
Fully Energy-E�icient Randomized Backo�: Slow Feedback
Loops Yield Fast Contention Resolution

Michael A. Bender
Stony Brook University

Stony Brook, NY 11794-2424, USA
bender@cs.stonybrook.edu

Jeremy T. Fineman
Georgetown University

Washington, DC 20057-1232, USA
j�neman@cs.georgetown.edu

Seth Gilbert
National University of Singapore

Singapore 117417
seth.gilbert@comp.nus.edu.sg

John Kuszmaul
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
Google

Cambridge, MA 02142, USA
john.kuszmaul@gmail.com

Maxwell Young
Mississippi State University

Mississippi State, MS 39762, USA
myoung@cse.msstate.edu

ABSTRACT
Contention resolution addresses the problem of coordinating ac-
cess to a shared communication channel. Time is discretized into
synchronized slots, and a packet transmission can be made in any
slot. A packet is successfully sent if no other packet is also trans-
mitted during that slot. If two or more packets are sent in the same
slot, then these packets collide and fail. Listening on the channel
during a slot provides ternary feedback, indicating whether that
slot had (0) silence, (1) a successful transmission, or (2+) noise. No
other feedback or exchange of information is available to packets.
Packets are (adversarially) injected into the system over time. A
packet departs the system once it is successfully sent. The goal is
to send all packets while optimizing throughput, which is roughly
the fraction of successful slots.

Most prior contention resolution algorithmswith constant through-
put require a short feedback loop, in the sense that a packet’s send-
ing probability in slot C + 1 is fully determined by its internal state
at slot C and the channel feedback at slot C . This paper answers
the question of whether these short feedback loops are necessary;
that is, how often must listening and updating occur in order to
achieve constant throughput? We can restate this question in terms
of energy e�ciency: given that both listening and sending consume
signi�cant energy, is it possible to have a contention-resolution al-
gorithm with ternary feedback that is e�cient for both operations?

A shared channel can also su�er random or adversarial noise,
which causes any listener to hear noise, even when no packets are
actually sent. Such noise arises due to hardware/software failures
or malicious interference (all modeled as “jamming”), which can
have a ruinous e�ect on the throughput and energy e�ciency. How
does noise a�ect our goal of long feedback loops/energy e�ciency?

Tying these questions together, we ask: what does a contention-
resolution algorithm have to sacri�ce to reduce channel accesses?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PODC ’24, June 17–21, 2024, Nantes, France
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0668-4/24/06
https://doi.org/10.1145/3662158.3662807

Must we give up on constant throughput? What about robustness
to noise? Here, we show that we need not concede anything by
presenting an algorithm with the following guarantees. Suppose
there are # packets arriving over time and J jammed slots, where
the input is determined by an adaptive adversary. With high prob-
ability in # + J , our algorithm guarantees ⇥(1) throughput and
polylog(# + J) channel accesses (sends or listens) per packet. We
also have analogous guarantees when the input stream is in�nite.

CCS CONCEPTS
• Theory of computation! Distributed algorithms; • Net-
works! Network algorithms.

KEYWORDS
Contention resolution, backo�,energy e�ciency, jamming
ACM Reference Format:
Michael A. Bender, JeremyT. Fineman, SethGilbert, JohnKuszmaul, andMaxwell
Young. 2024. Fully Energy-E�cient Randomized Backo�: Slow Feedback
Loops Yield Fast Contention Resolution. In ACM Symposium on Principles of
Distributed Computing (PODC ’24), June 17–21, 2024, Nantes, France. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3662158.3662807

1 INTRODUCTION
Since the 1970s, randomized backo� protocols such as binary ex-
ponential backo� [48], have been used for managing contention on
a shared communication channel. Originally used in the ALOHA
system [1] and Ethernet [48], randomized backo� plays an im-
portant role in a wide range of applications, including WiFi [35],
wireless sensor networks [39], transactional memory [34, 59], and
congestion control [62]. The salient feature of the communication
channel is that it supports only one message transmission at a time:
if more than one message is sent simultaneously, there is a collision
resulting in indecipherable noise [30, 31, 41, 48, 65].

This contention-resolution problem is formalized as follows.
There are # packets arriving over time, and each packet needs to
be successfully transmitted on the channel.1 Time is divided into
1For ease of exposition, we slightly abuse terminology and have the packets themselves
taking action (e.g., sending themselves on the channel, listening on the channel), rather
than introducing “agents”/“devices”/“senders”, where each one arrives on the scene
with a packet to transmit.

https://orcid.org/0000-0002-5251-8595
https://doi.org/10.1145/3662158.3662807
https://doi.org/10.1145/3662158.3662807

PODC ’24, June 17–21, 2024, Nantes, France M. A. Bender, J. T. Fineman, S. Gilbert, J. Kuszmaul, M. Young

synchronized slots, each of which is sized to �t a single packet.
To be successfully sent, the packet requires exclusive access to the
channel that is, the packet must be the only one transmitted during
that slot. Otherwise, if two or more packets are transmitted in the
same slot, the result is a collision, where none of the transmitted
packets succeed. A packet departs the system once it is successfully
sent. There is no a priori coordinator or central authority; packet
transmissions are scheduled in a distributed manner. The objective
is to send all packets while optimizing the throughput of the
channel, which is roughly the fraction of successful slots.

A popular contention-resolution protocol is binary exponential
backo� [48] (see [3–5, 32, 32, 37, 38, 58, 60]). Informally, under
binary exponential backo�, a packet that has been in the system
for C slots is sent with probability ⇥(1/C).

Feedback loops: short versus long (versus no feedback). An elegant,
but ultimately problematic, feature of classical binary exponential
backo� is that it is oblivious—packets remaining in the system do
not use channel feedback to adjust their behavior: a packet with age
C sends with probability⇥(1/C) until it succeeds, regardless of chan-
nel history. The unfortunate result is that with adversarial packet
arrivals, binary exponential backo� supports only a subconstant
throughput—speci�cally, $ (1/log#); in fact, even for the batch
case where all # packets arrive at the same time, the throughput
of binary exponential backo� is only $ (1/log#) [8].

In contrast, contention-resolution protocols can exploit frequent
channel feedback to achieve ⇥(1) throughput under adversarial
arrivals [7, 10–12, 14]. These protocols are not oblivious—packets
listen on the channel and adjust their sending probabilities up or
down based on this feedback.

The primarymodel for channel feedback is the ternary-feedback
model [2, 6, 10, 19–21, 28, 29, 33, 40]. In this model, a packet can
listen on the channel in each slot and learn whether that slot is
(0) empty, if no packets send, (1) successful, if exactly one packet
sends, or (2+) noisy, if two or more packets send. Based on this
ternary feedback, the packet can decide when to attempt to send
next. Once a packet succeeds, it immediately departs the system.

Most constant-throughput algorithms with ternary-feedback
(e.g., [7, 10–12, 14, 25, 52, 55–57]) listen on the channel in every slot
(or every constant number of slots). That is, these algorithms have
a short feedback loop: a packet’s sending probability in slot C + 1
is fully determined by its internal state at slot C and the channel
feedback at slot C . For example, the algorithm by Chang, Jin, and
Pettie [14], listens in every slot C and multiplicatively updates the
sending probability in slot C + 1 based on whether it heard silence,
a successful transmission, or a collision in slot C .

A key question is as follows: how frequently does the packet need
to listen on the channel and update its behavior in order to achieve
constant throughput? In every slot? In a vanishingly small fraction of
slots? How short a feedback loop is necessary for good throughput?

As an analogy, one cannot navigate a ship without a control
feedback loop: monitoring the surroundings and correcting course.
One option is to constantly monitor and continuously update the
heading to avoid obstacles. But the analogous question is whether
one can still safely navigate with only a vanishingly small amount of
course correction. In contention resolution, themonitoring is via the

channel sensing and the course being corrected is the transmission
probabilities.

Robustness and noise. Finally, in addition to the factors discussed
above, much of the recent work on contention resolution [2, 6, 7,
10, 14, 16, 18, 36, 52, 55–57] has sought to address an additional
factor, which is that the real world is often noisy. Sometimes inter-
ference prevents transmissions in a slot and listeners hear noise
even if nobody actually sends. Noisy channels arise due to hard-
ware/software failures, co-located devices, or malicious jamming
[17, 45, 49, 53, 66]. Regardless of the source of the noise in a slot,
we may think of these slots as being “jammed” by an adversary.
Jamming has evolved from a mostly-theoretical risk into a credi-
ble threat to systems over the past decade, with several publicized
examples [23, 50, 51, 61].

After a long line ofwork, there are nowmany contention-resolution
protocols that achieve constant throughput in the presence of noise
(e.g. [7, 10, 14, 52, 55–57]); however, again, these protocols listen
to the channel in every slot and update their sending probabilities
accordingly. Our goal is to eliminate short feedback loops not just
in the classical model, but also with jamming.

Minimizing channel accesses = energy e�ciency. Up until now,
we have discussed whether one can minimize listening and thus
avoid providing immediate feedback for a contention-resolution
algorithm. Another way of viewing this problem is through the lens
of energy e�ciency. Each channel access—whether for sending or
listening—consumes energy. Most work on contention resolution
is sending e�cient, but is not listening e�cient (e.g., [7, 10, 11,
24, 25, 36, 55–57]). That is, most protocols optimize how frequently
a packet sends, but allow a packet to listen in every slot “for free”.

