
ChatAdp: ChatGPT-powered Adaptation System for Human-Robot
Interaction

Zhidong Su and Weihua Sheng*

Abstract— Different people have different preferences when it
comes to human-robot interaction. Therefore, it is desirable for
the robot to adapt its actions to fit users’ preferences. Human
feedback is essential to facilitating robot adaptation. However,
when the task is complex or the robot action space is large,
it requires a large amount of user feedback. ChatGPT is a
powerful generative AI tool based on large language models
(LLMs), which possesses a significant corpus of information
obtained from human society, and exhibits robust proficiency
in the comprehension and acquisition of natural language.
Therefore, in this paper, we proposed a ChatGPT-powered
adaptation system (ChatAdp) for human-robot interaction
which requires less user feedback to achieve a good adaptation
result. In the proposed ChatAdp, we use ChatGPT as a user
simulator to provide feedback. We evaluated ChatAdp in a case
study for context-aware conversation adaptation. The results
are very promising. Our proposed method can achieve a mean
success rate of 92% on the user’s natural language-described
preferences after receiving 33 rounds of feedback from a user
on average, which is only 2% of the number of states covered by
the user preferences and outperforms the two baseline methods.

I. INTRODUCTION

Companion robots are equipped with various functions to
assist users [1]–[5]. However, many existing robots provide
fixed functions without much flexibility, which reduces users’
satisfaction with the robot because different users have dif-
ferent preferences which may change over time. Therefore, it
is desirable that the robot can gradually learn the preferences
of users while adjusting their behaviors accordingly. The
reinforcement learning algorithm is widely used in human-
robot interaction since it accepts user feedback and optimizes
its model gradually according to a reward function [6].
However, the drawback is that it requires a large amount
of user feedback to adapt to a particular user, which is not
practical for many applications, especially in robot-assisted
elderly care.

Using a user simulator to interact with the robot can help
reduce the burden on the users. ChatGPT [7] can play the
role of a user simulator in conversational robot applications.
ChatGPT is a powerful generative AI tool released by
OpenAI which accepts prompt text and generates output
using their large language model (LLM) [8]. ChatGPT’s
ability in understanding natural languages can be utilized to

This project is supported by the National Science Foundation (NSF)
Grants CISE/IIS 1910993, EHR/DUE 1928711, CPS 2212582 and TI
2329852.

Zhidong Su and Weihua Sheng (Corresponding au-
thor) are with the School of Electrical and Computer
Engineering, Oklahoma State University, Stillwater, OK,
74078, USA (e-mails: zhidong.su@okstate.edu,
weihua.sheng@okstate.edu).

Fig. 1: ChatGPT-powered adaptation system.

reduce the user effort in providing feedback. Namely, users
can express their preferences using natural languages and let
ChatGPT work as a customized user simulator to adapt the
robot model. This offers a more user-friendly and practical
way for robot adaptation, especially for older adults.

Although ChatGPT is powerful, there are still some issues
when used as a user simulator in robot adaptation. The
output of ChatGPT is not very reliable. For example, the user
simulator created according to the user preference description
cannot always provide the correct response as expected.
Therefore, it requires a mechanism to address this problem.
Besides, the same concept may be understood differently
by different users. For example, if the preference is “I do
not want to be bothered at night”, ChatGPT’s understanding
about “at night” may be between 10 PM and 12 AM. For a
particular user, it may mean between 8 PM and 12 AM.

In this paper, we proposed a ChatGPT-powered adaptation
system (ChatAdp) for human-robot interaction (HRI) to
reduce the effort required from users for adaptation. ChatAdp
embraced ChatGPT’s LLM ability and tackled its existing
drawbacks when directly applied for HRI. As shown in Fig.
1, a user can use simple natural language to describe his/her
preferences. ChatGPT works as a user simulator according
to the given preferences. The robot can talk to the user
simulator to optimize its model using reinforcement learning
algorithms before being deployed in the real world. The robot
model will be further adapted according to the user feedback
during HRI.

