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The convergence of research and innovation.

Key Elements of NextG Infrastructure

*  MultiGigabit/s communication
* With pervasive availability
* Robust, high-resolution sensing
* At home, on the road

—  Millimeter Wave/THz Systems

Interplay of comm theory, signal proc algorithms, hardware constraints

* Pervasive Al
e Cloud to edge — Al Fundamentals

* Invisible plumbing to Chat GPT Robustness & Interpretability

Comm-theoretic inspiration for shaping deep neural networks for robustness



NextG Comm & Sensing
(aka mmWave / THz)
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he convergence of research and innovation.

The mmWave 2 THz frontier

¢ “Unlimited” bandwidth
- mmWave: Licensed (28 GHz), unlicensed (60 GHz)
= Towards THz (100+ GHz), regulation TBD

* Tiny wavelengths = miniaturized antenna arrays

* Unique propagation characteristics

* Silicon RFICs, low-cost packaging
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mmWave at UCSB (2005-2017): a sampling
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Fig. 1: Picocellular network deployed along an urban canyon

REIREIRE

M ker sy 8 Grand Centr
, ~ am'a s 5 W3 St GeandCenty
R T/ T/ A 3, < &
atio S & St
T — e : i ! i r A SR -
v v

Short-range mmWave Imaging Wave Seqsi
New models, Proof of Concept mm ave_ ensmg
Sensor Geometries, Algorithms

Al

Compact
10

A2
10 10
Al ] §
LS R BN
o gl THER
- 10 -10 -10 'y 1 gt
£ 4 i [ 0 o o 0 o o 10 6d) (0,
| _’ X~ Aunits A unit Aunit
-1- s MSLL:=8 dB, BW:5.7" | MSLL:-10.2 B, BW:S*  MSLL:-12.8 dB, BW:12.1° Joahd) 2 N h
s 05 A e \ .
R TS B L ) . 20 . 20 ) / | Ny
i T A% e 0~ Y vy |y Y
e o 0 Jorim 1 L L
, r\ D) Od B . . : 3 .
S 0 % . » § R
Fig. 5. Experimental data collection using 60 GHz quasi-monostatic radar system. Fig. 8. Sparse array III (a) Point MF (b) Patch MF (1cm X lcm). Fig. 1. 2D System model with a lincar array of radar laced on
05 0 05 045 - U X-coordinates, [l1, [z, I3, (). The kinematic states 21, 2> ets are
05 0 0s 08 0 05 os 0 0s 10 be estimated using the unordered range and doppler observations from the
U u U

sensors.



(™ UCSANTA BARBARA
» engineering

The convergence of research and innovation.

What we knew ~7 years ago

® Sweet spot is at short ranges
- In-room indoors, ~100 meters outdoots

® Simple models for sparse channels are effective

® Blockage is not a killer: simulations and experiments

® Compresstve estimation for efficient channel estimation & tracking
- New super-resolution algorithms, experimental demonstrations

® LoS MIMO has huge potential: theory and prototyping

® Short-range sensing needs new models and algorithms
= Patch models for extended objects (theory and experiments)

- Exploiting geometric constraints

Industry was talking about 5G. What next for academiar
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JUMP program: ComSenTer (2018-2022)
Communications & Sensing (@ Terahertz

spat/|ally-mult|plexed mm-\.{vave base stations MIMO array
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Can mmWave hardware be scaled to these bands?
Massive increase in #RF chains
Low-cost packaging
Silicon whenever possible, augmented by I11/V
How can system designs enable/exploit hardware scale?
Hardware-signal processing co-design
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What can we do with lots of antennas?

®  Massive MU-MIMO: the most obvious way to push boundaries
- All-digital =» #users scales with #antennas
- Bottlenecks: RF impairments (nonlinearities, phase noise), ADC precision
- Secret weapon: channel sparsity, large #antennas

* LoS MIMO

- Opportunistic deployment, all-digital processing at 10s of GHz bandwidth
® Massive MIMO radar

- Large arrays to sidestep range versus field of view tradeoffs
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2023 onwards: JUMP 2.0 and NSF

® Center for Ubiquitous Connectivity (CUDbiC): Optical and wireless
® NSF Rings and 4D100 projects
® Wireless frontiers
- RF hardware: continue pushing boundaries (higher freqs, #antennas)
- Signal processing/VLSI: low-power, modularity, scalability
- Networking: cost-effective dense deployment

- Sensing: bridging the resolution gap in RF sensing
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Who did the work?