In fact, both sending and listening are expensive operations (e.g.,
[26, 43, 54, 67]), and minimizing energy usage by having devices
sleep as much as possible has been a long-standing and popular
strategy to maximize the network lifetime (for example, the devel-
opment of duty-cycle protocols [44, 47, 68]). Why optimize listening
in contention resolution protocols if packets must receive messages
(for other network applications)? Informally, there are two types
of listening: listening to receive messages, and listening to execute
a contention resolution protocol (which is what enables sending
messages). To receive messages, packets do not need to listen in
every time slot; there exist methods for optimizing this �rst type of
listening. Although this is beyond the scope of this paper, as one ex-
ample, in many wireless settings, a central base station can monitor
the channel constantly and facilitate message exchange [27].

We call a protocol fully-energy e�cient if it is both sending
e�cient and listening e�cient. By de�nition, such a protocol cannot
have short feedback loops, since it can access the channel only
rarely.

Past work: Minimizing listening by allowing for explicit synchro-
nization. Currently, the only known path to full energy e�ciency is
via explicit synchronization. This means that the model is extended
so that packets can send synchronization messages to each other
whenever they broadcast [12, 25, 46]. In [12], these synchronization
messages have size ⇥(log#) bits each, which means that an arbi-
trary polynomial amount of communication can be expressed in
a slot. In [25, 46], the synchronization messages are smaller ($ (1)

Fully Energy-E�icient Randomized Backo� PODC ’24, June 17–21, 2024, Nantes, France

bits), but some packets are permitted to stick around as “Good
Samaritans” in order to serve as long-term coordinators (that send
many messages via many broadcasts).

Using⇥(log#)-bit synchronizationmessages, Bender, Kopelowitz,
Pettie, and Young [12] give an algorithm with ⇥(1) throughput and
expected$ (log(log⇤ #)) channel accesses per packet. Using Good-
Samaritan packets, De Marco and Stachowiak [25] and De Marco,
Kowalski, and Stachowiak [46] provide a constant-throughput algo-
rithm that is sending e�cient ($ (log#) transmissions per packet)
and conjecture that their techniques can be extended to achieve
fully energy e�ciency ($ (polylog#) channel accesses per packet),
with high probability and even without collision detection.

In all of these cases, even with the help of explicit synchroniza-
tion, it remains open whether one can achieve such results in the
presence of adversarial noise. Indeed, noise has the potential to
be extra-problematic for energy-e�cient algorithms since these
algorithms listen to the channel less frequently and can potentially
be thrown o� by a small amount of well-placed noise.

This paper. We show that it is indeed possible to achieve con-
stant throughput with full energy e�ciency while being robust
to adversarial noise. Moreover, these results hold in the standard
ternary-feedback model, without requiring the addition of any sort
of explicit synchronization.

Our algorithm belongs to a natural family of multiplicative-
weight-update algorithms (e.g., [7, 14, 52, 55–57]). When a packet
hears silence, it multiplicatively increases both its listening and
sending probabilities. Conversely, when a packet hears noise, it
multiplicatively decreases these probabilities. There are no control
messages, no Good Samaritan packets, and no leaders elected.

What makes our algorithm/analysis interesting is that we are
able to support a multiplicative-weight-update framework while
having each packet ‘cover its eyes’ almost all of the time. This is
in stark contrast to prior constant-throughput algorithms, which
adjust sending probabilities in every slot. Because each packet
listens to so few slots, the di�erent packets that are in the system
at the same time may end up with very di�erent perspectives on
the world from each other. In order to analyze the ‘herd behavior’
of the packets in this potentially chaotic setting, substantially new
techniques end up being required. These techniques are also what
allow us to handle the additional chaos that adversarial jamming
adds to the system.

1.1 Model
A �nite or in�nite stream of indistinguishable packets arrives over
time; the number of arrivals is unknown to the algorithm. Each
packet must be sent on themultiple-access channel. Time is di-
vided into synchronized slots, each of which is su�ciently large
to send a single packet. An adversary (speci�ed below) controls
how many packets are injected into the system in each slot. When
a packet successfully transmits, it departs the system. There is no
universal numbering scheme for the slots; that is, there is no global
clock from which a packet could infer the system lifetime or slot
parity. Additionally, the packets do not receive any additional in-
formation about how many packets have arrived or will arrive.
Instead, packets only receive information through the ternary feed-
back model.

We now describe the ternary feedback model. In each time slot,
each packet in the system can take one of three actions: (i) sleep,
(ii) send, or (iii) listen to the channel. Packets that take actions (ii)
or (iii) are said to access the channel. If no packets choose to
send during a slot, then that (non-jammed) slot is empty/silent; if
exactly one packet sends, then that (non-jammed) slot is full and
successful; if two or more packets send, then that slot is full and
noisy. A packet that listens during a slot (action iii) learns whether
the slot was (0) empty, (1) successful, or (2+) noisy. A packet that
sleeps during a slot (action i) learns nothing about the state of the
slot. A packet that sends (action ii), either transmits successfully
and leaves the system, or collides and remains in the system.2

We now add jamming to the picture; an adversary determines
which slots are jammed. To jam a particular slot, the adversary
broadcasts noise into that slot. All jammed slots are thus full and
noisy. A packet that listens in a jammed slot hears that the slot was
noisy, but does not know whether that noise came from jamming
or was merely a collision between two or more packets. A packet
that sends during a jammed slot collides and thus remains in the
system.

An adversary determines, for each slot C , how many packets to
inject in slot C and whether to jam in that slot. This paper considers
an adaptive adversary, which bases its decision on the entire state
of the system so far, i.e., up to the end of slot C � 1, but not the
outcomes of future coin tosses. Thus, if at slot C , a packet ? decides
whether to send based on a coin �ip, the adaptive adversary does
not get to see that coin �ip until after slot C .

A basic metric: (overall) throughput. The main objective of con-
tention resolution is to optimize throughput, de�ned next. A slot
is active if at least one packet is in the system during that slot;
inactive slots can be ignored in our analysis. Without loss of gen-
erality, assume throughout that the �rst slot is active. Without
jamming, the throughput at time t is de�ned as)C/(C , where Zt
is the number of successful transmissions during slots 1, 2, . . . , C ,
and Yt is the number of active slots in the same time interval.3 On
a �nite input, the (overall) throughput is de�ned with respect to
the �nal active slot C ; at this point, the overall throughput is # /(,
where # =)C is the total number of packets and (= (C is the total
number of active slots. Overall throughput is not well-de�ned on
an in�nite execution.

A de�ciency of the throughput metric (when de�ned naïvely)
is that even if an algorithm guarantees ⇥(1) overall throughput,
it is not possible to achieve ⇥(1) throughput uniformly across
time. For example, if there is a burst of # packets at time 0, and
is unknown to the algorithm, then the throughput will be 0
for a superconstant number of slots (e.g., see [15, 64]), and this
is provably unavoidable regardless of the backo� strategy being
used. Thus (overall) throughput is only meaningful at the end of
the execution, or at points in time where there are no packets in
the system.

2For ease of presentation, in our algorithms, we say that a packet can listen and send
simultaneously, but any packet that is sending actually does not need to listen to
determine the state of the channel. If the packet is still in the system after sending in
slot C , then slot C was noisy.
3By assumption that the �rst slot is active, we have (C � 1 and hence throughput is
always well de�ned.

PODC ’24, June 17–21, 2024, Nantes, France M. A. Bender, J. T. Fineman, S. Gilbert, J. Kuszmaul, M. Young

A stronger metric: implicit throughput [11]. In order to support
a meaningful notion of throughput, even at intermediate points
in time, Bender, Kopelowitz, Kuszmaul, and Pettie [11] propose a
re�ned de�nition that they term “implicit throughput” [11]. The
implicit throughput at time C is de�ned as #C/(C , where #C is
the total number of packets that arrive at or before time C and (C is
the total number of active slots so far.4

One perspective on implicit throughput is that it is an analyti-
cal tool. Indeed, whenever we reach a point in time where overall
throughput is meaningful (i.e., there are no packets left in the sys-
tem), the two metrics become provably equal. This includes both
at the end of any �nite execution or during quiet periods of in-
�nite executions. Another perspective on implicit throughput is
that it is a stronger metric that o�ers a meaningful guarantee even
at intermediate points in time: what constant implicit throughput
means is that the number of active slots used so far should never be
asymptotically larger than the number of packets that have arrived.

Throughout the rest of the paper, we focus exclusively on implicit
throughput. We should emphasize, however, that this only makes
our results stronger—the results also imply the standard constant-
throughput guarantees that one would normally strive for.

Extending to adversarial jamming. We next extend the de�nitions
of throughput and implicit throughput for the case of jamming
following [10]. An algorithm wastes a slot if that slot has silence
or a collision, and throughput measures the fraction of slots that
the algorithm could have used but instead wasted. Let JC denote
the number of jammed slots through slot C . Then, the throughput
of an execution ending at time C is de�ned to be ()C + JC)/(C , and
the implicit throughput at slot C is de�ned to be (#C + JC)/(C .

Some useful properties of implicit throughput, and applications to
adversarial queuing theory. We conclude the section by summariz-
ing several useful properties of implicit throughput.

