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Abstract
Healthcare data in the United States often records only a patient’s coarse race group: for
example, both Indian and Chinese patients are typically coded as “Asian.” It is unknown,
however, whether this coarse coding conceals meaningful disparities in the performance
of clinical risk scores across granular race groups. Here we show that it does. Using data
from 418K emergency department visits, we assess clinical risk score performance disparities
across 26 granular groups for three outcomes, five risk scores, and four performance met-
rics. Across outcomes and metrics, we show that the risk scores exhibit significant granular
performance disparities within coarse race groups. In fact, variation in performance within
coarse groups often exceeds the variation between coarse groups. We explore why these dis-
parities arise, finding that outcome rates, feature distributions, and relationships between
features and outcomes all vary significantly across granular groups. Our results suggest
that healthcare providers, hospital systems, and machine learning researchers should strive
to collect, release, and use granular race data in place of coarse race data, and that existing
analyses may significantly underestimate racial disparities in performance.

1. Introduction

Despite large and persistent racial health disparities, race data in United States health
records are often incorrect, incomplete, or missing altogether (Hahn, 1992; Klinger et al.,
2015; Polubriaginof et al., 2019; Jarŕın et al., 2020). Even when race is recorded, it often
reflects a patient’s coarse race group, which combines several granular groups into a single
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category (Hanna et al., 2020; Borrell et al., 2021; Lett et al., 2022). Past work has shown that
coarse race categories can obscure consequential medical di↵erences: for instance, diabetes
is nearly twice as common in Indian patients compared to Chinese patients (Vicks et al.,
2022), which has motivated a wealth of research specific to the treatment and diagnosis
of diabetes in each group (Sabanayagam et al., 2015; Ali et al., 2020; Mao et al., 2020;
Ke et al., 2022). However, it remains unknown whether the use of coarse race1 categories
conceals meaningful disparities in clinical risk score performance: e.g., whether clinical risk
scores perform di↵erently for Indian or Chinese patients than for Asian patients as a whole.
This question has been challenging to study in part due to lack of granular race data in
widely used clinical machine learning datasets.

Here, we study this question by using a sample of 418K emergency department visits for
which granular race data has recently been made available. We examine the performance
of five predictive risk scores using four metrics of algorithmic performance, stratifying per-
formance both across four coarse race groups (White, Black, Hispanic/Latino, and Asian)
and 26 granular race groups. We find that nearly every predictive risk score and metric
exhibits racial performance disparities that are obscured by only assessing performance at
the coarse race group level. These disparities are not only statistically significant, but also
practically significant: the variation in performance within coarse groups, at the granular
level, often exceeds the variation in performance between coarse groups. For example, per-
formance varies more across the five granular groups coarsely coded as “Asian” than it does
across the Asian, Black, White, and Hispanic/Latino coarse groups for multiple outcomes
and metrics of performance. In other words, the granular racial variation concealed by
using coarse categories can exceed the coarse racial variation that has been the focus of an
enormous amount of work on algorithmic fairness in medicine (Chen et al., 2018; Obermeyer
et al., 2019; Zink et al., 2023; Boulware et al., 2021; Seyyed-Kalantari et al., 2021; Adam
et al., 2022).

We examine why these disparities emerge, in terms of properties of the underlying
data distributions. We find that granular race groups vary significantly in their presenting
symptoms X, in their rates of outcomes y, and in the relationship between the symptoms
X and the outcomes y. In other words, every critical aspect of the data distribution p(X, y)
varies significantly across granular race groups. (As we discuss, these di↵erences likely arise
due to many factors, including social determinants of health, since race groups are a social
construct and map imperfectly onto biological concepts like genetic ancestry (Cerdeña et al.,
2020; Borrell et al., 2021; Oni-Orisan et al., 2021; Ioannidis et al., 2021; Roberts, 2021).)
These distributional findings imply that, beyond the specific risk scores we examine, other
risk scores may also exhibit significant granular performance disparities.

Generalizable Insights about Machine Learning in the Context of Healthcare

Our findings have implications for both healthcare dataset providers and machine learn-
ing researchers. The disparities we observe imply that healthcare dataset providers should
record and release granular, self-identified patient race whenever possible, as recent large

1
Throughout the manuscript, we refer to race groups for succinctness and consistency, but certain groups

may be more accurately described as countries-of-origin or ethnicities, as we describe below. The di�culty

in accurately describing this variable speaks to the messiness and complexity of such data as a whole.
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clinical databases have done (Johnson et al., 2023b; All of Us Research Program Investi-
gators et al., 2019). For researchers studying disparities in clinical machine learning, we
show that it is important to examine algorithmic disparities by granular race, because the
use of coarse race can hide significant granular racial variation. In instances where granular
race data is not available, our results suggest caution when interpreting racial disparities
in performance: in particular, even if performance does not appear to vary at the coarse
group level, it may still vary at the granular group level, and studies at the coarse level may
understate the true racial variation.

2. Related work

Most work on quantifying racial disparities in healthcare in the United States relies on the
Census categories: White, Black, Asian, Hispanic/Latino2, Hawaiian/Pacific Islander, and
Native American (Hanna et al., 2020). Two lines of work relate most closely to our own:
critiques of widely-used race categories and studies of the substantial heterogeneity within
coarse groups.