Mohammed Abdelghany Maryam E. Rasekh Ahmet Sezer

Lalitha Giridhar Canan Cebect

10



(™ UCSANTA BARBARA
» engineering

e of research and innovation.

Concept System: Tbps Massive MIMO @140GHz

L?;j:i:::y Baseband (VGA) 1/Q 2b-bits 1 40 GHZ
» )/ NonLinearity Model ~ (0dBm input signal) Plcoceﬂula r
A
Passband (LNA + Mixer)
NonLinearity Model §fp ( i ) B e Uphnk
Noise —
— (10 Gbps/user,

100 simultaneous

K-users output

LMMSE

users)

[ A A A N e

Key bottlenecks for all-digital architectures

* Need one RF chain for each antenna. Can we relax the specs enough that CMOS works?

* Phase noise is high at millimeter wave and THz. Don’t things get worse as we scale to a
large number of antennas?

* ADC cost, power consumption and availability is limited as we scale up bandwidth

*  Multiuser detection is needed, but classic architectures do not scale

Hardware/signal processing co-design is crucial
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Scaling #antennas in all-digital MIMO

*  Generic MIMO-OFDM does not scale
® For alarge number of antennas and/or large bandwidth, and generic
space-time block fading channel model, channel estimation 1s the

bottleneck

ISIT 1997, Ulm, Germany, june 29 — July 4

Bandwidth Scaling for Fading Channels

R. Gallager M. Médard

MIT LIDS MIT Lincoln Laboratory
Room 35-207, 77 Massachusetts Ave. Room C-277, 244 Wood St.
Cambridge, MA 02139 Lexington, MA 02173
gallager@lids.mit.edu medard@I]l.mit.edu

® Luckily, the mmWave channel is 7of generic

12
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The mmWave channel is sparse
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Scaling via beamspace

14
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Typical channel: one path is dominant
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Beamspace Representation via spatial FFT

AoOA = -60° |fft(h)|, AoA = -60°
6" " " """ "™ """
14
12}
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d=052 n k

Upfront cost of approximate spatial matched filtering: O(N log N) per sample
Payoff: Vastly simplified multiuser detection



(N UG SANTA BARBARA
» engineering

Channel Sparsity in Beamspace

Channel matrix (Antenna space) Channel matrix (Beamspace .
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Each user’s energy is concentrated in small beamspace window
=» Reduced-complexity, parallelized demodulation

17
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Antenna space vs Beamspace MU-MIMO

Antenna space (dense) Windowed beamspace (sparse)

Inference
Clse wa |=> g
k=1~K

Inference

CHy )y ﬁ

Key observations
* Size of beamspace window does not scale with #antennas
* Window size depends on load factor (Husers/#Hantennas)
=» Reduced training overhead, reduced complexity



(™ UCSANTA BARBARA
v engineering

nvergence of research and innovation.

Rethinking multiuser detection in beamspace |

* TLocal LMMSE detection (SPAWC 2019) —avin sz

10-2 ) =t win. size=9
NN N e Exact LMMSE

- Significantly reduces complexity at low load factors

10-3 A

104 : - ' '
8 10 12 14 16
SNRedge (dB)

® Nonlinear interference cancellation (SPAWC 2020)
= SIC on top of LMMSE helps push load factors higher

® Wideband space-time interference suppression (Globecom 2019)
- Space-time FFT instead of true time delay

® Downlink precoding (Asilomar 2019)
- Applying uplink-downlink duality

19
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Additional insights on scaling

Scale can be attained with tiling
(phase noise specs can be relaxed)

-3 2 -1 0 1 2 3
X

Severe nonlinearities can be tolerated with scale
(hardware specs can be relaxed)

How far can we go in hardware simplification?
Beamspace with 1-bit ADCs on remote radio heads?

20
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Beamspace with 1-bit ADC

1-bit ADC well matched to low SNR and large # degrees of
freedom (classical result: 1.96 dB penalty)

But what if the SNR 1is too high?

