
Published as a conference paper at ICLR 2024

EFFICIENT SCORE MATCHING WITH DEEP EQUILIB-
RIUM LAYERS

Yuhao Huang1, Qingsong Wang1, Akwum Onwunta2, & Bao Wang1∗
1Department of Mathematics and Scientific Computing and Imaging (SCI) Institute
University of Utah, Salt Lake City, UT 84102, USA
2Department of Industrial and Systems Engineering
Lehigh University, Bethlehem, PA 18015, USA

ABSTRACT

Score matching methods, which estimate probability densities without computing
the normalization constant, are particularly useful in deep learning. However, the
computational and memory costs of score matching methods can be prohibitive
for high-dimensional data or complex models, particularly due to the derivatives
or Hessians of the log density function appearing in the objective function. Some
existing approaches modify the objective function to reduce the quadratic compu-
tational complexity for the Hessian computation. However, the memory bottle-
neck of score matching methods remains for deep learning. This study improves
the memory efficiency of score matching by leveraging deep equilibrium models.
We provide a theoretical analysis of deep equilibrium models for scoring match-
ing and applying implicit differentiation to higher-order derivatives. Empirical
evaluations demonstrate that our approach enables the development of deep and
expressive models with improved performance and comparable computational and
memory costs over shallow architectures.

1 INTRODUCTION

Score matching [16] and its variants [33; 34; 43; 40] is a class of density estimation methods, which
avoid computing the normalization constant of the density function; see Section 2.1 for a brief re-
view of score matching methods. Score matching is particularly useful when the density function
is parameterized by a deep neural network (DNN). At its core, score matching utilizes the fact that
the (Stein) score function – the gradient of log density function – does not require the computation
of the normalization constant; one can estimate the density function by minimizing the discrep-
ancy between the score functions of the true data distribution and the model distribution. Given
its flexibility, score matching methods have been applied to various tasks requiring density estima-
tion [19; 43; 44; 37] – especially diffusion models; see e.g., [37; 38; 14; 41].

Despite the remarkable advantages of score matching, its applications to DNNs face computa-
tional and memory challenges, arising from optimizing the objective function of the score matching
method, which necessitates the computation of the derivative and Hessian of the log density func-
tion [16; 39]. This step, coupled with the subsequent backpropagation, which additionally computes
the gradient with respect to the weights, significantly inflates the computational graph for training
DNNs [19; 25; 39; 40].

Several strategies have been proposed to address the computational and memory challenges of score
matching methods, focusing on reducing the quadratic computational cost of the Hessian. For in-
stance, methods such as approximate backpropagation [19] and curvature propagation (CP) [25]
provide estimations for the Hessian. Additionally, there are efforts to modify the score matching
objective functions, including denoising score matching (DSM) [43], which avoids the Hessian
computation by considering an objective function with a perturbed data distribution; see equation 2.
Likewise, the sliced score matching (SSM) [40] is proposed to replace the Hessian matrix compu-
tation with the Hessian vector product; see equation 3. These methods alleviate the computational
cost of the Hessian term in the score matching methods, but the memory bottleneck that arises from
optimizing the objective function that involves derivatives of the log density function remains. This

∗Correspond to wangbaonj@gmail.com

1

Published as a conference paper at ICLR 2024

memory bottleneck restricts the depth and complexity of models, limiting their potential in deep
learning applications. For example, in Section 4.1, a VAE variant is trained with SSM objective
function; while increased model depth offers noticeable performance gains, it comes at a substan-
tial cost of memory and computational overhead; see Table 1 for details. Deep equilibrium model
(DEQ) [3; 45] presents an attractive solution to address these challenges. In DEQ, the hidden layer
is represented as the equilibrium point of a nonlinear fixed-point equation that is equivalent to a
weight-tied infinite-depth neural network [45]. Importantly, by applying the implicit function the-
orem [1; 8] at this equilibrium, DEQ facilitates the computation of the derivatives of the hidden
representation without referencing intermediate activation values. As a result, DEQ enjoys constant
memory efficiency while being a deep and expressive model [15].

Inspired by the memory efficiency and remarkable performance of DEQ [3; 45; 4; 7; 31; 2; 32; 27],
we propose to address the computational and memory bottlenecks of score matching methods by
leveraging DEQ. Using the implicit function theorem, the score function can be computed in terms
of the fixed point of the DEQ without storing the intermediate activation values. However, this
approach requires computing the inverse of the Jacobian matrix of the DEQ, which can be expensive.
We then use an efficient implementation of the backpropagation that utilizes the so-called phantom
gradient [12] in the presence of higher-order derivatives. As a result, the proposed DEQ-based
score matching methods allow for the design of deep and expressive models with computational and
memory costs comparable to those of shallow architectures. We demonstrate the effectiveness of the
proposed method through empirical evaluations of both density estimation and generative modeling.

1.1 OUR CONTRIBUTIONS

We present a systematic study on integrating DEQ into density estimation tasks or when the loss
function involves derivatives in general. Our work makes the following key contributions:
• We integrate DEQs into score matching models to address their memory challenges.
• We provide an efficient implementation of the backpropagation and analyze its convergence in the

presence of higher-order derivatives.
• Through empirical studies, we confirm that the integration of DEQs allows for the design of deeper

and more expressive models without elevating computational and memory demands

1.2 ADDITIONAL RELATED WORKS

Beyond the score function, some works consider higher-order derivatives of the log density func-
tion [29]. For example, [26] terms these derivatives as higher-order scores and presents a general-
ization of DSM. FDSSM, introduced in [28], adopts finite difference to approximate the directional
derivatives of the log density function. It uses random projection to approximate the gradient terms.
As observed in their experiments [28, Section 6.1], the variance introduced by the random projection
can outweigh the computational benefits of the finite difference approximation.

Another additional line of related work is using DEQ to improve the memory efficiency of deep
learning models. [15] combines DEQ with the implicit representations to achieve improved perfor-
mance with less memory. In optical flow estimations, DEQ model [7] demonstrates faster computa-
tion of the flow, significantly reduced memory needs, and improves over state-of-the-art models.

1.3 ORGANIZATION

This paper is organized as follows: Section 2 provides an overview of the score matching method and
its challenges, followed by an introduction to DEQ. In Section 3, we present our proposed method
for integrating DEQs into score matching models. Specifically, Section 3.1 describes DEQ for score
matching models, Section 3.2 discusses the well-posedness of the fixed-point equation, and Sec-
tion 3.3 presents the implicit differentiation for higher-order derivatives. Section 3.4 describes the
efficient implementation of backpropagation in the presence of higher-order derivatives. Section 4
presents the empirical evaluations of the proposed method on density estimation and generative
modeling tasks.

2 BACKGROUND AND PRELIMINARIES

This section provides an overview of the score matching method and its challenges, followed by an
introduction to DEQ.

2.1 SCORE MATCHING FOR UNNORMALIZED DENSITY ESTIMATION

In machine learning, statistical models often rely on unnormalized density function p̃θ(·), which is
proportional to the normalized (probability) density function pθ(·) = 1

Zθ
p̃θ(·), where Zθ is the nor-

2

Published as a conference paper at ICLR 2024

malization constant. The normalization constant depends on the parameter θ and is often intractable
to compute. Thus the maximum likelihood estimation, which minimizes the Kullback-Leibler (KL)
divergence between the true data density pdata(·) and the model density p̃θ(·) is infeasible.

Score matching (SM). Instead of using KL divergence to quantify the discrepancy between the true
density pdata(·) and the normalized density pθ(·), one can alternatively use the Fisher divergence
DF that compares the score functions ∇x log pdata(x) and ∇x log p̃θ(x) of the two densities:

DF (pθ, pdata) :=
1

2
Ex∼pdata

[
∥∇x log pθ(x)−∇x log pdata(x)∥2

]
=

1

2
Ex∼pdata

[
∥∇x log p̃θ(x)−∇x log pdata(x)∥2

]
= DF (p̃θ, pdata),

showing that Fisher divergence avoids the computation of the normalization constant Zθ. However,
it requires computing the score function of the true data density pdata(·), which is inaccessible.

Based on some regularity assumption of the data density pdata(·), Hyvärinen [16] finds that the
Fisher divergence can be rewritten as DF = JSM + C, where C is a constant independent of θ and
J is defined as follows:

JSM(θ) :=
1

2
Ex∼pdata

[
∥∇x log p̃θ(x)∥2

]
+ Ex∼pdata

[
tr
(
∇2

x log p̃θ(x)
)]

, (1)

where tr(·) denotes the trace operator. Then, the proposed score matching method in [16] finds the
optimal parameters θ̂ by minimizing the objective function JSM.

