

Novel detection of dark oxygen production at the abyssal seafloor

Andrew K. Sweetman^{1*}, Alycia J. Smith², Danielle S.W. de Jonge¹, Tobias Hahn³, Peter Schroedl⁴, Michael Silverstein⁵, Claire Andrade⁴, R. Lawrence Edwards⁶, Alastair J.M. Lough⁷, Clare Woulds⁷, William B. Homoky⁷, Andrea Koschinsky⁸, Sebastian Fuchs⁹, Thomas Kuhn⁹, Franz Geiger¹⁰, Jeffrey J. Marlow⁴

¹The Scottish Association for Marine Science, (SAMS), Oban, UK

²Heriot-Watt University, Edinburgh, UK

³GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

⁴Department of Biology, Boston University, Boston, Massachusetts, USA

⁵Bioinformatics Program, Boston University, Boston, Massachusetts, USA

⁶Department of Earth and Environmental Science, University of Minnesota, Minneapolis, USA

⁷Faculty of Environment, University of Leeds, Leeds, UK

⁸School of Science (Physics & Earth Sciences), Constructor University Bremen, Germany,

⁹Federal Institute for Geoscience and Natural Resources (BGR), Hannover, Germany

¹⁰Technological Institute, North-western University, Evanston, Illinois, USA

*Corresponding author email: Andrew.Sweetman@sams.ac.uk

Abstract

In-situ O₂ consumption measurements at the polymetallic nodule covered abyssal seafloor revealed O₂ rising to more than three times the background concentration over the course of two days in 95% of experiments. Dark oxygen production (DOP) was detected at multiple sites across the Pacific and was observed in *ex-situ* incubations including in the presence of only nodules. Based on electrochemistry analysis that indicated high voltage potentials (up to 0.95V) on the nodule surfaces, we hypothesise that seawater electrolysis plays a role in DOP, and DOP contributes to biogeochemical cycles and ecological dynamics in polymetallic nodule-bearing environments.

Main text

Oxygen (O_2) is the most energetically favourable electron acceptor for organic carbon (C_{org}) remineralization and is prevalent in deep-sea surface sediments¹. All O_2 consumed at the deep-sea floor is thought to originate from photosynthesis and enters the deep ocean via subduction and circulation of waters that were once equilibrated with the atmosphere²⁻³. Seafloor O_2 consumption rates reflect the sum of aerobic respiration as well as biotic and abiotic oxidation of reduced inorganic compounds produced by anaerobic respiration of C_{org} . Collectively, these processes define sediment community O_2 consumption (SCOC)^{1,4,5} and quantifying its value is needed to quantify fluxes of major elemental cycles through marine systems and benthic ecosystem functioning. SCOC is measured by observing temporal or spatial changes in O_2 concentration with benthic chambers (BC), sediment O_2 microprofiles or non-invasive eddy correlation. Here, we present data from 41 *in-situ* lander mounted BC experiments deployed to measure abyssal SCOC in the NORI-D licence area of the eastern Clarion-Clipperton Zone (CCZ, Extended Data Fig. 1 and Table 1) where polymetallic nodules cover extensive areas of ocean floor, and we show that more O_2 was accumulating in the chambers than was being consumed resulting in net oxygen production.

Constant linear decreases in O₂ optode readings were observed in some BC experiments (e.g., AKS318-Ch.1 and AKS321-Ch.1, Fig. 1) indicating that SCOC occurs in NORI-D as it does in many other abyssal habitats⁴⁻⁶. However, O₂ concentrations in 25 seafloor incubations started at $185.2 \pm 2.9 \mu\text{mol L}^{-1}$ (1 Standard Error [SE]) and reached O₂ maxima between 201 and 819 $\mu\text{mol L}^{-1}$ over 47 hours (Fig. 1). Dark O₂ production (DOP) was non-linear in nature (Fig. 1) and peak O₂ concentrations corresponded to increases of 5 - 335 % above background concentrations indicative of net O₂ production. An independent measure of O₂ concentration using the Winkler method showed DOP in 18 *in-situ* BC experiments that used optodes, as well as 14 *in-situ* BC experiments that did not (Extended data Fig. 2), verifying the DOP and providing evidence that the DOP recorded by the optodes was not the result of malfunctioning sensors. Our findings stand in stark contrast to all previously published deep seafloor O₂ flux studies that have been conducted that only report net O₂ consumption, and suggests DOP may provide O₂ to benthic ecosystems in NORI-D.

60 The non-linear nature of the O₂ production prevented DOP flux calculations. However, no significant difference in
62 the total O₂ produced (maximum [O₂] – initial [O₂], Extended Date Table 2) was found between chambers
64 (ANOVA, $f_{2,8} = 0.101$, $p = 0.905$, see Online methods), experimental treatments (ANOVA, $f_{3,8} = 0.902$, $p = 0.482$,
66 see Online methods), nor any interaction effects (ANOVA, $f_{1,8} = 0.078$, $p = 0.788$) which rules out experimental
68 biases. No significant difference in the total amount of O₂ produced was found between cruises (ANOVA, $f_{2,12} =$
0.391, $p = 0.684$), but it was significantly correlated to the average surface area of the nodules (Spearman's
correlation, $\rho = 0.664$, $p=0.031$). A re-evaluation of O₂ optode data collected in 2015 and 2018 from 36-hour *in-situ* BC experiments in the abyssal eastern (UK1 and OMS) and western CCZ (Extended Data Fig. 3) showed
similar O₂ optode profiles to the DOP profiles in Fig. 1 suggesting DOP maybe widespread across the CCZ.

70 Several lines of evidence indicate that the DOP was not caused by experimental artefacts. Firstly, we found no
72 significant difference in the total O₂ change between experimental treatments and the no-injection controls (see
74 Online methods) demonstrating that DOP wasn't attributable to the injection of exogenous fluids. The steady
76 increase in O₂ concentration recorded during the incubations over many hours are also inconsistent with a pulsed
78 injection of O₂. Secondly, diffusion of O₂ from trapped air bubbles within the chamber were reasoned to be
80 insignificant because each chamber uses two one-way valves in the lid to purge air from the chambers during
82 deployment, and more than 200 cubic metres of water would have passed through each chamber during the
84 approximately 80-minute descent to the seafloor. Even if an air bubble could be trapped long enough to reach the
86 seafloor, gaseous diffusion of O₂ into the water phase would take < 1 second at most at 4 km depth (Extended data
Table 3). By contrast, O₂ concentrations in the well-mixed water phase of the chambers increased steadily over
many hours (Fig. 1). Thirdly, we considered diffusion of O₂ from the plastic chamber walls and lid into the water
phase and found this to be unlikely also (see Online methods) as the chambers are built from polyoxymethylene,
which is both highly inert and chemically stable in well-oxygenated settings. In addition, this scenario would not
explain the wide variation in DOP we observed (Fig. 1) since all experiments used identical materials. Lastly, *ex-situ*
DOP was observed during 48-hour sediment core incubations carried out on the ship in the dark at *in-situ*
temperature during the 5D expedition (Extended data Fig. 4). Thus, all our evidence indicates that DOP was
occurring at the seafloor.

88 Several lines of inquiry were pursued to provide an explanation for the observation of seafloor DOP. Sub-surface
90 advection of oxic-bottom water from seamounts into sediments (as observed along seamount flanks)^{7,8} and the
92 subsequent diffusion of oxygenated porewaters into the chambers was discounted as the cause for the DOP based
on *in-situ* O₂ microprofiling, which showed that porewater was a net sink for O₂ and was undersaturated compared
94 to the incubation chambers. Furthermore, DOP was measured in sealed *ex-situ* experiments (Extended data Fig. 4)
that prevented O₂ intrusion from below.

96 Recent detections of oxygen-producing metabolisms⁹ and aphotic ecosystems¹⁰ suggest that much remains to be
98 discovered with regard to biological oxygenic activity, particularly in association with nitrogen cycling. It is
100 unlikely that biological mechanisms were responsible for the bulk of the DOP as *ex-situ* core incubations revealed
102 DOP in the presence of mercury chloride (HgCl₂) (Extended data Figure 4). While many microbes in the CCZ are
able to detoxify Hg (II) to Hg (0)¹¹, those taxa capable of DOP (e.g., *Nitrosopumilus maritimus*) are known to be
killed by its addition⁹. Furthermore, we observed weak statistical support between the relative abundance of certain
nitrogen-cycling microbial taxa and DOP (e.g., *Nitrospira* $\rho = 0.791$, $p = 0.111$; *Candidatus Nitrosopumilus* $\rho =$
0.474, $p = 0.420$), which collectively suggested that microbial activity unlikely accounted for the bulk of measured
DOP.

104 The fact that DOP was detected in *ex-situ* controls containing only polymetallic nodules (i.e., no sediment, Extended
106 data Fig. 4) suggest that the DOP was linked to presence of the nodules. Polymetallic nodules can be radioactive¹²
108 and the radiolysis of water via the decay chains of ⁴⁰K, ²³²Th, ²³⁵U, and ²³⁸U in deep-sea sediments can generate
110 molecular hydrogen¹³⁻¹⁴, as well as hydrogen peroxide (H₂O₂)¹⁵ and a range of other reactive oxygen species¹⁶ that
112 can lead to the production of O₂¹⁷. We estimated the potential contribution of radiolytic O₂ production from the
114 overlying water, nodules, and sediment, and scaled this value by the benthic chamber's size to calculate that 0.18
116 $\mu\text{mol L}^{-1}$ O₂ would be generated in the chambers in 48 hours. Chemical reduction of solid manganese (IV) oxide
118 (birnessite) to dissolved manganese (II) can lead to the liberation of O₂ ($2\text{MnO}_2 \rightarrow 2\text{MnO} + \text{O}_2$), and this reaction
accelerates as both the ambient O₂ concentration and pH decrease (Extended data Fig. 5). We modelled the chemical
reduction of manganese (IV) oxide at *in-situ* temperature (1.6°C) across a range of pH and O₂ conditions
encountered at the seafloor and found that <0.1 nmol of manganese (IV) oxide would be chemically reduced to
manganese (II) (Extended data Fig. 5). As such, localized radiolytic O₂ production from the sediments and nodules,
and chemical dissolution explains only a negligible proportion (< 0.5 %) of the DOP observed.