21
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An example worst-case scenario

® Low-cost remote radio heads deployed densely
- Digital arrays with 1-bit ADC per element
- Beamspace processing
® Rapidly moving users with limited or no power control
® SNR per element high, #users low
=» Not enough dithering, input does not look Gaussian

® Need to go back to signals and systems basics

22



(™ UCSANTA BARBARA
» engineering

Severely quantized beamspace processing

‘9 A * Sparse mmWave channel (single path) on linear array
ecomplex exponential spatial response

* All-digital: 1-bit ADC on I and Q

* Input to antennas don’t look Gaussian

° = Bussgang decomposition 1S NOt accurate

What does the output of the spatial FFT look like?
Can we accurately estimate the channel?
Can we recover the modulated information?
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Fourier analysis of “hardlimiting” in space

@ [ejoejkeﬂk ...... e/ _l)k] —_— 1-bit Quantizer _—

@ can be written as:
sn] s[n]Wyln] O(s[n])Wyln]
® s(x)=eikx — NI —— —_— _—

We can rearrange the order of the above operations. @ is equivalent to @ :

. Q(s(x)) O(s[n]) O(s[n])Wyln]
@ eka bmmmndll 1-bit Quantizer —— EEEEdER — _—
L= Uy — Ty, — 3y Yo 580, W -+ -
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Déja vu anyone?

34 IEEE TRANSACTIONS ON INFORMATION THEORY January

Hard-Limiting of Two Signals in Random Noisc*

J. J. JONES{, MEMBER, IRE

vg(x) |
1— 1
y(t) =zt
! 0 W w

IDEAL LIMITER  BAND-PASS FILTER

Fig. 1—An ideal band-pass limiter showing an input composed
of two signals in random noise,

2 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-15, No. 1, JANUARY 1969

Hard Limiting of Three and Four Sinusoidal Signals

WILLIAM SOLLFREY
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Fourier analysis of “hardlimiting” in space

@ [ejoejkeﬂk ...... e/ _l)k] _— 1-bit Quantizer —_—
@ can be written as: = b = Ty =3y, Y S5 Wi+
07+
s[n] s[n]Wy[n] O(s[n])Wyln]
@ s(x) = UGS . ;| -1 [ —_— —_—
We can rearrange the order of the above operations. @ is equivalent to @ - m ‘ I
x Q(s(x)) Q(s[n]) Q(s[n])WN[n] “ % w0 0 o 0 ) )
@ e’ bmmmndil 1-bit Quantizer —— EECEdER ——— _—

® Analogous to passband hardlimiter literature from the 1950s (time replaced by
space), BUT

Complex exponentials instead of real-valued sinusoids

Spatial sampling = aliasing of spatial frequencies

Spatial windowing = spreading of spatial frequencies

No passband filter = need some other means of rejecting undesired spatial

frequencies



(™ UCSANTA BARBARA
» engineering

Example conclusions

® Analysis accurately predicts DFT outputs
® = can design based on it

® Design take-away: training sequences with phase ramp

o3t R
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alaleatsmistaloolaalad . L 1 ] s &
© o1 02 03 o0& 05 08 07 08 09 1 ) (90 ORI TP ) O o v
01 o0z 03 o4 o5 07 08 09 1

Simulation Analysis

to suppress harmonics during channel estimation

: ® Correlation against QPSK training sequence cannot
Beamspace outputs for a single user

distinguish between fundamental & harmonics

03

02

01 -
.,Jﬁ‘ vis : x v
o o1 o0z 03 04 05 06 o7 08 09 1

. X o

Raw DFT (2 users) Post-correlation (user 1) Post-correlation (user 2)
(5% harmonic of user 1 equals fundamental of user 2)
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All-digital mmWave MU-MIMO
Summary and Status

* Promising first steps for multiuser MIMO for massive scale

® Scale simplifies design of individual hardware components

* Rich space for continued research on scaling antennas & bandwidth

*  Computational complexity
®  Precision constraints (ADC and DAC) and analog nonlinearities

* Interactions with mobility and power control

28
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LoS MIMO everywhere

29



(™ UCSANTA BARBARA
» engineering

nce of research and innovation.

LoS MIMO is a natural concept for mmWave and THz

Number of spatial degrees of freedom
(based on information-theoretic considerations):

] i
I 1 L+L
Ly Ls NzTR 1
] | RA
:
p! - >
: L+L
L Nz<TR> +1
m R RA

R >

Bandwidth also scales with carrier frequency ‘ Data Rate f3
(fc < 1/A) where A : wavelength ¢
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2 orders of
magnitude
in range &
data rate

UCSB lab demo @ 60 GHz (2010)
4-fold spatial multiplexing

2.4 Gbps aggregate data rate
Range 10-40 meters

8-fold multiplexing: 4 spatial, 2X polarization
100 Gbps aggregate data rate
Range 1500 meters

Widespread deployment of LoS MIMO requires less bulky and expensive equipment
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The convergence of research and innovation.