Despite its theoretical advantages, the score matching method faces computational and memory
challenges when using DNNs to model the score function. The challenge comes from the computa-
tion of the derivative and the trace of Hessian terms in the objective function JSM. For example, the
common implementation of automatic differentiation like PyTorch [30] requires computing the full
Hessian matrix ∇2

x log p̃θ(x) even when we only need its trace. The quadratic computational com-
plexity of the Hessian matrix computation is prohibitive for high-dimensional data or deep models.
Furthermore, when optimizing the objective function JSM with backpropagation, it requires tak-
ing the derivative of the score function ∇x log p̃θ(x) and the Hessian matrix ∇2

x log p̃θ(x), which
necessitates storing their computational graph which leads to prohibitive memory costs. Several
methods have been proposed to reduce the computational and memory costs of score matching.

Denoising Score Matching (DSM). [43] proposes to perturb the data x according to a noise distri-
bution pσ(x̃|x) and then estimate the score function of the perturbed data x̃. Specifically, when the
noise distribution is Gaussian with variance σ2, DSM minimizes the following objective function:

JDSM(θ) :=
1

2
Ex∼pdataEpσ(x̃|x)

[∥∥∥∥∇x̃ log p̃θ(x̃) +
x̃− x

σ2

∥∥∥∥2
]
. (2)

This method avoids the computation of the Hessian matrix ∇2
x log p̃θ(x) but at the cost of recovering

the perturbed data pσ(x̃) instead of the true data distribution pdata(x). Meanwhile, the model is
sensitive to the parameter σ and requires heuristics and careful selection of the value of σ [40; 35].

Sliced Score Matching (SSM). [40] proposes a random projection-based approach for efficient
score matching by replacing computing the Hessian matrix ∇2

x log p̃θ(x) with Hessian vector prod-
ucts. SSM minimizes the following objective function:

JSSM(θ) := EvEx∼pdata

[
1

2

(
v⊤∇x log p̃θ(x)

)2

+ v⊤∇2
x log p̃θ(x)v

]
, (3)

where v is a random vector sampled from the normal distribution or Rademacher distribution. The
term Ev

1
2

(
v⊤∇x log p̃θ(x)

)2
can be computed analytically, and it equals to 1

2∥∇x log p̃θ(x)∥22.
This leads to SSM with the variance reduction (SSM-VR) objective function [40]:

JSSM−VR(θ) := EvEx∼pdata

[
v⊤∇2

x log p̃θ(x)v
]
+

1

2
∥∇x log p̃θ(x)∥22. (4)

Even though the above methods reduce the computational cost of the Hessian matrix, they still
include derivative in terms with respect to the data x in the objective function, which requires storing
the computational graph for backpropagation and leads to computational and memory bottlenecks.

3

Published as a conference paper at ICLR 2024

2.2 DEEP EQUILIBRIUM NETWORK

DEQ, first presented in [3], represents the hidden representation, z∗, as the equilibrium of a specific
fixed-point iteration equation:

z∗ = fθ(z
∗,x),

where fθ represents a neural network parameterized by θ, and x denotes the input data. When using
an iterative solver for this fixed-point equation, the equilibrium of the DEQ corresponds to the final
hidden representation of an infinite-depth neural network. By leveraging implicit differentiation
during training, DEQ eliminates the need to store intermediate hidden representations; results in
constant memory usage despite being a deep model – a significant computational advantage. The
theoretical convergence of DEQ has been extensively studied in [45]. Further applications prove
the model’s versatility and competitive performance across various tasks. These include language
modeling [3], semantic segmentation [4], optical flow [7], diffusion models [31], and maximum
a-posteriori (MAP) estimates [42].

3 DEEP EQUILIBRIUM LAYERS FOR SCORE MATCHING

In existing score-based density estimation using DNNs, the output of the DNN is typically the log
density function, and the Fisher divergence-related objective functions are optimized. These objec-
tive functions often involve the derivatives of the log density function and necessitate the computa-
tion of higher-order derivatives in backpropagation. We propose to use DEQ for the core interme-
diate layer of the DNN architecture that accounts for the main depth and complexity of the model.
Then, we can utilize the memory efficiency of DEQ to reduce the overall memory consumption.

3.1 GENERAL STRUCTURE OF DEEP EQUILIBRIUM LAYERS

The general structure of our DEQ-assisted score matching model is outlined as follows: An input
data, x, first being transformed through a simple multi-layer perceptron (MLP). Subsequently, it is
processed by a deep equilibrium layer, which finds the fixed point z∗ of the following equation:

z(n+1) = fθ(z
(n),x),

where fθ is a neural network parameterized by θ. The computed fixed point, z∗, is then converted
through a simple network into the log density, log p̃θ(z∗) or score function, ∇ log p̃θ(z

∗), depending
on the task. Therefore, the main computational demands revolve around DEQ.

Specifically, the iterative functions fθ consist of one or few sequential blocks of the following form:

z(n+1) = σ(Wz(n) + g(y)), (5)

with σ being an element-wise activation function, g(y) is the transformed input for this block, and
W is the weight matrix. This structure can represent either a fully connected layer when W is a
dense matrix or a convolutional layer when W is a convolutional kernel. Therefore, it provides a
flexible framework for adapting the existing density or score estimate models into DEQ.

3.2 THE WELL-POSEDNESS OF THE FIXED-POINT EQUATION

In order to correctly apply DEQ, the fixed-point equation must be well-posed; that is, the fixed point
z∗ must exist and be unique. The well-posedness of the fixed-point equation 5 can be guaranteed
by constraining the Frobenius norm of the weight matrix W to be less than one. In particular,
we apply the following weight normalization to W : W → W /λ(∥W ∥F + ϵ), where λ > 1 is
hyperparameter, ϵ is a small positive number, and ∥W ∥F denotes the Frobenius norm of W . The
computational overhead of this normalization is minimal. This constraint ensures the spectral
norm of the weight matrix W to be less than one, and hence the map z → Wz + g(y) is a
contraction. Given most activation functions, such as Softplus used in equation 5 are non-expansive,
the composite map z → σ(Wz + g(y)) is also a contraction mapping in z and so is fθ(z,x).
Thus, Banach’s fixed-point theorem [46] guarantees the fixed point’s well-posedness. Furthermore,
the direct Picard iteration will converge linearly to the fixed point z∗.

3.3 IMPLICIT DIFFERENTIATION FOR HIGHER-ORDER DERIVATIVES

In this subsection, we describe the computation of the score or its derivatives with respect to the
input data x in the presence of the DEQ component. Let x = (x1, x2, · · · , xd)

⊤ ∈ Rd be the input
data. We use z∗ ∈ Rn to denote the fixed point of DEQ. Then the i-th component of the score
function ∇x log p̃θ(z

∗) for 1 ≤ i ≤ d can be computed as follows:
∂ log p̃θ(z

∗)

∂xi
=

∂ log p̃θ(z
∗)

∂z∗
∂z∗

∂xi
, (6)

4

Published as a conference paper at ICLR 2024

Likewise, the second-order derivative of the log density function ∂2 log p̃θ(z
∗)

∂xi∂xj
for 1 ≤ i, j ≤ d can

be computed as follows:
∂2 log p̃θ(z

∗)

∂xi∂xj
=

∂2 log p̃θ(z
∗)

∂z∗∂z∗
∂z∗

∂xi

∂z∗

∂xj
+

∂ log p̃θ(z
∗)

∂z∗
∂2z∗

∂xi∂xj
. (7)

Therefore, the main computational challenge is to compute the term ∂z∗

∂xi
and ∂2z∗

∂xi∂xj
. For this, we

apply the implicit function theorem to obtain the following result:
Proposition 1. Given fθ(z,x), a continuously differentiable function that is a contraction mapping.

Let z∗ is the fixed point of the equation fθ(z
∗,x) = z∗, then the matrix I − ∂fθ

∂z

∣∣∣
z∗

is invertible.
Furthermore, the derivative of z∗ with respect to x can be computed as follows:

∂z∗

∂xi
=

(
I − ∂fθ

∂z

∣∣∣∣
z∗

)−1
∂fθ
∂xi

∣∣∣∣
z∗

, (8)

and if fθ is additionally twice continuously differentiable, the second-order derivative of z∗ with
respect to x can be computed as follows:

∂2z∗

∂xi∂xj

=

(
I −

∂fθ

∂z

∣∣∣∣
z∗

)−1
(

∂2fθ

∂xi∂xj

∣∣∣∣∣
z∗

+
∂2fθ

∂z∂xj

∣∣∣∣∣
z∗

∂z∗

∂xi

+
∂2fθ

∂z∂xi

∣∣∣∣∣
z∗

∂z∗

∂xj

+
∂2fθ

∂z∂z

∣∣∣∣∣
z∗

∂z∗

∂xi

∂z∗

∂xj

)
. (9)

To the best of our knowledge, equation 8 is well-known in the DEQ literature; see e.g. [3], while
equation 9 is new in DEQ context. In practice, the Softplus activation function is used in DNNs to
approximate the log density function, ensuring fθ is twice continuously differentiable [40]. When
using the reverse-mode automatic differentiation, the score function and its derivatives can be com-
puted by only using the states of the DEQ at the fixed point z∗.