120 The oxygen evolution reaction (OER) in seawater requires an input voltage of 0.8 V plus an overpotential of approx.
122 0.37 V to split seawater into H₂ and O₂¹⁸ at the mean pH at the seafloor in NORI-D (7.41). This value can be lowered
124 by several hundred millivolts if the reaction proceeds through the lattice-oxygen-mediated mechanism¹⁹. The use
126 of metal catalysts such as Mn- and Fe-oxides enriched with transition metals (e.g., Ni, Co, or Cu) that are found in
128 nodules²⁰ can also lower the voltage needed for H₂ and O₂ generation, increase electrical conductivity, and optimize
130 the adsorption of reactants and intermediates^{21,22}. We tested the electrical potential between two platinum electrodes
132 at 165 sites on the surfaces of 12 nodules from the UK1, NORI-D, and BGR license areas that had been immersed
134 for 1 week in artificial seawater (Fig. 2). Although the potentials between different positions on the nodules were
136 highly variable, mean background-corrected potentials of up to 0.24 V were found (Fig. 2), and potentials reached
138 a maximum of 0.95 V on the surface of some nodules (Extended data Table 4). High voltages (~0.6 V) were also
C_{org}-remineralization⁶.

140 Understanding the role of electrolysis in DOP and the importance of DOP in abyssal ocean ecology must be a
142 research priorities moving forward, as well as assessing its importance in connecting polymetallic nodules and
144 seafloor ecological processes. In the present day, DOP may help partly explain the high abundance of epifauna
146 found living on manganese nodules in the central abyssal Pacific²³, inviting the urgent investigation of how removal
of potential oxygenic substrates would affect deep-sea polymetallic nodule ecosystems. Future studies of DOP in
the deep sea might also shed light on broader relationships that are known to exist between manganese-oxide
deposition, biological evolution, and the oxygenation of the Earth^{24,25}.

148 References

1. Jorgensen, B.B. et al. Sediment oxygen consumption: role in the global marine carbon cycle. *Earth-Sci. Rev.* **228**, 150 103987 (2022).
2. Keeling, R.F. et al. Ocean deoxygenation in a warming world. *Annu. Rev. Mar. Sci.* **2**, 199–229 (2010).
3. Yamamoto, A. et al. Global deep ocean oxygenation by enhanced ventilation in the Southern Ocean under long-term global warming. *Global Biogeochem. Cycles.* **29**, 1801–1815 (2015).
4. Smith Jr, K.L. et al. Climate, carbon cycling and deep-ocean ecosystems. *Proc. Natl. Acad. Sci. USA.* **106**, 19211–19218 (2009).
5. Smith Jr, K.L. et al. Large salp bloom export from the upper ocean and benthic community response in the abyssal northeast Pacific: Day to week resolution. *Limnol. Oceanogr.* **59**(3), 745–757 (2014).
6. Sweetman, A.K. et al. Key role of bacteria in the short-term cycling of carbon at the abyssal seafloor in a low particulate organic carbon flux region of the eastern Pacific Ocean. *Limnol. Oceanogr.* **64**, 694–713 (2019).
7. Mewes, K. et al. Diffusive transfer of oxygen from seamount basaltic crust into overlying sediments: an example from the Clarion–Clipperton Fracture Zone. *Earth Planet. Sci. Let.* **433**, 215–225 (2016).
8. Kuhn, T. et al. Widespread seawater circulation in 18–22 Ma oceanic crust: Impact on heat flow and sediment geochemistry. *Geology*, **45**(9), 799–802 (2017).
9. Kraft, B. et al. Oxygen and nitrogen production by an ammonia-oxidizing archaeon. *Science.* **375** (6576), 97–100 (2022).
10. Ruff, S.E. et al. Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems. *Nat. Comm.* **14**(1), 3194 (2023).
11. Zhang, D. et al. Microbe-driven elemental cycling enables microbial adaptation to deep-sea ferromanganese nodule sediment fields. *Microbiome.* **11**, 160 (2023).
12. Volz, J.B. et al. Alpha radiation from polymetallic nodules and potential health risks from deep-sea mining. *Sci. Rep.* **13**, 7985 (2023).
13. D'Hondt, S. et al. Subseafloor life and its biogeochemical impacts. *Nat. comm.* **10**, 1–13 (2019).
14. Sauvage, J.F. et al. The contribution of water radiolysis to marine sedimentary life. *Nat. comm.* **12**, 1–9, (2021).
15. Hiroki, A. et al. Hydrogen peroxide production in the radiolysis of water with high radical scavenger concentrations. *J. Phys. Chem. A.* **106**, 9352–9358 (2002).
16. Ershov, B.G. & Gordeev, A.V. A model for radiolysis of water and aqueous solutions of H₂, H₂O₂ and O₂. *Radiation Phys. Chem.* **77**(8), 928–935 (2008).

- 178 17. Ershov, B.G. Radiation-chemical decomposition of seawater: The appearance and accumulation of oxygen in the Earth's atmosphere. *Radiation Phys. Chem.* **168**, 108530 (2020).
- 180 18. Dresp, S. et al. Direct electrolytic splitting of seawater: Opportunities and Challenges. *ACS Energy Lett.* **4**, 933–942 (2019).
- 182 19. He, Y. et al. Recent progress of manganese dioxide based electrocatalysts for the oxygen evolution reaction. *Ind. Chem. Mater.* **1**, 312 (2023).
- 184 20. Kuhn, T. et al. “Composition, formation, and occurrence of polymetallic nodules” in Deep-sea mining, R. Sharma, Ed. (Springer, Cham, 2017), pp. 23-63.
- 186 21. Tian, L. Advances in manganese-based oxides for the oxygen evolution reaction. *J. Mater. Chem. A.* **8**, 14400 (2020).
- 188 22. Teng, Y. et al. Atomically thin defect-rich Fe–Mn–O hybrid nanosheets as highly efficient electrocatalysts for water oxidation. *Adv. Funct. Mater.* **28**, 1802463 (2018).
- 190 23. Vanreusel, A. et al. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. *Sci. Reports.* **6**, 26808 (2016). DOI: 10.1038/srep26808.
- 192 24. Robins, L.J., et al. Manganese oxides, Earth surface oxygenation, and the rise of oxygenic photosynthesis. *Earth Sci. Rev.* **239**, 104368 (2023).
- 194 25. Chyba, C.F. & Had, K.P. Life without photosynthesis. *Science.* **292(5524)**, 2026-2027 (2001).

196 **Acknowledgements**

We would like to thank Scott Wilson, Ebbe Holsting, Frazer Mann and Lewis Carrera at Maersk Supply Service, the captain and crew of the research vessels ‘Maersk Launcher’ and ‘Island Pride’ for all their help preparing for the research expeditions and their excellent assistance at sea. We are grateful to Rory Davis for help with the lander deployments and Dominique Anderson, Mariana Delgado, and Dr. Marta Cecchetto for help at sea. We thank Yasheng Maierhaba, Claire Momjian and Akshata Shukla for their assistance with lab-based molecular analyses and Ralph Merrifield for his help with the electrochemistry analysis. We would like to acknowledge and give our thanks to Katie M. Allen, Dr. Michael Clarke, Antony O’Sullivan, Patrick Clarke, Dr. Leigh Marsh, and Dr. Jason Smith for helping to initiate the research, as well as the Metals Company for funding this research as part of their environmental impact assessment of the NORI-D exploration license area in the Clarion-Clipperton Zone.

206 **Funding**

The work was funded by The Metals Company Inc. through its subsidiary Nauru Ocean Resources Inc. (NORI). NORI holds exploration rights to the NORI-D contract area in the CCZ and is regulated by the International Seabed Authority and sponsored by the government of Nauru. UK Seabed Resources funded the research expedition to the UK1 and OMS license areas in 2015, and the Gordon and Betty Moore Foundation provided funding for the research cruise to APEIs 1, 4, and 7 in 2018. A.K. Sweetman acknowledges research support from the NERC SMARTEX (Seabed Mining And Resilience To Experimental impact) project (grant number NE/T003537/1) and the EC project iAtlantic (grant number 818123).

216 **Author contributions**

A.K.S., C.W., and W.B.H generated the funding. A.K.S. conceived the study and led the benthic chamber lander investigations with A.J.S. A.K.S., A.J.S., D.d J., C.A., and J.J.M. conducted the Winkler analysis and *ex-situ* core incubations. A.K.S., A.J.S., D.d J., and T.H. carried out the *in-situ* oxygen optode calibrations and analysis. M.S., P.S., and J.J.M. led the microbiology analysis, while P.S., and R.L.E. undertook the radioactivity measurements and radiolysis calculations. A.K.F., S.F., T.K., and A.K.S. did the solubility assessments and F.G. and A.K.S. undertook the electrochemistry measurements. A.K.S., J.J.M. and W.B.H. drafted the manuscript, and all authors contributed further ideas and approved the final version.

224 **Online methods**

Benthic chamber lander deployments and chamber-derived O₂ flux measurements - A benthic chamber lander was deployed in the NORI-D license area six times in May-June 2021 (5D cruise), five times in November-December 2021 (5E cruise) and five times in August-September 2022 (7A cruise) (Extended Data Fig. 1 and Table 1). The lander (KUM GmbH) comprised three independent, autonomous, square benthic chambers (484 cm²) that were separated by approximately < 0.5 m. The lander was deployed with a USBL so accurate positioning and depth information could be gathered. After arriving at the seafloor, the lander waited for 0.07-1.34 d (due to deployment and recovery constraints) before the chambers were pushed into the sediment, creating an enclosed microcosm of the benthic ecosystem. Ten minutes into the incubation period, the enclosed chambers were injected with approximately 50 mL of one of three solutions: 1) 0.45-μm filtered, cold surface seawater containing 79.2 mg of freeze-dried *Phaeodactylum tricornutum* algae, 2) 32μM Na₂HCO₃ and 40 μM NH₄Cl dissolved in cold artificial seawater (salinity 35), and 3) 0.45-μm filtered, cold surface seawater. On some occasions, the injection mechanism failed allowing the response to control (no injection) conditions to be measured. *P. tricornutum* algae was selected

238 in the dead-algal biomass treatments because it belongs to a widely distributed diatom genus that occurs throughout
240 the Pacific Ocean²⁶. The seafloor in the study area had a temperature of $1.6^{\circ}\text{C} \pm 0.006^{\circ}\text{C}$ (SE, $n = 28$) and a pH of
242 7.41 ± 0.05 (SE, $n = 17$). Immediately after the injection, the overlying water was mixed with a submersible stirrer
244 at 60 rpm for one minute before the stirrer was turned off that allowed any particulate substrates to settle for one
246 hour. After one hour, the stirrer was then turned on again and the chamber waters gently stirred for the remainder
248 of the experiments. The stirring mechanism in the benthic chambers generated a sufficiently thin diffusive boundary
250 layer (474 μm) and low static differential pressure at the sediment-water interface (0.4 Pa)²⁷. Thus, there would be
252 a low risk of creating stirrer-induced pressure effects on fluxes²⁷. Moreover, intercalibration exercises have shown
254 no statistically significant difference in measured O_2 fluxes between ours and 13 other benthic chamber systems²⁷.
256 During the 5E expedition, the stirrers were programmed to continually stir the overlying water even after injection.