Short-range backhaul more interesting?

d =33 cm 0%
4 x 4 MIMO K o
130/140 GHz carrier frequency =

40 Gbps per stream )
Antenna spacing 33cm ]
(lamppost-compatible)

% :* 160 Gbps!

o /
Transmitter Receiver

< >
R=100 m

Reasonable form factor, but how about cost & power?

CMOS or SiGe RFICs with required power are within reach

DSP is key to economies of scale in baseband processing
ADC is a bottleneck at 10-20 GHz bandwidths
Geometric misalignments result in channel dispersion
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Endemically misaligned LoS MIMO

_b(t)

-150 -100 -50 0 50 100 150
aTs -2Ts -Ts Ts 2Ts 3Ts

Transmitter Receiver

* Misalignment will be routine in mesh networks with LoS MIMO links
=> Inter- and intra-stream interference

* (Can we invert this space-time channel?
* Time domain oversampling not on the cards at 20 GHz bandwidth

The answer: spatial oversampling
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Spatial oversampling for robust LoS MIMO

Aperture is 100s of wavelengths =2 room to fit additional elements

d/4 d/4 d/4 d/4

o
@
d/4 .

o NV
-150 -100 -50 0 50 100

150
d / 4 3Ts 2Ts -Ts Ts 2Ts 3Ts

d/4 , ‘ ‘ _b(t)

d/4

Different versions of
QPSK modulation Sampled responsc

BW =20 GHz for f, = 130 GHz at different elements
Symbol duration T=50ps and A =

Transmit pulse - RC waveform with B = 0.25
Symbol rate sampling: Ts=T
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Adaptive windowing with spatial oversampling

(//f){ /Ed/ »

i R
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Transmitter Receiver

Misalignment example

Or =3.67
@r = —4.30
Or = 6.36

Rxb|

Rx6

Rx7
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BER curves and dimension counting

BER
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Error floors avoided when signal space dimension

is bigger than # strong interference vectors
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Opportunistic LoS MIMO
Summary and Status

Spatial oversampling increases resilience to impairments
(misalignment, precision constraints)

Many hardware, architecture and algorithm issues remain

But in principle, flexible, low-cost “wireless fiber” is feasible

39
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Massive MIMO Radar

A Compressive Approach
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Current state of MIMO radar

® Small number of TX antennas
® Larger, A/2-spaced receive antenna array

® Virtual transmit array: TXs take turns

TI's AWR2243 Cascade Radar RF

development kit %5
'B‘ﬂc ; 505 u coso SI‘ Iu.s 0505050505 05
L pnanan
3 : III |||
ARRAY-B -
Y L RX ARRAY-C - — 2-chip cascading antennas RX ARRAY-A
Cat i A

This distance is to meet 2-chip
cascading requirement (azimuth
and elevation)

Scale unitis A

2 05
05

aaaaaaa

Figures courtesy
Texas Instruments
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Current state of MIMO radar

@™ —_— TX1
@™ — TX2

freq

[

O RX antenna T,
e +

2

%;9.

€
tim
d
0 w 2w 3w

block
phase sequence corr. to TX1
4w Sw 6w 7w phase sequence corr. to TX1

frame

® Drawbacks

X No transmit beamforming gain — FOV /range tradeoff limited by element
directivity

\_ X Scalability — frame grows large as # TX antennas increases )

Figures courtesy of
Texas Instruments
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Can we leverage developments in comm hardware?

Large transmit arrays with RF (analog) beamforming

Large field of view for each element, sharp beams: range/FOV tradeoff

eliminated by increasing # TX elements

TowerJazz and UCSD: Fujitsu: 28 GHz, 128-element phased array antenna
256-element (16 x 16), 60GHz phased-array transmitter 16 x 8 patch antenna elements (per direction)
56-65GHz frequency range Four independent beams, steerable horizontally and vertically.

«~— HM6mm —>

256-Element Array Chip

Which concepts from MIMO comm can we bring into MIMO radar?



(™ UCSANTA BARBARA
v engineering

vergence of research and innovation.