3.4 EFFICIENT IMPLEMENTATION WITH DEQ
There have been efforts devoted to improving training DEQs, including the use of Anderson ac-
celeration [3] and a separate neural block [5] to accelerate the fixed-point finding. Effective tech-
niques have been employed for the forward pass, such as reusing the fixed point from previous itera-
tions [7; 15], Jacobian regularization [6]. Meanwhile, the inexact gradient [12] can render the com-
putational cost of backpropagation negligible without sacrificing the model’s performance [7; 2; 31].
In our DEQs, we adopt the strategy of reusing the fixed point from prior iterations to accelerate the
forward pass. Additionally, we use inexact gradients, which we will describe in detail in this sub-
section. Particularly, we will analyze its behavior for higher-order derivatives.

Proposition 1 highlights DEQ’s capability in computing the score function and its derivatives
without storing the intermediate activation values. Yet, the computation of the matrix inversion(
I − ∂fθ

∂z

∣∣
z∗

)−1
can be expensive. Inspired by the success of inexact gradient in training DEQs, we

adopt the phantom gradient [12; 2; 31] for computing the first and second-order derivatives of the
score function. The implementation of phantom gradient takes the following two steps:

Step 1 Compute the fixed point z∗ of the DEQ by performing forward iterations until convergence
with automatic differentiation turned off.

Step 2 Perform K additional forward iterations from the fixed point z∗ with automatic differenti-
ation turned on.

We provide a PyTorch-style pseudocode for this implementation in Algorithm B in the appendix.
Since we need to perform multiple forward iterations to compute the fixed point z∗, the additional
forward iterations in Step 2 only incur a small computational overhead. Proposition 2 shows that the
derivative with respect to the input data computed by this method converges to the true derivatives
as the number of forward iterations K increases. In our experiments, we set K = 2 and find that the
models already achieve good performance, and this aligns with findings in training DEQs [31; 2; 7].
Proposition 2. Consider function fθ(z,x) with fixed point z∗. Let {z(k)|1 ≤ k ≤ K} be generated
by performing K forward iterations from z∗, i.e., set z(0) = z∗ and z(k+1) = fθ(z

(k),x) for

1 ≤ k ≤ K. Let J = ∂fθ
∂z

∣∣∣
z∗

. Then the derivative ∂z(K)

∂xi

∣∣∣
z∗

matches approximation of derivative of

the implicit function z∗ in xi by using K-th order Neumann series of (I − J)−1, i.e.,

∂z(K)

∂xi
=

K−1∑
k=0

Jk ∂fθ
∂xi

∣∣∣∣
z∗

. (10)

5

Published as a conference paper at ICLR 2024

Hence as K → ∞, the derivative ∂z(K)

∂xi

∣∣∣
z∗

converges to the true derivative, i.e.,

lim
K→∞

∂z(K)

∂xi
=

∂z(∗)

∂xi
.

Similarly, if fθ is twice continuously differentiable, the second-order derivative ∂2z(K)

∂xi∂xj
at z∗ satisfies

lim
K→∞

∂2z(K)

∂xi∂xj
=

∂2z(∗)

∂xi∂xj
.

Again, the regularity assumption in the above propositions aligns with the assumption in score
matching based models [16; 40]. Moreover, as far as we are aware, the second-order results in
the above proposition are new in the DEQ context.

4 EXPERIMENTS
In this section, we evaluate the performance of the proposed DEQ-assisted score matching models,
including score matching variational autoencoder (SMVAE) [40] in Section 4.1 and noise condi-
tional score network (NCSN) [40] in Section 4.4 for generative modeling. We also consider deep
kernel exponential families (DKEF) [44] in Section 4.2 and nonlinear independent components es-
timation (NICE) [10] in Section 4.3 for density estimation. In our experiments, we utilize the open
source code from [40; 37] and adopt the same training setup for fair comparisons.

4.1 SCORE ESTIMATION IN VAE WITH IMPLICIT DISTRIBUTION

VAE [18] learns a latent variable z from the observed data x, which contains a decoder pθ(x|z)
that models the conditional distribution of x given the latent variable z and an encoder qϕ(z|x)
that approximates the posterior distribution of the latent variable z. A VAE model is trained by
maximizing the following evidence lower bound (ELBO):

L(θ,ϕ) = Ex∼pdata

[
Ez∼qϕ(z|x) [log pθ(x|z)]− Ez∼qϕ(z|x) [log qϕ(z|x)]

]
. (11)

Therefore, a typical training procedure assumes that qϕ(z|x) is a simple distribution to make the
computation tractable. Following [40, Section 6.2.1], the score estimation techniques can be utilized
to compute the term ∇ϕEz∼qϕ(z|x) [log qϕ(z|x)] directly thereby allowing qϕ(z|x) to be an implicit
distribution – a distribution without tractable density. In [40], a variant of VAE is proposed that
employs a score estimator network to facilitate the ELBO computation, and the score estimator
network is trained by minimizing the SSM objective function JSSM in equation 3; we refer to this
model as SSM VAE; see Table 6 in the appendix for the detailed model architecture.

We consider two image generation tasks: CelebA [24] and Cifar10 [20]. CelebA is a dataset that
contains 64 × 64 × 3 color images that identify celebrity face attributes, and Cifar10 contains 10
classes of 32 × 32 × 3 color images. Each dataset is split into train, validation, and test sets with
70%, 20%, and 10%, respectively. In our experiments, we examine the performance of SSM VAE
regarding its score estimator network depth. We augment the score estimator network with addi-
tional k convolutional layers and term the model as Aug(k)-SSM VAE, k = 8 or 16. We also turn
the augmented CNN layer into a (convolutional) DEQ block and term the model as DEQ-SSM VAE.
The detailed model architecture is shown in Table 7 in Appendix D.3. We train the models using
Adam [17], for 105 iterations, with learning rate 1e-4, weight decay 1e-12, and batch size 128.

Figure 1 and Table 1 compare the performance of SSM VAE, Aug(k)-SSM VAE, and DEQ-SSM
VAE in terms of SSM loss, ELBO, FID score [13], and memory usage. The comparisons between
SSM VAE and Aug(k)-SSM VAE show that increasing the number of encoding layers improves
the model’s performance, but it also significantly increases the memory usage and training time. In
contrast, DEQ-SSM VAE outperforms the other models in terms of SSM loss, ELBO, and FID score
while costing the smallest amount of memory overhead compared to the baseline SSM VAE model.

4.2 DEEP KERNEL EXPONENTIAL FAMILIES FOR DENSITY ESTIMATION

DKEF is an unnormalized density estimation model proposed in [44] that parameterizes the unnor-
malized log density as log pθ(x) = f(x) + log q0(x), where q0(x) is a base Gaussian distribution
and f is a mixture of kernels. Specifically, f(x) =

∑L
l=1 αlk(x, zl), where zl are inducing points,

αl are the mixture weights, and k(x, zl) is the kernel function. The model can be trained with score-
matching techniques with loss functions as SM, DSM or SSM. Alternatively, the model can use the

6

Published as a conference paper at ICLR 2024

40k 100k
Iterations

3580

3560

3540

EL
BO

DEQ SSM VAE SSM VAE Aug(8) SSM VAE Aug(16) SSM VAE

40k 100k
Iterations

-3e3

-4e3

SS
M

 L
os

s

40k 100k
Iterations

3580

3560

3540

EL
BO

10k 30k 50k 70k 100k
Iterations

60

80

FI
D

Sc
or

e

0

7

15

M
em

or
y(

GB
)

40k 100k
Iterations

-3e3

-2e3
SS

M
 L

os
s

50k 100k
Iterations

2570

2560

2550

2540

EL
BO

10k 30k 50k 70k 100k
Iterations

80

100

120

FI
D

Sc
or

e

0

7

14

M
em

or
y(

GB
)

Figure 1: Comparing the performance of SSM VAE, Aug(k)-SSM VAE, and DEQ-SSM VAE in terms of SSM
loss, ELBO, FID score, and memory usage. First row: CelebA. Second row: Cifar10.