258 The syringe samplers removed approximately 50 mL of seawater from the water phase of each chamber at 0.1, 3,
260 9, 28, 38 and 47 hours into the incubation experiment. Oxygen optodes (CONTROS HydroFlash O_2 manufactured
262 by Kongsberg Maritime Contros GmbH) were mounted in the lid of each chamber and logged O_2 concentrations in
264 the chamber every 10 seconds throughout each experiment. Two days prior to the first lander deployment of each
266 cruise, the optodes underwent a two-point, multi-temperature calibration using 0 and 100 % O_2 calibration solutions
268 at 1.2, 7, 18 and 30 $^{\circ}\text{C}$ following the recommendations of Bittig et al. (ref. 28). On the 5D cruise, we also calibrated
270 the sensors 2 d after the last lander experiment so we could estimate optode drift, which was negligible (0.27 μmol
272 $\text{L}^{-1} \text{d}^{-1}$) over the course of the 6-week cruise. The 0 % and 100 % O_2 saturation solutions were created by bubbling
0.45- μm filtered surface seawater in a bottle sitting in a water-chilling/heating unit with N_2 gas (0 %) or an aquarium
air bubbling unit (100 %) for 30 minutes. The O_2 concentration of the calibration solutions was confirmed in
triplicate by Winkler titration. After incubating seafloor sediments for 47 hours, the lander chambers were closed
by a shutter door at the base of the chambers and the chambers were then pulled slowly out of the sediment, which
took one hour. The lander was then recalled from the seafloor by an acoustic signal approx. 10 minutes after the
chambers had been retrieved from the sediment. In eight instances, the lander program did not finish, and the doors
did not shut preventing the sampling of sediment and determination of the volume of the water phase in the chambers
(Extended date Table 2). Once the lander was back and secured on deck, the chambers were opened and the volume
of water above the sediment-water interface was removed via siphoning into a bucket, which was then measured
using a measuring flask. The distance from the top of the sediment to the base of the chamber lid was also measured
in 4 places to get an accurate water depth for water volume estimates. Whenever possible, a photograph was then
taken of the chamber sediment and nodules from directly above the opening of the chamber. All syringes containing
water samples were removed and taken to the shipboard lab for immediate processing or stored in a cold lab (4 $^{\circ}\text{C}$)
prior to processing. The optodes were removed and their onboard data downloaded to a computer that was backed
up to two hard drives. Finally, the nodules were removed from the chambers, and washed of attached organic debris
with cold (4 $^{\circ}\text{C}$), 0.45- μm filtered surface seawater and placed in sterile Whirlpak® bags to be weighed in the
laboratory later. Polymetallic nodule abundance in the chambers was $55 \pm 4 \text{ m}^{-2}$.

274 Unfiltered syringe sample seawater was carefully transferred from each 50 mL syringe to a 12 mL extainer via a
276 10 cm tube attached to the syringe nozzle, ensuring no air bubbles were introduced. The water was then immediately
278 fixed with 150 μl of 3M $\text{MnCl}_2 \cdot 4\text{H}_2\text{O}$ and 150 μl of 8M $\text{NaOH} + 4\text{M NaI}$ solution. The sample was then mixed
280 thoroughly using a glass bead placed in the extainer, and then placed in the dark in a 4 $^{\circ}\text{C}$ refrigerator for 30 - 45
282 minutes to allow the precipitate to settle. Once the precipitate had sedimented, the extainers were shaken again and
284 left for two-three hours before Winkler titrations were performed. All titrations were completed within 12 hours
286 after sampling to determine dissolved O_2 concentrations. Each Winkler sample (approx. 5 mL) was titrated twice,
288 and duplicate measurements showed minor differences in O_2 concentration (5D cruise error: $3.5 \pm 0.3 \mu\text{mol l}^{-1}$, $n = 71$;
290 5E cruise error: $1.3 \pm 0.2 \mu\text{mol l}^{-1}$, $n = 69$; 7A cruise error: $2.8 \pm 0.4 \mu\text{mol l}^{-1}$, $n = 84$). All syringe samples were
292 fixed for Winkler analysis within 30 - 45 minutes of the lander arriving at the surface, and the order that the syringe
294 samples were sampled was randomized to counter the potential effects of delayed analysis. Winkler O_2
concentration data was averaged for each syringe sample. The O_2 concentrations estimated by Winkler analysis
were $22 \pm 1 \%$ ($n = 42$, SE, 5D cruise), $8 \pm 4 \%$ ($n = 39$, SE, 5E cruise), and $24 \pm 2 \%$ ($n = 40$, SE, 7A cruise) lower
than the concentrations measured by the optodes at the same time point in the same incubations. This difference is
most easily explained by the efficient out-gassing of supersaturated O_2 caused by depressurization and warming of
the externally mounted syringes (whose samples were used for Winkler analyses) during the lander recovery to the
surface.

296 Back on shore, the correct O_2 concentration values were calculated following Bittig et al. (ref. 28) from the optode,
298 calibration and *in-situ* pressure data that was derived from the USBL seafloor depth. Timestamps in the optode
300 data were compared to the lander computer program times so the optode readings could be aligned to the schedule
302 of the chamber experiment. The total change in O_2 concentration in each chamber was then calculated from the

296 volume of the water phase above the sediment, and the difference in O₂ concentration from when the chambers
started to seal off the sediment to the point when the maximum O₂ concentration was reached.

298 *Benthic O₂ microprofiling* – Benthic O₂ microprofiles were made during lander deployments AKS313, AKS316,
AKS318, and AKS321 during the 5E cruise using a UNISENSE deep-sea microprofiling unit mounted < 0.5 m
300 from the benthic chambers. The microprofiles were made using 20 cm O₂ microsensors that penetrated the sediment
302 in 0.05 mm steps. The microsensors were calibrated < two hours before the lander deployments at *in-situ*
304 temperature (1.6°C) at 0 % and 100 % O₂ saturation (see above). The micro-profiling unit was programmed to start
306 profiling the sediment approximately nine hours after the lander reached the seafloor to reduce any disturbance
308 (e.g., sediment resuspension and deposition) artefacts in the measurements. At each sampling depth, the microsensor
310 stopped for five seconds before each measurement was made. The sensor then recorded five individual O₂
312 concentration measurements. The average of these five measurements was taken for each depth point. The sediment
314 surface was determined manually based on the turning point in the slope of O₂ concentration with depth where O₂
316 started to become depleted.

308 *Benthic chamber sediment sampling for microbiology during the 5D expedition* - After the syringes for Winkler
310 samples had been removed from the chambers, sediment samples for microbiology analysis were collected from
312 the chambers with a pre-sterilized spatula. Approximately 50 g from each of the 0 - 2 cm and 2 - 5 cm horizons
314 were placed in separate sterile Whirlpak bags and then transferred to a -80 °C freezer. Samples were then shipped
316 on dry ice to Laragen, Inc. (Culver City, CA), where DNA was extracted using a proprietary in-house method. The
V4 region of 16S rRNA genes were amplified using the Earth Microbiome Project protocol²⁹ with the 515F (5'-
GTGYCAGCMGCCGCGGTAA³⁰) and 806R (5'-GGACTACNVGGGTWTCTAAT³¹) primers. After
amplification, 100 ng of PCR product was purified, quantified, and sequenced using a PE150 kit on a MiSeq
sequencer. Sediment samples were only collected during the 5D field expedition.

318 *Microbiome data processing* - Raw fastq files were processed using a custom pipeline (<https://github.com/Boston->
[University-Microbiome-Initiative/BU16s](https://github.com/Boston-University-Microbiome-Initiative/BU16s)) built with QIIME 2020.2 (<https://www.nature.com/articles/s41587-019-0209-9>). Adapter sequences (forward: GTGYCAGCMGCCGCGGTAA, reverse:
320 GGACTACNVGGGTWTCTAAT) were removed using cutadapt (times 2, math-read-wildcards True, match-
322 adapter-wildcard True, minimum-length 50) (doi:10.14806/ej.17.1.200), read truncation positions were determined
324 by mineer (see more below), amplicon sequence variants (ASVs) were generated using dada2 (trunc-len-r³⁰)
(doi:10.1038/nmeth.3869), and ASVs were clustered to 99% identity with the SILVA 132 database
326 (<https://academic.oup.com/nar/article/42/D1/D643/1061236>) using the vsearch cluster-features-closed-reference
(doi:10.7717/peerj.2584).

328 *Sequence truncation* - Due to drops in sequencing quality, all reverse reads were truncated by 49 bases (from a
330 length of 301 to 252). This truncation length was determined by minEER (minimization of expected error rate) with
332 minimum allowed length (MAL) = 100, maximum allowed expected error rate (MAE) = 0.01, and number of
334 sampled reads (NREADS) = 5000. minEER is a novel algorithm that optimally truncates quality-annotated
336 sequencing reads by maximizing sequence length for a given mean PHRED quality score (or expected error rate).
338 minEER is intended to be a quantitative alternative to current sequence truncation techniques, which rely on
340 qualitative assessments of sequence quality profiles. For a given sequencing read, the minEER algorithm first
calculates the expected error rate of all sub-sequences of length greater than or equal to the MAL. Next, sub-
sequences are filtered to those with expected error rates less than or equal to the MAE. Finally, the algorithm reports
the longest of the sub-sequences. When a set of sequences from a single study is passed to the minEER program,
NREADS sequences are sub-sampled and the median starting and ending truncation position for each sub-sampled
read are used to truncate all remaining sequences. The code for installing and using minEER can be found at:
<https://github.com/michaelsilverstein/mineer>.

342 *Microbiome analysis* – Family- and genus-level abundance was computed by summing the relative abundance of
344 all ASVs with the same Family/ Genus classification within each sample. Spearman correlations were then
346 computed between Family-/ Genus-level abundance and observed optode-derived total O₂ changes. Sequences have
been archived at NCBI GenBank under the Bioproject ID ****.

