatial 
frequencies



Example conclusions

• Analysis accurately predicts DFT outputs 

• è can design based on it

• Design take-away: training sequences with phase ramp

to suppress harmonics during channel estimation

• Correlation against QPSK training sequence cannot 

distinguish between fundamental & harmonics
Beamspace outputs for a single user

Simulation Analysis

Raw DFT (2 users) Post-correlation (user 1) Post-correlation (user 2)
(5th harmonic of  user 1 equals fundamental of  user 2)



All-digital mmWave MU-MIMO
Summary and Status

• Promising first steps for multiuser MIMO for massive scale

• Scale simplifies design of  individual hardware components

• Rich space for continued research on scaling antennas & bandwidth
• Computational complexity

• Precision constraints (ADC and DAC) and analog nonlinearities

• Interactions with mobility and power control
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LoS MIMO everywhere
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LoS MIMO is a natural concept for mmWave and THz

Number of spatial degrees of freedom 
(based on information-theoretic considerations):
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2 orders of
magnitude
in range & 
data rate

Significant progress in past decade

UCSB lab demo @ 60 GHz (2010)
4-fold spatial multiplexing
2.4 Gbps aggregate data rate
Range 10-40 meters

Ericsson prototype link in E-band (2019)
8-fold multiplexing: 4 spatial, 2X polarization
100 Gbps aggregate data rate
Range 1500 meters

Widespread deployment of LoS MIMO requires less bulky and expensive equipment



Short-range backhaul more interesting?

Reasonable form factor, but how about cost & power?
• CMOS or SiGe RFICs with required power are within reach  
• DSP is key to economies of scale in baseband processing
• ADC is a bottleneck at 10-20 GHz bandwidths
• Geometric misalignments result in channel dispersion

Transmitter Receiver

R = 100 m

d =33 cm

160 Gbps!

4 x 4 MIMO
130/140 GHz carrier frequency
40 Gbps per stream
Antenna spacing 33cm
(lamppost-compatible)



Endemically misaligned LoS MIMO

• Misalignment will be routine in mesh networks with LoS MIMO links
è Inter- and intra-stream interference
• Can we invert this space-time channel?
• Time domain oversampling not on the cards at 20 GHz bandwidth
• The answer: spatial oversampling



Spatial oversampling for robust LoS MIMO

• QPSK modulation 
• BW = 20 GHz for fc = 130 GHz 
• Symbol duration T = 50 ps and # = 2.3 mm 
• Transmit pulse - RC waveform with β = 0.25
• Symbol rate sampling: TS = T

Aperture is 100s of  wavelengths è room to fit additional elements

Different versions of  
sampled response

at different elements



Adaptive windowing with spatial oversampling

!0 = 3.67 ◦
'0 = −4.30 ◦
!1 = 6.36 ◦
'1 = 7.19 ◦

Misalignment example 
:



BER curves and dimension counting

Error floors avoided when signal space dimension 
is bigger than # strong interference vectors



Opportunistic LoS MIMO
Summary and Status

Spatial oversampling increases resilience to impairments

(misalignment, precision constraints) 

Many hardware, architecture and algorithm issues remain

But in principle, flexible, low-cost “wireless fiber” is feasible
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Massive MIMO Radar
A Compressive Approach
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Current state of  MIMO radar

Figures courtesy 
Texas Instruments

TI’s AWR2243 Cascade Radar RF 
development kit

• Small number of  TX antennas 

• Larger, λ/2-spaced receive antenna array

• Virtual transmit array: TXs take turns



Current state of  MIMO radar

• Drawbacks

× No transmit beamforming gain – FOV/range tradeoff  limited by element 
directivity

× Scalability – frame grows large as # TX antennas increases
Figures courtesy of 
Texas Instruments



Can we leverage developments in comm hardware?

• Large transmit arrays with RF (analog) beamforming

• Large field of  view for each element, sharp beams: range/FOV tradeoff  
eliminated by increasing # TX elements

TowerJazz and UCSD:
256-element (16 x 16), 60GHz phased-array transmitter
56-65GHz frequency range

Fujitsu: 28 GHz, 128-element phased array antenna
16 x 8 patch antenna elements (per direction)
Four independent beams, steerable horizontally and vertically.

Which concepts from MIMO comm can we bring into MIMO radar?