Critiques of Race Categories. The Census categories have been criticized for their
coarseness (AHRQ, 2018; Kauh et al., 2021; Borrell et al., 2021; Shimkhada et al., 2021; Lett
et al., 2022), lack of clear definitions (Tehranian, 2008; Omi and Winant, 2014; Christian,
2019), and U.S.-centrism (Roth, 2017; Hanna et al., 2020). Many works suggest the adoption
of new taxonomies. Denton (1997), Saperstein (2012), and Roth (2016) advocate for explicit
distinction between self-identified race and perceived race. Bailey et al. (2013) demonstrate
how switching between di↵erent measurements of race can have significant e↵ects on the
magnitude of estimated racial disparities in income. Howell and Emerson (2017) argue
that salient race categories in sociological research should capture observed inequalities in
income, housing, and health, and they propose a modification to the Census categories
accordingly. Our work contributes to this growing body of literature by examining the
impact of the coarse race taxonomy on studies of algorithmic fairness in health.

Studies of Granular Variation. Prior work has shown that coarse race categories con-
ceal meaningful heterogeneity in demographic features, including household income, edu-
cation, and healthcare access (McCracken et al., 2007; Torres Stone and McQuillan, 2007;
Dorsey et al., 2017; Read et al., 2021). These di↵erences have led many in the health dis-
parities community to call for more granular race variables (Anderson et al., 2004; Wang
et al., 2020a; Flanagin et al., 2021; Lett et al., 2022; Caggiano et al., 2022), and led to
studies that characterize heterogeneity in measures of health and well-being within racial
subgroups (McCracken et al., 2007; Dorsey et al., 2017; Read et al., 2021; NYC, 2022). Lett
et al. (2022) highlight this phenomenon in the case of the Hispanic/Latino category, where
its coarseness erases important “cultural, linguistic, and racial diversity in Latin America.”
Guatemalans and Cubans, for example, di↵er significantly in terms of both average income
and immigration status. Caggiano et al. (2022) use genetic data to detect descent-based

2
In the United States, “Hispanic/Latino” is an ethnicity which can overlap with multiple race groups.

For the purposes of this study, we refer to it as a coarse race group, since (1) our dataset does not have

separate race and ethnicity fields (the MIMIC data warehouse only includes “race”), and (2) analogous to

the other coarse groups, the Hispanic group is composed of many granular identities.
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granular groups and then use these groups to quantify disparities in healthcare utilization,
clinical diagnoses, and genetic predispositions. Researchers in algorithmic fairness have
similarly argued that fairness analyses involving a single, coarse demographic attribute are
ethically and practically insu�cient (Hanna et al., 2020; Wang et al., 2022). Our work
advances these literatures with a thorough empirical audit of granular heterogeneity in
predictive performance. While finer-grained race data has been studied in the context of
specific health conditions (for example, chronic kidney disease (Kataoka-Yahiro et al., 2019)
and disability (Read et al., 2021)), there have been no studies of how performance of clinical
risk scores di↵ers across granular groups.

In this work, we focus on studying racial disparities in clinical risk score performance.
A related but distinct topic is whether race corrections—i.e., including race as a predictive
feature—should be included to ameliorate racial disparities. This topic has a rich body of
related work (Vyas et al., 2020; Cerdeña et al., 2020; Borrell et al., 2021; Oni-Orisan et al.,
2021; Ioannidis et al., 2021; Roberts, 2021), but is outside the scope of this paper.

3. Methods

We analyze racial variation in the performance of clinical risk scores using multiple predic-
tion tasks and performance metrics. Our analysis relies on the fact that each patient in
our dataset has both a self-identified coarse race group (e.g. “Asian”) and a granular race
group (e.g. “Indian” or “Chinese”), with granular race groups nesting within coarse race
groups. We measure risk score performance separately for each coarse race group and each
granular race group. We assess whether there is statistically significant variation in risk
score performance across the granular groups within each coarse group and compare the
magnitude of the variation between coarse groups to the variation within coarse groups.
In this section, we further describe our dataset—MIMIC-IV-ED (Johnson et al., 2023a),
a dataset of emergency department vists—and analysis. Code to reproduce our results is
available at https://github.com/rmovva/granular-race-disparities_MLHC23.

Cohort & race data To study disparities, we use the patient self-reported race variable
in MIMIC-IV-ED. The cohort consists of 418K3 emergency department (ED) visits by 201K
distinct patients to the Beth Israel Deaconess Medical Center (BIDMC) in Boston, MA.
Patients select from coarse categories like “Asian” or more specific categories like “Asian
- Chinese.” Table 1 provides the list of coarse groups, their granular subgroups, and the
counts of unique patients & ED stays in each group. To determine the mapping from
granular to coarse groups, we followed MIMIC’s coding scheme and US Census guidelines.
Note that the majority of White and Black patients (92% and 83% respectively) and a
minority of Hispanic and Asian patients (9% and 39% respectively) only reported a coarse
race category, and did not report a more specific race category. We include these patients
in our analysis as their own granular group, and use an asterisk to denote them. For
example, for the “Asian” coarse group, we analyze 5 granular groups: “Chinese”, “Indian”,
“Southeast Asian”, “Korean”, and “Asian*”, where the final group consists of all patients
who report that they are Asian without reporting a more specific Asian subgroup. We

3
We filter out ⇠7,000 ED visits (roughly 1% of the overall dataset) with patient age < 18, or with no

recorded ED triage severity.
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verify that whether a patient reports a more specific subgroup does not vary depending
upon structural factors (e.g., arrival year or insurance status; Figure S1). More details on
race categories are provided in Appendix A.1.

Table 1: Coarse-to-granular group mapping as collected in the MIMIC database.
Counts of unique patients and ED stays for each group are listed. The asterisk * denotes
patients who only reported a coarse race: e.g., “Asian*” indicates patients who self-identified
as Asian and did not provide a more specific category. Overall, ⇠20% of patients report a
granular race group that is distinct from their coarse group. “SE Asian”: Southeast Asian.
N is the total number of patients per coarse group.