Observation 1 ([11]). Consider any inactive slot C , i.e., where there
are no active packets in the system. Then the implicit throughput and
throughput are the same at slot C .

Observation 2 ([11]). Let X be any lower bound on the implicit
throughput of an algorithm; that is, suppose the algorithm achieves
implicit throughput of at least X at all times. Let #C and (C denote
the total number of packet arrivals and active slots, respectively, at or
before time C . Then (C  #C/X . Consequently:
• Overall throughput. Suppose that there are a total of # � 1
packet arrivals. Then the total number of active slots is at most
/X , and hence the overall throughput is at least X .

• Backlog reprieve. If #C < XC , then there exists an inactive slot
C 0  C . Thus, all packets that arrived before C 0 have completed
before C 0, and hence the throughput at time C 0 is at least X .

Finally, we observe that there are several natural settings in
which implicit-throughput guarantees directly imply strong guar-
antees on packet backlog, even for in�nite input sequences. Suppose,
in particular, that packets arrive according to adversarial queuing
theory, which parameterizes the “burstiness” of packet-arrival in

4Notice that while #C depends on the adversary, the number of active slots depends
on the algorithm, whose goal it is to make slots inactive by completing packets.

in�nite streams. In adversarial queuing theory [8, 13, 19, 22], the ad-
versary is restricted from injecting too many packets/jammed slots
over a set of consecutive slots of length (, where (is a parameter
of the model that we refer to as the granularity. For granularity (,
the number of packet arrivals plus the number of jammed slots is
limited to _(, where the arrival rate _ is a constant less than one.
On the other hand, how the packet arrivals are distributed within
each (-sized window is adversarial: no restrictions are placed on
how the (at most) _(packets and jammed slots are distributed. By
showing that the implicit throughput of all active slots is ⌦(1),
we obtain as a corollary a strong bound of $ (() on the number
of packets backlogged in the system at all times, as long as _ is a
su�ciently small constant.

1.2 Main results
We present an algorithm that with high-probability guarantees
⌦(1) implicit throughput in all active slots and full energy e�-
ciency. Thus, we resolve two open questions in contention resolu-
tion: First, we show that full-energy e�ciency is feasible, even with
only ternary feedback. Second, we show that these guarantees are
achievable, even in the presence of adversarial jamming.

Our algorithm relies on the natural multiplicative-weight ap-
proach to backo�—with a careful choice of probabilities and up-
dates rules. In contrast to some previous approaches, we do not
rely on packet batching (to turn the online problem into a series of
batch problems), leader election, busy tones, population estimation,
dividing the channel into simulated subchannels (e.g., odd and even
slots) for packet coordination, or other approaches seen in many
modern algorithms; alas, these seem problematic in our setting.
Given the simplicity of our algorithm, the technical innovation
lies in choosing the update parameters, analyzing the underlying
combinatorial process, and proving that it is fast, robust, and fully
energy e�cient.

Our algorithm L���S������ B������ guarantees the main the-
orems below.5

Theorem 3 (Implicit throughput, in�nite packet streams). At
the C-th active slot, the implicit throughput is ⌦(1) w.h.p. in C .

Corollary 4 (Throughput, �nite packet streams). Consider an
input stream of # packets with J jammed slots. The throughput for
the execution is ⇥(1) w.h.p. in # + J .

Corollary 5 (Bounded backlog for adversarial-queuing ar-
rivals). Consider adversarial-queuing-theory arrivals with a su�-
ciently small constant arrival-rate _ and granularity (; i.e., in any
interval of length (, the total number of packet arrivals and jammed
slots is at most _(. Then, for any given slot C , the number of packets
currently in the system is at most $ (() w.h.p. in (.

Theorem 6 (Energy, �nite executions). Consider a �nite execu-
tion with # total packet arrivals and J total jammed slots against an
adaptive adversary. Any given packet accesses the channel$ (polylog
(# + J)) times w.h.p. in # + J .

5An event occurs with high probability (w.h.p.) in x if for any �xed constant 2 � 1,
the probability of the event is at least 1 � G�2 .

Fully Energy-E�icient Randomized Backo� PODC ’24, June 17–21, 2024, Nantes, France

Theorem 7 (Energy, adversarial queuing). Consider a (�nite
or in�nite) packet stream with adversarial-queuing arrivals with
granularity (andwhere the arrival rate is a su�ciently small constant.
Then any given packet accesses the channel $ (polylog(()) times
w.h.p. in (against an adaptive adversary.

Theorem 8 (Energy, in�nite executions). Consider an in�nite
packet stream, and let #C and JC denote the number of arrivals and
jammed slots, respectively, up until time C against an adaptive adver-
sary. Then any given packet accesses the channel$ (polylog(#C +JC))

times before time C , w.h.p. in #C + JC .

Theorem 3 is proved in Section 5.5 where it appears as Corollary
30. Corollary 5 corresponds to Corollary 33. The remaining theo-
rems are proved in Section 5.6. In particular, Theorem 6 corresponds
to Theorem 34, and Theorem 7 corresponds to Theorem 36. Finally,
Theorem 8 is included in Theorem 38. The details of these results
are presented in the full version of our paper [9].

1.3 Extensions to Reactive Adversary
A reactive adversary [40, 56, 63] has an instantaneous reaction
time; that is, this adversary listens to the channel and can decide
whether to jam and/or inject new packet(s) in slot C based on what
it hears in slot C itself. In contrast, the standard adaptive adversary
would not know whether any packet chooses to send in slot C until
slot C + 1. This allows a reactive adversary to cheaply prevent any
particular packet ? from transmitting successfully by jamming only
those slots where ? makes transmission attempts. Thus, against a
reactive adversary, the total number of channel accesses required is
at least linear in the amount of jamming. For exponential backo�,
the situation is more dire: for any) a reactive adversary can also
drive the throughput down to $ (1/)) by jamming a single packet
a mere ⇥(log)) times.

Note that reactivity and adaptivity are somewhat orthogonal.
Reactivity addresses how quickly the adversary can react to the
detectable channel state—importantly, only sending is revealed,
since it is detectable. In contrast, an adaptive adversary knows
all of the internal state and random choices of packets up to the
previous slot, and in particular this adversary also knows if packets
choose to listen.

In addition to our main results on purely adaptive adversaries,
we also address an adversary that is both adaptive and reactive. It
turns out that the reactive adversary does not impact our implicit-
throughput bounds for our algorithm (our analysis applies whether
or not the adversary can see the channel activity at the current
time). Reactivity thus only impacts the number of channel accesses.
Roughly speaking, the theorem states that the reactive adversary
has nontrivial impact on the worst-case number of channel accesses
and thus energy, which is to be expected, but it does not have
signi�cant impact on the average.

Theorem 9 (Energy, reactive adversary). The following apply to
a reactive and adaptive adversary.
(1) Finite streams. Consider a �nite execution with # total packet

arrivals and J total jammed slots. Any given packet accesses the
channel $ ((J + 1) polylog(#)) times w.h.p. in # + J . More-
over, the average number of channel accesses is only $ ((J/# +

1) polylog(# + J)) times w.h.p. in # + J .

L���S������ B������ for packet u

Key Variables:
• FD (C): window size of D in slot C .
If D is injected at time slot C , thenFD (C) = Fmin.

• 2: a su�ciently large positive constant.

In every slot C , packet D executes the following four steps

with probability 2 ln3 (FD (C))

FD (C)
:

• Listen

• Send with probability
1

2 ln3 (FD (C))

• If D heard a silent slot, then

FD (C + 1) max
⇢

FD (C)

1 + 1/(2 ln(FD (C)))
, Fmin

�

• If D heard a noisy slot, then

FD (C + 1) FD (C) ·

✓
1 +

1
2 ln(FD (C))

◆

Figure 1: L���S������ B������ algorithm.

(2) Adversarial queuing. Consider a (�nite or in�nite) packet
stream with adversarial-queuing arrivals with granularity (and
where the arrival rate is a su�ciently small constant. Then any
given packet accesses the channel at most $ (() times, w.h.p.
in (. In addition, the average number of accesses per slot is
$ (polylog(()), w.h.p. in (.

(3) In�nite executions. Consider an in�nite packet stream, and
let #C and JC denote the number of arrivals and jammed slots,
respectively, up until time C . Then any given packet accesses the
channel$ ((JC + 1) polylog(#C + JC)) times before time C , w.h.p.
in #C + JC . Moreover, the average number of channel accesses is
$ ((JC/#C + 1) polylog(#C + JC)).

The items of Theorem 9 are each proved separately as Theo-
rems 35, 37, and 38 in Section 5.6 of our full paper [9].

2 LOW�SENSING BACKOFF ALGORITHM
This section presents the L���S������ B������ algorithm; see
Figure 1. For ease of presentation, we describe our algorithm as
listening whenever it sends. However, the packet need not actually
do both; observe that any packet that is sending does not need to
listen to determine the state of the channel, since if the packet is
still in the system after sending in slot C , then slot C was noisy.

The probabilities for sending and listening in L���S������
B������ are determined by a single parameter, which we call
packet u’s window size. LetFD (C) denote packetD’s window size at
time slot C . WhenD is injected into the system, its window size is set
to theminimum allowed value:wmin � 2. Let 2 be a su�ciently large
positive constant. The sending and listening rules are as follows.
First, packet D listens with probability 2 ln3 (FD (C)) /FD (C). Then,
conditioned on listening, D sends with probability 1/(2 ln3 (FD (C))).