Concept 1: Compressive estimation of  sparse channels

• Large transmit arrays with RF (analog) beamforming

• Locating users in FOV? Sparse channel estimation problem

• (Off-grid) Compressive channel estimation

Ramasamy, Dinesh, Sriram Venkateswaran, and Upamanyu Madhow. “Compressive tracking with 1000-element arrays: A framework for multi-Gbps mm wave cellular downlinks.” Allerton, 2012.
Marzi, Zhinus, Dinesh Ramasamy, and Upamanyu Madhow. “Compressive channel estimation and tracking for large arrays in mm-wave picocells.” IEEE Journal of Selected Topics in Signal Processing, 
2016

M×1
M×N

N×1

M<<N

Feedback Y

Feedback Y (I 
and Q)

High 
dimension

(N) Sparse 
(a few paths)



Concept 2: Efficient off-grid estimation with 
Newtonized OMP (NOMP)
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Update gains by least squares

B. Mamandipoor, D. Ramasamy, U. Madhow, “Newtonized Orthogonal Matching Pursuit: Frequency Estimation over the Continuum,” in IEEE Transactions on Signal Processing, 2016. 

• Super-resolution
Estimating over the continuum



From sparse channel estimation to target detection

• Can we apply the same principle to CWFM radar?

• RF beamformed transmitter (phased array)

• Digital receiver(s)

• ……………………
…….

Transmitter Receiver

M elementsN elements A virtual array 
of MN elements 
can be created

pseudorandom beams
(Compressive sensing)

Overlay compressive angular scanning on range/Doppler estimation



Compressive scanning

Fr
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y

Time
The waveform could be standard FMCW chirp

n0 chirps n0 chirps

Subframe (compressive beam 1) Subframe (compressive beam 2)

Frame (K compressive beams with a total of n = n0K chirps)

• Range processing unchanged
• Need to modify Doppler processing to handle angle-dependent phase 

shifts across subframes.

…

… …



Preliminary results - setup

• Number of  targets ~" 1,… , 9 , dynamic range ≤ 18 dB

• SNR per element = 5 dB ' = 128 + = 1

-
. spacing 

Fr
eq

ue
nc

y

Time

Subframe with n0 = 32 chirps

Frame (K = 15 compressive beams (subframes) with a total of n = 480 chirps)

… …

512 samples per chirp
range FFT oversampled by 8

doppler FFT oversampled by 16*



Preliminary results

• Super-resolution even at relatively low SNR



Scaling MIMO radar
Summary and Status

Massive MIMO radar enabled by compressive scanning 

Sidesteps range/FOV tradeoffs in existing MIMO radar

Preliminary results show promise; more detailed eval needed

Ultimate Goal: bridge the resolution gap between RF & optical sensing

Significant opportunities in joint communication & sensing
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Signal Processing for mmWave/THz

• Pushing to higher carrier frequencies keeps opening up new intellectual 
challenges via hardware/signal processing entanglement

- Hardware bottlenecks force system innovations

- Hardware advances open up new system possibilities

- Key ideas: antenna scaling, bandwidth scaling, sparsity, geometry

• Ambitious system specs today become industry focus ~10 yrs from now

- The only legitimate barriers are physics and information theory fundamentals

• (sub)-THz sensing is the new frontier

- Unprecedented spatiotemporal resolution

- Privacy-preserving, more robust than optical

- We have only scratched the surface of  massive and distributed MIMO for sensing
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For further exploration

• Wireless Communication and Sensornets Lab (WCSL) home page: 
https://wcsl.ece.ucsb.edu

• NSF Giganets project (2015-2020): https://wcsl.ece.ucsb.edu/giganets

- Papers from interdisciplinary collaborations involving hardware, signal 
processing and systems

- Tutorial material (IISc summer school 2016, ACM SigComm 2017)

• ComSenTer (2018-2022): https://comsenter.engr.ucsb.edu/

- UCSB-led center funded by DARPA and SRC

- Pushing the limits of  mm-wave and THz comm and sensing: both hardware 
and signal processing

• CUbiC (2023-27): https://cubic.engineering.columbia.edu/

- Columbia-led center on NextG connectivity

- Technology for low-cost, ubiquitous deployment
52
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And now for something completely different….