The main contributions of this paper are three folds. First,
by utilizing ChatGPT’s capabilities, the proposed ChatAdp
allows a robot to adapt its actions based on users’ preferences



described in natural languages, therefore providing a more
user-friendly and efficient adaptation method, which is the
first of its kind in HRI research to the best of our knowledge.
Second, ChatAdp is able to close the loop by utilizing user
feedback to fine-tune ChatGPT, which enables the adaptation
of the ChatGPT-powered user simulator. The adapted user
simulator can be employed to update the robot model/policy
for the next round of adaptation. The adapted model is able
to run locally without using ChatGPT, which can save cost
and reduce dependence on ChatGPT. Third, we conducted
the human subject test and evaluated the performance of the
ChatAdp while obtaining promising results.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III details the proposed
method. Section IV introduces the case study and the exper-
imental results. Section V concludes our work and discusses
the future work.

II. RELATED WORK

Adaptation in human-robot interaction refers to the abil-
ity of a robot to adjust its behavior to better match the
human’s preferences, needs, and performance to improve
human satisfaction, interaction engagement, and adherence,
etc. Ritschel et al. [9] utilized the multi-armed bandit al-
gorithm [10] to adapt a companion robot’s linguistic style
for gameplay and daily chatting based on explicit human
feedback through buttons. After 200 rounds of interaction,
the robot was able to find a specific linguistic style that fitted
the participants’ preferences. Gordon et al. [11] utilized the
interaction between a social robot tutor and a child to learn a
Q-matrix to maximize long-term learning gains for children’s
second language skills. According to the state, the robot can
output utterances with different valences and engagement
information. The robot was deployed in the participants’
homes for two months to finish the adaptation, which is a
very long adaptation process. Qureshi et al. [12] proposed
an approach to impart human-like social skills to robots by
leveraging reinforcement learning techniques. Specifically,
the method involves enabling robots to learn through real-
world interactions, where the reward signal is computed as
the difference between the output of the event detector at
different time steps. They totally collected 13,938 rounds of
interaction during the 14 days of experimentation to enable
their robot to learn the skills. The above-mentioned works
can adapt the robot’s actions to fit users. The explicit signal
or the robot sensor data is used as feedback to optimize the
robot policy. Without knowing how the users want the robot
to perform actions, it requires many rounds of interaction to
capture the preferences.

ChatGPT is based on a large language model which is
trained on an extensive corpus, enabling it to excel in a
wide range of applications and tasks. Vemprala et al. [13]
proposed various applications using ChatGPT for robotics.
They utilized ChatGPT to generate Python codes to control
real-world drone flight, aerial robots in a simulator, and a
robot arm. Yu et al. [14] utilized an LLM to convert natural
language into reward functions. However, no user feedback

Fig. 2: The software architecture of ChatAdp. (The two
Initial user simulator modules with different colors are the
same modules. We separate them to make it easier for
demonstration. Same for the Real user models. Better view
in color.)

is used to fine-tune the LLM, making the system unable to
keep optimizing the generated reward functions. Wake et al.
[15] proposed to use ChatGPT to convert natural language
instructions into an action sequence that the robot can exe-
cute. They developed prompts that are capable of inferring
appropriate actions for multi-stage language instructions in
diverse environments. Whenever they need the robot to
perform a task, they rely on ChatGPT to provide help. If
ChatGPT’s service is down, the proposed method cannot
work. Therefore, it is desirable if we can take advantage of
ChatGPT to train a local model and deploy the local model
for HRI, which does not rely on ChatGPT.

In this paper, we propose to use ChatGPT as a user
simulator to adapt to users’ preferences, which can 1) reduce
human effort because of the LLM ability and 2) reduce
dependence on ChatGPT in future interactions because once
the model is adapted the user simulator is not required for
the robot to perform actions.