PODC ’24, June 17–21, 2024, Nantes, France M. A. Bender, J. T. Fineman, S. Gilbert, J. Kuszmaul, M. Young

A packet D only has the option to change its window size when
it accesses the channel. Speci�cally, if at time C , packet D listens to
the channel and learns that the slot C is busy, then the window size
increases (or backs o�) by a backo� factor of 1 + 1/(2 ln(FD (C)));
that is, FD (C + 1) FD (C) (1 + 1/(2 ln(FD (C)))). Similarly, if at
time C , packet D accesses the channel and learns that the slot C is
empty, then the window size shrinks (or backs on) by a backon
factor of 1 + 1/2 ln(FD (C)), or until it gets back down toFmin, that
is,FD (C + 1) max {FD (C)/(1 + 1/(2 lnFD (C))), Fmin}.

3 TECHNICAL OVERVIEW
This section gives a technical overview. In Section 3.1, we intro-
duce the notion of contention. In Section 3.2, we introduce our
potential function �(C). Section 3.3 gives the main structure of
our analysis in terms of intervals. Finally, Section 3.4 provides a
synopsis of the main analytical results achieved and how they are
deployed to make progress towards our main results (Section 1.2).
That is, we describe the main point of each of the technical sections;
namely, Sections 5.1–5.6, which are available in the full version of
our paper [9].

3.1 Contention
For any slot C , we de�ne the contention I (t) = Õ

D 1/FD (C) to be
the sum of the sending probabilities in that slot, i.e., the expected
number of packets that attempt to send during that slot. We say
contention is high when ⇠ (C) > ⇠high, where Ihigh> 1 is some
�xed positive constant. Conversely, we say that contention is low
when ⇠ (C) < ⇠low, where we de�ne Ilow to be some �xed positive
constant such that ⇠low  1/Fmin. Otherwise, if contention is in
[⇠low,⇠high], then we say that contention is good.

3.2 Our potential function
Throughout the execution of L���S������ B������, we maintain
a potential function �(C) that captures the state of the system at
time C and measures the progress toward delivering all packets.
When a slot C is inactive, �(C) = 0. We will see that packet arrivals
increase�(C) by⇥(1) per newly arrived packet, that packets exiting
the system successfully decrease �(C) by ⇥(1) per packet, that a
jammed slot increases �(C) by $ (1), and that on average each slot
decreases the potential by ⇥(1), ignoring newly arrived packets.

For any slot t , T (t) is the number of packets in the system,
wu (t) is D’s window size,wmax(t) is the largest window size over
all packets, and "1, "2, and "3 are positive constants. Our potential
function consists of three terms. Implicitly, the third term is 0 if
there are no packets in the system (and thusFmax (C) = 0):

�(C) = U1# (C) + U2
’
D

1
ln(FD (C))

+ U3
Fmax (C)

ln2 (Fmax (C))
.

We abbreviate �(C) as:

�(C) = U1# (C) + U2� (C) + U3!(C),

where U1, U2, and U3 may be set so that �(C) will decrease as time
progresses for all values of contention⇠ (C). The notation N (t) and
R(t) is used to highlight that these terms capture the impact on �
from high contention and low contention, respectively.

Why these terms? There are three main features of the state of
the system that are captured by the potential function: the number
of packets, the contention, and the size of the windows. (Note
that these are not independent, as larger windows correspond to
lower contention.) Roughly speaking, when there are many active
packets, potential should be high, and when there are no packets,
the potential should be 0. The # (C) term captures this idea directly
by counting the number of packets.

The� (C) term is chosen so that the expected change to� (C) in a
slot is proportional to the contention. When the contention is high
(and the slot is most likely to have a collision), in expectation � (C)
decreases proportional to the contention (due to the update rule on
noisy slots). On the other hand, when the contention is low (and the
slot is most likely to have silence), � (C) increases proportional to
the contention. Overall, this is pretty great: when contention is high,
� (C) is likely to decrease by a lot. When contention is low, there is
a small expected increase, but that increase is counterbalanced by
the (small) expected number of packet successes re�ected in # (C).
Choosing U1 > U2 makes the net e�ect a decrease.

Finally, the !(C) term allows us to cope with the situation that
the contention is low but some packets in the system have large
windows (e.g., there is a single packet with a very large window).
As it is likely to take a long time for the packet to succeed, the
potential should be high. !(C) is roughly the expected time for
a packet with window Fmax (C) to decrease its window size to a
constant if all slots are silent. The analysis then needs to show that
any increases to !(C) are counterbalanced by decreases in the other
terms, ensured by U1 > U2 > U3.

Challenge with !(C). The # (C) and � (C) terms are well-behaved
in the sense that they change on a per-slot basis, while the !(C) term
cannot. To see why, consider the case that several packets with
window size Fmax (C) remain. The !(C) term only decreases after
all of those packets have chosen to listen and observed silence. On
any step that multiple such packets remain, it is extremely unlikely
that all of the packets choose to listen. Thus, !(C) does not decrease
by a constant in expectation. Instead, we need a coarser granularity
to understand the behavior of !(C).

3.3 Analyzing intervals
Our analysis divides the execution into disjoint intervals of time.
The �rst interval starts at the �rst step with an active packet. An
interval starting at time C has size g = (1/2g)max{!(C),

p
(C)},

where 2g is a constant. If any active packets remain, the next interval
starts immediately after the previous interval ends. (Otherwise, an
interval begins the next time there is an active packet.)

A key technical theorem is the following. Let A and J denote
the number of arrivals and jammed slots, respectively, in the size-
g interval. For A = J = 0, the lemma states that the potential
decreases by ⌦(g) across the interval, with high probability in g ,
meaning a decrease of ⌦(1) per slot. For generalA,J , the potential
decreases by ⌦(g) �$ (A + J).

Theorem 27 (Decrease in �(t) over interval I w.h.p. in |I|).
Consider an interval I starting at C of length |I | = g = (1/2g) ·
max

� Fmax (C)
ln2 (Fmax (C))

,# (C)1/2

. Let A and J be the number of packet

arrivals and jammed slots inI. With high probability in g ,� decreases

Fully Energy-E�icient Randomized Backo� PODC ’24, June 17–21, 2024, Nantes, France

over I by at least ⌦(g) �$ (A + J). That is,

Pr
⇥
(�(C 0) � �(C)) � ⇥(A + J) � ⌦(g)

⇤
 (1/g)⇥(1) .

Our proof of Theorem 27 is broken into several lemmas according
to the level of contention. Speci�cally, we have separate cases for
high contention, good contention, and low contention. In each of
the cases, absent arrivals and jamming, we argue that there is a net
decrease in potential, with high probability, but the contributing
term is di�erent in each case. The interplay between # (C) and� (C)
is tight enough that we analyze the net e�ect on the sum of these
terms together, but we analyze !(C) separately. A more detailed
summary is provided next in Section 3.4.

A signi�cant complication is that (1) the probability stated in
Theorem 27 depends on the size of the interval, and (2) the interval
sizes are determined adaptively by actions of the adversary. To
analyze the full process, we model an execution as a speci�c biased
random walk that we set up as a betting game (Section 5.5). The
bounds provided by the betting game translate into high-probability
bounds with respect to the total number of packets.

Throughout the paper, standard Cherno� bounds sometimes
cannot be used for two reasons. First the adversary can adaptively
in�uence the length of an interval. Moreover within each interval,
the adversary can in�uence which slots are high, low, and good
contention. To be able to analyze these slots separately, we must in-
stead apply a generalization of Azuma’s inequality (see Theorems 13
and 14 in Section 5.1, taken from [42]) that gives us Cherno�-like
bounds but with adaptively chosen probability distributions.

Finally, good upper bounds for �(C) enable us to characterize
the (implicit and standard) throughput and energy consumption of
L���S������ B������ in all its variety of settings (�nite versus in-
�nite executions, arbitrary in�nite versus in�nite with adversarial-
queuing arrivals, adaptive adversaries that are reactive versus non-
reactive). The most direct application of �(C) is to bound implicit
throughput. �(C) also gives us an upper bound on the maximum
window size Fmax (C), speci�cally, Fmax (C) = $

�
�(C) log2 (�(C))

�
,

which we use to prove energy bounds in Section 5.6.

3.4 Proof organization
The main analysis in this paper, including all of the proofs, appears
in Section 5 in our Appendix, which is available in the full ver-
sion of our paper [9]. This section summarizes the proof structure,
highlighting the key lemma statements.

Overview of Section 5.1. Preliminaries. This section lists several
well-known inequalities that are used throughout our analysis.
We review bounds on the probability that a slot is noisy, empty,
or contains a successful transmission as a function of contention
(Lemmas 10, 11 and 12). The lemmas in this section allow us to imme-
diately obtain constant bounds on the probabilities of empty slots,
successful slots, and noisy slots in di�erent contention regimes.

Theorems 13 and 14 give upper and lower bounds for the sum
of random variables, where the distribution of each subsequent
random variable is determined by an adaptive adversary. This ad-
versarial, multiplicative version of Azuma’s inequality is a powerful
tool from [42] that allows us to analyze the performance of our

algorithm in situations where a simpler Cherno�-bound-style ar-
gument does not appear to work, given the adaptive nature of our
adversary.