Coarse Granular Patients Stays

Asian
N = 11K

Asian* 4,997 7,215
Chinese 4,027 7,271
Indian 859 1,549
SE Asian 828 1,512
Korean 500 774

Black
N = 32K

Black* 25,496 76,118
Cape Verdean 2,677 7,588
African 2,349 4,837
Caribbean 1,574 3,625

White
N = 126K

White* 117,403 224,969
Other Eur. 4,221 8,916
Russian 2,041 6,018
Brazilian 820 1,466
Eastern Eur. 611 1,297
Portuguese 586 1,427

Hispanic/
Latino
N = 14K

Hispanic/Latino* 2,019 3,070
Puerto Rican 4,169 13,913
Dominican 3,060 8,260
Guatemalan 991 2,323
Mexican 671 1,252
Salvadoran 633 1,482
Colombian 595 1,296
South American 496 1,055
Honduran 357 995
Central American 306 780
Cuban 250 779

Prediction tasks & features To measure algorithm performance, we focus on predicting
three emergency department outcomes. We largely follow Xie et al. (2022): using their code,
we extract 64 features, including age, sex, nurse-determined triage severity scores, vitals at
triage, patient history (comorbidities; number of recent hospital and ICU visits), and chief
patient complaints (full list in Table S1). We quantify performance on the same three
clinical tasks as Xie et al. (2022), each of which has been widely studied in ED medicine:
(1) hospitalization: at triage, identifying patients who will be hospitalized (⇠45% of ED
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visits); (2) critical outcomes: at triage, identifying patients who will experience inpatient
mortality or an ICU transfer in 12h (⇠6% of visits); (3) revisit: at discharge, identifying
patients who return to the ED within 72h (⇠3% of visits). These outcomes are the subject
of much prior work in emergency medicine and all relate to providing e�cient, well-tailored
patient care (Sun et al., 2011; Hong et al., 2018; Churpek et al., 2012; Martin-Gill and
Reiser, 2004; Pellerin et al., 2018); more context is provided in Appendix A.3.

ED risk prediction models We assess disparities in two types of scores: (1) previously-
developed, clinically-studied scoring rules and (2) machine learning models that are trained
on the MIMIC-ED dataset. For existing clinical scores, we study two measures for patient
triage: the National Early Warning Score (NEWS; Smith et al. (2013)) and the more-
specialized Cardiac Arrest Risk Triage (CART; Churpek et al. (2012)). These scores are
simple linear functions of vital signs and age, and are designed to identify the most at-risk
patients who visit the ED. Since the scores may have been developed and studied in non-
representative patient samples, we are interested in studying granular racial variation in
their predictive utilities. For ML risk scoring, we train logistic regressions (LR) for each
of the three outcomes. We use the same protocol as Xie et al. (2022) and verify with
cross-validation that our model performance matches the metrics they report. We also
replicated results with XGBoost decision trees to ensure that our results are una↵ected by
model complexity, finding that the predictions were indeed highly concordant (Spearman
⇢ � 0.85; Table S6). Further details are in Appendix A.4.

Performance metrics Past work in algorithmic fairness has used numerous metrics to
evaluate whether algorithms perform equally well across groups (Kleinberg et al., 2016;
Chouldechova, 2017; Narayanan, 2018; Corbett-Davies and Goel, 2018; Chen et al., 2021b;
Zink et al., 2023; Mitchell et al., 2021; Corbett-Davies et al., 2017). These metrics often
conflict: one cannot simultaneously equalize all metrics across groups except in restrictive
special cases (Kleinberg et al., 2016; Chouldechova, 2017). The proper choice of metric
is context-specific and depends on the decision the algorithm is designed to inform (Chen
et al., 2021b). Given this, and because we evaluate multiple models and prediction tasks,
we measure performance using four common metrics: area under the precision-recall curve
(AUPRC); area under the receiver-operating characteristic curve (AUROC); false positive
rate (FPR); and false negative rate (FNR)4. FPR and FNR are computed using the thresh-
olds given in Xie et al. (2022). These metrics are widely used in the ML and algorithmic
fairness literature, and using multiple metrics allows us to assess whether the performance
disparities we observe emerge robustly regardless of the particular metric chosen.

Uncertainty quantification Our estimates of algorithmic performance across granular
race groups will naturally vary due simply to statistical noise, particularly for smaller gran-
ular race groups, even in the absence of true di↵erences in performance. Our goal is to
quantify whether the variation in estimated performance we observe exceeds that expected
due to noise, making it imperative to properly quantify uncertainty. We summarize our pro-
cedure for doing so here and provide full details in Appendix A.6. To quantify uncertainty
in the performance of the machine learning methods, we report the 95% confidence interval

4
In addition, we also assess calibration error for the trained ML risk scores, revealing similar results to

the other four metrics. See Appendix A.5 for details.
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across 1,000 random train-test splits, a widely used procedure (Chen et al., 2021a; Shan-
mugam and Pierson, 2022). We estimate uncertainty for the predefined risk scores (NEWS
and CART), which do not require a train set, via a 95% confidence interval across 1,000
bootstrapped datasets. This is a standard procedure for quantifying uncertainty (Efron and
Tibshirani, 1994) and is widely used in medical applications (Mihaylova et al., 2011; Myers
et al., 2020; Kompa et al., 2021). Throughout the manuscript, we sometimes perform many
comparisons simultaneously — for example, comparing each granular group to the corre-
sponding coarse group across all outcomes and performance metrics. We provide specific
details below, but note that whenever we perform such analyses, we perform Bonferroni
multiple hypothesis correction (Dunn, 1961) on all p-values, as is standard.

Mathematical notation Following previous work, we let X denote the features for each
patient, ŷ = f(X) the risk score, and y 2 {0, 1} the ground truth outcome. We use A(g) to
denote the patient’s granular race group and A(c) to denote their coarse race group.