III. METHODOLOGY

In order to enable a companion robot to adapt to users’
preferences more naturally and efficiently, we proposed
ChatAdp, a ChatGPT-powered adaptation system based on
reinforcement learning. Equipped with ChatAdp, users can
just use natural languages to describe their preferences while
providing very limited feedback. The robot automatically
adapts its actions to fit the user preferences. In this section,
we first give an overview of the proposed ChatAdp system.
Second, we formulate the human-robot interaction using
the reinforcement learning framework. We introduce the
proposed ChatGPT-powered adaptation algorithm at the end.

A. System Overview

Fig. 2 presents the software architecture of the proposed
ChatAdp. It has three parts. The first part is shown in the
light yellow blocks. We call it Initialization. This part is
responsible for training an initial agent model, which enables
the robot to perform actions that fit average users’ needs. The
Initial user simulator module works as an average user



that can provide feedback to the actions generated by the
Randomly initialized agent model module. Optimized by
a reinforcement learning algorithm, the Initial agent model
is obtained, which can be deployed for HRI.

The second part is shown in the light orange blocks, which
is called Pre-adaptation. The Initial training data is used to
fine-tune ChatGPT to obtain a Fine-tuned ChatGPT, which
enables ChatGPT to understand the task it needs to do.
Before interacting with the robot, the Real user needs to
provide User preference description through natural language
to tell the robot about how he/she prefers the robot to perform
tasks. With the User preference description, the Fine-tuned
ChatGPT is utilized as a ChatGPT-powered user simulator.
It works with the Initial user simulator to interact with the
Initial agent model, which will be updated to the Updated
agent model using the reinforcement learning method.

The third part is shown in the light green blocks. We call
it Post-adaptation. The Real user interacts with the robot
equipped with the Updated agent model. The feedback is
utilized to construct personalized training data to fine-tune
ChatGPT for the next round of adaptation.

B. Human-Robot Interaction Formulation

The robot is capable of performing actions based on
the observations of its sensors and interaction history. It is
desirable for a robot to be able to adapt its actions according
to the preferences of users, which can be reflected through
their feedback. The reinforcement learning algorithm uses
the reward from the environment to optimize its policy, which
is suitable for HRI. The policy determines the appropriate
action to choose, and the reward can be derived from the
user’s positive, negative, or other feedback.

The human-robot interaction process is modeled as a
Markov Decision Process (MDP) [16]. This process can be
represented by a tuple comprising of five elements: the state
set, denoted by S, which includes the sensory observations
and interaction history of the robot and is used as input to
the robot model or action policy; the action set, denoted
by A, which represents the output of the robot model; the
state transition probability matrix, denoted by T , which
is commonly used in model-based reinforcement learning
methods; the reward function, denoted by R, and the discount
factor, denoted by γ ∈ [0, 1]. The cumulative reward with
discount factor can be expressed as R =

∑+∞
t=0 γ

trt, where
t is the time step and rt = R(st, at). π : S → A represents
the policy function, which maps a state to an action. The
primary objective of the MDP is to derive an optimal policy
that can maximize the cumulative reward.

In this study, the deep-Q-network (DQN) is employed to
approximate the optimal action policy for a robot. Unlike
model-based methods that necessitate the state transition
probability matrix T , DQN is a model-free deep neural net-
work [17] that eliminates the need to model the intricacies of
the real world. The Q-function represents the optimal robot
action policy, given by Q(st, at;ω) = max

π
(Qπ(st, at)),

which offers an expected return based on the optimal policy
π when the robot takes action at in state st. The DQN

algorithm is optimized using the temporal difference (TD)
algorithm, and the loss function (Eq.(1)) is used to minimize
the difference between the predicted return Q(st, at;ω) and
the TD target yt (Eq.(2)), which includes the actual reward
at step t and the maximum expected return at step t+1. The
network parameter ω is optimized using backpropagation.
Ultimately, the optimal ω can be utilized by the robot to
select an action at using Eq. (3).