Overview of Section 5.2. # (C) +� (C): over single slots and intervals,
when contention is low, high, and good. This section addresses the be-
havior of # (C) and� (C). When contention is high, we expect to see
a decrease in � (C), which should be large enough that its reduction
outweighs any increase from !(C), and thus �(C) decreases.

Lemma 18 shows how much � (C) changes as a result of a spe-
ci�c packet listening during a slot C—that is, how much � (C) in-
creases when the slot is silent and decreases when the slot is noisy.
Lemma 19 analyzes the change to # (C) + � (C) due to the low and
good contention slots in an arbitrary interval. We highlight that the
adaptive adversary exerts some control over which slots have low
and good contention, since it can inject packets and/or jam in slot
C +1 based on the packets’ random choices in slot C . In particular, let
|G| denote the number of good slots in the interval, then Lemma 19
shows the following. Over good-contention slots, # (C) + � (C) de-
creases by ⌦(|G|), minus the number of packet injections, jammed
slots, and a polylog term in the length of the interval, w.h.p. in the
interval length. Lemma 19 also shows that over the low-contention
slots, # (C) + � (C) increases by at most the number of packet injec-
tions, jammed slots, and a polylog term in the length of the interval,
again w.h.p. in the interval length.

Lemma 18 (Increase/decrease in N (t) due to a silent/noisy
slot). When packet D listens to a silent slot C , � (C) increases by
⇥
� 1
2 ln3 FD

�
due to packet D. When a packet D listens to a noisy slot,

� (C) decreases by ⇥
� 1
2 ln3 FD

�
due to packet D.

Lemma 19 (Net delta in contribution of T (t) and N (t) to
potential over low and good contention slots). Let I be an
arbitrary interval starting at time C with length |I | = g . Let L be the
set of slots in I during which ⇠ (C)  ⇠low. Let G be the set of slots
in I during which ⇠ (C) > ⇠low and ⇠ (C)  ⇠high. Let AL be the
number of packet arrivals in time slots in L. Let AG be the number
of packet arrivals in time slots in G. Let JL be the number of jammed
slots in L. Let JG be the number of jammed slots in G. De�ne:

• the net delta over L to be the sum of the changes in # (C) and
� (C) during the slots in L, i.e.,’
C 0 2L

⇣
U1

�
(C 0 + 1) � # (C 0)

�
+ U2

�
� (C 0 + 1) � � (C 0)

� ⌘
.

• the net delta over G to be the sum of the changes in # (C) and
� (C) during the slots in G, i.e.,’
C 0 2G

⇣
U1

�
(C 0 + 1) � # (C 0)

�
+ U2

�
� (C 0 + 1) � � (C 0)

� ⌘
.

Then, for proper choices of U1 and U2:
• The net delta over L is at most$ (ln2 g) +U1 (AL +JL) w.h.p.
in g .

• The net delta over G is at most $ (ln2 g) + U1 (AG + JG) �

⌦(|G|) w.h.p. in g .

Lemma 20 provides a symmetric high-probability bound on
(C) + � (C) over the high-contention slots in an arbitrary inter-
val. For the high-probability bound, in this case, we have that

PODC ’24, June 17–21, 2024, Nantes, France M. A. Bender, J. T. Fineman, S. Gilbert, J. Kuszmaul, M. Young

(C) + � (C) will decrease by ⌦(|H |), where |H | is the number
of high-contention slots, up to the usual additional terms of jam-
ming, packet injections, and a polylog term in terms of the interval
length.

Lemma 20 (Net delta in contribution of T (t) and N (t) to
potential over high contention slots). Let I be an arbitrary
interval starting at time C with length |� | = g . LetH be the set of slots
in I during which ⇠ (C) > ⇠high. Let AH be the number of packet
arrivals in time slots inH , and let JH be the number of jammed slots
in H ,

De�ne the net delta over H to be the sum of the changes in #
and � during the slots inH , i.e.,’

C 0 2H

⇣
U1

�
(C 0 + 1) � # (C 0)

�
+ U2

�
� (C 0 + 1) � � (C 0)

� ⌘
.

Then the net delta over H is at most $ (ln3 g) + U1AH � ⌦(|H |)

w.h.p. in g .

It is worth noting that the proofs of Lemmas 19 and 20 are tech-
nically involved. One of the reasons for this is that these lemmas
contain our main applications of Theorems 13 and 14. This is neces-
sary because the potential-function terms behave very di�erently in
the three contention regimes—and because the adaptive adversary
has the ability to change the contention in a slot on the �y.

Lemma 21 then collates Lemmas 19 and 20 to show that over an
arbitrary interval of length g , it is either the case that almost all of
the slots are low contention slots, or the �rst two terms decrease by
⌦(g) with high probability (again, up to terms for packet insertions
and jamming). Lemma 21 considers all slots, rather than only those
of a particular contention regime. This lemma is the only one from
this subsection that will be used later in the analysis, but the earlier
lemmas in the subsection are necessary to build up to it.

Lemma21 (Unlessmost slots have low contention,"1T (t)+"2N (t)
decreases). Let I be an arbitrary interval of length g > ⌦(1) with
A packet arrivals and J jammed slots. With high probability in g ,
at least one of the following two conditions holds:

• Less than 1/10 of slots satisfy ⇠ (C) � ⇠low.
• U1# (C) + U2� (C) decreases by ⌦(g) �$ (A + J) over I.

Additionally, U1# (C) +U2� (C) increases by at most$ (ln3 g +A+J)

w.h.p. in g .

Overview of Section 5.3. Amortized behavior of R(t). This section
analyzes !(C)’s behavior over intervals of length |I | = g = (1/2g) ·
max{ Fmax (C)

ln2 (Fmax (C))
,# (C)1/2}. The two main things that we want to

show are that !(C) does not increase by much, regardless of the
contention regime, and that when there are many low-contention
slots, !(C) exhibits a substantial decrease.

Lemma 24 argues that a packet with large-enough window size
is unlikely to have its window change by much during the interval.
This lemma is instrumental when considering packets across an
interval (notably in the proof of Lemma 26) as it means that their
probability of listening also does not change by much.

Lemma 25 provides one of the main results of the section: a tail
bound, and hence also a high probability bound, on how much !
increases over the interval regardless of contention. The proofs for
both Lemmas 24 and 25 amount to arguing that an individual packet

is unlikely to listen to the channel too many times, which means
that its window size also cannot change by very much. Because we
are pessimistically counting the number of listens, the actual state
of the channel does not appear in the proofs, and thus the number
of jammed slots is irrelevant.

Lemma 24 (Bounds on the factor that a large window can
grow/shrink). Consider any packet during an interval I with g =
|I |. Let / satisfy //ln2 (/) = g . And let, � Fmin be the initial
size of the packet’s window. Let, � be the smallest window size the
packet has while still active in the interval, and let, + be the biggest
window size the packet achieves during the interval. Then for large
enough choice of constantsFmin and 2 and any constant parameter
W > 0 and : � 2:
If, = ⇥(:/), then

Pr
⇥
, +
� 4W, or , � <, /4W

⇤
 1/g⇥(2W lg(W:)) .

Lemma 25 (Tail bound on increase in R(t)). Consider an interval
I with length g = |I | starting from time C and ending at time C 0 = C+g .
Let A be the number arrivals during the interval. Then for for large-
enough constant 2 in the algorithm and any : � 2:

Pr
⇥
!(C 0) � ⇥(A + :g)

⇤
 2�⇥(2 (lgg ·lg:+lg2 :)) .

Lemma 26 is the other main result of the section. This lemma says
that as long as most slots have low contention, then ! decreases by
⌦(g), minus the number of packet arrivals and jammed slots. The
proof focuses on packets with large windows, i.e., window closes
toFmax (C). The main idea of the proof is to give a high-probability
lower bound on the number of times each such packet listens and
hears silence as well as an upper bound on how many times the
packet listens and hears noise. As long as the former is larger by a
constant factor, the packet is likely to decreases its window size by
a constant factor. Taking a union bound across packets is enough
to conclude that all packets with large windows have their window
sizes decrease, with high probability.

Lemma 26 (Mostly low contention implies decrease in R(t)).
Consider an interval I starting at C of length g , where g = (1/2g)
max

n
!(C),

p
(C)

o
. Let C1 = C + g , and let A and J denote the

number of packet arrivals and jammed slots, respectively, over I.
Then, with high probability in g , either

• !(C1)  !(C)/3 +$ (A), where 3 > 1 is a constant, or
• At least a 1/10-fraction of the slots C 0 in the interval I are
either jammed or have contention ⇠ (C 0) � ⇠low.

Incorporating the fact that g � !(C)/2g , it follows that if at least a
9/10 fraction of slots in the interval have contention at most ⇠low,
then (!(C1) � !(C))  $ (A + J) � ⌦(g).