4. Quantifying model performance disparities across granular race groups

Figure 1: Granular AUPRCs for machine learning risk scores trained on MIMIC-
ED. Points show medians and 95% confidence intervals for granular group AUPRC across
1,000 runs. Dashed lines and shaded regions show medians & CIs for coarse groups. Gran-
ular groups labeled with an asterisk * are the patients who only reported a coarse race.
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Table 2: Granular variation in performance of machine learning models trained
on MIMIC-ED. For each metric and coarse group, asterisks denote whether there is
at least one granular group with significantly di↵erent predictive performance than the
coarse group. All p-values are computed with Bonferroni multiple hypothesis correction. ?:
p < 0.05, ??: p < 0.01, ? ? ?: p < 0.001, - not significant.

Outcome Coarse AUPRC AUROC FPR FNR

Hospitalization

Asian ? ? ? - ? ? ? ? ? ?
Black - ? ? ? ? ? ? ? ? ?
Hispanic/Latino ?? - ? ? ? ? ? ?
White ? ? ? - ? ? ? ? ? ?

Critical

Asian - ? ? ? ? -
Black - ?? ? ? ? -
Hispanic/Latino ?? - ? -
White ? ? ? - ? ? ? ??

Revisit

Asian - - ? ? ? -
Black ? ? ? ? ? ? ? ? ? ? ? ?
Hispanic/Latino ? ? ? ?? ? ? ? ? ? ?
White ? ? ? ? ? ? ? ? ? ? ? ?

As described in Section 3, we evaluate the performance of five clinical risk scores (two
previously developed scores and three machine learning models) in predicting three ED
outcomes (hospitalization; ICU/mortality; and ED revisit). We assess disparities in model
performance by computing AUPRC, AUROC, FPR, and FNR for each coarse group and
each granular group, and assessing whether performance in each granular group di↵ers
significantly from performance in the corresponding coarse group after multiple hypothesis
correction.

Figure 1 plots AUPRC for the machine learning models, revealing that many granular
groups exhibit performance which di↵ers significantly from the performance of the overall
coarse group. Examining predictive performance for hospitalization, for example (Figure
1 left), reveals that model performance on patients who report their granular race group
as South American, Colombian, or Mexican is worse than performance on Hispanic/Latino
patients overall; conversely, model performance on Salvadoran patients is better. Within the
White coarse group, Brazilian patients experience significantly worse risk score performance
than the group as a whole for all three outcomes, while within the Asian coarse group,
Koreans and Southeast Asians are often outliers. Figures S2-S4 show analogous results for
the other three metrics — AUROC, FPR, and FNR — revealing significant variation across
the board. (In Appendix A.5 and Figure S5, we additionally show that calibration error
varies significantly across granular groups.)

Table 2 extends our analysis to all performance metrics and outcomes. For each out-
come, metric, and coarse race group, we report whether performance on at least one granular
race group within the coarse race group di↵ers statistically significantly from overall coarse
group performance, after multiple hypothesis correction for the number of tests performed.
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All metrics, outcomes, and coarse race groups exhibit at least one statistically significant
disparity, demonstrating that examining performance at only the coarse group level con-
sistently conceals important granular variation. Among metrics, AUPRC, FNR, and FPR
exhibit disparities somewhat more consistently than AUROC; this may be driven in part by
variation in base rates across granular groups, as we explore further in Section 5. Among
outcomes, “Hospitalization” and “ED revisit” exhibit more consistent performance dispar-
ities across granular groups than does the “Critical” (ICU or mortality) outcome.

The standard risk scores, NEWS and CART, also exhibit significant performance dif-
ferences (Tables S4 and S5 in the appendix). Compared to the machine learning models,
NEWS and CART exhibit lower performance overall, but they nonetheless exhibit many
of the same granular disparity trends. For the hospitalization and critical outcomes, for
example, the Spearman correlation of granular AUPRCs between NEWS and the machine
learning model was ⇠0.9. NEWS and CART did not exhibit many performance disparities
for the ED revisit outcome, since here they yield very poor performance across all groups.

Having established the existence of statistically significant performance disparities within
coarse groups, we compare the magnitude of within-coarse-group variation (i.e., across gran-
ular groups within a coarse group) and between-coarse-group variation. Between-coarse-
group variation corresponds to what is assessed by many previous algorithmic fairness
analyses of health datasets. We quantify between-coarse-group variation as the standard
deviation in a performance metric across the four coarse groups. To quantify within-coarse
variation, for each of the four coarse groups, we compute the standard deviation in per-
formance across granular groups within that coarse group. We then take the unweighted
average across the four coarse groups. Intuitively, these two measures compare the variation
in performance across the four coarse race groups to the average variation in performance
across granular groups within each coarse race group. In Figure 2, we plot 95% CIs of these
two variation measures across the 1,000 train/test shu✏es.

Figure 2: Within-coarse-group variation is comparable or larger than between-
coarse-group variation. Here, variation is defined as the standard deviation of perfor-
mance across the four coarse groups (between) or the average SD across the granular groups
within each coarse group. Error bars are 95% CIs across 1,000 train/test shu✏es.