Concept 1: Compressive estimation of sparse channels

® Large transmit arrays with RF (analog) beamforming
® Locating users in FOV? Sparse channel estimation problem

® (Oftf-grid) Compressive channel estimation

Sparse
a few paths)

Observed Randomized Inverse Fourier Few active
projections beamforming weights Matrix frequencies

Feedback Y

Ramasamy, Dinesh, Sriram Venkateswaran, and Upamanyu Madhow. “Compressive tracking with 1000-element arrays: A framework for multi-Gbps mm wave cellular downlinks.” Allerton, 2012.
Marzi, Zhinus, Dinesh Ramasamy, and Upamanyu Madhow. “Compressive channel estimation and tracking for large arrays in mm-wave picocells.” IEEE Journal of Selected Topics in Signal Processing,
2016
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Concept 2: Efficient off-grid estimation with
Newtonized OMP (NOMP)

® Super-resolution

Pick (g, @) to maximize A
Estimating over the continuum a <
v (Pm) (W) )
( v )
) Pm—i—l <_,Pmu{(gaw)}
GLRT cost function \ v /
|X(w)Hy|2 - \ Refine parameters in =~ Py, 41 Jé
Gy(w) = 2T i
x ()]l v x
Update gains by least squares
Residual response
No
P = {(gl,wl),l = 1, .. ,k}
k
ve(P) =y =) gx(w)
1=1 Yes
Return P, ]

B. Mamandipoor, D. Ramasamy, U. Madhow, “Newtonized Orthogonal Matching Pursuit: Frequency Estimation over the Continuum,” in IEEE Transactions on Signal Processing, 2016.
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From sparse channel estimation to target detection

Can we apply the same principle to CWEFM radar?

RF beamformed transmitter (phased array)

Digital receiver(s)

pseudorandom beams
(Compressive sensing)

N elements M elements
[ )
Transmitter Receiver

Overlay compressive angular scanning on range/Doppler estimation
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Compressive scanning

Frame (K compressive beams with a total of n = nyK chirps)

v

A

Subframe (compressive beam 1) Subframe (compressive beam 2)

>

Ny chirps Ng chirps

Frequency

Time
The waveform could be standard FMCW chirp

* Range processing unchanged

* Need to modify Doppler processing to handle angle-dependent phase
shifts across subframes.
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Preliminary results - setup

® Number of targets ~U({1, ..., 9}), dynamic range < 18 dB

® SNR per element = 5 dB N =128 M=1

A .
5 Spacing

Frame (K = 15 compressive beams (subframes) with a total of n = 480 chirps)

»
»

A

N
Subframe with ny = 32 chirps doppler FFT oversampled by 16*

> < >

C

()

-]

oy

L

- - [ >

Time

512 samples per chirp
v range FFT oversampled by 8
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Preliminary results

® Super-resolution even at relatively low SNR

|erange| | FFT grid size |ed°ppler| | FFT grid size |edirecti°n| | FFT grid size
1 - 1 . | 1 |
X:0.0648 X: 0.8441 X:0.2359
Y: 0.996 Y:0.998 Y: 0.994
08 1 08 1 08
06 1 0.6 1 06
L
)
o
04 1 0.4 1 0.4
0.2 1 0.2 1 0.2
0 0 0
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Scaling MIMO radar
Summary and Status

Massive MIMO radar enabled by compressive scanning
Sidesteps range/FOV tradeoffs in existing MIMO radar
Preliminary results show promise; more detailed eval needed
Ultimate Goal: bridge the resolution gap between RF & optical sensing

Signiﬁcant opportunities n joint communication & sensing

50
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The convergence of research and innovation.

Signal Processing for mmWave / THz

® Pushing to higher carrier frequencies keeps opening up new intellectual

challenges via hardware/signal processing entanglement

- Hardware bottlenecks force system innovations

- Hardware advances open up new system possibilities

- Key ideas: antenna scaling, bandwidth scaling, sparsity, geometry
® Ambitious system specs today become industry focus ~10 yrs from now

= The only legitimate barriers are physics and information theory fundamentals
® (sub)-THz sensing is the new frontier

- Unprecedented spatiotemporal resolution

- Privacy-preserving, more robust than optical

~  We have only scratched the surface of massive and distributed MIMO for sensing

51
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For further exploration

® Wireless Communication and Sensornets Lab (WCSL) home page:
https://wecsl.ece.ucsb.edu

® NSF Giganets project (2015-2020): https://wesl.ece.ucsb.edu/giganets

= Papers from interdisciplinary collaborations involving hardware, signal

processing and systems
= 'Tutorial material (IISc summer school 2016, ACM SigComm 2017)
® ComSenTer (2018-2022): https://comsenter.engr.ucsb.edu/
- UCSB-led center funded by DARPA and SRC

= Pushing the limits of mm-wave and THz comm and sensing: both hardware

and signal processing

®  CUDbiC (2023-27): https://cubic.engineering.columbia.edu/

~ Columbia-led center on NextG connectivity >
»e CUDbIC
= Technology for low-cost, ubiquitous deployment
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And now for something completely different....