348 *Polymetallic nodule surface area measurements* – Photographs of the surface sediment and nodules in the chambers
350 were imported into Image J®. In a limited number of cases, the photographs could not be used because water was
still present in the chamber or the camera lens fogged up due to the warm humid air on deck, which impaired the
view of the nodules. After importing each image, the pixel to centimetre scale was set using the width of the chamber
(22 cm) and ‘Set Scale’ function in Image J. The outline of each nodule in each chamber photograph was then

352 traced and the surface area of the nodule automatically calculated in Image J (assuming each surface nodule was
354 flat in shape) and logged as an Image J file before being exported and saved as an Excel file.

356 *Radioysis O₂ production estimates* - To estimate the potential radiolytic O₂ production, contributions from nodules,
358 sediment, and seawater were considered. For seawater, published concentrations of ²³⁸U, ²³⁵U, ²³²Th, ⁴⁰K (refs 32-
360 36) were used (Extended Data Table 5). For nodules, ²³⁸U, ²³⁵U, and ²³²Th isotopes of three nodules from chamber
362 experiments from the 5D cruise were measured by MC-ICP-MS using previously described methods³⁷⁻³⁹ and
364 averaged; ⁴⁰K values were derived from the literature²⁰. Nodule and seawater contributions were calculated using a
366 kinetic model developed by ref. 17 that incorporates 32 reactions (Eq. 1, [ref. 16]). The nodule boundary layer was
assumed to be fully integrated with the seawater, surpassing the respective ~23 to ~452 μm stopping power distance
of Alpha and Beta particles used to model geologic materials⁴¹. Sediment radiolytic O₂ was calculated as half of the
previously quantified H₂ production rates in equatorial Pacific subsurface sediment⁴², given the stoichiometry of
water's radiolytic decomposition (an equivalency that likely offers an over-estimate of derived O₂). Contributions
from these three components (nodules, sediment, and seawater) were scaled by the benthic chamber's size and
contents to produce an estimate of 0.18 μmol L⁻¹ of O₂ generated over 48 hr according to the following expression.

$$[O_2]_t = [Q_{iz} \cdot E_a \cdot G(O_2) \cdot M_{O2} \cdot A_{iz}^{-1} \cdot 10^{-2}] \times (1 - e^{-\lambda t})$$

370 Here, [O₂]_t is the mass (kg) of O₂ produced over a given time t (yr), Q_{iz} is the mass (g) of the isotope, E_a is the
372 average energy (eV) released from the decay of one atom; G(O₂) is the radiation chemical yield of molecules per
100 eV of the radiation energy; M_{O2} is the O₂ molecular mass (g), A_{iz} is the isotope atomic mass (g), and λ is the
374 isotope-specific decay constant (yr⁻¹). The overall [O₂]_t value summed the contributions from ²³⁸U, ²³⁵U, ²³²Th, and
⁴⁰K across water, nodule, and sediment sources.

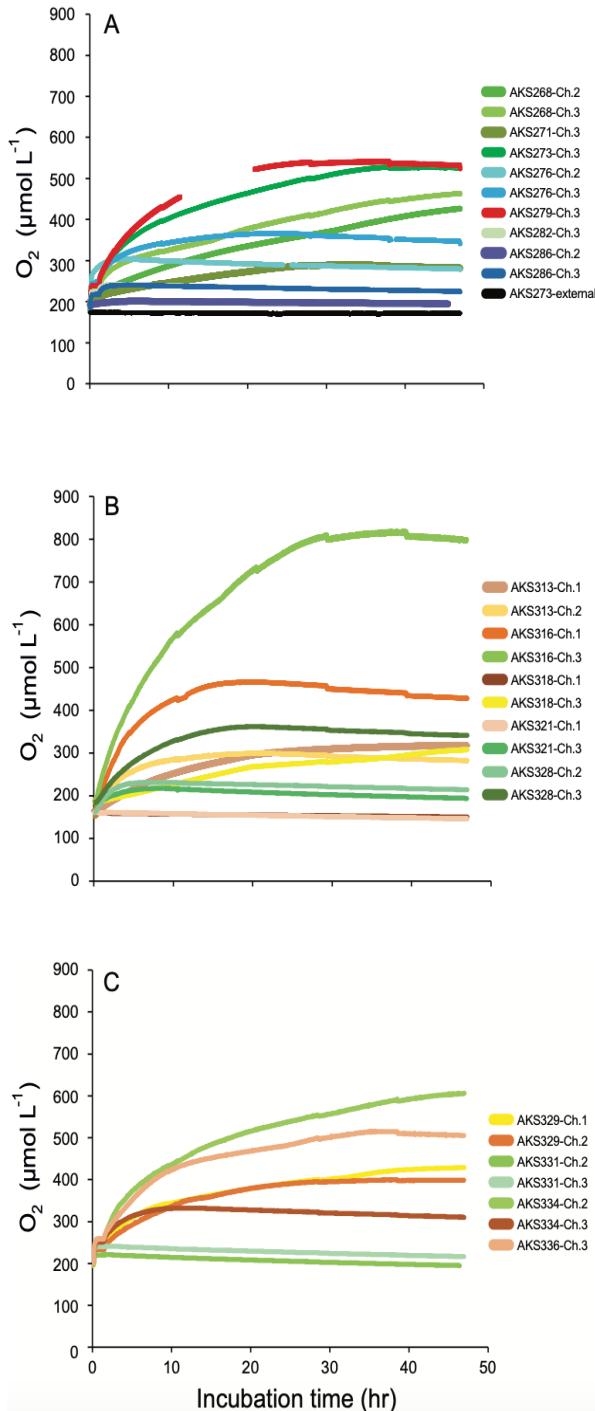
376 *Electrochemistry measurements* – Voltage potentials were measured at 165 locations on 12 nodules collected by
378 coring in the UK1 and NORI-D license areas, and the BGR license area situated to the north of NORI-D. Potentials
380 were measured on a Keithley DMM6500 digital multi-meter and logged directly to a computer. Prior to the
382 potentials being measured, nodules were immersed for seven days in Instant Ocean artificial seawater (salinity 35).
384 To measure the potentials, the electrodes (platinum wire, 99.9% purity) were first washed in perchloric acid, rinsed
386 in Milli Q water, and then dried before being attached to alligator clamps attached to the multi-meter. The platinum
388 wires were first immersed in Instant Ocean artificial seawater in a glass petri dish to measure background voltages
(0.003 ± 0.001 V, SE, n = 17) until stable. Once stable, a nodule was immersed in the petri dish and the platinum
390 probes placed at different locations on the nodule and the voltages recorded for 1-2 mins. This procedure was
repeated up to 20 times in different regions of the nodules depending on their size. Measurements were undertaken
392 on 12 nodules at 21°C (n = 147) and a single control rock composed of metamorphosed carbonate (n = 10). To
assess the effect of temperature on the voltage potentials, two nodules from UK1 were retested after being cooled
394 to 5°C (n = 18) by placing them in Instant Ocean water in a refrigerator overnight. Voltage potentials (n = 20)
396 between two nodules were also measured using four nodules collected from UK1. Voltages of the nodules made
398 during each measurement were averaged and corrected for the background voltages measured with only Instant
Ocean seawater.

399 *Geochemistry modelling* – The chemical stability and solubility of manganese (IV) oxide (birnessite) to dissolved
Mn²⁺ as a function of pH and O₂ activity was modelled using the Geochemist Workbench Professional (Vers. 12)
401 software, with the in-build and internally consistent THERMO database. The conditions used for generating the
403 phase diagram (Extended data Fig. 5) represent bottom seawater as measured in the eastern CCZ with a temperature
of 1.6°C and chlorine and manganese concentrations of 0.55M Cl and 2⁻¹⁰M Mn, respectively.

405 *Ex-situ core incubations* – Opportunistic replicated *ex-situ* experiments were undertaken during the 5D cruise using
407 sediment cores retrieved by a multi-corer (MUC) from the PRZ area in NORI-D (Extended data Fig. 1). Immediately
409 after the MUC arrived back at the surface, a bung was placed at the bottom of the cores and then they
411 were transferred to a cold lab held at *in-situ* temperature. The cores were then exposed to the following 5 treatments
413 (administered using a 60-mL syringe) which included 1) Na₂HCO₃ (0.3 μM final conc. n = 3), 2) NH₄Cl (10 μM
415 final conc. n = 3) and (3) NH₄Cl (50 μM final conc. n = 3), (4) 0.3 μM Na₂HCO₃ + 10 μM NH₄Cl (final conc. n =
417 3) and 5) HgCl₂ (1.1 μM final conc. n = 3). No-injection controls (n = 3) were also performed as well as two
419 separate core experiments in which four nodules were incubated for 48 hours by themselves with no additions.
After addition, the water phase of each core was stirred, and a 50-mL sample of top water was carefully taken by
421 syringe for Winkler analysis (as above). Due to the low permeability of the sediment, it is unlikely that much of
the subsurface volume in the sediment incubations was exposed to the added nutrients / chemicals. Stoppers were
423 then placed on the top of the cores, ensuring no air bubbles were present. The stoppers were secured tightly with

412 electrical tape, and the cores fully submerged in a large bucket containing 0.45- μ m filtered, cold surface seawater
414 (salinity 35). The bucket was covered with 5 black plastic bags and secured in the cold room with the lights turned
416 off. After 48 hours, the cores were removed from the bucket, the tape was removed from the stoppers, and the cores
418 were inspected for the presence of air bubbles. Only one core, a HgCl₂ treatment, had an air bubble beneath the
bung. This core was rejected from further analysis, leaving $n = 2$ for this treatment. The other cores were then re-
sampled for dissolved O₂ by removing the top stopper, quickly mixing the water phase, and then taking another
sample for Winkler analysis, which was analysed as before. Core-specific water volume measurements were used
together with the change in O₂ concentration to calculate the total O₂ change per core.

420 To determine if our *ex-situ* DOP detection was affected by the diffusion of O₂ from the atmosphere into the core
422 tube, two controls were performed: a shipboard test with an O₂ microprofiler, and a lab-based test using the Winkler
424 method. Shipboard, a clean core tube was filled with Milli-Q water and sparged with N₂ for 10 minutes prior to
426 beginning the test. A Metrohm 8663 Multimeter was inserted through a predrilled hole in the rubber stopper,
428 allowing for O₂ concentration to be recorded every 5 seconds. An increase from 39 to 69 μ mol L⁻¹ was observed
over ~ 5 hr, corresponding to a rate of 0.14 mmol m⁻² d⁻¹ or 4 % of the 3.5 mmol L⁻¹ d⁻¹ mean DOP measured in the
ex-situ experiments. Because of the hole in the stopper and the hypoxic nature of the experiment, this shipboard
control represents a conservative view of the influence of O₂ diffusion into the incubation tubes (e.g., there are
compelling reasons to believe it produced an over-estimate).