L(ω) = E[(Q(st, at;ω)− yt)
2] (1)

yt = rt + γ ∗max
a

(Qπ(st+1, a;ω)) (2)

at = arg max
at∈A

(Q(st, at;ω)) (3)

C. ChatGPT-powered Adaptation Algorithm

Table I shows the ChatGPT-powered Adaptation Algo-
rithm. There are three steps, which correspond to the three
sections in Fig. 2. In Step 1, the initial policy implemented
using DQN is obtained. The user simulator users can
generate a state using a function named generate state,
which uses the current time t, conversation history h and
user preference description userdesc for state generation. The
generate response function provides a response based on
the initial user preference, which accepts two parameters,
the current state st and agent action at. In Step 2, the
fine-tuned ChatGPT ChatGPTft is obtained using the fine-
tune function with datat. The “Fine-tuneModel” function
utilizes the fine-tuned ChatGPT ChatGPTft to adapt the
agent policy. In Step 3, the user feedback feedback is used
to fine-tune ChatGPT, which is further utilized to adapt the
agent policy. The policy with the updated network parameter
ω is equipped for the next round of HRI.

IV. CASE STUDY

In this section, we present a case study of context-
aware conversation adaptation, which utilizes ChatAdp for
adaptation. We also evaluate ChatAdp’s performance in this
case study.

A. Introduction

In this case study, the robot uses its microphone and
camera to observe the user’s activity and proactively start
a conversation if needed. Users can accept, reject or ignore
the robot initiation, or initiate a conversation if they need any
help from the robot based on their preferences. The goal is
to maximize users’ acceptance rate of the robot’s proactive
initiation. We introduce the state, agent actions, and reward
function of this case study.

The actions performed by the agents/robots and their cor-
responding state components and dimensions are presented
in Table II. To represent the state components, a one-hot
vector is employed and concatenated to form the state. The
dimension of each component is shown in the Dim column.

In relation to the sub-state S1, there are a set of 33 home
environment sound events. These sound events include: 1)
coughing, 2) crying, 3) clearing of throat, 4) sneezing, 5)



TABLE I: ChatGPT-powered Adaptation Algorithm.

Input: Initial user simulator users, ChatGPT model ChatGPT ,
user preference description userdesc, training data datat,
train days, epochs, adaptation threshold N .

Output: adapted agent model ω.

#Step 1: Initialization;
Randomly initialize ω;
For day in train days:

h = ∅; buffer b = ∅; t = 0; st=users(generate state(t,h));
For t in epochs:

at=argmax
a∈A

(Qπ(st, at;ω)); #Eq.(3)

ur=users(generate response(st, at));
h = h ∪ (st,at); st+1=users(generate state(t,h));
b = b ∪ (st, at, ur, st+1);
ω ← ω - lr* ∂L(ω)(b)

∂ω
; #Eq.(1);

#Step 2: Pre-adaptation;
Function Response(users, ChatGPTft, st, at, userdesc):

If fit(st, userdesc), Then
ur = ChatGPTft(st, at,userdesc);

Else ur=users(generate response(st, at));
Return ur;

Function Fine-tuneModel(ChatGPTft):
For day in train days:
h = ∅; buffer b = ∅; t = 0;
st=users(generate state(t,h,userdesc));
For t in epochs:
at=argmax

a∈A
(Qπ(st, at;ω)); #Eq.(3)

ur=Response(users, ChatGPTft, st, at, userdesc);
h = h ∪ (st,at); st+1=users(generate state(t,h,userdesc));
b = b ∪ (st, at, ur, st+1);
ω ← ω - lr* ∂L(ω)(b)

∂ω
; #Eq.(1);

Return ω;
ChatGPTft = fine-tune(ChatGPT , datat);
ω = Fine-tuneModel(ChatGPTft);

#Step 3: Post-adaptation;
feedback = ∅;
While True
feedback = feedback ∪ HRI(real user, Qπ(ω));
If length(feedback)%N = 0, Then