Overview of Section 5.4. Combining the analyses of # (C), � (C),
and !(C), to analyze �(C). This section combines all three terms of
the potential function to characterize the overall behavior of �(C).
The key tools established in this section are Theorem 27 (stated
previously in Section 3.3) and Theorem 28, which allow us to argue
that the potential will decrease (most of the time) and that, when
this fails to occur, the amount by which it increases is bounded.
Speci�cally, consider a size-g interval with A packet arrivals and
J jammed slots. Theorem 27 shows that �(C) decreases by ⌦(g) �
$ (A + J) w.h.p. in g . Theorem 28 establishes tail bounds, proving

Fully Energy-E�icient Randomized Backo� PODC ’24, June 17–21, 2024, Nantes, France

that even when the high-probability bound of Theorem 27 fails, the
probability that �(C) increases by more than :g2 + $ (A + J) is
less than 1

poly(g) · (1/2)
⇥(log2 :) .

Theorems 27 and 28 are the tools needed to �t our betting game,
descussed next and in Section 5.5, and thereby argue that the po-
tential is likely to decrease su�ciently across multiple intervals.

Theorem 28 (Tail bound on increase in �(t) over interval
I). Consider an interval I of length |I | = g starting at time C and
ending at time C 0. Let A be the number of packet arrivals in I. Then
the probability that � increases by at least ⇥(A) + ⇥(:g2) is at
most 2�⇥(2 (lgg ·lg:+lg2 :))

 (1/g⇥(2)
) · 2�⇥(log2 :) , where 2 is the

constant parameter of the algorithm. That is,

Pr
⇥
(�(C 0) � �(C)) � ⇥(A) + ⇥(:g2)

⇤


✓
1

g⇥(1)

◆
· 2�⇥(log2 :) .

Overview of Section 5.5. Using �(C) to prove throughput via a
betting-game argument. The analysis so far establishes progress
guarantees over su�ciently large intervals in the form of Theo-
rems 27 and 28. Here, we show how to apply these theorems to
give upper bounds on the potential over the execution with high
probability in the total number of packets and jammed slots.

Since the adversary is adaptive, we have to be careful in com-
bining bounds across intervals. The adversary can use the results
of earlier intervals in choosing new arrivals and jamming, which
a�ects the size of later intervals. To reason about this process, we
reframe it in a setting that resembles a random walk, which we
describe below in a be�ing game. Our analysis of this game then
allows us to analyze the implicit throughput (recall Section 1.1).

The Betting Game. We �rst summarize the betting game and then
later relate it to the backo� process. The adversary corresponds to
a be�or who makes a series of bets. Each bet has a size equal to the
duration g . The bettor also has some amount of money, which is
initially 0 dollars. When the bettor loses a bet, the bettor loses some
money, and when the bettor wins, the bettor wins some money.
(The amounts won or lost are speci�ed below as a function of the
size of the bet.) Additionally, at any time, the bettor may choose
to receive a passive income. The passive income is added to the
bettor’s wealth. The total amount of passive income taken, however,
means that the bettor must play the game longer. The game begins
when the bettor �rst takes some passive income, and the game does
not end until either the bettor goes broke or the bettor has resolved
bets totaling ⌦(%) size, where % is the passive income received,
whichever comes �rst. The bettor’s goal is to complete the game
without going broke. Importantly, although the bettor can always
choose to take more passive income, doing so increases the total
play time.

We set the details of the betting game to mirror the backo�
process. Each bet corresponds to an interval. Passive income during
a bet corresponds to the number of arrivals and jammed slots during
the interval. Money corresponds to potential.

The bettor loses a size-g bet with probability at least 1 � 1
poly(g) .

If the better loses the size-g bet, it loses ⇥(g) dollars. This loss
corresponds to the high-probability event (in g) of Theorem 27. The
bettor wins a size-g bet with probability$ (1/poly(g)). If the bettor
wins the bet, it gets ⇥(g2) dollars, plus . bonus dollars, where .

is a random variable such that Pr[. � :g2]  1
poly(g) · 2

�⇥(log2 :) ;
these winnings correspond to tail bound of Theorem 28. (Of course,
during each bet, the bettor can also gain passive income for arrivals
and jammed slots.)

We pessimistically give the bettor the power to choose arbitrary
bet sizes (subject to a minimum interval size, which itself is de-
termined by Fmin), and the bettor is even allowed to place bets
whose loss would cause the bettor to end with negative money. (In
the actual backo� process, the interval sizes are dictated by the
current state of the system, and not entirely under the control of
the adversary.)

The rules of betting game are set pessimistically (in favor of the
bettor) such that when the bettor wins, �(C) increases more slowly
than the bettor’s wealth increases, and when the bettor loses, �(C)
decreases at least as fast as the bettor’s wealth decreases. Therefore,
this betting game stochastically dominates the potential function.

The takeaway is that at any point C , the bettor’s wealth is an upper
bound on �(C). Because �(C) is an upper bound on the number
of packets in the system, the bettor going broke corresponds to
all packets succeeding. We thus obtain good implicit throughput,
because there must either be many jammed slots or packet arrivals,
or there must be many packets succeeding, leading to inactive slots.

Upper bounding the bettor’s maximum wealth/potential and show-
ing ⌦(1) implicit throughput. In Lemma 29, we provide a high-
probability upper bound on the bettor’s maximum wealth and the
amount of time until it goes broke, which corresponds to there
being no packets in the system.

Lemma 29 (The bettor loses the betting game). Suppose the
bettor receives % dollars of passive income. Then with high probability
in % , the bettor never has more than$ (%) dollars across the execution.
Moreover, the bettor goes broke within $ (%) active slots, with high
probability in % .

We brie�y explain here how Lemma 29 implies implicit through-
put. Consider a time horizon C , and suppose that the bettor has re-
ceived % = C/2 dollars from passive income, for constant 2 matching
the big-$ of the lemma. Then from Lemma 29, with high probability
in C/2 , the bettor goes broke within 2 · C/2 = C time; that is, there are
no active packets at time C . We thus obtain the ⌦(1) throughput
result of Theorem 3.

Overview of Section 5.6. Channel access/energy bounds. In this
section, we establish energy bounds. Two of the theorem state-
ments, namely Theorems 34 and 38; the rest appear in Section 5.6.
Theorems 34–38 are proved via properties of our potential function.
(Several additional useful lemmas about the potential, not high-
lighted above, do appear in Section 5.5). So far, we have primarily
motivated �(C) as a tool for proving throughput bounds, but �(C)
also enables channel-access bounds.

Theorem 34 gives energy bounds in the �nite case against an
adaptive adversary. Speci�cally, if the stream has # packets and
J jammed slots, then w.h.p. each packet accesses the channel
at most polylog(# + J) times. The proof structure is as follows:
Our upper bound on �(C) immediately gives an upper bound on
a packet’s maximum window size: Fmax (C) = $ (poly(�(C)) =
$ (poly(# + J)). Thus, if a packet accesses the channel too many
times, then many of these accesses must have been listening during

PODC ’24, June 17–21, 2024, Nantes, France M. A. Bender, J. T. Fineman, S. Gilbert, J. Kuszmaul, M. Young

silent slots, so that the packet window can get smaller. However,
by the structure of L���S������ B������, whenever a packet �rst
chooses to listen, there is at least a 1/polylog(# + J) probability
that it also sends. Thus, after polylog(# + J) channel accesses
when all other packets are silent, with high probability that packet
has been transmitted.

Theorem 34 (Energy bound for �nite case against adaptive ad-
versary). Consider an input stream with # packets and J jammed
slots. Assume that the adversary is adaptive but not reactive. Then
w.h.p. in# +J , every packet accesses the channel at most$ (log4 (# +

J)) times.

The corresponding proof illustrates one subtle design choice of
L���S������ B������, which leads to an easier energy analysis.
Speci�cally, a given packet’s sending and listening probabilities are
correlated: if a packet sends, then it has already decided to listen
(but, of course, a packet can listen without deciding to send). We
conclude by observing that, with an adaptive adversary, all packets
have good channel-access bounds.

Theorem 35 gives an analogous result for an adversary that
is both adaptive and reactive. By the very nature of a reactive
adversary, there is no possibility of good per-packet bounds on
channel accesses. (For example, a reactive adversary could target a
speci�c packet and reactively jam whenever it sees this packet try
to transmit.) However, interestingly, the amortized channel-access
bounds are still good. This is because the reactive adversary only
learns about sending on the channel and can react instantaneously;
it does not learn whether a packet is listening in the current slot.
Thus, a targeted packet can still reduce its window (as the other
packets do) and it will succeed in sending unless the adversary does
signi�cant jamming. For example, consider the special case where
the targeted packet is the only packet remaining. Then, unless the
adversary (which does not sense when a packet will listen) jams
a large number of slots, this packet will correctly back on and
transmit successfully.

Theorems 36 and 37 generalize Theorems 34 and 35 to the
adversarial-queuing settingwith granularity (and su�ciently small
arrival rate _. The main tool is Lemma 32, which allows us to trans-
form the adversarial queuing case into �nite instances that are not
very large. Theorem 38 applies to in�nite streams with arbitrary
arrivals.

Theorem 38 (Channel access bounds for in�nite case against
adaptive and reactive adversaries). Suppose that up until time C
there have been #C packet arrivals and JC jammed slots.
• Consider an adaptive adversary that is not reactive. Then w.h.p. in
JC + #C , each packet makes $ (log4 (JC + #C)) channel accesses
before time C .

• Consider and adaptive adversary that is reactive. Then w.h.p. in
JC + #C , a particular packet accesses the channel at most$ ((JC +

1) log3 (#C + JC) + log4 (#C + JC)) times. Moreover, the average
number of channel accesses is $ ((JC/#C + 1) log4 (#C + JC)).