We find that within-coarse-group variation (blue) is typically comparable to or larger
than between-coarse-group variation (red). For 9 of 12 outcome/metric pairs, the within-
coarse-group variation point estimates exceed the between-coarse-group estimates, and in
some cases they are more than twice as large. These comparisons highlight the magnitude
of the variation concealed by analyzing only coarse groups: the concealed variation is often

9
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larger than the between-coarse-group variation which has been the subject of study for the
vast majority of previous work on fairness in clinical machine learning.5

5. Explaining di↵erences in algorithmic performance across granular race
groups

Thus far, we have established that significant granular variation in performance exists within
each coarse group. We now explore why these disparities emerge by studying aspects of
each granular group’s underlying data distribution. In particular, we study the role of
di↵erences in sample sizes (§5.1); outcome frequencies, p(y) (§5.2); feature distributions,
p(X) (§5.3); and feature-outcome relationships, p(y | X) (§5.4). We conduct this analysis for
several reasons. First, it can deepen our understanding of why we observe the performance
disparities documented in §4. Second, it informs whether we would expect to observe similar
disparities in other risk scores (beyond those examined in §4): if many aspects of the data
distribution di↵er across granular groups, we might expect to see other risk scores show
disparities as well. Finally, depending on what aspects of the data distribution di↵er, there
are di↵erent solutions to disparities in algorithmic performance: for example, if p(X) di↵ers
across groups, one might improve performance by employing techniques designed to address
covariate shift (Singh et al., 2021).

5.1. Di↵erences in sample size

We first ask whether di↵erences in group sample sizes might explain the predictive disparities
we observe in the machine learning models. Past work has shown that unequal training
dataset representation can lead to worse performance for underrepresented groups (Chen
et al., 2018; Buolamwini and Gebru, 2018), so it is natural to test this hypothesis given
how some granular groups are much larger than others (Table 1). Computing Spearman
correlations between granular group size and performance, we find that for most metrics
and outcomes, there is surprisingly no significant relationship. In particular, none of the
four metrics are significantly correlated with group size for the hospitalization and critical
outcomes. For the revisit outcome, AUPRC and FPR are significantly correlated with group
size. The lack of correlation suggests that variation in the distributions of X and y, rather
than dataset representation, may better explain the disparities we observe.

5.2. Di↵erences in outcome frequency, p(y)

Patient groups may di↵er in their underlying outcome rates, p(y), and these di↵erences can
propagate to predictive metric di↵erences for a trained model. For example, the baseline
AUPRC for a random classifier is p(y = 1) (Saito and Rehmsmeier, 2015), so AUPRC
will naturally tend to be higher for groups with higher outcome frequency. Figure 3 plots

5
We confirmed that we did not merely observe this result because granular groups are generally smaller

than coarse groups (that is, granular performance metrics are estimated using less data than coarse metrics,

which might inflate estimates of within-coarse-group metric variation). Specifically, we recomputed our

estimates of between-coarse-group variation after downsampling the coarse groups to be, on average, the

same size as the granular groups (Fig. S7). Though the between-coarse-group variation confidence intervals

widened, as expected, the between-coarse-group variation point estimates were still smaller than the within-

coarse-group variation point estimates for the same outcome/metric pairs as before.

10



Coarse race data conceals disparities in clinical risk score performance

p(y = 1 | A(g)) for each outcome, revealing substantial and statistically significant granular
variation in outcome frequency. Further, many of the previously mentioned groups with
outlier performances—including Brazilians, Koreans, and SE Asians—are exactly the groups
with outlier outcome frequencies. The granular predictive metrics also di↵er from the coarse
predictive metrics in the direction we would expect given di↵erences in outcome frequency:
for example, since Brazilians are hospitalized less frequently than White patients as a whole,
the model ends up under-predicting Brazilian patient risk, which causes more false negatives
and fewer false positives. Across the 26 granular groups, granular AUPRC, FPR, and FNR
display significant Spearman correlations with p(y | A(g)) (Spearman ⇢: 0.56–0.88). These
results suggest that one reason we observe disparities across granular groups in AUPRC,
FPR, and FNR is that the outcome frequencies di↵er across granular groups.

Figure 3: Outcome frequencies di↵er by granular group. Points show outcome
frequencies with bootstrapped 95% confidence intervals. Dashed lines and shaded regions
show outcome frequencies & CIs for coarse groups. *Granular groups labeled with an
asterisk are the patients who only reported a coarse race.

These results further underscore the importance of granular analyses: di↵ering outcome
rates are both important to study on their own, and can hint at causes of disparities in
clinical risk score performance. However, di↵erences in p(y | A(g)) do not fully explain why
we observe the performance disparities in §4: consider that there is significant granular
variation in AUROC (Table 2), even though we observe no correlation between granular
AUROC and p(y | A(g)) (and there is no mathematical reason why they should correlate).
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Thus, there must be other sources of granular variation contributing to the disparities in
risk score performance, which we explore next.

5.3. Di↵erences in feature distributions, p(X)

We now examine the extent to which granular race groups di↵er in terms of their distribution
over X (i.e., covariate shift (Shimodaira, 2000) between granular race groups). We use two
representations of patient symptoms: ICD codes and Elixhauser comorbidity index (ECI)
codes, which are binary indicators of the presence of comorbidities (Elixhauser et al., 1998).
Table S2 lists ICD codes that are significantly more common in a granular group, compared
to the remainder of the coarse group. Table S3 replicates this analysis using ECI codes.
Treating the Indian granular race group as an example, we estimate the prevalence of a
particular code among Indian patients, and divide this number by the prevalence of that
code among the remaining Asian patients—that is, in reference to patients within the
coarse group who do not identify as the granular group. We identify significantly enriched
codes by using a Fisher exact test after applying Bonferroni multiple hypothesis correction.
Specifically, we adjust for the 149,630 ICD code comparisons (26 granular groups · 5755
ICD codes) and 806 ECI code comparisons (26 granular groups · 31 ECI codes). We report
up to five codes per granular group, sorted by magnitude of enrichment, and exclude ICD
codes and ECI codes that occur fewer than 10 times in a particular granular group for
privacy reasons.