ChatGPTft = fine-tune(ChatGPTft, feedback);
ω = Fine-tuneModel(ChatGPTft);

sniffing, 6) falling down, 7) burping, 8) yawning, 9) snoring,
10) drinking water, 11) drinking milk, 12) drinking soup,
13) eating an apple, 14) eating noodles, 15) eating chips,
16) washing hands, 17) washing clothes, 18) washing dishes,
19) using scissors, 20) using a blender, 21) using a stove,
22) using a hair dryer, 23) using a microwave, 24) using a
fan, 25) watching television, 26) typing on a keyboard, 27)
cutting food, 28) frying food, 29) pouring water into a glass,
30) shaving, 31) brushing teeth, 32) flushing a toilet, and 33)
doing nothing.

For the sub-state S2, we consider 6 categories, namely, 1)
bedroom, 2) living room, 3) kitchen, 4) bathroom, 5) dining
room, and 6) other. Utilizing the integrated microphone and
camera, the robot obtains sound-based daily activities and
image-based home scenes. We trained a sound-based daily
activity recognition model and an image-based home scene
recognition model based on a convolutional neural network,
which is not introduced because it is not the focus of this
paper.

The sub-state denoted by S3 represents the tempo-

TABLE II: State and agent actions.

State Dim Agent Actions

S1: sound-based daily activity 33 do nothing
S2: image-based home scene 6 show compassion
S3: current time 12 chitchat
S4: activity repeat time interval 12 remind to take medicine
S5: current task 14 ask to offer help
S6: agent action 14 call someone for help
S7: user action 3 set a timer
Total dimension 94 pain check

confirm sound
record sound
remind to turn off
remind to be careful
remind to put back
remind to unplug

ral dimension at which an activity is observed. To en-
able efficient analysis, we partition the 24-hour day
into twelve non-overlapping time intervals, each consist-
ing of 2 hours. Thus, we can express S3 as follows:
S3 = [0, 2), [2, 4), [4, 6), [6, 8), [8, 10), ..., [20, 22), [22, 24).
S4 denotes the time elapsed between the current ac-
tivity and its preceding activity, with the exception
of the ‘do nothing’ activity. To define S4, we con-
sider a set of time intervals, denominated by S4 =
{0, 1, 2, 5, 10, 15, 20, 30, 60, 90, 120, 200}, with minute gran-
ularity.

The sub-state S5 indicates the task that the robot is
performing, which is analogous to the agent’s action. The
agent’s action is dependent on the robot’s present observa-
tion. To facilitate the robot’s execution of daily activities
and exhibit care towards users, we developed 14 distinct
agent actions, as presented in the Agent Actions column
of Table II. Additionally, the sub-state, user action, is
defined as S7 = {“accept”, “reject”, “others”}. Overall,
the state space encompasses 94 dimensions, while the agent
action space comprises 14 dimensions, resulting in a total of
16,765,056 states.

The reward function is a vital component in the dialog
agent’s behavior optimization process, as it serves as a
metric to assess the agent’s performance. In this study, if
the user feedback intent is “accept”, reward R = 1. If the
user feedback intent is “reject”, R = -1. Otherwise, R = 0.

B. Evaluation

1) Experimental Setup: Before the human subject test, we
built a rule-based initial user simulator which is used to train
an initial agent policy and for adaptation usage in Steps 2 and
3 (Table I), a rule-based target user simulator built according
to the user preferences for evaluation purposes, and initial
training data to fine-tune ChatGPT. The initial training data
was generated by a Python script and manually screened by a
human expert. There are 5 preference descriptions and a total
of 4176 training samples. Table III shows 3 examples of the
training data, which are in the format required by OpenAI
to fine-tune the model named ada. For each sample, there
are two elements, namely, “prompt” and “completion”. The