4 CONCLUSION
We have provided a simple contention-resolution algorithm that
achieves constant throughput with full energy e�ciency (i.e., low
sending and listening complexity), despite a jamming adversary.

This resolves in the a�rmative two open questions about whether
full-energy e�ciency is possible at all in the popular ternary-
feedback model, and whether it remains possible in the presence of
jamming.

ACKNOWLEDGMENTS
This research was supported in part by NSF grants CCF-1918989,
CCF-2106759, CCF-2144410, CCF-2247577, CCF-2106827, and by
Singapore MOE-T2EP20122-0014.

REFERENCES
[1] Norman Abramson. 1970. The ALOHA System: Another Alternative for Com-

puter Communications. In Proceedings of the November 17-19, 1970, Fall Joint
Computer Conference (Houston, Texas). Association for Computing Machinery,
New York, NY, USA, 281–285.

[2] Kunal Agrawal, Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Maxwell
Young. 2020. Contention Resolution with Message Deadlines. In Proceedings of
th 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
ACM, Virtual, 23–35.

[3] Hesham Al-Ammal, Leslie Ann Goldberg, and Phil MacKenzie. 2000. Binary
Exponential Backo� Is Stable for High Arrival Rates. Springer Berlin Heidelberg,
Berlin, Heidelberg, 169–180.

[4] HeshamAl-Ammal, Leslie Ann Goldberg, and Phil MacKenzie. 2001. An improved
stability bound for binary exponential backo�. Theory of Computing Systems 34,
3 (2001), 229–244.

[5] David J. Aldous. 1987. Ultimate instability of exponential back-o� protocol for
acknowledgment-based transmission control of random access communication
channels. IEEE Transactions on Information Theory 33, 2 (1987), 219–223.

[6] Lakshmi Anantharamu, Bogdan S Chlebus, Dariusz R Kowalski, and Mariusz A
Rokicki. 2019. Packet latency of deterministic broadcasting in adversarial multiple
access channels. J. Comput. System Sci. 99 (2019), 27–52.

[7] Baruch Awerbuch, Andrea Richa, and Christian Scheideler. 2008. A Jamming-
Resistant MAC Protocol for Single-Hop Wireless Networks. In Proceedings of
the 27th ACM Symposium on Principles of Distributed Computing (PODC). ACM,
Toronto, Canada, 45–54.

[8] Michael A. Bender, Martin Farach-Colton, Simai He, Bradley C. Kuszmaul, and
Charles E. Leiserson. 2005. Adversarial Contention Resolution for Simple Chan-
nels. In Proc. 17th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). ACM, Las Vegas, USA, 325–332.

[9] Michael A Bender, Jeremy T Fineman, Seth Gilbert, John Kuszmaul, and Maxwell
Young. 2023. Fully Energy-E�cient Randomized Backo�: Slow Feedback Loops
Yield Fast Contention Resolution. arXiv preprint arXiv:2302.07751. Full version
of this paper: https://doi.org/10.48550/arXiv.2302.07751.

[10] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Maxwell Young. 2019.
Scaling Exponential Backo�: Constant Throughput, Polylogarithmic Channel-
Access Attempts, and Robustness. J. ACM 66, 1 (January 2019), 6:1–6:33.

[11] Michael A. Bender, Tsvi Kopelowitz, William Kuszmaul, and Seth Pettie. 2020.
Contention Resolution without Collision Detection. In Proc. 52st Annual ACM
Symposium on the Theory of Computing (STOC). ACM, Chicago, USA, 105–118.

[12] Michael A. Bender, Tsvi Kopelowitz, Seth Pettie, and Maxwell Young. 2016. Con-
tention Resolution with Log-Logstar Channel Accesses. In Proc. 48th Symposium
on the Theory of Computing (STOC). ACM, Cambridge, USA, 499–508.

[13] Allan Borodin, Jon Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P.
Williamson. 2001. Adversarial queuing theory. J. ACM 48, 1 (2001), 13–38.

[14] Yi-Jun Chang, Wenyu Jin, and Seth Pettie. 2019. Simple Contention Resolution
via Multiplicative Weight Updates. In 2nd Symposium on Simplicity in Algorithms
(SOSA), Vol. 69. Schloss Dagstuhl, San Diego, USA, 16:1–16:16.

[15] Yi-Jun Chang, Tsvi Kopelowitz, Seth Pettie, Ruosong Wang, and Wei Zhan. 2019.
Exponential Separations in the Energy Complexity of Leader Election. ACM
Trans. Algorithms 15, 4 (2019), 49:1–49:31.

[16] Haimin Chen, Yonggang Jiang, and Chaodong Zheng. 2021. Tight Trade-o� in
Contention Resolution without Collision Detection. In Proc. of the ACM Sympo-
sium on Principles of Distributed Computing (PODC). ACM, Virtual, 139–149.

[17] Tapiwa M Chiwewe, Colman F Mbuya, and Gerhard P Hancke. 2015. Using
cognitive radio for interference-resistant industrial wireless sensor networks: An
overview. IEEE Transactions on Industrial Informatics 11, 6 (2015), 1466–1481.

[18] Bogdan S. Chlebus, Gianluca De Marco, and Dariusz R. Kowalski. 2016. Scalable
Wake-up of Multi-channel Single-hop Radio Networks. Theoretical Computer
Science 615, C (Feb. 2016), 23–44.

[19] Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki. 2006. Adver-
sarial queuing on the multiple-access channel. In Proceedings of the 25th ACM
Symposium on Principles of Distributed Computing (PODC). ACM, Denver, Col-
orado, USA, 92–101.

https://doi.org/10.48550/arXiv.2302.07751

Fully Energy-E�icient Randomized Backo� PODC ’24, June 17–21, 2024, Nantes, France

[20] Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki. 2007. Stability
of the multiple-access channel under maximum broadcast loads. In Proceedings of
the Symposium on Self-Stabilizing Systems (SSS). Springer, Springer-Verlag, Paris,
France, 124–138.

[21] Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki. 2009. Maximum
throughput of multiple access channels in adversarial environments. Distributed
Computing 22, 2 (2009), 93–116.

[22] Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki. 2012. Adver-
sarial Queuing on the Multiple Access Channel. ACM Transactions on Algorithms
8, 1 (2012), 1–31.

[23] Federal Communications Commission. 2014. FCC 14-55: Notice of Apparent
Liability for Forfeiture of Illegal Operation of Signal Jamming Device. https:
//apps.fcc.gov/edocs_public/attachmatch/FCC-14-55A1.pdf.

[24] Gianluca De Marco, Dariusz R Kowalski, and Grzegorz Stachowiak. 2022. Con-
tention resolution without collision detection: constant throughput and logarith-
mic energy. In Proceedings of the 36th International Symposium on Distributed
Computing (DISC). Schloss Dagstuhl, Augusta, Georgia, USA, 1–21.

[25] Gianluca De Marco and Grzegorz Stachowiak. 2017. Asynchronous Shared Chan-
nel. In Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC). ACM, Washington, DC, USA, 391–400.

[26] Laura Marie Feeney and Martin Nilsson. 2001. Investigating the energy consump-
tion of a wireless network interface in an ad hoc networking environment. In
Proceedings IEEE INFOCOM 2001, Vol. 3. IEEE, Anchorage, AK, USA, 1548–1557.

[27] Daquan Feng, Chenzi Jiang, Gubong Lim, Leonard J Cimini, Gang Feng, and
Geo�rey Ye Li. 2012. A survey of energy-e�cient wireless communications. IEEE
Communications Surveys & Tutorials 15, 1 (2012), 167–178.

[28] Jeremy T. Fineman, Calvin Newport, and Tonghe Wang. 2016. Contention Reso-
lution on Multiple Channels with Collision Detection. In Proc. ACM Symposium
on Principles of Distributed Computing (PODC). ACM, Chicago, IL, USA, 175–184.

[29] Seth Gilbert, Valerie King, Seth Pettie, Ely Porat, Jared Saia, and Maxwell Young.
2014. (Near) Optimal Resource-competitive Broadcast with Jamming. In Proceed-
ings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). ACM, Prague, Czech Republic, 257–266.

[30] Leslie Ann Goldberg. 2000. Notes on Contention Resolution. (2000). http:
//www.dcs.warwick.ac.uk/~leslie/contention.html

[31] Leslie AnnGoldberg, Philip D.MacKenzie,Mike Paterson, andAravind Srinivasan.
2000. Contention resolution with constant expected delay. J. ACM 47, 6 (2000),
1048–1096.

[32] Jonathan Goodman, Albert G. Greenberg, Neal Madras, and Peter March. 1988.
Stability of Binary Exponential Backo�. J. ACM 35, 3 (July 1988), 579–602.

[33] Albert G Greenberg and Schmuel Winograd. 1985. A lower bound on the time
needed in the worst case to resolve con�icts deterministically in multiple access
channels. Journal of the ACM (JACM) 32, 3 (1985), 589–596.

[34] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory: Architectural
Support for Lock-Free Data Structures. In Proceedings of the 20th International
Conference on Computer Architecture. ACM, San Diego, CA, USA, 289–300.