Method Dataset FID↓ (10k iter) FID↓ (50k iter) FID↓ (100k iter) #Param Memory↓ Training time/iter(s)
SSM VAE 95.23±0.50 65.59±0.52 61.85±0.55 8.8M 4.0 GB 8.22
Aug(8)-SSM VAE CelebA 79.87±0.61 61.62±0.61 56.02±0.57 15M 7.3 GB 37.57
Aug(16)-SSM VAE 76.43±0.62 59.20±0.61 54.27±0.48 19M 16 GB 73.27
DEQ-SSM VAE 74.21±0.52 55.93±0.53 54.17±0.48 9.7M 5.4 GB 21.95
SSM VAE 131.74±0.40 83.93±0.42 77.35±0.38 7.1M 3.8 GB 3.97
Aug(8)-SSM VAE Cifar10 135.28±0.40 81.41±0.35 70.05±0.37 13M 6.3 GB 17.45
Aug(16)-SSM VAE 135.18±0.42 77.85±0.31 69.77±0.28 17M 14 GB 40.12
DEQ-SSM VAE 134.24±0.39 77.72±0.33 68.13±0.38 7.5M 4.4 GB 9.98

Table 1: Performance comparison of models for image generation on CelebA and Cifar10: DEQ-SSM VAE
leads in FID during training, except at 10k iterations where SSM VAE excels. DEQ-SSM VAE shows superior
efficiency in parameters, memory, and time over increased depth.

SM loss but with curvature propagation (CP) to approximate the diagonal of the Hessian. We refer
to these models as SM, DSM, SSM, and CP, respectively.

We consider the density estimation on two datasets: UCI(Parkinson/Redwine/Whitewine) [11] and
high-dimensional Gaussian. The Gaussian datasets we estimate are 100 and 200 dimensional, re-
spectively; each of the datasets is split into train, validation, and test sets with 4860, 600, and 540
samples, respectively. Each of the UCI datasets is split into train, validation, and test sets with 70%,
20% and 10%, respectively. In the experiment, we examine the performance of SM DKEF by in-
creasing the number of layers of the kernel network such as k-Layer-SM DKEF (k = 3, 8, 16). We
can also turn the sequence of MLP layers into a DEQ block termed as DEQ-SM DKEF.

We set the number of kernels to be 3. For the general score matching function, the feature extractor
uses MLP with a different number of layers with hidden dimension 30 and sets Softplus as the
activation function. For the DEQ variant, we turn the feature extractor into one DEQ block in the
form of equation 5 with fully connected weights with dimension 30 and activation function Softplus.
The models trained on the UCI and high-dimensional Gaussian datasets are the same except for the
latent dimension which is 64 on UCI and 200 on Gaussian. The model is trained by Adam [17]
for 200/300 epochs with batch size 32/128 on the high-dimensional Gaussian/UCI datasets, with
learning rate 1e-3, weight decay 1e-12. We follow the procedure in [40], which trains the model
using the score matching method with the objective function JSM introduced in Section 2.1.

4.2.1 UCI DATASETS: PARKINSON/REDWINE/WHITEWINE

Table 2 shows the results on the three UCI datasets. The results show that DEQ-SM DKEF outper-
forms the k-Layer-SM DKEF in terms of SSM loss and likelihood. Moreover, DEQ-SM DKEF is
more efficient in terms of memory usage and training time compared to k-Layer-SM DKEF. The re-
sults also show that DEQ-SM DKEF outperforms DSM and CP in terms of SSM loss and likelihood.

Parkinson RedWine WhiteWine
Metrics SM Loss Test LL #Param Mem SM Loss Test LL #Param Mem SM Loss Test LL #Param Mem

(↓) (↑) (↓) (↓) (↑) (↓) (↓) (↑) (↓)
DSM −71.2±1.2 −15.7±0.9 10k 0.5 −24.8±3.0 −14.1±1.2 9k 0.4 −17.8±4.9 −14.8±1.0 9k 0.4
CP −33.7±2.8 −16.9±1.3 10k 0.7 −12.2±1.7 −15.3±1.5 9k 0.6 −10.3±5.1 −16.1±0.5 9k 0.6
SSM −111.9±10.2 −15.1±0.9 10k 0.5 −27.2±5.9 −13.8±0.7 9k 0.5 −33.7±5.2 −14.8±0.8 9k 0.5
SSM-VR −121.1±7.9 −15.0±0.8 10k 0.5 −27.2±5.9 −13.8±0.7 9k 0.5 −33.7±5.2 −14.8±0.8 9k 0.5
DEQ-SMM DKEF* −143.2±8.9 −12.9±0.9 10k 0.6 −42.9±8.9 −12.9±0.9 9k 0.6 −43.7±6.3 −14.2±0.9 9k 0.6
SM −123.7±6.6 −15.1±0.7 10k 1.2 −27.2±5.9 −13.8±0.7 9k 1.0 −33.7±5.2 −14.8±0.8 9k 1.0
8-Layer-SM DKEF −124.8±5.5 −15.3±0.9 26k 2.1 −29.5±5.5 −13.5±0.8 25k 1.6 −34.7±5.5 −14.4±0.5 25k 1.6
16-Layer-SM DKEF −127.6±4.2 −13.4±0.6 51k 3.6 −31.6±5.2 −12.7±0.8 50k 2.7 −35.5±3.0 −14.5±0.6 50k 2.7
DEQ-SM DKEF* −152.1±4.7 −12.4±0.7 10k 1.3 −44.5±4.1 −12.2±0.7 9k 1.1 −45.01±4.7 −13.9±0.5 9k 1.1

Table 2: Test SM loss and test log-likelihood of different models on the Parkinson, RedWine, and WhiteWine
datasets. Mem stands for memory with unit GB.

7

Published as a conference paper at ICLR 2024

100 200 300
Epochs

-320

-310
-300
-290

Lo
g-

lik
el

ih
oo

d

DEQ SM DKEF 3 Layer SM DKEF 8 Layer SM DKEF 16 Layer SM DKEF

50 100 200
Epochs

-75
-100
-125

-150
SM

 L
os

s

50 100 200
Epochs

-16

-14

-12

Lo
g-
lik
el
ih
oo

d

Test SSM

-160

-120

-80

Test Log-
Likelihood

-15
-14
-13
-12

Memory(GB)

0

2

4

50 100 200
Epochs

-45.0

-37.0
-30.0
-15.0

SM
 L

os
s

50 100 200
Epochs

-14

-13

-12

Lo
g-
lik
el
ih
oo

d

Test SSM

-40.0
-30.0
-20.0

Test Log-
Likelihood

-15
-14
-13
-12

Memory(GB)

0
2
4

50 100 200
Epochs

-40.0
-30.0
-20.0

SM
 L

os
s

50 100 200
Epochs

-14

-13
Lo

g-
lik
el
ih
oo

d

Test SSM

-40.0
-30.0
-20.0

Test Log-
Likelihood

-15

-14

Memory(GB)

0
2

5

Figure 2: SSM/log-likelihood/memory usage of different DKEF models on Parkinson/RedWine/WhiteWine
(Parkinson: row1; RedWine: row2; WhiteWine: row3) datasets.

4.2.2 HIGH-DIMENSIONAL GAUSSIAN

For the high-dimensional Gaussian datasets, the comparison of DEQ-SM DKEF, k-Layer-SM DKEF
is shown in Table 3 and Figure 3 in terms of test loss, test log-likelihood, test Fisher divergence, and
memory usage. The results show that the DEQ-based sliced score matching model can save memory
while having the best performance on the test dataset compared to the k-Layer-SM DKEF model.

100 200 300
Epochs

-320

-310
-300
-290

Lo
g-

lik
el

ih
oo

d

DEQ SM DKEF 3 Layer SM DKEF 8 Layer SM DKEF 16 Layer SM DKEF

100 200 300
Epochs

-75

-70
-65
-60

SM
 L

os
s

100 200 300
Epochs

-320

-310
-300
-290

Lo
g-
lik
el
ih
oo

d

100 200 300
Epochs

25

30

35

40

Fis
he

r D
iv

er
ge

nc
e

0

7.5

15
M

em
or

y(
GB

)

Figure 3: SM loss/log-likelihood/Fisher divergence on the test dataset, of the 200-dimensional Gaussian, from
different DKEF methods. The memory used shows the memory for the training process.

Data Dim Test SM Loss ↓ Test LL ↑ Test Fisher-Div ↓ #Param Memory
3-Layer-SM DKEF -43.60 -141.25 6.73 22k 3.8 GB
8-Layer-SM DKEF 100- -43.86 -140.85 6.56 41k 7.3 GB

16-Layer-SM DKEF dimension -44.92 -141.25 6.84 66k 13.2 GB
DEQ-SM DKEF -46.03 -138.86 6.72 22k 3.9 GB

Ground Truth N/A -137.14 0.0 N/A N/A
3-Layer-SM DKEF -66.32 -314.22 33.86 33k 5.0 GB
8-Layer-SM DKEF 200- -66.99 -313.35 33.09 50k 8.7 GB

16-Layer-SM DKEF dimension -67.58 -311.84 32.27 76k 14.8 GB
DEQ-SM DKEF -75.03 -292.56 25.42 33k 5.6 GB

Ground Truth N/A -283.79 0.0 N/A N/A

Table 3: SM loss/log-likelihood/Fisher Divergence of different DKEF models for high-dimensional Gaussian.