TABLE III: Data samples of ChatGPT fine-tuning

1: {“prompt”:“preference: the agent needs to set a timer when I use a stove.\ncontext: {‘sound-based daily activity’: ‘use stove’, ‘image-based
home scene’:‘bathroom’, ‘current time’: [2, 4], ‘activity repeat time interval’: 60, ‘current task’: ‘do nothing’, ‘agent action’: ‘set a timer’}
\nmy response:!\nSupported:”,“completion”:“ accept”}
2: {“prompt”:“preference: the agent needs to remind me to take medicine during my 3 mealtimes if I cough.\ncontext: {‘sound-based daily
activity’:‘cough’, ‘image-based home scene’:‘living room’, ‘current time’: [20, 22], ‘activity repeat time interval’: 90, ‘current task’: ‘do nothing’,
‘agent action’: ‘record sound’}\nmy response:!\nSupported:”,“completion”:“ reject”}
3: {“prompt”:“preference: please do not bother me when I am typing keyboard.\ncontext: {‘sound-based daily activity’: ‘type keyborad’,
‘image-based home scene’:‘study room’, ‘current time’: [10, 12], ‘activity repeat time interval’: 5, ‘current task’: ‘do nothing’, ‘agent action’:
‘do nothing’}\nmy response:!\nSupported:”,“completion”:“ accept”}

Fig. 3: The ASCC Smart Home testbed.

“prompt” element has a natural language description of a
user preference and a context description in natural language
instead of vectors. The “completion” element includes a
response of a user who has a preference mentioned in the
“prompt” element in such a context.

We recruited 5 male human subjects aged between 25 and
35 to test ChatAdp. The human subject test was approved by
the Oklahoma State University IRB office under application
No. IRB-22-252. We introduced the whole system to the
participants and demonstrated the system. After that, we
asked each user to describe 5 preferences that they like the
robot to behave to assist their daily life, which are not seen
in the initial training data.

The adaptation process was conducted in our ASCC Smart
Home testbed [18] as shown in Fig. 3, where the human
subjects interact with the robot. The testbed mimics an
apartment, which includes a bedroom, a living room, a
kitchen, a bathroom and a dining room. The human subjects
choose a room and the robot stays with the user. They can
also use different rooms for different conversations. In order
to conduct the experiment in an efficient manner, as can be
seen in Fig. 4, we developed a web page as a user interface
for setting the context. Users can use a tablet’s browser to
select the sub-states S3 (current time), S4 (activity repeat
time interval), and S1 (sound-based daily activity) that they
want to perform. The sound of the activity is played by the
speaker to mimic the real sound activity. The rest of the
sub-states are obtained automatically by the robot.

We use the robot camera to obtain home scene images
and the microphone to record the sounds generated from
daily activities. We trained two convolutional neural network
(CNN) based models for home scene recognition and sound

Fig. 4: The web user interface for context setting.

activity recognition.
After receiving the user preferences, the ChatGPT fine-

tuned by the initial training data is used to update the
agent model, which is called “day 0” training in this paper.
After training, the participants are asked to perform their
daily life routines following their preferences and interact
with the robot around 15 times per day for 2 days. The
interaction data is used to fine-tune ChatGPT and the fine-
tuned ChatGPT is used to update the agent model/policy. It
takes each participant around 20 minutes to finish the test.

We also implemented two baseline methods for compar-
ison purpose: 1) the original DQN reinforcement learning
method (ORL) which does not use the ChatGPT-powered
user simulator for adaptation, and 2) a supervised learning
neural network-based (NN) behavior cloning method. This
method belongs to imitation learning which directly imitates
the human-robot interaction data to train a policy. We use
the interaction data each day to adapt the agent model using
the three methods. The ORL-based policy has the same
dimensions of input and output as ChatAdp’s policy and
uses all user feedback data. The NN-based policy also has
the same dimensions of input and output as ChatAdp’s policy
but only the “accept” user feedback data are used because the
“reject” user feedback cannot be used as a label. The updated
models were evaluated by simulation data generated based
on the described preferences. The evaluation was repeated 4
times.