Communication theory for robust deep learning
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The convergence of research and innovation.

Who’s involved

Actually doing the work! In an advisory role...

Bhagyashree Puranik Ahmad Beirami Yao Qin U. Madhow
(PhD student) (Google) (UCSB) (UCSB)

Builds on prior work by...
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The convergence of research and innovation.

The big picture

® Al = Deep Neural Networks (for all practical purposes)
®  We all know that DNNs are brittle black boxes

~ That does not stop us from using them everywhere
® Soft failures are OK 1n many applications

® Butlack of robustness and interpretability blocks many others

N N W
o o o

OverFeat

»

Accuracy (Top-5 error)
o

. ~12 years of
Yﬁrge error rate reduction due to Deep CNN . L.
I AlexNet furious activity

10 ki VGGGoogleNet
5 = ResNet
i 5 m N
2010 2011 2012 2013 2014 2015 Human
AlexNet “cats dancing tango” by

Microsoft Image Creatos
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What’s behind the DNN revolution?

® Backprop works
- Big data, big compute
- Sigmoid=> Rel.U so gradients propagate down
= Deeper is better, overparametrization is better
® Design approach is very open to experimentation
= Define cost function (depends on learning modality)
~ Play with architectures and hyperparameters
® Empirical results blow away the state of the art in most applications

=>» We try to work around concerns such as (lack of) robustness,
interpretability, fairness in applications. ..

Can we do better?
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Early warning signal: adversarial examples

Szegedy et al, Intriguing properties of neural networks, 2013-14.
Goodtellow et al, Explaining and harnessing adversarial examples, 2014-15.

ST0

. TE

Hog Attack (x50) Airliner -
Pig = Plane Stop sign = 45 mph

Key insights from a decade ago

* DNNs are too linear
* Small perturbations can add up to large numbers in high dimensions

have not led to concrete design guidelines for robustness
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A more pressing (?) concern: OOD robustness

Hard to define “out of distribution” precisely
But you know 1t when you see it

Gaussian Noise

-

Shot Noise Impulse Noise  Defocus Blur Frosted Glass Blur

Brightness Contrast ~ Elastic Pixelate JPEG

We expect DNNs to be robust to “common corruptions”
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SOTA approach for “robust” DNNs
is data augmentation
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SOTA defense against adversarial perturbations

Adversarial training
augment with adversarial examples generated while training

Minimize by changing

V/ \
Input —— Pagp Nzl J——» Softmax — Loss

Network J

s

Maximize by changing
Input — Del\elgtwsﬁ(ral J—> Softmax J—> Loss
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SOTA for OOD robustness

is also data augmentation!

AugMix, RandAugment, AutoAugment,...

xaugmix

rotate

Hendrycks ef a/, Augmix: A simple data processing method to improve robustness and uncertainty, [CLLR 2020.
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The convergence of research and innovation.

Our thesis: lack of robustness is a symptom

End-to-end training (with or without augmentation) =2 Black box

11 Cat
. . 1 Dog
- Neural network 1 Deer
——1 Car

The disease: we do not control the features DNNs are extracting

> We cannot design in robustness guarantees

= We cannot interpret what DNNs are doing
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The convergence of research and innovation.

Our approach: shaping DNNs for robustness

® Axiom: Learning can only work if data has low-dimensional structure
® C(Can we “match” our DNN layers to these low-dimensional manifolds?
Idea: shape each layer of DNNs to produce sparse, strong activations
~ Small fraction of strong activations are harder to perturb
- Large fraction of weak activations can be attenuated/removed
- Increased resilience, potentially better generalization and interpretability
®* How does communication theory come in?
- Learn matched filters at each layer (using layerwise objectives)
= Output posterior probabilities at each layer

- Codifies 1nitial insights from neuroscience used in our prior work
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Our prior work inspired by neuroscience

Neuronal competition during training
via layerwise Hebbian/anti-Hebbian (HaH) learning

|:’ Standard activations
[ ] Large HaH activations
[] weak HaH activations

t Large Activation

{ Small Activation

Histogram of activations

Neuronal competition during inference l :