430 Back in the home laboratory, three of the original core tubes were filled with 4°C, 0.2 μ m-filtered artificial seawater
432 (salinity 35) and sparged with N₂ for eight minutes through a filtered pipette tip to achieve an initial dissolved O₂
434 concentration of ~ 100 μ mol L⁻¹ (e.g., the approximate starting O₂ concentrations for the shipboard experiments).
436 The tubes were sealed with rubber stoppers and electrical tape, being careful to avoid bubble formation. They were
438 then submerged in a 32-gallon plastic garbage can of unfiltered seawater (O₂ concentration: 228.12 μ mol L⁻¹) in a
440 dark cold room (8 °C) for 48 hours. After the incubation, the tubes were quickly unsealed and analysed one at a
442 time to prevent additional O₂ dissolution from the air. A 50-mL sterile syringe was used to slowly collect 10-mL of
444 seawater from the centre of the core tube, being sure to avoid bubble entrainment in the syringe. The sample was
carefully expelled into a 10-mL reaction vial and fixed using the adjusted values for a 10-mL sample according to
a volume-scaled Winkler Titration protocol⁴³ and the reagents from the LaMotte Dissolved Oxygen Test Kit. The
fixation of each collected sample was done in less than two minutes in a fume hood. Dissolved O₂ increased by 0.11
mmol m⁻² d⁻¹ during the 48 hr, which corresponds to between 3.2 % of the mean DOP rate observed in the *ex-situ*
experiments (3.5 mmol L⁻¹ d⁻¹). Both of our control experiments thereby provide high confidence that the diffusion
of external O₂ into the core tubes does not account for the observations of O₂ production in the *ex-situ* core
incubations that were conducted during the 5D cruise.

446 *Calculations to quantify diffusion of O₂ from the polyoxymethylene chambers and lids* – Oxygen diffusion from the
448 polyoxymethylene plastic chambers was estimated from Stephens⁴⁴ who calculated that 20.66 μ mol L⁻¹ of O₂ could
450 diffuse out of 428 cm² of polyoxymethylene plastic when immersed for 48 hours in hypoxic water (O₂ diffusion
452 rate: 0.02 μ mol O₂ cm⁻² d⁻¹). To determine the total area of plastic that would be available for diffusion (869 –
1584cm²), we added the surface area of the lid to the surface area of the 4 walls that would be exposed at the seafloor
454 (based on the depth of the water phase – see above). The minimum and maximum areas available for diffusion
456 were multiplied by 0.02 μ mol O₂ cm⁻² d⁻¹ to estimate that 41.9 – 76.5 μ mol O₂ L⁻¹ would diffuse out of the
polyoxymethylene chamber walls and lid in 48 hours under hypoxic conditions. As the water enclosed by the
chambers was always well oxygenated (Fig. 1), O₂ diffusion from the plastic would be less than under hypoxic
conditions. Thus, we are highly confident that O₂ leakage from the plastic chambers could not replicate the high
O₂ concentration seen in some of our experiments (Fig. 1).

458 *In-situ benthic chamber incubations in APEIs 1, 4, and 7 and the OMS and UK1 license areas* - During a cruise to
460 the Ocean Minerals of Singapore (OMS) and UK1 license areas in February/ March 2015 on the RV “Thomas G.
462 Thompson”, and the western CCZ on the RV “Kilo Moana” in June 2018, 36-hr *in-situ* benthic chamber incubations
464 were carried out at the abyssal seafloor (Extended data Fig. 1) and collected optode data in an identical way to the
NORI-D incubations. The O₂ concentrations recorded by the optodes in the 2015 and 2018 experiments were
derived from factory calibrations undertaken 4-6 months prior to the expeditions as *in-situ* temperature could not
be replicated onboard during the optode calibration process. As such, the profiles shown in Extended data Fig. 3
only show the relative change in O₂ concentration in the chambers over time.

466 **Online methods references**
468 26. De Martino, A. et al. Genetic and phenotypic characterization of *Phaeodactylum tricornutum*
(Bacillariophyceae) accessions. *J. Phycol.* **43**, 992–1009 (2007).

- 470 27. Tengberg, A. et al. Intercalibration of benthic flux chambers II. Hydrodynamic characterization and flux
472 comparisons of 14 different designs. *Mar. Chem.* **94**, 147-173 (2005).
- 474 28. Bittig, H.C. et al. Oxygen optode sensors: principle, characterization, calibration, and application in the ocean.
Front. Mar. Sci. **4**, 429 (2018).
- 476 29. Caporaso J.G. et al. Earth microbiome project: EMP 16S Illumina amplicon protocol. (2018).
- 478 30. Parada, A.E. et al. Every base matters. assessing small subunit rRNA primers for marine microbiomes with
mock communities, time series and global field samples. *Environ. Microbiol.* **18(5)**, 1403-1414 (2016).
- 480 31. Apprill, A. et al. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of
SAR11 bacterioplankton. *Aquatic Microbial Ecol.* **75(2)**, 129-137 (2015).
- 482 32. Choppin, G. et al. Eds. Radiochemistry and nuclear chemistry. (Elzevier, 2002), 709pp.
- 484 33. Katz, J.J. et al. Eds. The chemistry of the actinide elements. 2nd Edition (Springer, 1986). 912pp.
- 486 34. Lide, D.R. Ed. CRC handbook of chemistry and physics (Vol. 85). (CRC press, 2004), 2712pp.
- 488 35. Nier, A.O. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and
potassium. *Physical Rev.* **77(6)**, 789 (1950).
- 490 36. Stumm, W and Morgan, J.J. Aquatic Chemistry: An introduction emphasizing chemical equilibria in natural
waters. 2nd Edition (John Wiley & Sons Ltd., New York. 1981), 780pp.
- 492 37. Cheng H. et al. Improvements in ²³⁰Th dating, 230Th and 234U half-life values, and U-Th isotopic
measurements by multi-collector inductively coupled plasma mass spectrometry. *Earth Planet. Sci. Let.* **371**,
82-91 (2013).
- 494 38. Edwards, R.L. et al. ²³⁸U, ²³⁴U, ²³⁰Th, ²³²Th systematics and the precise measurement of time over the past
500,000 years. *Earth Planetary Sci. Let.* **81 (2-3)**, 175-192 (1987).
- 496 39. Shen C.C. et al. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively
coupled plasma mass spectrometry. *Chem. Geol.* **185 (3-4)**, 165-178 (2002).
- 498 40. Kuhn, T. et al. "Composition, formation, and occurrence of polymetallic nodules" in Deep-sea mining, R.
Sharma, Ed. (Springer, Cham, 2017), pp. 23-63.
- 500 41. DeWitt, J. et al. The effect of grain size on porewater radiolysis. *Earth. Space. Sci.* **9(6)**, e2021EA002024
(2021).
- 502 42. Blair, C.C. et al. Radiolytic hydrogen and microbial respiration in subsurface sediments. *Astrobiol.* **7(6)**, 951-
970 (2007).
- 504 43. Shriwastav, A. et al. A modified Winkler's method for determination of dissolved oxygen concentration in
water: Dependence of method accuracy on sample volume. *Measurement.* **106**, 190-195 (2017).
- 506 44. Stevens, E.D. Use of plastic materials in oxygen-measuring systems. *J. Appl. Physiol.* **72**, 801-804 (1992).

508

510 **Figure 1.** Oxygen concentrations ($\mu\text{mol L}^{-1}$) measured by calibrated O_2 optodes through time (hr) in the different
 512 benthic chamber incubations during the *in-situ* benthic chamber lander deployments made during the 5D (A), 5E
 514 (B) and 7A (C) cruises to the NORI-D license area (Extended data Figure 1). Nodules were present in all incubation
 516 experiments. The green hue, blue hue, and red lines in the 5D figure (A) denote dead-algal biomass, $\text{DIC} + \text{NH}_4^+$,
 518 and filtered seawater treatments, respectively. The gap in the optode data in AKS279-Ch.3 was caused by the optode
 520 periodically not logging data. The black line indicates ambient O_2 concentration measured on the outside of the
 benthic chambers during AKS273 on the 5D cruise. The green and yellow hue lines in the 5E (B) and 7A (C) figures
 denote the dead-algal biomass and control (no injection) treatments, respectively. The minor drops seen in some of
 the O_2 concentration profiles at 28, 38 and 47 hr are caused by the dilution of the chamber water with 50-mL of
 seawater that was entrained from the outside into the chamber through a 1.5m (0.25cm dia.) open tube when the
 syringe sampler collected seawater samples from within the chamber. The constant O_2 concentration measured
 during the first 2 hr of the 5D and 7A experiments was due to the stirrers being turned off for 1 hr to allow the

522 substrates (e.g., dead-algal biomass) to sink to the sediment surface. Stirrers were turned on during the 5E expedition from the moment the lander was deployed until the lander returned and power to the stirrers was disconnected.