2) Results and Analysis: Table IV shows some preference
description examples provided by the participants. Table V
shows the number of states that are covered by 5 prefer-
ence descriptions of each participant and the total amount
of feedback in the two-day test. P1 means participant 1.
Total State NUM means the total number of states. Fig. 5



(a) (b)

(c) (d)

(e) (f)

Fig. 5: Adaptation results: (a) – Average success rate of all
participants; (b)-(f) Participant 1-5. (The ORL and NN meth-
ods show no results on day 0 as no feedback is provided.)

shows the adaptation results including the average results and
individual results. The success rate is calculated by dividing
the number of accepted agent actions by the total number of
agent actions in a simulation day.

From Fig. 5(a), we can observe that the average adaptation
success rate is 92% after 2-day adaptation with averagely 33
rounds of user feedback, which is only 2% of the average
number of states covered by the user preferences (1666,
Table V). We notice that a user preference has a piece
of implicit location information “kitchen” expressed by “in
the place where I cook meals”. Utilizing ChatGPT’s LLM
ability of common sense, the proposed ChatAdp is able to
adapt the agent model to fit this preference without any user
feedback. ChatGPT sometimes has different understandings
of the concepts like time interval/frequency or daytime for
different people. Therefore, on day 0, the success rate is 35%.
After utilizing user feedback, the adapted ChatGPT is able to
provide user-preferred output and the success rate can reach
92% after 2 days.

Overall, the adaptation success rate of the proposed
ChatAdp is 56% and 75% higher than the ORL- and NN-
based methods, respectively. The ChatGPT-powered user
simulator is able to provide more correct training data
by mimicking user preferences, which achieves better per-

TABLE IV: Participants’ preference description examples.

Preference Description

1: The agent needs to remind me to take medicine if I drink water
at night.
2: The agent needs to record the sound event if I flush the toilet
during the daytime.
3: Robot, could you chitchat with me if I yawn in the study room?
4: Robot, do not forget to remind put them back when I use scissors
in the living room.
5: If I use a hair dryer, the agent needs to remind me to unplug
it. But do not remind me so frequently.
6: The agent needs to set a timer if I brush tooth in the place
where I cook meals.

TABLE V: Preference state numbers and feedback amount.

P1 P2 P3 P4 P5

Preference 1 864 576 108 72 576
Preference 2 360 72 108 216 360
Preference 3 864 32 432 48 792
Preference 4 216 32 72 60 96
Preference 5 864 360 72 432 648 Mean

Total State NUM 3168 1072 792 828 2472 1666

Feedback NUM 33 29 33 35 35 33

formance. Based on the above analysis, we can draw a
conclusion that ChatAdp has a good adaptation ability.

Whilst the proposed ChatAdp can achieve satisfactory
results with minimal user feedback, there remain certain lim-
itations inherent in the current methodology. First, the fine-
tuning of ChatGPT is based on OpenAI’s service. Therefore,
the fine-tuning time varies. According to our observations,
the duration of the fine-tuning varied considerably, ranging
from one minute to as many as 30 minutes. Additionally, it
should be noted that each inquiry directed towards obtain-
ing a response from ChatGPT and fine-tuning comes at a
financial expense. The expenditure required to complete the
experiment is approximately 10 US dollars for the use of the
ChatGPT service.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a ChatGPT-powered adaptation
system, ChatAdp, to reduce the effort required from users
in robot adaptation. In ChatAdp, we utilized ChatGPT to
work as a user simulator that provides feedback to the
robot instead of using real users. We tested ChatAdp in
a case study of context-aware conversation adaptation. The
evaluation results show that the proposed ChatAdp exhibits
satisfactory performance while using fewer user interactions,
therefore making the robots more acceptable to the users
when they are deployed in real homes. In the future, we will
evaluate the proposed method in more cases and with more
users. We will also investigate the strategies for handling user
preferences that are implicitly inferred rather than explicitly
stated.



REFERENCES

[1] Z. Su, F. Liang, H. M. Do, A. Bishop, B. Carlson, and W. Sheng,
“Conversation-based medication management system for older adults
using a companion robot and cloud,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 2698–2705, 2021.