Substantial di↵erences emerge, many of which are supported by prior literature. Within
the Asian coarse group, enriched comorbidities include hypothyroidism in Indians (Tal-
walkar et al., 2019), kidney failure in Chinese patients (Liyanage et al., 2022), and alcohol
abuse in Korean patients (Yom and Lor, 2022). Enriched ICD codes in the Hispanic/Latino
and White coarse groups—e.g., the higher prevalence of Hepatitis C among Puerto Rican
patients (Pérez et al., 2013; NYC, 2022) and heart failure in Russian patients (Townsend
et al., 2016)—also align with existing literature. Black patients who report a more specific
granular group (i.e., patients who self-identify as “Black - Cape Verdean”, “Black - African”,
or “Black - Caribbean”) have fewer comorbidities compared to Black patients who do not
report a more specific group (recorded as “Black*” in Tables S2 and S3). One possible
explanation for this is that Black patients who report a more specific group are more likely
to be immigrants. Previous work has found that foreign-born Black patients experience
a lower prevalence of cardiovascular disease, maternal health, and diabetes compared to
their US-born counterparts (Collins et al., 2002; Read and Emerson, 2005; Dorsey et al.,
2017; Turkson-Ocran et al., 2020), a phenomenon that has been referred to as the “healthy
immigrant e↵ect” (Antecol and Bedard, 2006).

5.4. Di↵erences in feature-outcome relationships, p(y | X)

Another source of predictive disparities could be that the feature-outcome relationships—
the mappings from features X to outcomes y—vary with A(g). The risk scores (both ML
and clinical) assume that the presence of a feature has the same risk implications for all
patients.

To test whether p(y | X) depends on A(g), we compare two simple regression designs
with and without granular race interaction terms. That is, for each set of patients in a given
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coarse group, we include granular race as a categorical covariate and compare the logistic
regressions (LR):

y ⇠ LR(X, granular_race) (1)

y ⇠ LR(X, granular_race, X*(granular_race)) (2)

Regression (1) includes only granular-race-specific o↵set terms, while Regression (2) also
allows the coe�cient for each feature to di↵er for each granular race group. If p(y | X) varies
with granular race within a given coarse group, we would expect that second regression
explains statistically significantly more variation in y than the first, adjusting for the fact
that it has more parameters and thus more capacity to explain variation. To assess this, we
use a likelihood ratio test (Vuong, 1989) to compare the goodness-of-fit of the two regressions
across coarse groups and outcomes. For the hospitalization and critical outcomes, the
likelihood ratio test strongly rejects the null (p < 10�6) for all coarse groups, indicating
that Regression (2), with granular-specific coe�cients, better fits the data (Table S7). This
indicates that the feature-outcome relationships vary significantly within coarse race groups.

Next, we examine which features exhibit di↵erent relationships by granular race group.
To do so, we modify Regression (2) to include granular race interaction terms one at a time,
for each feature. That is, for each coarse group and feature x_i, we run the regression

y ⇠ LR(X, granular_race, x_i*(granular_race)), (3)

and use an likelihood ratio test to compare to Regression (1). For a given coarse group,
the resulting p-value tests whether that feature’s association with the outcome varies with
granular race.

The results of these tests for all pairs of features and coarse race groups are given in
Tables S8 and S9 for the critical and hospitalization outcomes, respectively; we only show
the features/race pairs that are significant after Bonferroni correction. For the critical out-
come, there are two features with significant granular variation in p(y | xi) for the White
coarse group, seven for Black, eight for Hispanic/Latino, and nine for Asian. Surprisingly,
there are more features which show statistically significant granular variation for the non-
White groups, even though they are smaller and thus have reduced statistical power. One
important feature whose weight varies across granular groups is triage acuity, which is an
index from 1 to 5 assigned by ED nurses to categorize patient severity. If acuity scores
were assigned consistently based on risk of deterioration, we would expect the same acuity
coe�cient for all groups in predicting ICU transfer/mortality. However, three of the four
coarse groups display significant granular heterogeneity in the acuity coe�cient, suggesting
that the acuity measure may be more tailored to some groups than others. This finding
aligns with prior work, which finds disparities in triage scores across coarse race groups
(Schrader and Lewis, 2013; Boley et al., 2022). There are also several examples of comor-
bidity features with granular coe�cient variation, implying that the same comorbidities
have di↵erent predictive relationships with outcomes depending on granular race. Again,
such di↵erences have been studied between coarse groups (Howard et al., 2013; Spanakis
and Golden, 2013), but we o↵er preliminary evidence that feature-outcome relationships
are yet another component of our data distribution which display granular variation.
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6. Discussion

We show that stratifying clinical risk score performance only by coarse race group can
conceal significant disparities in performance across granular race groups. Our subsequent
analysis of why these disparities arise finds that granular groups di↵er in terms of outcome
rates p(y), presenting symptoms p(X), and the relationship between features and outcomes
p(y | X). Our results suggest that it is imperative for healthcare dataset providers to
collect granular race data, and for researchers to stratify model performance by granular
race group, not only by coarse group. Analyses stratified only by coarse race groups may
overlook salient disparities in predictive performance. While we document this pitfall for
clinical risk scores, our findings also have implications for the many other settings where
coarse categories have been used to study inequality and algorithmic bias (Chetty et al.,
2020; Goel et al., 2016; Franchi et al., 2023; Rho et al., 2023; Kleinberg et al., 2018; Voigt
et al., 2017; Kline et al., 2022; Laufer et al., 2022; Pierson, 2020; Liu and Garg, 2022;
Derenoncourt and Montialoux, 2021; Chouldechova, 2017; Garg et al., 2018; Cheng et al.,
2023; Bianchi et al., 2023; Abdu et al., 2023), suggesting the importance of examining
granular race categories in these domains as well.