4.3 NICE MODEL ON MNIST Metrics Test SM Loss Test LL #Param Mem Used
MLE −579 −791 – –
CP −1694 −1517 – –
DSM(σ = .1) −3035 −4363 – –
DSM(σ = 1.74) −97 −8082 – –
Approx BP −48 −2288 – –
SSM −2455±52 −2058±60 15M 6.5 GB
DEQ-SSM −2548±55 −1766±48 14M 5.5 GB

Table 4: SM loss and log-likelihood for NICE Models on
MNIST: the results of DSM, MLE, CP, and Approx BP results
are from [40]; SSM and SSM DEQ results are averaged over
three random seeds for memory usage.

NICE flow model [10] is another den-
sity estimate model. Unlike DKEF, its
log-likelihood are tractable and can be
directly trained with MLE. Following
[40], we adopt NICE [10] as a san-
ity check for our DEQ-assisted score
matching. We train it as well as a DEQ
variant with SSM loss and compare it
with the models – such as curvature
propagation(CP) [25], DSM [43], ap-

8

Published as a conference paper at ICLR 2024

proximate back-propagation (Approx BP) [19] – trained with SM loss, we also include maximum
likelihood estimation (MLE) method as the likelihoods are tractable.

In this experiment, we consider the MNIST dataset [9], which contains 60K 28 × 28 grayscale
images. We set the train, validation, and test datasets with 70%, 20%, and 10% of the whole dataset,
respectively. We follow the setup in [40] and use it as a baseline model termed SSM NICE. At
the core, SSM NICE contains 4 blocks with each containing 5 fully connected layers with 1000
hidden dimensions. Our DEQ-SSM NICE variant turns each of the blocks into a fully connected
DEQ block of the form in equation 5 with 1000 hidden dimensions. Data are dequantized by adding
uniform noise in the range [−1/512, 1/512], and transformed using a logit transformation, log(x)−
log(1 − x). We train the model using Adam for 1000 iterations with a learning rate 1e-3, weight
decay 1e-12, and batch size 128.

Table 4 compares the performance of DEQ-SSM against SSM and a few other baseline models,
showing that DEQ-SSM outperforms SSM in both test SM loss and test log-likelihood. Meanwhile,
DEQ-SSM takes less memory compared to SSM.

4.4 NCSN
We examine our DEQ integration in generative tasks using a score-based generative model called
NCSN [37] with the training objective of SSM-VR. It is worth noting that our DEQ integration
is orthogonal to the recent DEQ-based generative models [31], where DEQ is used to form the
diffusion process in DDIM model [36], and its training objective does not involve derivatives. We
follow the model setting in [37] whose core is a 4-cascaded RefineNet [23]. We use the SSM-VR
as the objective function in this model and term the baseline model as SSM-VR NCSN. Our DEQ
variant replaces the 4-cascaded RefineNet with two residue blocks with one of them turned into
DEQ, we term this model as DEQ-SSM-VR NCSN. We also consider a variant of the model with
two simple residue blocks, which we term as TwoRes-SSM-VR NCSN.

We train the model on the Cifar10 dataset [21] with 128 batch size for 200K iterations using Adam
optimizer. For Adam, we set the learning rate as 1e-4, with weight decay 1e-12 and batch size 128.
The results shown in Figure 4 and Table 5 compare the SSM-VR loss, FID score, and memory cost
for retaining the computational graph of ∇x log p̃θ(x) for backpropogation, as well as the overall
memory cost. The results show that DEQ-SSM-VR NCSN achieves a significantly reduced memory
footprint and faster computation while maintaining strong performance. In contrast, when the DEQ
component is turned off in DEQ-SSM-VR NCSN, the resulting model TwoRes-SSM-VR NCSN is
only marginally faster than its DEQ counterpart, but this came at the expense of notably diminished
performance. In Figure 9 in the appendix, we provide samples generated by DEQ-SSM-VR NCSN.

32 64 128 256 512
Batch Size

5GB

15GB
30GB

M
em

or
y

DEQ SSM VR NCSN SSM VR NCSN TwoRes SSM VR NCSN

16h 32h
Training Time

-1400

-1390

-1380

-1370

Va
lid

at
io

n
Lo

ss

16h 32h
Training Time

40

60

80

FI
D

Sc
or

e

32 64 128 256 512
Batch Size

5GB

15GB
30GB

M
em

or
y

1 2 4
Num of GPUs

0.5

1.0

1.5

Ti
m

e(
s)

/It
er

OMM

(a) (b) (c) (d)
Figure 4: Performance comparison of NCSN models for Cifar10 generation: (a) Test loss vs. Training time,
(b) FID score vs. Time, (c) Memory usage for computational graph retention in backpropagation, (d) Average
iteration time vs. GPU count (’OMM’ indicates ’out of memory’).

5 CONCLUSION
Model FID Time(ms)/Iter #Param M. of ∇x log p̃θ(x) Tot Mem
SSM-VR NCSN 40.31±1.4 871±10 28M 7536 MiB 40.4 GB
TwoRes-SSM-VR NCSN 50.77±1.5 391±10 9M 1701 MiB 18.5 GB
DEQ-SSM-VR NCSN 40.99±1.0 481±25 9M 2104 MiB 20.1 GB

Table 5: Comparing NCSN-based image generation models on Cifar10:
FID score, iteration time, and memory usage for computational graph and
total training memory.

In this work, we integrate
DEQs into score matching
models to address their mem-
ory constraints. We provide
a convergence analysis of ap-
plying implicit differentiation to higher-order derivatives in the setting of DEQ. By strategically
incorporating DEQs into core parts of existing models, we enhance depth and reduce memory re-
quirements without compromising their performance. Our empirical experiments across various
models, datasets, and tasks demonstrate that including DEQs in score matching not only signifi-
cantly reduces memory usage but also improves computational efficiency and performance.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

This material is based on research sponsored by NSF grants DMS-2152762, DMS-2219956, and
DMS-2208361 and DOE grant DE-SC0023490.

CONTRIBUTIONS STATEMENT

This paper started from a discussion between BW and AO in a workshop on using DEQ for com-
puting Hessian. BW introduced the idea to QW and YH. QW explained DEQ and the phantom
gradient technique to YH. YH implemented the whole idea, made the system work, and conducted
all experiments. QW and YH wrote the first version of the paper focusing on non-experiments and
experiments sections, respectively. All authors involved in writing the paper.

ETHICS STATEMENT

This paper introduces a memory-efficient approach for score matching using the deep equilibrium
model. The proposed methods are validated in the classical benchmark problems, including density
estimation and generative modeling. We do not see any potential ethical issues in our research.

REPRODUCIBILITY STATEMENT

To ensure reproducible research, we have made the following two major efforts: First, we include
sufficient background materials and provide detailed mathematical derivation. Second, we submitted
the code in the supplementary materials to ensure the experimental results can be easily reproduced.

REFERENCES

[1] CB Allendoerfer. Theorems about differentiable functions. Calculus of Several Variables and
Differentiable Manifolds. New York: Macmillan, 1974.

[2] Cem Anil, Ashwini Pokle, Kaiqu Liang, Johannes Treutlein, Yuhuai Wu, Shaojie Bai, J. Zico
Kolter, and Roger B Grosse. Path independent equilibrium models can better exploit test-time
computation. Advances in Neural Information Processing Systems, pp. 7796–7809, 2022.

[3] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32, 2019.

[4] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. Advances
in Neural Information Processing Systems, 33:5238–5250, 2020.

[5] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Neural deep equilibrium solvers. In Interna-
tional Conference on Learning Representations, 2021.

[6] Shaojie Bai, Vladlen Koltun, and Zico Kolter. Stabilizing equilibrium models by jacobian
regularization. In International Conference on Machine Learning, pp. 554–565. PMLR, 2021.

[7] Shaojie Bai, Zhengyang Geng, Yash Savani, and J Zico Kolter. Deep equilibrium optical flow
estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 620–630, 2022.

[8] Jérôme Bolte, Tam Le, Edouard Pauwels, and Tony Silveti-Falls. Nonsmooth implicit differ-
entiation for machine-learning and optimization. Advances in neural information processing
systems, 34:13537–13549, 2021.

[9] Li Deng. The mnist database of handwritten digit images for machine learning research [best
of the web]. IEEE signal processing magazine, 29(6):141–142, 2012.

[10] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

10

Published as a conference paper at ICLR 2024

[11] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http:
//archive.ics.uci.edu/ml.

[12] Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training
implicit models. Advances in Neural Information Processing Systems, pp. 24247–24260, 2021.

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances
in neural information processing systems, 30, 2017.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Ad-
vances in neural information processing systems, 33:6840–6851, 2020.

[15] Zhichun Huang, Shaojie Bai, and J Zico Kolter. Implicit2: Implicit layers for implicit repre-
sentations. Advances in Neural Information Processing Systems, 34:9639–9650, 2021.