Thresholding
Divisive Normalization

(Cekic et al, ICIP 2022, 2022 ICML Workshop Adv ML)
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Communication theory principles yield
better (and neuro-plausible) designs
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Learning neuronal “matched filters”
A communication-theoretic formulation D tilted exponentials

M-ary hypothesis testing in (Gaussian noise
Hq;l X=8;,+n, ’Lzl,,M

Wish to /earn the signal templates § = {s; , i =1,..., M}
Likelihood function conditioned on hypothesis

Lot =exp (5 (s = [81P/2)  Daaoser o
leehhood functlon averaged across hypotheses

Zexp( (x sz>)

Log likelihood (for adding across data samples) =@ tilted exponential

Tg( log ( Z eXp t "y ) t=1 / 0-2 Tilt (hyperparameter)

a; = <X, Si> Activation of 7th neuron gg
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TEXP learning is Hebbian

® Implicitly normalize activations for fair competition
Sq

?
||Si||

> Recall TEXP objective to be maximized

Th(x) 10g< Zexpta@ )

az-:(x

® Geometry of TEXP gradient update

Rotate template towards input

!

1

X

1 _ i
PSZX Vs, Ty J%(?a) ||Sz||2

Gradientl

S;

Relatively stronger activations
weighted more heavily
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TEXP inference: soft decisions

M-ary hypothesis testing in (Gaussian noise

H,L'Z X =8; +1n, 221,,M
Soft decisions (posterior probabilities)

Lo(x|H;,)P(H;)  exp(z(x,8))

o2

SY Lo(x|H)P(Hy) S0 exp (L (x.s5))

P(H;|x) = = Softmax(t a;)

Smoothened “divisive normalization”
Eliminates vulnerability due to “excessive linearity”

Set “data noise” for inference higher than for training
=» Increased robustness despite training with clean data
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The geometry of TEXP via a simplified example

A 2D Gaussian signal hiding in 10D Gaussian noise
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\
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0.00 A

—0.25 1

—0.50 1

Second dimension

-0.75 A

—100 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 100

First dimension

1.0

0.8 1

0.6 1

0.4 1

0.2 1

0.0 -

Energy in orthogonal space

\
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\
\
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\
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\
\\ | .
SRLIEVS S, VL L. SO ——

0 20 40 60 80 100
Number of batches

Neurons learnt via TEXP hone in on 2D “signal subspace”

Energy of neurons in 8D orthogonal “noise subspace” falls off as we train
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TEXP in CNNss

* 'Training: supplement end-to-end cost with TEXP-based layerwise costs
* Smooth objective leading to Hebbian learning

* Inference: replace RelLU + batch norm by tilted softmax
* Implicit normalization and thresholding
e Tilted softmax is a form of divisive normalization

* Outperforms our prior work on Hebbian/anti-Hebbian (HaH) learning

TEXP Layer

Std CNN Layer

I

Std CNN Layers

A N

Puranik et al, 2023 ICML Workshop Adv ML, AISTATS 2024

s
=z
Q
o
=
2
N
a

Xew1}0S pay|iL

PZAUOD NM |
Y
[ uonezijewoN yoeg

Y

TEXP Layers
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The convergence of research and innovation.

Why TEXP is expected to increase robustness

_|
x(1) A = =
o ® 2
REi | L
> 2 [7) o> 0
o f__’p (<}
<| Y P |=
3
- o 0%
X

Gradient of TEXP objective promotes strong activations

Tilted softmax inference =» nonlinearity attenuating perturbations
Smaller tilt for inference than for training =» robustness
Neuron-specific thresholding =» denoising

Many open questions before TEXP can become a generic layer
* How do we choose the tilt parameters?
* How do we weight the layerwise objectives?
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TEXP provides broad spectrum robustness