Our findings have limitations. First, our analysis only includes patients from a single ED.
As a result, our cohort is specific to one region—Boston—and precludes any generalizations
about specific granular groups in other geographies. It is likely that granular disparities
exhibit patterns that are both hospital- and region-specific (Baicker et al., 2005), so further
work is necessary to explore how these disparities replicate across hospitals. A multi-ED
analysis may observe larger racial disparities than we do, since past work finds variation
across hospitals in algorithmic performance, and patient racial demographics can di↵er
significantly by hospital (Lyons et al., 2023). Second, our analysis is specific to ED outcomes.
Our findings on granular distribution shift suggest that results may generalize, though the
specific e↵ects likely depend on outcome. We hope that future work extends our findings
to other outcomes. Third, our analysis relies on a particular mapping of granular to coarse
race groups. While this mapping is certainly imperfect—one of the facts that motivates our
analysis—the pervasive granular variation we find suggests that any mapping of granular
groups to coarse groups is likely to obscure important disparities.

Our analysis studies (1) whether granular disparities in performance exist and (2) why
these disparities arise. We leave the question of how to reduce these disparities as a nat-
ural direction for future work, which dovetails with an enormous amount of research in
algorithmic fairness (Chen et al., 2021b, 2018; Rezaei et al., 2021; Shah et al., 2022). The
distributional di↵erences we investigate in Section 5 each suggest di↵erent solutions. For
example, the existence of covariate shift (di↵erences in p(X)) between granular race groups
suggests that models trained on certain granular groups may not generalize to others (Nestor
et al., 2019), and that recent techniques to address covariate shift would be appropriate
(Singh et al., 2021). A natural question, from a machine learning standpoint, might also be
whether inclusion of granular race as a predictive feature would ameliorate the predictive
disparities we observe, since the predictive risk scores we study, which are developed by
previous work, do not include granular race as a feature. The inclusion of race as a predic-
tive feature in clinical algorithms has been the subject of an enormous amount of research
and debate (Vyas et al., 2020; Cerdeña et al., 2020; Borrell et al., 2021; Oni-Orisan et al.,
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2021; Ioannidis et al., 2021; Roberts, 2021), and this question lies beyond the scope of this
work. We note that merely including an additive term in the fitted risk scores for each
granular race group would not remove all the disparities we observe: for example, it would
leave unchanged the AUROC and AUPRC for each granular group (since these metrics are
invariant to monotone transformations), and thus the disparities in these metrics.

Race categories merit continual evaluation and re-evaluation for their ability to capture
inequality in healthcare and in clinical machine learning. A number of interesting questions
remain. Given the instability of self-identified race across time, place, and context (Saper-
stein, 2006; Roth, 2016), how can we revise the process of granular race data collection to
account for this uncertainty? From a methodological perspective, how do we design anal-
yses that are robust to inconsistencies in self-identified race in existing datasets? How do
we resolve di↵erences in the meaning of race between countries, and move towards a global
methodology for quantifying health disparities? Our work is one step towards the goal of
better representing, and ultimately mitigating, algorithmic disparities in health.
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Appendix A. Supplementary Methods

A.1. Additional context for race categories

We contacted the dataset authors to learn more about race/ethnicity data collection in
MIMIC. The authors shared that race data is primarily collected during patient registration,
and were not aware of any changes over time in how these data were collected. We verify that
whether a patient reported granular race does not substantially correlate with structural
factors, such as the year of the ED visit or how the patient was transported to the ED
(Figure S1). There are many possible reasons why some patients did not report a granular
race group: e.g., (a) they do not identify with a more specific group; (b) they do identify
with a granular group, but it wasn’t listed on the form; (c) they do identify with a more
granular group, but they did not know to report it. We cannot distinguish between these
causes, but we hypothesize that the reason may vary by coarse race group.

The granular-to-coarse mapping we use (Table 1) comes directly from the MIMIC data,
in which most of the granular races were labelled as a coarse label followed by a granular
label, e.g., “Asian - Chinese” or “Hispanic/Latino - Colombian”. The two exceptions were
Portuguese and South American, which we labelled as White and Hispanic/Latino respec-
tively, following Census guidelines. It’s worth noting that this system of assigning granular
identities to coarse groups is imperfect: for example, in our dataset, we follow the Census
guideline in classifying Brazilian and Portuguese Americans as White and not Hispanic.
However, this decision is contested by some (Marrow, 2003; Lopez et al., 2022). Ambigu-
ities like this one capture a core issue with coarse groupings, where it can be unclear who
to include under a broad group label. Granular races allow more of the population to be
clearly made visible, rather than obscured by vague boundaries.

A.2. List of features

Table S1 lists the 64 features we use to train ML-based risk scores for each outcome.
We borrow these features directly from Xie et al. (2022). The Charlson and Elixhauser
comorbidity features are binary features, combining related ICD codes into a single indicator
of whether a patient has a particular condition (Sharma et al., 2021). For the vital sign
features, values that were clearly invalid were removed and imputed to median values. The
median was computed only on the training set to avoid test set contamination. The ranges
for valid values were taken from the MIMIC-Extract paper, as is standard for ML studies
on MIMIC (Wang et al., 2020b).

A.3. Additional context on the studied ED outcomes

The three ED outcomes we study are (1) hospitalization, (2) critical cases, i.e., ICU transfer
in 12h or in-hospital mortality, and (3) ED revisits within 72h after discharge. We used the
code from Xie et al. (2022) to extract the labels for all three outcomes from the MIMIC-ED
database. These prediction tasks all relate to providing rapid, well-tailored patient care and
running the ED e�ciently; they are widely studied as a result. Here, we cover more past
work on each of these outcomes.