524

526

528

530

532

534

536

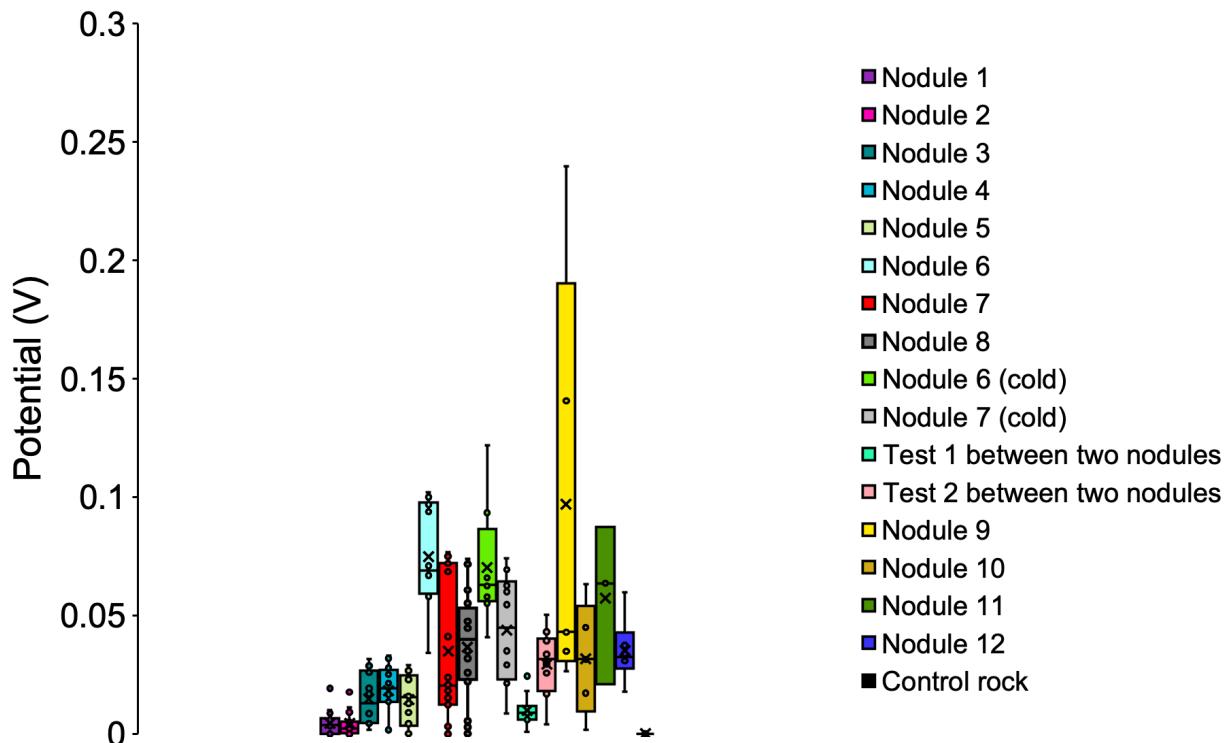
538

540

542

544

546


548

550

552

554

556
558
560
562
564
566
568
570

572
574 **Figure 2.** Box-whisker plots of background-corrected voltage potentials (V) for nodules collected from the NORI-D (1-5), UK1 (6-8), and the BGR (9-12) license areas. Potentials were measured at 21°C (nodules 1 – 12) and 5°C
576 (nodules 6 and 7 cold), as well as between two different UK1 nodules (Tests 1 and 2), and across the surface of a
578 metamorphosed carbonate rock (control). Means are designated by the 'x' symbol.
580
582
584
586
588
590
592