[16] Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal
of Machine Learning Research, 6(4), 2005.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[18] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[19] Durk P Kingma and Yann LeCun. Regularized estimation of image statistics by score match-
ing. Advances in neural information processing systems, 23, 2010.

[20] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[21] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[22] Serge Lang. Real Analysis. Addison-Wesley, 1983.

[23] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian Reid. Refinenet: Multi-path refinement
networks for high-resolution semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1925–1934, 2017.

[24] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of the IEEE international conference on computer vision, pp. 3730–3738,
2015.

[25] James Martens, Ilya Sutskever, and Kevin Swersky. Estimating the Hessian by back-
propagating curvature. arXiv preprint arXiv:1206.6464, 2012.

[26] Chenlin Meng, Yang Song, Wenzhe Li, and Stefano Ermon. Estimating high order gradients
of the data distribution by denoising. Advances in Neural Information Processing Systems, 34:
25359–25369, 2021.

[27] Avik Pal, Alan Edelman, and Christopher Rackauckas. Continuous deep equilibrium models:
Training neural odes faster by integrating them to infinity. arXiv preprint arXiv:2201.12240,
2022.

[28] Tianyu Pang, Kun Xu, Chongxuan Li, Yang Song, Stefano Ermon, and Jun Zhu. Efficient
learning of generative models via finite-difference score matching. Advances in Neural Infor-
mation Processing Systems, 33:19175–19188, 2020.

[29] Matthew Parry, Philip Dawid, and Steffen Lauritzen. Proper local scoring rules. The Annals of
Statistics, 40(1):561–592, 2012.

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

11

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Published as a conference paper at ICLR 2024

[31] Ashwini Pokle, Zhengyang Geng, and J Zico Kolter. Deep equilibrium approaches to diffusion
models. Advances in Neural Information Processing Systems, 35:37975–37990, 2022.

[32] Zaccharie Ramzi, Florian Mannel, Shaojie Bai, Jean-Luc Starck, Philippe Ciuciu, and Thomas
Moreau. Shine: Sharing the inverse estimate from the forward pass for bi-level optimization
and implicit models. In ICLR 2022-International Conference on Learning Representations,
2022.

[33] Martin Raphan and Eero Simoncelli. Learning to be bayesian without supervision. Advances
in neural information processing systems, 19, 2006.

[34] Martin Raphan and Eero Simoncelli. Least squares estimation without priors or supervision.
Neural computation, 23(2):374–420, 2011.

[35] Saeed Saremi, Arash Mehrjou, Bernhard Schölkopf, and Aapo Hyvärinen. Deep energy esti-
mator networks. arXiv preprint arXiv:1805.08306, 2018.

[36] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In In-
ternational Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=St1giarCHLP.

[37] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data dis-
tribution. Advances in neural information processing systems, 32, 2019.

[38] Yang Song and Stefano Ermon. Improved techniques for training score-based generative mod-
els. Advances in neural information processing systems, 33:12438–12448, 2020.

[39] Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint
arXiv:2101.03288, 2021.

[40] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable
approach to density and score estimation. In Uncertainty in Artificial Intelligence, pp. 574–
584. PMLR, 2020.

[41] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training
of score-based diffusion models. Advances in Neural Information Processing Systems, 34:
1415–1428, 2021.

[42] Russell Tsuchida and Cheng Soon Ong. Deep equilibrium models as estimators for continuous
latent variables. In International Conference on Artificial Intelligence and Statistics, pp. 1646–
1671. PMLR, 2023.

[43] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

[44] Li Wenliang, Danica J Sutherland, Heiko Strathmann, and Arthur Gretton. Learning deep
kernels for exponential family densities. In International Conference on Machine Learning,
pp. 6737–6746. PMLR, 2019.

[45] Ezra Winston and J Zico Kolter. Monotone operator equilibrium networks. Advances in neural
information processing systems, 33:10718–10728, 2020.

[46] Kösaku Yosida. Functional analysis. Springer Science & Business Media, 2012.

12

https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 MISSING PROOFS IN SECTION 3

In this section, we provide the missing proofs in Section 3.

Proof of Proposition 1. Since the function fθ(z,x) is a contraction mapping, the Jacobian matrix
∂fθ
∂z

∣∣∣
z∗

has its magitudes of the eigenvalues less than one. Therefore, the matrix I − ∂fθ
∂z

∣∣∣
z∗

is
invertible. Then the implicit function theorem (e.g. Theorem 2.1 in Section 2 of [22]) implies that in
a neighborhood of z∗, z∗ is a twice differentiable function of x. Then we can differentiate through
the fixed point equation z∗ = fθ(z

∗,x) to obtain

∂z∗

∂xi
=

∂fθ
∂xi

∣∣∣∣
z∗

+
∂fθ
∂z

∣∣∣∣
z∗

∂z∗

∂xi
,

∂z∗

∂xi
=

(
I − ∂fθ

∂z

∣∣∣∣
z∗

)−1
∂fθ
∂xi

∣∣∣∣
z∗

.

Similarly, we can differentiate through the fixed point equation z∗ = fθ(z
∗,x) twice to obtain

∂2z∗

∂xi∂xj
=

∂fθ
∂z

∣∣∣∣
z∗

∂2z∗

∂xi∂xj
+

∂2fθ
∂xi∂xj

∣∣∣∣
z∗

+
∂2fθ
∂z∂xi

∣∣∣∣
z∗

∂z∗

∂xj

+
∂2fθ
∂z∂xj

∣∣∣∣
z∗

∂z∗

∂xi
+

∂2fθ
∂z∂z

∣∣∣∣
z∗

∂z∗

∂xi

∂z∗

∂xj

=

(
I − ∂fθ

∂z

∣∣∣∣
z∗

)−1(
∂2fθ

∂xi∂xj

∣∣∣∣
z∗

+
∂2fθ
∂z∂xj

∣∣∣∣
z∗

∂z∗

∂xi

+
∂2fθ
∂z∂xi

∣∣∣∣
z∗

∂z∗

∂xj
+

∂2fθ
∂z∂z

∣∣∣∣
z∗

∂z∗

∂xi

∂z∗

∂xj

)
.

This concludes the proof.

Proof of Proposition 2. We prove this result by induction on K. For K = 1, we have

∂z(1)

∂xi
=

∂fθ
∂xi

∣∣∣∣
z(0)

+
∂fθ
∂z

∣∣∣∣
z(0)

∂z(0)

∂xi
=

∂fθ
∂xi

∣∣∣∣
z∗

This proves the base case. Now assume that the statement holds for K − 1, we have

∂z(K)

∂xi
=

∂fθ
∂xi

∣∣∣∣
z(K−1)

+
∂fθ
∂z

∣∣∣∣
z(K−1)

∂z(K−1)

∂xi

=
∂fθ
∂xi

∣∣∣∣
z∗

+
∂fθ
∂z

∣∣∣∣
z∗

(
K−2∑
k=0

(
∂fθ
∂z

∣∣∣∣
z∗

)k
∂fθ
∂xi

∣∣∣∣
z∗

)

=

K−1∑
k=0

(
∂fθ
∂z

∣∣∣∣
z∗

)k
∂fθ
∂xi

∣∣∣∣
z∗

.

In particular, when K → ∞, we have

∂z∗

∂xi
=

∞∑
k=0

(
∂fθ
∂z

∣∣∣∣
z∗

)k
∂fθ
∂xi

∣∣∣∣
z∗

=

(
I − ∂fθ

∂z

∣∣∣∣
z∗

)−1
∂fθ
∂xi

∣∣∣∣
z∗

.

This concludes the proof of the first part.

Now we move to the second part, using the contraction of tensors, we will show that there is

∂2z(K)

∂xi∂xj
= AK

∂2fθ
∂xi∂xj

∣∣∣∣
z∗

+BK
∂2fθ
∂z∂xj

∣∣∣∣
z∗

∂fθ
∂xi

∣∣∣∣
z∗

+BK
∂2fθ
∂z∂xi

∣∣∣∣
z∗

∂fθ
∂xj

∣∣∣∣
z∗

+CK
∂2fθ
∂z∂z

∣∣∣∣
z∗

∂fθ
∂xi

∣∣∣∣
z∗

∂fθ
∂xj

∣∣∣∣
z∗

.