Communication theory for robust deep learning
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Who’s involved
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Can Bakiskan
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(PhD student)
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Builds on prior work by…

In an advisory role…
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(Google)
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The big picture

• AI = Deep Neural Networks (for all practical purposes)

• We all know that DNNs are brittle black boxes

- That does not stop us from using them everywhere

• Soft failures are OK in many applications

• But lack of  robustness and interpretability blocks many others

55

Deep Networks: State-of-the-art in ML

Inter-class variability
Intra-class variability

Figure from Sze et al. (2017)
2 / 19

~12 years of
furious activity

AlexNet “cats dancing tango” by
Microsoft Image Creator



What’s behind the DNN revolution?

• Backprop works

- Big data, big compute

- Sigmoidà ReLU so gradients propagate down

- Deeper is better, overparametrization is better

• Design approach is very open to experimentation

- Define cost function (depends on learning modality)

- Play with architectures and hyperparameters

• Empirical results blow away the state of  the art in most applications

è We try to work around concerns such as (lack of) robustness, 
interpretability, fairness in applications…
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Can we do better?



Early warning signal: adversarial examples
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Stop sign à 45 mphPig à Plane

Szegedy et al, Intriguing properties of  neural networks, 2013-14.
Goodfellow et al, Explaining and harnessing adversarial examples, 2014-15.

• DNNs are too linear
• Small perturbations can add up to large numbers in high dimensions

Key insights from a decade ago

have not led to concrete design guidelines for robustness



A more pressing (?) concern: OOD robustness
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Hard to define “out of  distribution” precisely
But you know it when you see it

We expect DNNs to be robust to “common corruptions”



SOTA approach for “robust” DNNs 
is data augmentation
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SOTA defense against adversarial perturbations

Adversarial training
augment with adversarial examples generated while training



SOTA for OOD robustness
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is also data augmentation!
AugMix, RandAugment, AutoAugment,…

Hendrycks et al, Augmix: A simple data processing method to improve robustness and uncertainty, ICLR 2020.



Our thesis: lack of  robustness is a symptom

The disease: we do not control the features DNNs are extracting

èWe cannot design in robustness guarantees

èWe cannot interpret what DNNs are doing
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End-to-end training (with or without augmentation) è Black box



Our approach: shaping DNNs for robustness

• Axiom: Learning can only work if  data has low-dimensional structure

• Can we “match” our DNN layers to these low-dimensional manifolds?

• Idea: shape each layer of  DNNs to produce sparse, strong activations

- Small fraction of  strong activations are harder to perturb

- Large fraction of  weak activations can be attenuated/removed

- Increased resilience, potentially better generalization and interpretability

• How does communication theory come in?

- Learn matched filters at each layer (using layerwise objectives)

- Output posterior probabilities at each layer

- Codifies initial insights from neuroscience used in our prior work
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Neuronal competition during training 
via layerwise Hebbian/anti-Hebbian (HaH) learning

/DUJH�$FWLYDWLRQ

6PDOO�$FWLYDWLRQ

Our prior work inspired by neuroscience
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(Cekic et al, ICIP 2022, 2022 ICML Workshop Adv ML)  



Communication theory principles yield 
better (and neuro-plausible) designs
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Learning neuronal “matched filters”
A communication-theoretic formulation è tilted exponentials
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M-ary hypothesis testing in Gaussian noise

Likelihood function conditioned on hypothesis

Likelihood function averaged across hypotheses 

<latexit sha1_base64="gqRXw/0HDTRKJrOefTGBtG18njc="></latexit>

Hi : x = si + n , i = 1, ...,M

Wish to learn the signal templates
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Log likelihood (for adding across data samples) è tilted exponential
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ai = hx, sii

Tilt (hyperparameter)

Activation of  ith neuron 

<latexit sha1_base64="Se5foiSgDq2sU5I+i2mArECCf1s=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKewGX8egF48RzAOSNcxOZpMhM7PrzKwQlvyEFw+KePV3vPk3TjZ70MSChqKqm+6uIOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvpn57SeqNIvkvZnE1Bd4KFnICDZW6vQ0Gwr8UOuXK27VzYCWiZeTCuRo9MtfvUFEEkGlIRxr3fXc2PgpVoYRTqelXqJpjMkYD2nXUokF1X6a3TtFJ1YZoDBStqRBmfp7IsVC64kIbKfAZqQXvZn4n9dNTHjlp0zGiaGSzBeFCUcmQrPn0YApSgyfWIKJYvZWREZYYWJsRCUbgrf48jJp1areRfX87qxSv87jKMIRHMMpeHAJdbiFBjSBAIdneIU359F5cd6dj3lrwclnDuEPnM8fyQSP0Q==</latexit>