594

596

598

600

602

604

606

608

610

612

614

616

618

620

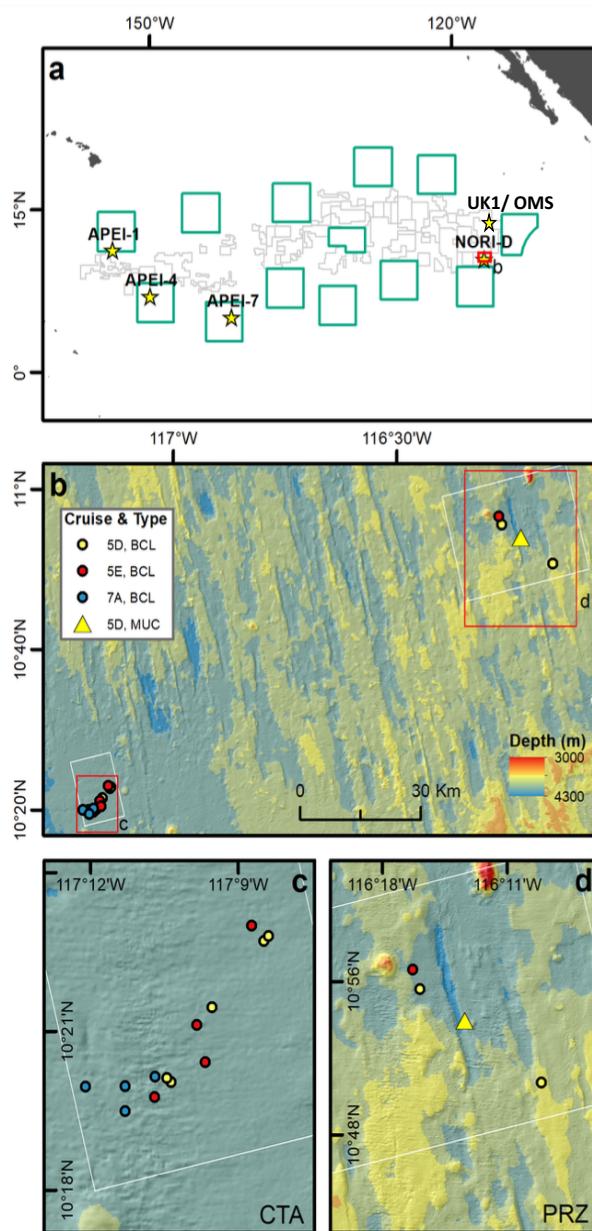
622

624

626

628

630

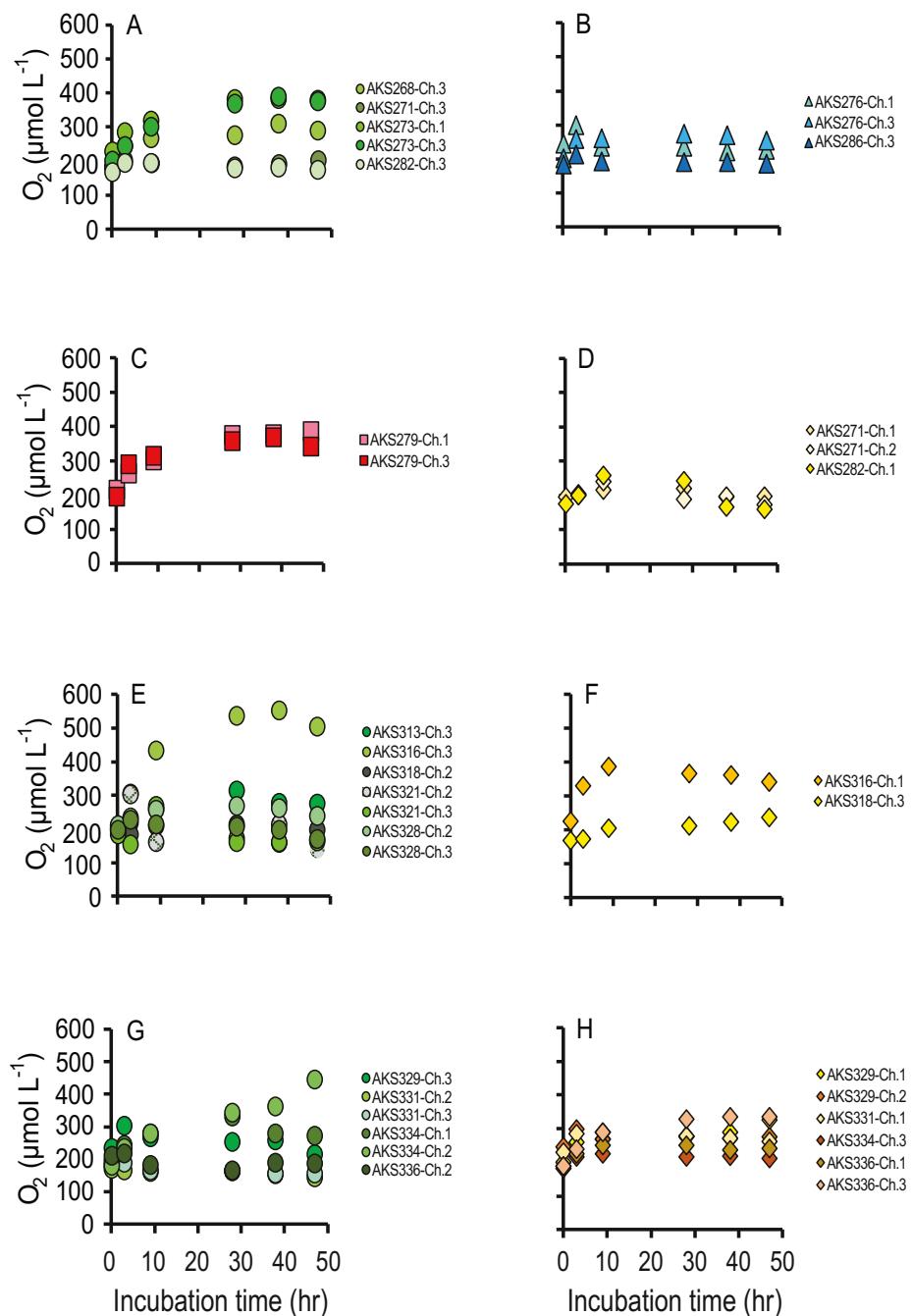

632

634

636

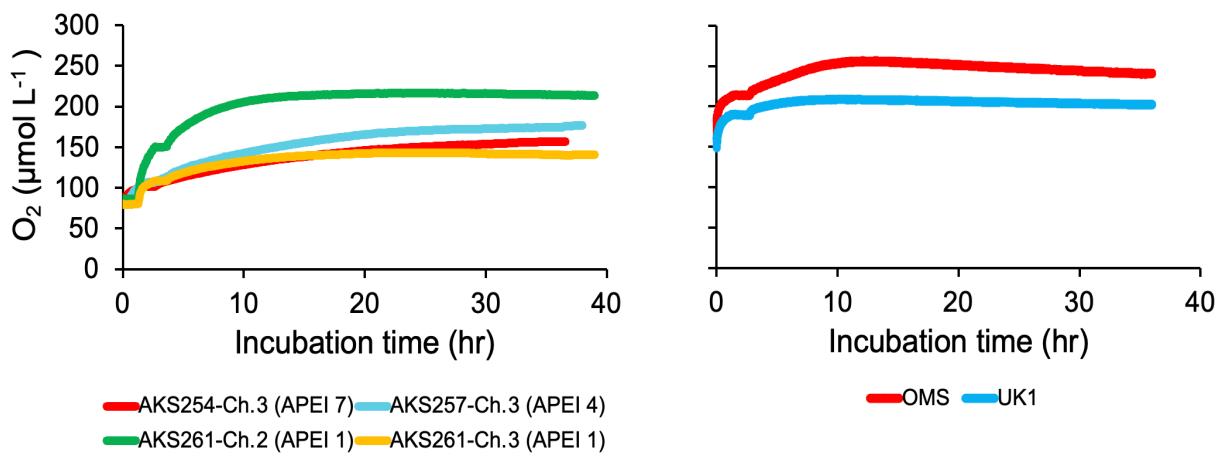
638

640

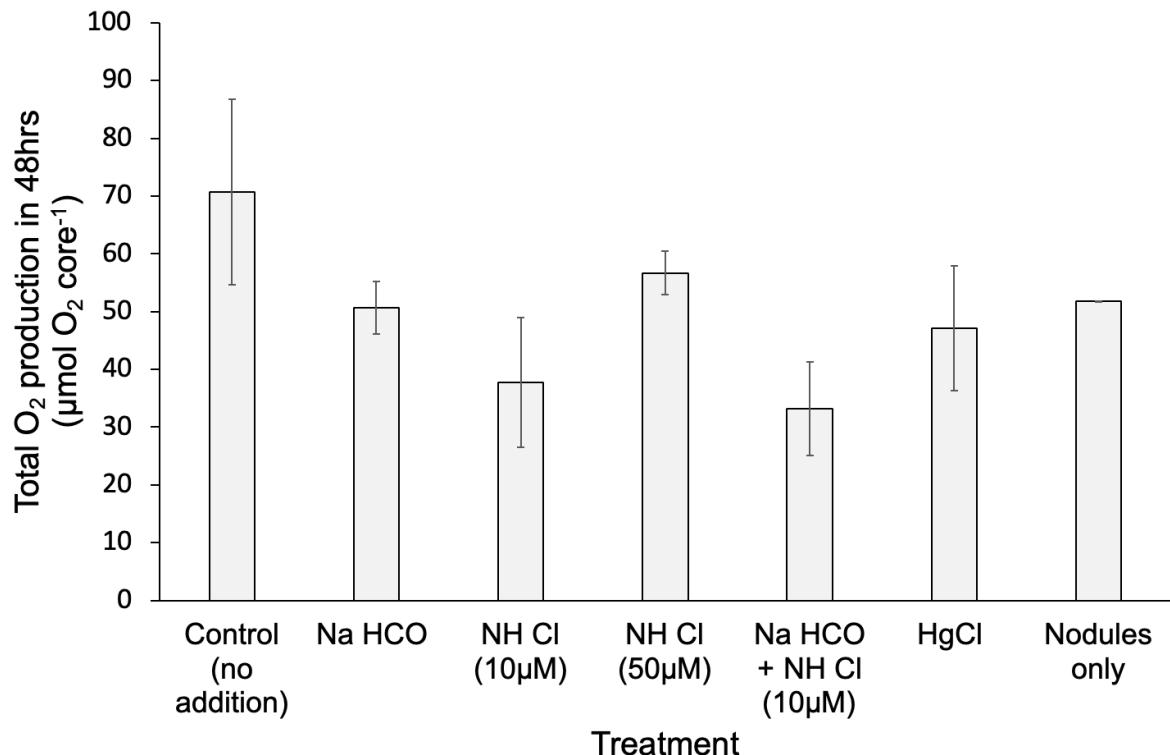

642 **Extended date Figure 1.** Benthic chamber lander (BCL) locations in APEIs 1, 4, and 7, UK1 and OMS and NORI-D (stars) and both areas (Collector Test Area or CTA and Preservation Reference Zone or PRZ) of NORI-D in the 644 central abyssal Pacific. The deployment location for the multi-corer (MUC) that sampled sediments for the *ex-situ* 646 experiments conducted during the 5D cruise is also shown.

648

650

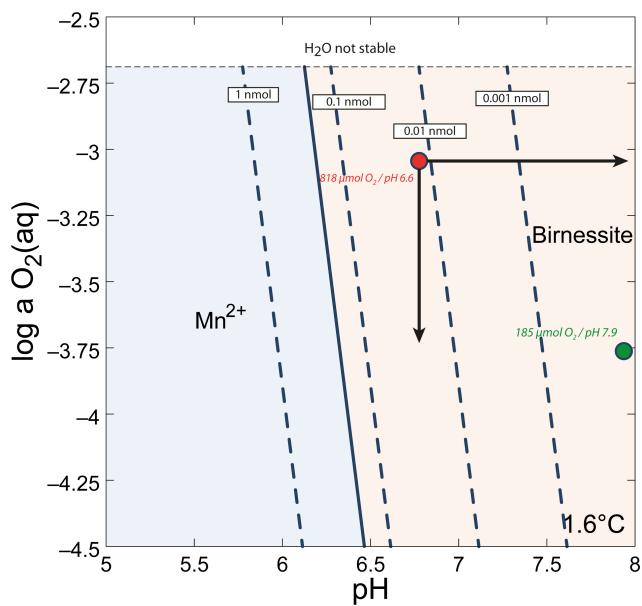

652

654
656
658



660
662 **Extended data Figure 2.** Mean O_2 concentration ($\mu\text{mol L}^{-1}$) measured by micro-Winkler analysis conducted on
664 water samples that were collected periodically from the chambers through time (hr) under different treatments. The
666 treatments were dead-algal biomass during expeditions 5D (A), 5E (E), and 7A (G), DIC + NH_4^+ during expedition
668 5D (B), 0.45-μm filtered seawater during expedition 5D (C), and control (no injection) during expeditions 5D (D),
5E (F), and 7A (H). Each datapoint is the mean of two Winkler measurements.

670
672
674
676
678
680
682
684
686
688



716
718
720
722
724
726
728
730

732 **Extended data Figure 4.** Mean total O_2 production ($\mu\text{mol } O_2 \text{ core}^{-1}$) measured on sediment cores exposed to a
734 variety of treatments during 48-hour *ex-situ* incubations that were carried out on the ship at *in-situ* temperature and
736 in the dark during the 5D cruise. Oxygen production was determined from the difference in O_2 concentration of the
738 water phase overlying the sediment between $t = 0$ hours and 48 hours and accounting for the core volume. Error
740 bars refer to 1 SE ($n = 3$), except for the mercury chloride and nodule only treatments that shows the range around
742 the mean ($n = 2$). For the nodule only treatment, the range is $0.003 \mu\text{mol } O_2 \text{ core}^{-1}$.
744
746
748
750

752
754
756
758
760
762
764
766
768

770
772
774
776
778
780
782
784
786
788
790

Extended data Figure 5. The phase stability and solubility of birnessite (manganese [IV] oxide) in seawater as a function of O₂ activity and pH at a temperature of 1.6° C, 0.55M Cl, and 2e⁻¹⁰M Mn. The bold black line illustrates the phase boundary between birnessite and dissolved Mn²⁺; the dashed lines the solubility of birnessite into seawater. The green point indicates the predominant manganese form that would be experienced at the highest pH that was measured in MUC cores, and the lowest O₂ condition (average bottom seawater); the red point indicates the predominant manganese form at the lowest pH (measured in MUC cores) and highest O₂ concentration measured in the *in-situ* benthic chamber experiments at NORI-D with the arrows showing their range. Under the latter conditions, a vanishing small amount of birnessite would dissolve into seawater to form Mn²⁺.

792 **Extended data table 1.** *In-situ* benthic chamber lander deployment locations and depths from the 3 cruises to the
794 NORI-D license area. Deployment areas are shown in Extended data Fig. 1 and are defined as the Collector Test
Area (CTA) and Preservation Reference Zone (PRZ).

Cruise	Date	Lander deployment	Area	Station	Depth (m)
5D	May-June 2021	AKS268	CTA	STM-001	4285
5D	May-June 2021	AKS271	CTA	STM-001	4284
5D	May-June 2021	AKS273	CTA	STM-014	4306
5D	May-June 2021	AKS276	CTA	STM-014	4306
5D	May-June 2021	AKS279	CTA	STM-007	4280
5D	May-June 2021	AKS282	PRZ	SPR-033	4245
5D	May-June 2021	AKS286	PRZ	SPR-041	4127
5E	November-December 2021	AKS313	CTA	STM-014	4304
5E	November-December 2021	AKS316	CTA	STM-001	4285
5E	November-December 2021	AKS318	CTA	STM-007	4277
5E	November-December 2021	AKS321	CTA	STM-001	4285
5E	November-December 2021	AKS328	PRZ	SPR-033	4243
7A	August-September 2022	AKS329	CTA	TF-021	4289
7A	August-September 2022	AKS331	CTA	STM-001	4286
7A	August-September 2022	AKS334	CTA	TF-028	4278
7A	August-September 2022	AKS336	CTA	TF-021	4271

796

798

800

802

804

806

808

810

812

814

816

818

820

822 **Extended data Table 2.** Total oxygen change measured by O₂ optodes during the *in-situ* benthic chamber lander
 824 experiments at NORI-D. Stars (*) denote the incubations where the optodes did not start to log O₂ concentrations
 826 immediately or stopped logging before 47 hr meaning the total O₂ change could not be determined (designated by
 828 a dash [-]). The total O₂ change could also not be determined in a sub-set of experiments (designated by a dash [-])
 because the chambers failed to seal sediments at the end of the experiment, which meant that the volume of water
 in the chamber could not be determined (designated NA) once the lander arrived back on deck. The determination
 of net production/ respiration dominated experiments was based on the O₂ optode profiles seen in Fig. 1.

Lander deployment	Chamber	Optode sensor	Treatment	Volume of water phase (L)	Start-End time (hr) optodes logged O ₂ data	Total O ₂ production in 48hrs (μmol O ₂)	Weight (g) of nodules (sediment horizon)	Net production/respiration dominated
AKS268	2	B	Dead-algal biomass	NA	0 - 47	-	-	Production
AKS268	3	A	Dead-algal biomass	3.812	0 - 47	1008	782 (0-5cm)	Production
AKS271	3	A	Dead-algal biomass	NA	0 - 47	-	-	Production
AKS273	3	A	Dead-algal biomass	4.598	0 - 47	1545	653 (0-5cm)	Production
AKS276	2	B	DIC+NH ₄ ⁺	NA	0 - 47	-	-	Production
AKS276	3	A	DIC+NH ₄ ⁺	3.933	0 - 47	671	390 (0-5cm)	Production
AKS279	3	A	Filtered seawater	4.659	0 - 47	1639	410(0-5cm)	Production
AKS282	3	A	Dead-algal biomass	4.598	0 - 47	6.050	-	Production
AKS286	2	B	DIC+NH ₄ ⁺	NA	0 - 45.48	-	-	Production
AKS286	3	A	DIC+NH ₄ ⁺	6.050	0 - 47	329	466(0-5cm)	Production
AKS313	1	B	Control (no injection)	NA	0 - 47	-	-	Production
AKS313	2	A	Control (no injection)	NA	0 - 47	-	-	Production
AKS316	1	B	Control (no injection)	2.118	0 - 47	639	512 (0-2cm)	Production
AKS316	3	A	Dead-algal biomass	2.420	0 - 47	1526	662 (0-2cm)	Production
AKS318	1	B	Control (no injection)	NA	0 - 47	-	-	Respiration
AKS318*	3	A	Control (no injection)	2.783	0.23 - 47	-	596 (0-2cm)	Production
AKS321	1	B	Control (no injection)	NA	0 - 47	-	-	Respiration
AKS321*	3	A	Dead-algal biomass	2.783	1.33 - 47	-	863 (0-5cm)	Production
AKS328	2	B	Dead-algal biomass	3.691	0 - 47	257	630 (0-5cm)	Production
AKS328	3	A	Dead-algal biomass	3.812	0 - 47	683	556 (0-5cm)	Production
AKS329	1	A	Control (no injection)	3.872	0 - 47	904	755 (0-5cm)	Production
AKS329	2	B	Control (no injection)	3.872	0 - 47	774	704 (0-5cm)	Production
AKS331*	2	A	Dead-algal biomass	2.723	0.06 - 46.45	-	704 (0-5cm)	Production