13

Published as a conference paper at ICLR 2024

where the matrices AK ,BK ,CK satisfy the following recursive equations:

AK =
∂fθ
∂z

∣∣∣∣
z∗

AK−1 + I,

BK =
∂fθ
∂z

∣∣∣∣
z∗

BK−1 +

K−2∑
k=0

(
∂fθ
∂z

∣∣∣∣
z∗

)k

,

CK =
∂fθ
∂z

∣∣∣∣
z∗

CK−1 +

(
K−2∑
k=0

(
∂fθ
∂z

∣∣∣∣
z∗

)k
)(

K−2∑
k=0

(
∂fθ
∂z

∣∣∣∣
z∗

)k
)
,

with initial conditions A0 = I,B0 = 0,C0 = 0. We prove this by induction on K. For K = 1, we
have

∂2z(1)

∂xi∂xj
=

∂fθ
∂z

∣∣∣∣
z(0)

∂2z(0)

∂xi∂xj
+

∂2fθ
∂xi∂xj

∣∣∣∣
z(0)

+
∂2fθ
∂z∂xj

∣∣∣∣
z(0)

∂z(0)

∂xi
+

+
∂2fθ
∂z∂xi

∣∣∣∣
z(0)

∂z(0)

∂xj
+

∂2fθ
∂z∂z

∣∣∣∣
z(0)

∂z(0)

∂xi

∂z(0)

∂xj

=
∂2fθ

∂xi∂xj

∣∣∣∣
z∗

This verifies the base case.

Now assume that the statement holds for K − 1, we have

∂2z(K)

∂xi∂xj
=

∂fθ
∂z

∣∣∣∣
z(K−1)

∂2z(K−1)

∂xi∂xj
+

∂2fθ
∂xi∂xj

∣∣∣∣
z(K−1)

+
∂2fθ
∂z∂xj

∣∣∣∣
z(K−1)

∂z(K−1)

∂xi
+

+
∂2fθ
∂z∂xi

∣∣∣∣
z(K−1)

∂z(K−1)

∂xj
+

∂2fθ
∂z∂z

∣∣∣∣
z(K−1)

∂z(K−1)

∂xi

∂z(K−1)

∂xj

=
∂fθ
∂z

∣∣∣∣
z(K−1)

(
AK

∂2fθ
∂xi∂xj

∣∣∣∣
z(K−1)

+BK
∂2fθ
∂z∂xj

∣∣∣∣
z(K−1)

∂fθ
∂xi

+BK
∂2fθ
∂z∂xi

∣∣∣∣
z(K−1)

∂fθ
∂xj

+CK
∂2fθ
∂z∂z

∣∣∣∣
z(K−1)

∂fθ
∂xi

∂fθ
∂xj

)
+

∂2fθ
∂xi∂xj

∣∣∣∣
z∗

+
∂2fθ
∂z∂xj

∣∣∣∣
z∗

(
K−2∑
k=0

(
∂fθ
∂z

∣∣∣∣
z(K−1)

)k
∂fθ
∂xi

∣∣∣∣
z(K−1)

)

+
∂2fθ
∂z∂xi

∣∣∣∣
z∗

(
K−2∑
k=0

(
∂fθ
∂z

∣∣∣∣
z(K−1)

)k
∂fθ
∂xj

∣∣∣∣
z(K−1)

)

+
∂2fθ
∂z∂z

∣∣∣∣
z∗

(
K−2∑
k=0

(
∂fθ
∂z

∣∣∣∣
z(K−1)

)k
∂fθ
∂xi

∣∣∣∣
z(K−1)

)(
K−2∑
k=0

(
∂fθ
∂z

∣∣∣∣
z(K−1)

)k
∂fθ
∂xj

∣∣∣∣
z(K−1)

)

By collecting terms and using the fact that the value of z(K−1) equals z∗, we verify that the matrices
AK ,BK ,CK satisfy their respective recursive equations. Since the matrices ∂fθ

∂z

∣∣∣
z∗

is a contraction
mapping, the recursive equations imply that the matrices AK ,BK ,CK converge to the following
limits:

lim
K→∞

AK =

(
I − ∂fθ

∂z

∣∣∣∣
z∗

)−1

,

lim
K→∞

BK =

(
I − ∂fθ

∂z

∣∣∣∣
z∗

)−2

,

lim
K→∞

CK =

(
I − ∂fθ

∂z

∣∣∣∣
z∗

)−3

.

14

Published as a conference paper at ICLR 2024

Hence, we have the following limit:

lim
K→∞

∂2z(K)

∂xi∂xj
=

(
I − ∂fθ

∂z

∣∣∣∣
z∗

)−1(
∂2fθ

∂xi∂xj

∣∣∣∣
z∗

+
∂2fθ
∂z∂xj

∣∣∣∣
z∗

∂z∗

∂xi

+
∂2fθ
∂z∂xi

∣∣∣∣
z∗

∂z∗

∂xj
+

∂2fθ
∂z∂z

∣∣∣∣
z∗

∂z∗

∂xi

∂z∗

∂xj

)
=

∂2z∗

∂xi∂xj
.

This concludes the proof.

B IMPLEMENTATION OF DEQ

Algorithm 1 Implementation of the fixed point iteration in PyTorch-style pseudocode.
1: procedure FIXEDPOINTITERATION(fθ,x,K)
2: with torch.no grad():
3: z∗ = RootSolver(fθ,x)

4: z(0) = z∗

5: for k = 0 to K − 1 do
6: z(k+1) = fθ(z

(k),x)
7: end for
8: return z(K)

9: end procedure

C EMPRICAL ANALYSIS OF PHANTOM GRADIENT ERRORS

In our DEQ integration, we use a simple implementation of the phantom gradient with K = 2 and
without any additional damping. This is because we find that this simple implementation is sufficient
for the DEQ integration to work well in practice. In this section, we provide additional empirical
analysis of the phantom gradient error in the DEQ model. We follow the setting of the experiments
in the DKEF model in Section 4.2 and use the Pakinson dataset for the experiments. We train the
model with SM and SSM loss respectively and at each training step, we compute the score function
using the exact gradient for the DEQ block and the phantom gradient with K = 2. We also compute
the loss gradient with respect to the parameters used in the two cases.

C.1 ANALYSIS OF ERRORS IN THE SCORE NORM

We first consider the score norm error, which is defined as the relative error of the scores obtained
from outputs of the DEQ with K = 2 using phantom gradient and DEQ with true gradient computed
through implicit differentiation. We use s to denote the score from the exact gradient for the DEQ
block and s̃ to denote the score from the phantom gradient with K = 2. The relative error is defined
as

err =
||s− s̃||
||s||

∗ 100%.

In Figure 5, we show the distribution of the score norm error from training the same model on
the Pakinson dataset with SM and SSM losses, respectively. In both cases, the score norm error
is small, which indicates that the phantom gradient is a good approximation of the exact gradient.
Additionally, in Figure 6, we show the corresponding distribution of the score cosine similarity. The
results demonstrate that the scores obtained from the exact gradient and the phantom gradient with
K = 2 are highly correlated.

C.2 ANALYSIS ON THE PARAMETER GRADIENT COSINE SIMILARITY

In this section, we consider how the error stems from the phantom gradient affects the optimization
process. To this end, we consider the cosine similarity of the gradient of the loss function with

15

Published as a conference paper at ICLR 2024

2% 4% 6%
Score Norm Err (SM)

2

4

De
ns

ity

2% 4% 6%
Score Norm Err (SSM)

2

4

De
ns

ity

(a) (b)
Figure 5: (a) and (b) show the distribution of the score norm error from SM and SSM, respectively. The rela-
tive error concentrates around zero, indicating that the phantom gradient with K = 2 is a good approximation
of the exact gradient.

 0.98 0.99 1
Score Cos Similarity (SM)

2

4

6

De
ns

ity

 0.98 0.99 1
Score Cos Similarity (SSM)

2

4

6

Di
st

rib
ut

io
n

(a) (b)
Figure 6: (a) and (b) show the distribution of the score cosine similarity from SM and SSM respectively. The
scores obtained from the exact gradient and the phantom gradient with K = 2 are highly correlated.

respect to the parameters from the exact gradient in the DEQ block and the phantom gradient with
K = 2. The result is shown in Figure 7. The results show that the cosine similarity is close to one,
which further indicates that the phantom gradient is a good approximation of the exact gradient.

0.94 0.96 0.98 1.00
Grad Cos Similarity (SM)

2
4
6
8

10

De
ns

ity

0.6 0.8 1.0
Grad Cos Similarity (SSM)

2

4

De
ns

ity

(a) (b)
Figure 7: (a) and (b) show the distribution of the cosine similarity of the gradient of the loss function with
respect to the parameters from the exact gradient in the DEQ block and the phantom gradient with K = 2 from
SM and SSM, respectively. The cosine similarity shows that the loss gradient from the phantom gradient is
highly correlated with the loss gradient from the exact gradient.

16

Published as a conference paper at ICLR 2024

D ADDITIONAL DETAILS ON EXPERIMENTS

D.1 DKEF MODEL

The deep kernel exponential families (DKEF) model parameterizes the unnormalized density as
log pθ(x) = f(x) + log q0(x), where q0(x) is a base distribution and f(x) is a deep kernel expo-
nential family. In our implementation, the deep kernel exponential family is defined as

f(x) =

3∑
k=l

αlk(x, zl)

where zl are induced points, αl are mixture weights. The kernel function k(x, zl) is defined as

k(x, zl) =

3∑
r=1

ρr exp

(
− 1

2σ2
r

∥ϕr(x)− ϕr(zl)∥2
)
.