�2“Data noise”



TEXP learning is Hebbian

• Implicitly normalize activations for fair competition

• Geometry of  TEXP gradient update
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Relatively stronger activations
weighted more heavily

Rotate template towards input

<latexit sha1_base64="hqEVI9ZsStHFlqxUTAnBuh77Vbs=">AAACQXicbZA9TxtBEIb3gABxEjCkpBlhRbIb6y7iq0FC0KRBIhIGSz7ntLees1fe+9DuHMJaHT+Nhn9Alz5NiqAoLQ1r4yKBjLSrV+87o9154kJJQ77/3VtYXHqzvLL6tvbu/Ye19frG5oXJSy2wI3KV627MDSqZYYckKewWGnkaK7yMxyfT/PIKtZF5dk6TAvspH2YykYKTs6J69zyyIY2QeAXNMOU0ihN7XUELDiFU+dBdmFATIEw0Fzao7GkFoSnTyMrDoPp26hK8LqBJcAM8ki0ItRyOqBXVG37bnxW8FsFcNNi8zqL6fTjIRZliRkJxY3qBX1Dfck1SKKxqYWmw4GLMh9hzMuMpmr6dEajgk3MGkOTanYxg5v49YXlqzCSNXed0R/Mym5r/y3olJQd9K7OiJMzE80NJqYBymOKEgdQoSE2c4EJL91cQI+5QkYNecxCClyu/Fhef28Fee/frTuPoeI5jlW2xbdZkAdtnR+wLO2MdJtgt+8F+sQfvzvvp/fb+PLcuePOZj+yf8h6fAEEYrkM=</latexit>

T✓(x) = log

 
1

M

MX

i=1

exp(t ai)

!Recall TEXP objective to be maximized



TEXP inference: soft decisions
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<latexit sha1_base64="gqRXw/0HDTRKJrOefTGBtG18njc="></latexit>

Hi : x = si + n , i = 1, ...,M

M-ary hypothesis testing in Gaussian noise

Soft decisions (posterior probabilities)
<latexit sha1_base64="3gLUyGH42kKIqbuy1XiXa11Pm+4="></latexit>

P (Hi|x) =
L✓(x|Hi)P (Hi)PM

j=1 L✓(x|Hj)P (Hj)
=

exp
�

1
�2 hx, sii

�
PM

j=1 exp
�

1
�2 hx, sji

� = Softmax(t ai)

Set “data noise” for inference higher than for training
è Increased robustness despite training with clean data

Smoothened “divisive normalization”
Eliminates vulnerability due to “excessive linearity”



The geometry of  TEXP via a simplified example
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A 2D Gaussian signal hiding in 10D Gaussian noise

Neurons learnt via TEXP hone in on 2D “signal subspace”
Energy of  neurons in 8D orthogonal “noise subspace” falls off  as we train



TEXP in CNNs
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• Training: supplement end-to-end cost with TEXP-based layerwise costs
• Smooth objective leading to Hebbian learning

• Inference: replace ReLU + batch norm by tilted softmax
• Implicit normalization and thresholding
• Tilted softmax is a form of  divisive normalization

• Outperforms our prior work on Hebbian/anti-Hebbian (HaH) learning

Puranik et al, 2023 ICML Workshop Adv ML, AISTATS 2024



Why TEXP is expected to increase robustness
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• Gradient of  TEXP objective promotes strong activations
• Tilted softmax inference è nonlinearity attenuating perturbations
• Smaller tilt for inference than for training è robustness
• Neuron-specific thresholding è denoising

Many open questions before TEXP can become a generic layer
• How do we choose the tilt parameters?
• How do we weight the layerwise objectives?



TEXP provides broad spectrum robustness

72Outperforms HaH, plays well with augmentation

Detailed performance report under common corruptions (highest severity level)

Performs well for both common corruptions and mild adversarial attacks



Parting Thoughts

• Pure reliance on end-to-end training can only lead to black boxes

- Limits the possibility of  performance guarantees and interpretability

• Layer-wise feature control is a potential robustifier

- Shaping layer outputs to be sparse and strong enhances resilience

• Preliminary results promising, but most of  the work remains…

- More efficient training, guidance on hyperparameters

- Additional shaping design guidelines and theoretical foundations

- Different learning modalities (self-supervised, unsupervised, RL,…)

- Enhanced interpretability?
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