[2] Y. Li, G. Yang, Z. Su, S. Li, and Y. Wang, “Human activity
recognition based on multienvironment sensor data,” Information
Fusion, vol. 91, pp. 47–63, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1566253522001841

[3] Z. Su, Y. Li, and G. Yang, “Dietary composition perception algorithm
using social robot audition for mandarin chinese,” IEEE Access, vol. 8,
pp. 8768–8782, 2020.

[4] M. Pham, H. M. Do, Z. Su, A. Bishop, and W. Sheng, “Negative
emotion management using a smart shirt and a robot assistant,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 4040–4047, 2021.

[5] Z. Su, W. Sheng, G. Yang, A. Bishop, and B. Carlson, “Adaptation
of a robotic dialog system for medication reminder in elderly care,”
Smart Health, vol. 26, p. 100346, 2022.

[6] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning
in robotics: A survey,” The International Journal of Robotics
Research, vol. 32, no. 11, pp. 1238–1274, 2013. [Online]. Available:
https://doi.org/10.1177/0278364913495721

[7] ChatGPT, https://openai.com/blog/chatgpt accessed in April, 2023.
[8] J. Huang, S. S. Gu, L. Hou, Y. Wu, X. Wang, H. Yu, and J. Han,

“Large language models can self-improve,” 2022.
[9] H. Ritschel, A. Seiderer, K. Janowski, S. Wagner, and E. André,

“Adaptive linguistic style for an assistive robotic health companion
based on explicit human feedback,” in Proceedings of the 12th
ACM International Conference on PErvasive Technologies Related
to Assistive Environments, ser. PETRA ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 247–255. [Online].
Available: https://doi.org/10.1145/3316782.3316791

[10] A. Slivkins, “Introduction to multi-armed bandits,” CoRR, vol.
abs/1904.07272, 2019. [Online]. Available: http://arxiv.org/abs/1904.
07272

[11] G. Gordon, S. Spaulding, J. Kory Westlund, J. J. Lee, L. Plummer,
M. Martinez, M. Das, and C. Breazeal, “Affective personalization of
a social robot tutor for children’s second language skills,” vol. 30,
Mar. 2016. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/
article/view/9914

[12] A. H. Qureshi, Y. Nakamura, Y. Yoshikawa, and H. Ishiguro,
“Intrinsically motivated reinforcement learning for human–robot
interaction in the real-world,” Neural Networks, vol. 107, pp.
23–33, 2018, special issue on deep reinforcement learning.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0893608018301072

[13] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor,
“Chatgpt for robotics: Design principles and model abilities,”
Microsoft, Tech. Rep. MSR-TR-2023-8, February 2023. [Online].
Available: https://www.microsoft.com/en-us/research/publication/
chatgpt-for-robotics-design-principles-and-model-abilities/

[14] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-
T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik, B. Ichter, T. Xiao,
P. Xu, A. Zeng, T. Zhang, N. Heess, D. Sadigh, J. Tan, Y. Tassa, and
F. Xia, “Language to rewards for robotic skill synthesis,” 2023.

[15] N. Wake, A. Kanehira, K. Sasabuchi, J. Takamatsu, and K. Ikeuchi,
“Chatgpt empowered long-step robot control in various environments:
A case application,” 2023.

[16] E. Levin, R. Pieraccini, and W. Eckert, “Learning dialogue strate-
gies within the markov decision process framework,” in 1997 IEEE
Workshop on Automatic Speech Recognition and Understanding Pro-
ceedings, 1997, pp. 72–79.

[17] M. Sewak, Deep Q Network (DQN), Double DQN, and Dueling
DQN. Singapore: Springer Singapore, 2019, pp. 95–108. [Online].
Available: https://doi.org/10.1007/978-981-13-8285-7 8

[18] H. M. Do, M. Pham, W. Sheng, D. Yang, and M. Liu,
“Rish: A robot-integrated smart home for elderly care,” Robotics and
Autonomous Systems, vol. 101, pp. 74 – 92, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0921889017300477