Here, ϕr(·) is the r-th feature extractor, ρr is the mixture coefficient, and σr is the length scale. We
use the DEQ layer to model the feature extractor ϕr(·) of the form equation 5 with fully connected
weights and Softplus activation function. Additionally, g(y) in this case is a single layer MLP also
with Softplus nonlinearity.

D.2 NICE MODEL

Nonlinear independent components estimation (NICE) is a flow-based density estimate model that
has four coupling layers with each layer containing five dense hidden linear layers with Softplus
activation function. The DEQ model is used to replace the five dense hidden linear layers in each
coupling layer to be of the form equation 5 with Softplus activation function. The function g(y) in
this case is a single layer MLP with Softplus nonlinearity.

D.3 VAE MODEL

We include the architecture used in the VAE model in Table 6. The model is based on the model
in [40] with the addition of the [Augmented Pre-processing Layer] in the score estimator. The
specific configuration of the [Augmented Pre-processing Layer] is shown in Table 7.

D.4 NCSN MODEL

Noise conditional score network (NCSN) [37; 38] is a score-based generative model that learns the
score function from data and then uses the score function to generate samples. The score function
is parameterized as a neural network. In our implementation, the DEQ residual block contains two
components that form a map as z → h(z) + g(y) where h is a (normalized) residue block with
each convolution weight has its Frobuinus norm constrained to ensure contractiveness and g(y) is a
ResBlock that transforms the input data, as in the original NCSN implementation [37], See Table 8
and Table 9 for details.

E SAMPLED IMAGES GENERATED BY DEQ-ASSISTED GENERATIVE
MODELS

In this section, we provide the sampled images generated by DEQ-assisted models in Section 4.
This includes the images generated by DEQ-SSM VAE model on the CelebA dataset (Figure 8) and
the images generated by DEQ-SSM based NCSN model on the Cifar10 dataset (Figure 9).

F CONVERGENCE OF THE FIXED-POINT SOLVER

In our experiments, we utilize the simple fixed point iteration (Picard iteration) to solve the fixed
point of the DEQ layer. This is because we aimed to attribute differences directly to DEQ integration,
not solver efficiency. In this section, we provide the convergence results of DEQ-based models in

17

Published as a conference paper at ICLR 2024

Name Configuration
5× 5 conv; m channels; stride 2× 2; padding 2; ReLU
5× 5 conv; 2m channels; stride 2× 2; padding 2; ReLU

Implicit Encoder 5× 5 conv; 4m channels; stride 2× 2; padding 2; ReLU
5× 5 conv; 8m channels; stride 2× 2; padding 2; ReLU

512 Dense; ReLU
Dz Dense

Dense; ReLU
5× 5 conv⊤; 4m channels; stride 2× 2; padding 2; out padding 1; ReLU

Decoder 5× 5 conv⊤; 2m channels; stride 2× 2; padding 2; out padding 1; ReLU
5× 5 conv⊤; m channels; stride 2× 2; padding 2; out padding 1; ReLU
5× 5 conv⊤; c channels; stride 2× 2; padding 2; out padding 1; Tanh

Concat[x, Softplus(Dense(z))]
[Augmented Pre-processing Layer]

5× 5 conv; m channels; stride 2× 2; padding 2; Softplus
5× 5 conv; 2m channels; stride 2× 2; padding 2; Softplus

Score Estimator 5× 5 conv; 4m channels; stride 2× 2; padding 2; Softplus
5× 5 conv; 8m channels; stride 2× 2; padding 2; Softplus

512 Dense; Softplus
Dz Dense

Table 6: The basic model of each part of the VAE model used in Section 4.1. m is a hyper-parameter to be
set to define the number of channels of each convolution hidden layer. c denotes the number of channels of the
original image data. Dz is the dimension of the latent space. The [Augmented Pre-processing Layer] contains
layers in addition to the base model in [40] that augments the input data. The specific configuration of these
layers is shown in Table 7.

Model Specification
Sequential CNN concat[x, Softplus(Dense(z))]

1: 5× 5 conv; m channels; stride 1× 1; padding 2; Softplus
(n-layers) 2: 5× 5 conv; m channels; stride 1× 1; padding 2; Softplus

....
n :5× 5 conv; m channels; stride 1× 1; padding 2; Softplus

concat[x, Softplus(Dense(z))]
DEQ f(z) :=Softplus(Wz + g(y))

Table 7: Specifications of the [Augmented Pre-processing Layer] in the score estimator of the VAE
model 6. The input transformation g(y) in the DEQ shares the same architecture as one layer of the
Sequential CNN. Meanwhile, the weight W is the linearized version of such a convolutional layer.

Figure 8: Images generated by DEQ-SSM VAE model on the CelebA dataset.

Figure 9: Images generated by DEQ-SSM based NCSN model on the Cifar10 dataset.

Section 4. In Table 10, we present the numerical tolerance using absolute error in L2-norm between
two consecutive iterations, the maximum number of iterations, and the averaged number of iterations
observed in the experiments.

18

Published as a conference paper at ICLR 2024

SSM-VR NCSN
3× 3 Conv2D, NC : 3 → 128
ResBlock, NC : 128 → 128
ResBlock, NC : 128 → 256

ResBlock down, NC : 256 → 256
ResBlock, NC : 256 → 256

ResBlock down, NC : 256 → 256
ResBlock, NC : 256 → 256

ResBlock down, NC : 256 → 256
ResBlock, NC : 256 → 256

RefineBlock, NC : 256 → 256
RefineBlock, NC : 256 → 128
RefineBlock, NC : 128 → 128
RefineBlock, NC : 128 → 128
3x3 Conv2D, NC : 128 → 3

(a)

DEQ-SSM-VR NCSN
3× 3 Conv2D, NC : 3 → 128
ResBlock, NC : 128 → 256

DEQ-ResBlock, NC : 256 → 256
ResBlock, NC : 256 → 256

ResBlock down, NC : 256 → 256
ResBlock, NC : 256 → 256

RefineBlock, NC : 256 → 256
RefineBlock, NC : 256 → 128
3x3 Conv2D, NC : 128 → 3

(b)

Table 8: The architectures of SSM-VR NCSN (a) vs. DEQ-SSM-VR NCSN (b). NC denotes the number of
channels.

DEQ-ResBlock
f(z) := h(z) + g(y),

where h(z) is a ResBlock(normalized)
with NC : 256 → 256

g(y)

3× 3 Conv2D, NC : 3 → 128
ResBlock, NC : 256 → 256

Table 9: The architecture of DEQ-ResBlock in the DEQ-SSM-VR NCSN. g(y) is the first CNN layer and the
first ResBlock in (b) of Table 8 that transforms the input data to the hidden variable. NC denotes the number
of channels.

Model Absolute Error Max Average
Error Iterations Iterations

DEQ-SM DKEF 5e-6 128 12.8
DEQ-SSM DKEF 5e-6 128 14.5

DEQ-SSM VAE (CelebA) 1e-5 128 18.9
DEQ-SSM VAE (Cifar10) 1e-5 128 15.2

DEQ-SSM NICE 5e-6 128 11.8
DEQ-SSM NCSN 1e-5 128 16.6

Table 10: List of convergence-related parameters, including absolute error, the maximum number of iterations,
and the average number of iterations observed during experiments. The results show that by constraining the
Frobenius norm of the linear map in the DEQ layer as well as the small contractive factor near zero of the
Softplus activation function and also reusing the learned fixed point from the previous forward pass, we often
obtain good convergence results.

19

	Introduction
	Our contributions
	Additional related works
	Organization

	Background and Preliminaries
	Score matching for unnormalized density estimation
	Deep equilibrium network

	Deep Equilibrium Layers for Score Matching
	General structure of deep equilibrium layers
	The well-posedness of the fixed-point equation
	Implicit differentiation for higher-order derivatives
	Efficient implementation with DEQ

	Experiments
	Score estimation in VAE with implicit distribution
	Deep kernel exponential families for density estimation
	UCI datasets: Parkinson/Redwine/Whitewine
	High-dimensional Gaussian

	Nice model on MNIST
	NCSN

	Conclusion
	Appendix
	Missing Proofs in Section 3

	Implementation of DEQ
	Emprical Analysis of Phantom Gradient Errors
	Analysis of errors in the score norm
	Analysis on the parameter gradient cosine similarity

	Additional details on experiments
	DKEF model
	NICE model
	VAE model
	NCSN model

	Sampled Images Generated by DEQ-assisted Generative Models
	Convergence of the Fixed-point Solver