[35] IEEE. 2016. IEEE Standard for Information Technology–Telecommunications and
Information Exchange Between Systems Local and Metropolitan Area Networks
– Speci�c Requirements - Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Speci�cations. , 3534 pages.

[36] Yonggang Jiang and Chaodong Zheng. 2022. Robust and Optimal Contention
Resolution without Collision Detection. In Proceedings of the Symposium on
Parallelism in Algorithms and Architectures (SPAA). ACM, Philadelphia, PA, USA,
107–118.

[37] Frank P. Kelly. 1985. Stochastic Models of Computer Communication Systems.
Journal of the Royal Statistical Society, Series B (Methodological) 47, 3 (1985),
379–395.

[38] Frank P Kelly and Iain M MacPhee. 1987. The number of packets transmitted by
collision detect random access schemes. The Annals of Probability 15, 4 (1987),
1557–1568.

[39] Mounib Khanafer, Mouhcine Guennoun, and Hussein T Mouftah. 2013. A survey
of beacon-enabled IEEE 802.15. 4 MAC protocols in wireless sensor networks.
IEEE Communications Surveys & Tutorials 16, 2 (2013), 856–876.

[40] Valerie King, Seth Pettie, Jared Saia, and Maxwell Young. 2018. A resource-
competitive jamming defense. Distributed Computing 31, 6 (2018), 419–439.

[41] James F. Kurose and Keith Ross. 2002. Computer Networking: A Top-Down Ap-
proach Featuring the Internet (2nd ed.). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

[42] William Kuszmaul and Qi Qi. 2021. The Multiplicative Version of Azuma’s
Inequality, with an Application to Contention Analysis. arXiv preprint
arXiv:2102.05077.

[43] Mads Lauridsen, Rasmus Krigslund, Marek Rohr, and Germán Madueno. 2018.
An empirical NB-IoT power consumption model for battery lifetime estimation.
In IEEE 87th Vehicular Technology Conference (VTC Spring). IEEE, Porto, Portugal,
1–5.

[44] Yuan Li, Wei Ye, and John Heidemann. 2005. Energy and latency control in low
duty cycle MAC protocols. In IEEE Wireless Communications and Networking
Conference, 2005, Vol. 2. IEEE, New Orleans, LA, USA, 676–682.

[45] Junyu Liu, Min Sheng, Lei Liu, and Jiandong Li. 2017. Interference management
in ultra-dense networks: Challenges and approaches. IEEE Network 31, 6 (2017),
70–77.

[46] Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak. 2022. Time
and Energy E�cient Contention Resolution in Asynchronous Shared Channels.
arXiv:2209.14140

[47] Christophe J Merlin and Wendi B Heinzelman. 2010. Duty cycle control for
low-power-listening MAC protocols. IEEE Transactions on Mobile Computing 9,
11 (2010), 1508–1521.

[48] Robert M. Metcalfe and David R. Boggs. 1976. Ethernet: Distributed Packet
Switching for Local Computer Networks. Commun. ACM 19, 7 (July 1976), 395–
404.

[49] Aristides Mpitziopoulos, Damianos Gavalas, Charalampos Konstantopoulos, and
Grammati Pantziou. 2009. A Survey on Jamming Attacks and Countermeasures
in WSNs. IEEE Communications Surveys & Tutorials 11, 4 (2009), 42–56.

[50] AP News. 2014. Marriott �ned $600,000 for jamming guests’ Wi-Fi. https:
//apnews.com/article/a63d6eaa5c1a4769bc786bb4fe456231.

[51] Pulse News. 2014. Angry priest installs phone jamming device in church to stop
calls. https://www.pulse.ng/communities/religion/enough-is-enough-angry-
priest-installs-phone-jamming-device-in-church-to-stop-calls/xq02ts1.

[52] Adrian Ogierman, Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin
Zhang. 2018. Sade: competitive MAC under adversarial SINR. Distributed Com-
puting 31, 3 (01 Jun 2018), 241–254.

[53] Konstantinos Pelechrinis, Marios Iliofotou, and Srikanth V Krishnamurthy. 2010.
Denial of service attacks in wireless networks: The case of jammers. IEEE
Communications Surveys & Tutorials 13, 2 (2010), 245–257.

[54] J. Polastre, R. Szewczyk, and D. Culler. 2005. Telos: Enabling ultra-low power wire-
less research. In Proceedings of the Fourth International Symposium on Information
Processing in Sensor Networks (IPSN). IEEE, Boise, ID, USA, 364–369.

[55] Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. 2010. A
Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks. In Proceed-
ings of the International Symposium on Distributed Computing (DISC). Springer,
Cambridge, MA, USA, 179–193.

[56] Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. 2011. Competi-
tive and Fair Medium Access Despite Reactive Jamming. In Proceedings of the 31BC
International Conference on Distributed Computing Systems. IEEE, Minneapolis,
MN, USA, 507–516.

[57] Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. 2012. Com-
petitive and Fair Throughput for Co-Existing Networks Under Adversarial Inter-
ference. In Proceedings of the 31BC ACM Symposium on Principles of Distributed
Computing (PODC). ACM, Madeira, Portugal, 291–300.

[58] Walter A. Rosenkrantz. 1984. Some Theorems on the Instability of the Exponen-
tial Back-O� Protocol. In Proceedings of the Tenth International Symposium on
Computer Performance Modelling, Measurement and Evaluation (Performance ’84).
North-Holland Publishing Co., NLD, 199–205.

[59] William N Scherer III and Michael L Scott. 2005. Advanced contention manage-
ment for dynamic software transactional memory. In Proceedings of the 24th ACM
symposium on Principles of Distributed Computing (PODC). ACM, Las Vegas, NV,
USA, 240–248.

[60] Nah-Oak Song, Byung-Jae Kwak, and Leonard E. Miller. 2003. On the Stability of
Exponential Backo�. Journal of Research of the National Institute of Standards
and Technology 108, 4 (2003), 289–297.

[61] Chicago Tribune Steve Schmadeke. 2016. Lawyer: Man accused of
jamming calls on Red Line ‘disturbed by people talking around him’.
http://www.chicagotribune.com/news/local/breaking/ct-cell-phone-jamming-
red-line-20160309-story.html.

[62] AdamWierman and Takayuki Osogami. 2003. A uni�ed framework for modeling
TCP-Vegas, TCP-SACK, and TCP-Reno. In Proceedings of the 11th IEEE/ACM Inter-
national Symposium on Modeling, Analysis and Simulation of Computer Telecom-
munications Systems (MASCOTS). IEEE, Orlando, FL, USA, 269–278.

[63] Matthias Wilhelm, Ivan Martinovic, Jens B Schmitt, and Vincent Lenders. 2011.
Short paper: Reactive jamming in wireless networks: How realistic is the threat?.
In Proceedings of the fourth ACM conference on Wireless network security. ACM,
Hamburg Germany, 47–52.

[64] Dan E.Willard. 1986. Log-logarithmic Selection Resolution Protocols in aMultiple
Access Channel. SIAM J. Comput. 15, 2 (May 1986), 468–477.

[65] Yang Xiao. 2005. Performance Analysis of Priority Schemes for IEEE 802.11 and
IEEE 802.11e Wireless LANs. Wireless Communications, IEEE Transactions on 4, 4
(July 2005), 1506–1515.

[66] Wenyuan Xu, Wade Trappe, Yanyong Zhang, and Timothy Wood. 2005. The
Feasibility of Launching and Detecting Jamming Attacks in Wireless Networks.
In MobiHoc. ACM, Urbana-Champaign, IL, USA, 46–57.

[67] Wenjie Yang, Mao Wang, Jingjing Zhang, Jun Zou, Min Hua, Tingting Xia, and
Xiaohu You. 2017. Narrowband wireless access for low-power massive internet
of things: A bandwidth perspective. IEEE wireless communications 24, 3 (2017),
138–145.

[68] Wei Ye, Fabio Silva, and John Heidemann. 2006. Ultra-low duty cycle MAC with
scheduled channel polling. In Proceedings of the 4th international conference on

https://apps.fcc.gov/edocs_public/attachmatch/FCC-14-55A1.pdf
https://apps.fcc.gov/edocs_public/attachmatch/FCC-14-55A1.pdf
http://www.dcs.warwick.ac.uk/~leslie/contention.html
http://www.dcs.warwick.ac.uk/~leslie/contention.html
https://arxiv.org/abs/2209.14140
https://apnews.com/article/a63d6eaa5c1a4769bc786bb4fe456231
https://apnews.com/article/a63d6eaa5c1a4769bc786bb4fe456231
http://www.chicagotribune.com/news/local/breaking/ct-cell-phone-jamming-red-line-20160309-story.html
http://www.chicagotribune.com/news/local/breaking/ct-cell-phone-jamming-red-line-20160309-story.html

PODC ’24, June 17–21, 2024, Nantes, France M. A. Bender, J. T. Fineman, S. Gilbert, J. Kuszmaul, M. Young

Embedded networked sensor systems. ACM, Boulder, CO, USA, 321–334.

	Abstract
	1 Introduction
	1.1 Model
	1.2 Main results
	1.3 Extensions to Reactive Adversary

	2 Low-Sensing Backoff Algorithm
	3 Technical Overview
	3.1 Contention
	3.2 Our potential function
	3.3 Analyzing intervals
	3.4 Proof organization

	4 Conclusion
	Acknowledgments
	References