Performs well for both common corruptions and mild adversarial attacks

Model Clean Noise Min/Avg Min/Avg Autoattack £»  Autoattack £

r=0.1 corruptions severity level: 5 adv, e =0.25 adv, e = 2/255
VGG-16 9226 £0.04 24.80+1.24 46.86+£1.26/72.28+0.26 19.56 +£0.73/54.70£0.40 13.34+0.14 10.30 £0.21
HaH (Cekic et al. (2022))  87.72+0.15 62.76+0.40 59.56 +0.42/77.02+0.21 49.06 +0.88/67.80 +0.27  26.30 = 0.52 20.04 £0.38
TEXP-VGG-16 88.28+£0.12 75.14+0.20 73.68£0.22/80.40+£0.07 52.38 £0.81/72.56 £0.14  50.90 £ 0.16 41.50 = 0.21
VGG-16 + AugMix 92,98 +0.06 62.92+0.74 65.124+0.35/83.58 £0.09 42.124+0.79/74.000.16 18.16-+0.15 13.60 £0.17
TEXP-VGG-16 + AugMix 88.84+0.21 78.90+0.04 77.28+£0.20/83.54+0.05 62.94+0.53/78.30£0.07  52.20 £ 0.23 42.52 £ 0.20
VGG-16 + RandAug 93.32+0.11 43.32+0.72 63.244+0.45/80.68 +0.17 39.98 +1.01/66.96+0.30  18.38 = 0.47 14.30 £ 0.37
TEXP-VGG-16 + RandAug 89.90+0.08 74.26+0.07 75.48£0.09/82.86+£0.02 57.52+0.19/75.78 £0.07  50.82 £ 0.24 40.02 £ 0.34
VGG-16 + AutoAug 93.50+0.03 46.54+0.54 59.844+0.52/81.58 +0.14 37.08 +£0.23/70.66 +0.18 13.50 +0.23 9.78 £ 0.20
TEXP-VGG-16 + AutoAug 90.06 £0.10 72.66+0.46 71.984+0.24/82.58+0.12 54.14+£0.89/75.50£0.18  46.96 = 0.31 35.00 £0.32
VGG-16 + Adv Tr 88.04 £0.12 78.78 +0.45 50.52£0.66/79.44+0.12 17.60 +£0.39/70.64 £0.13  72.60 +0.23 72.82 £0.23
TEXP-VGG-16 + Adv Tr  86.38 £0.07 81.08+0.28 67.72+0.73/80.38 £0.14 37.08 £0.85/74.02+0.22  71.02 £ 0.40 66.76 + 0.29

Detailed performance report under common corruptions (highest severity level)

Corruptions — Noise Weather Blur Digital
Models | Gauss. Shot Speck. Imp. Snow Frost Fog Brig. Spat. Defoc. Gauss. Glass Motion Zoom Cont. Elas. Pixel. JPEG Satur.
VGG-16 243 318 384 19.1 73.3 62.0 63.8 879 673 508 39.8 476 600 61.5 199 75.6 546 T7.4 8§24
HaH (Cekic et al., 2022) 61.7 61.7 592 46.3 73.8 723 62.8 832 76.7 643 584 532 651 689 760 740 605 793 79.6
TEXP-VGG-16 75.3 765 755 61.3 764 76.8 51.8 83.2 761 689 634 686 650 742 66.0 752 80.8 829 788
VGG-16 + AugMix 60.7 681 71.3 449 80.2 753 76.5 89.7 817 848 808 596 814 84.0 400 79.5 694 820 86.9
TEXP-VGG-16 + AugMix 789 79.5 79.0 67.7 784 79.0 622 8.8 788 815 79.8 724 771 826 755 786 836 837 8.6
VGG-16 + RandAug 44.7 53.5 575 40.0 786 728 71.0 909 853 636 529 610 678 717 483 79.9 569 81.7 885
TEXP-VGG-16 + RandAug 74.1 75.1 727 57.1 79.1 78.7 60.3 88.6 813 734 68.7 707 708 774 835 783 794 845 858
VGG-16 + AutoAug 45.7 53.1 56.7 3r.1 772 69.8 81.1 919 811 791 75.2 51.8 752 81.1 80.0 76.5 50.4 80.2 90.2
TEXP-VGG-16 + AutoAug 723 725 70.8 53.1 769 76.1 629 833 77.5 761 729 656 724 79.8 86.0 765 774 845 86.2
VGG-16 + Adv Tr 79.8 811 803 627 743 73.3 332 76.8 777 711 668 76.0 691 749 183 784 826 848 T76.6
TEXP-VGG-16 + Adv Tr  81.6 823 819 748 71.9 758 39.0 769 785 759 728 768 73.1 783 529 786 832 B840 76.3

Outpertforms HaH, plays well with augmentation
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Parting Thoughts

® Pure reliance on end-to-end training can only lead to black boxes
- Limits the possibility of performance guarantees and interpretability
® Layer-wise feature control 1s a potential robustifier
- Shaping layer outputs to be sparse and strong enhances resilience
® Preliminary results promising, but most of the work remains...
= More efficient training, guidance on hyperparameters
- Additional shaping design guidelines and theoretical foundations
- Different learning modalities (self-supervised, unsupervised, RL,...)

- Enhanced interpretability?
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