AKS331*	3	B	Dead-algal biomass	3.207	0.07 – 47	-	608 (0-5cm)	Production
AKS334	2	A	Dead-algal biomass	4.175	0 – 47	1710	667 (0-5cm)	Production
AKS334	3	B	Control (no injection)	5.143	0 – 47	652	621 (0-5cm)	Production
AKS336	3	B	Control (no injection)	4.477	0 – 47	1408	622 (0-5cm)	Production
Mean change \pm SE						933 \pm 132		

830

832

834

836

838

840

842

844

846

848

850

852

854

856

858

860

862

864

866

868

870

872

874

876

878

880 **Extended data table 3.** Theoretical diffusion times (seconds) for thin versus thick-walled bubbles at the seafloor.
 882 The theoretical time for O₂ to diffuse from a trapped air bubble at the seafloor was estimated by calculating the size
 884 of air bubble that would be required at the surface to produce the O₂ increase seen in each chamber. This was
 886 estimated from the difference between the max O₂ concentration value recorded by the optode and the initial O₂
 888 optode reading in the chamber, the volume (L) of the water phase in the chamber and assuming air was comprised
 890 of 21% O₂. The size of the bubble at the seafloor was then computed using Boyle's law and the *in-situ* pressure
 892 calculated from the USBL depth. The O₂ concentration gradient (dC) between the bubble and the water phase of
 the chamber was determined from the concentration of O₂ in the theoretical bubble and the initial concentration of
 O₂ in the chamber. The diffusion distance (dZ) was set at 10 and 10,000 nm to calculate the diffusion times across
 a thick versus thin-walled bubble. The diffusion coefficient for O₂ ($1.064 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$) was calculated from the
 O₂ diffusion coefficient based on an *in-situ* salinity of 35 and temperature of 1.6°C. Fick's first law of diffusion
 was then used to calculate the diffusion time based on the diffusion coefficient, dZ and dC.

Incubation	Time (sec) required for diffusion assuming a thick-walled (10000 nm) bubble	Time (sec) required for diffusion assuming a thin-walled (10 nm) bubble
AKS268-Ch3	1.226	0.012
AKS273-Ch3	1.411	0.014
AKS276-Ch3	1.068	0.011
AKS279-Ch3	1.442	0.014
AKS282-Ch3	0.768	0.008
AKS286-Ch3	0.854	0.009
AKS316-Ch1	1.053	0.011
AKS316-Ch3	1.407	0.014
AKS328-Ch2	0.780	0.008
AKS328-Ch3	1.080	0.011
AKS329-Ch1	1.182	0.012
AKS329-Ch2	1.122	0.011
AKS334-Ch2	1.463	0.015
AKS334-Ch3	1.061	0.011
AKS336-Ch3	1.372	0.014
Mean ± SE	1.153 ± 0.061	0.012 ± 0.001

894

896

898

900

Extended data Table 4. Minimum and maximum voltage potentials (mV) measured on the surface of the polymetallic nodules at 21°C (nodules 1 – 12) and 5°C (nodules 6 and 7 cold), and control rock. The voltages have not been corrected for the background voltages measured using only instant water.

Minimum voltage (mV)	Nodule 1	Nodule 2	Nodule 3	Nodule 4	Nodule 5	Nodule 6	Nodule 6 (cold)	Nodule 7	Nodule 7 (cold)	Nodule 8	Nodule 9	Nodule 10	Nodule 11	Nodule 12	Control
Record 1	0.00	0.00	0.00	0.00	0.01	0.00	58.55	77.83	0.00	0.01	0.00	0.00	78.81	0.00	0.01
Record 2	8.97	18.45	15.48	3.03	0.00	97.30	40.90	79.56	21.65	25.34	0.00	0.02	53.68	0.01	4.48
Record 3	12.00	0.00	26.48	1.78	3.14	100.26	57.69	81.87	22.13	5.57	0.02	0.31	0.00	22.30	0.97
Record 4	8.67	1.01	29.21	21.06	24.87	88.69	54.14	44.84	37.31	36.89	15.42	23.26		0.00	0.00
Record 5	7.77	0.64	18.68	21.91	14.89	52.68	60.72	22.36	30.80	50.57	0.00	9.28		1.83	3.34
Record 6	0.00	6.28	8.45	13.81	17.71	49.47	85.98	55.17	71.57	38.20				0.02	0.00
Record 7	0.00	2.95	3.98	14.25	0.90	69.44	75.57	75.75	72.06	44.82					1.10
Record 8	14.17	0.00	16.97	14.62	15.03	66.93	0.07	78.40	57.64	0.01					0.00
Record 9	5.57	0.40	0.00	0.00	9.35	33.69		81.75	59.83	8.03					1.66
Record 10	5.00	3.52	3.29	18.15	24.79	0.04		20.69	65.61	27.96					3.53
Record 11	6.14	3.39		32.39	13.09			25.84		36.46					
Record 12	1.52	5.21		25.42	16.84			25.45		36.46					
Record 13	0.48	0.16		27.85	26.23			0.01		61.34					
Record 14	7.12	4.09		28.61	24.92			12.71		60.85					
Record 15	1.51	0.00		16.31				0.00		51.72					
Record 16	1.59	3.09		15.70				0.00		76.51					
Record 17	0.00	0.00		22.12				4.70		78.77					
Record 18	7.83	0.00		13.64				17.90		65.17					
Record 19	6.33	0.75		20.67				24.68		49.45					
Record 20	10.06	12.24		29.94				20.49		49.45					
<hr/>															
Maximum voltage (mV)															
Record 1	10.93	52.73	266.80	52.99	45.69	102.87	70.85	80.11	116.23	39.27	219.67	19.36	98.41	128.40	52.91
Record 2	9.81	21.46	22.95	4.89	0.47	99.85	42.24	82.60	30.74	28.94	722.00	112.63	70.40	407.56	7.72
Record 3	13.84	12.00	28.36	3.01	8.44	103.48	59.12	82.80	27.61	6.61	485.52	178.04	952.61	59.50	11.15
Record 4	12.28	3.51	31.39	24.88	28.98	96.82	58.33	57.64	38.58	39.47	350.78	65.84		600.43	2.96
Record 5	8.99	4.87	75.42	23.15	21.01	77.16	65.41	31.91	34.22	53.26	361.71	25.45		118.71	7.56
Record 6	3.17	7.27	12.12	14.86	25.77	74.55	266.76	80.50	91.66	42.18				128.61	8.71
Record 7	4.29	5.08	9.94	14.86	1.11	77.73	102.45	78.95	73.12	77.14					2.85
Record 8	25.22	2.63	20.15	18.49	16.85	69.20	71.41	84.31	57.91	11.12					0.88
Record 9	7.45	1.34	9.36	8.69	10.91	37.81		82.78	65.62	11.87					2.45
Record 10	8.38	14.61	3.81	28.73	26.73	113.62		28.34	65.91	33.35					8.70
Record 11	7.73	9.19		35.00	14.85			28.08		39.46					
Record 12	3.17	7.02		32.99	18.21			33.05		39.46					
Record 13	2.94	5.52		32.21	31.65			12.76		63.50					
Record 14	9.83	6.43		31.86	26.59			21.71		61.74					
Record 15	2.45	7.04		22.45				3.49		52.38					
Record 16	6.76	6.45		21.56				11.27		79.14					
Record 17	5.54	4.37		24.97				9.10		81.13					
Record 18	10.19	0.95		20.30				20.38		68.18					
Record 19	7.91	2.13		24.16				27.89		52.58					
Record 20	14.32	13.57		34.40				27.74		52.58					

Extended data Table 5. Isotope concentration values used for calculations of radiolytic O₂ production estimates.

906

Isotope	Seawater Concentration (ppb)	Reference	Nodule Concentration (ppm)	Reference
²³⁸ U	3	Choppin et al., 2002; Katz et al., 1986;	4	This study 912
²³⁵ U	0.022	Chen & Wasserburg, 1981	0.029	Chen & Wasserburg 914 1981
²³² Th	0.5	Choppin et al., 2002; Katz et al., 1986; Lide, 2004	11	This study 916
⁴⁰ K	379	Draganic, 2005; Draganic et al., 1991	11900	Buchowiecki & 918 Cherry, 1968; Nier, 1950 920

922

References for Extended Data Table 5

Choppin, G., Liljenzin, J.-O., Rydberg, J. Radiochemistry and nuclear chemistry. Butterworth-Heinemann, (2002).

Katz, J.J., Seaborg, G.T., Morss, L.R. The chemistry of the actinide elements, second ed. Chapman and Hall, London New York, (1986).

Chen, J. H. & Wasserburg, G. J. Precise isotopic analysis of uranium in picomole and subpicomole quantities. *Anal. Chem.* **53.13**, 2060-2067 (1981).

Lide, D.R. ed. CRC handbook of chemistry and physics. **Vol. 85**. CRC press, (2004).

Draganić, I.G. Radiolysis of water: A look at its origin and occurrence in the nature. *Rad. Phys. Chem.* **vol. 72 (2–3)**, pp. 181–186 (2005).

Draganić, I.G. et al. Decomposition of ocean waters by potassium-40 radiation 3800 Ma ago as a source of oxygen and oxidizing species. *Precambrian Res.* **52(3–4)**, 337–345 (1991).

Buchowiecki, J. & Cherry, R.D. Thorium, radium and potassium in manganese nodules. *Chem. Geol.* **3 (2)**, 111–117 (1968).

Nier, A.O. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. *Phys. Rev.* **77 (6)**, 789–793 (1950).

924