Predicting hospitalization (Outcome 1) can improve real-time hospital management via
accurate estimates of ED-to-inpatient flow; past literature has proposed several models
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(Sun et al., 2011; Peck et al., 2012; Hong et al., 2018). Similarly, accurate predictions of
patient deterioration (Outcome 2) can forecast ICU load and help allocate limited resources
like hospital and ICU beds. Several early warning scores have been developed to identify
deteriorating patients (Prytherch et al., 2010; Churpek et al., 2012; Alam et al., 2014),
with recent ML-based approaches (Muralitharan et al., 2021; Romero-Brufau et al., 2021),
and emerging evidence suggests that warning systems reduce overall inpatient mortality
(Escobar et al., 2020). Finally, patients who revisit the ED within 3 days of discharge
(Outcome 3) may have received inadequate care (Keith et al., 1989), and revisit rates are a
common (but controversial) quality-of-care statistic for hospitals (Martin-Gill and Reiser,
2004; Pham et al., 2011; Trivedy and Cooke, 2015). There has been past research on
predicting revisits (Hayward et al., 2018; Pellerin et al., 2018), both to understand why
they happen and whether they can be intervened on.

In each task, performance variation across groups has important implications, both for
patient care and for understanding quality-of-care (Seyyed-Kalantari et al., 2021). The
purpose of our paper is to assess whether the coarse race data currently available in most
healthcare settings is su�cient to capture racial variation in predictive performance. Be-
yond the implications of our findings in the ED, we also believe that the chosen tasks are
representative of the rich patient diversity in most clinical settings: patients from all de-
mographic groups visit the ED, and to the extent that we observe disparities in ED risk
prediction, there is potential for disparities in other clinical prediction tasks as well.

A.4. Additional details on risk scores & ML modeling

There were many possible clinical risk scores to study: NEWS, CART, NEWS2, MEWS
(Subbe et al., 2001), and REMS (Olsson et al., 2004), for example. After computing these
scores, and looking at their correlation matrix across patients, we found that NEWS and
CART captured the two primary clusters of variation; other scores were strongly correlated
(Spearman ⇢ > 0.7) to either NEWS or CART, so we focused our analysis to those two.

For ML models, we train L2-regularized logistic regressions (LR). The LR models were
trained using regularization strength C=1.0, chosen using grid search with cross-validation.
Our model’s performance metrics match the ranges reported by Xie et al. (2022).

We didn’t use more complex models because they do not provide significantly better
predictive performance on these tasks as noted both by Xie et al. (2022) and Hong et al.
(2018) in a di↵erent hospital system. We also confirm this by replicating our experiments
with XGBoost decision trees. We find that performance is within the confidence interval of
the logistic regression. Further, XGBoost displays strongly concordant performance trends
across granular groups, so the disparity analysis is nearly identical. Across granular groups,
XGBoost has ⇢ � 0.85 Spearman correlation in performance with the logistic regression
performance, for all metrics and outcomes.

We find that the logistic regressions do not need much training data to achieve maximal
performance. Using only ⇠30% of the dataset, cross-validation AUC reaches a maximum for
all outcomes, and predictions had near perfect Spearman correlation with the predictions
from a model trained on 80% of the data (Figure S8). Using a larger test set allows
for higher-precision estimates of model performance (i.e., tighter confidence intervals on
model test performance), which is especially important to allow for precise comparisons of
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performance between small granular subgroups. Therefore, we used a 30%/70% train-test
split for all experiments in this paper. We split the dataset at the patient level, not the
visit level, as is standard to prevent data leakage (Luo et al., 2016; Tampu et al., 2022);
thus, no patient appears in both the train and test set. Xie et al. (2022) do not split by
patient, which may explain small performance discrepancies between our paper and theirs.

A.5. Assessing calibration error of ML risk scores

To supplement four commonly-studied metrics presented in the main text, we also study
calibration of the ML risk scores. Calibration assesses how well predicted risk probabilities
match the true probability of an outcome, and it is widely studied in ML and healthcare
(Crowson et al., 2016; Kleinberg et al., 2016; Nixon et al., 2020; Yadlowsky et al., 2019;
Deni↵el et al., 2020; Khurshid et al., 2022). For example, a calibrated classifier would
output a risk score of 0.8 for a patient with an 80% risk of hospitalization. Here, we assess
calibration using binned expected calibration error (ECE) defined in Pakdaman Naeini
et al. (2015); we use 10 bins (though we checked that the results are highly similar with
other bin counts). In this metric, predicted risks are binned into 10 deciles. In each decile
Qm, we compute the absolute di↵erence between the average predicted risk ŷ, and the true
proportion of patients with a positive label y, and then take an average of these di↵erences:

ECE10-bin =
1

10

10X

m=1

abs (Ei2Qm [ŷi � yi]) .

We compute this calibration metric for the ML classifier for each of the three outcomes.
We look at 10-bin ECE over the entire dataset, over coarse groups, and over granular groups.
Over the entire dataset, the ML risk scores are well-calibrated for all tasks, with an ECE
of 2.5% for the hospitalization task and less than 0.3% for the critical and revisit tasks.
The classifier is not as well-calibrated for certain groups; we show these results in Figure
S5. Specifically, calibration is similar for most coarse groups, but some granular groups are
notable outliers. Using the same approach as in Table 2, we find that for 8 of the 12 (coarse
group, outcome) pairs, at least one granular group has a significantly di↵erent ECE than
the coarse group average (with MH correction). We conclude that calibration is yet another
quality of risk scores which may vary with granular race: despite low calibration error over
all patients and over coarse groups, the trained risk scores are significantly miscalibrated
for some granular groups.

A.6. Additional details on quantifying uncertainty

To quantify uncertainty in machine learning performance, we employ a procedure widely
used in previous work (Zink et al., 2023; Chen et al., 2021a; Shanmugam and Pierson, 2022):
we run 1,000 iterations, reshu✏ing the dataset each time; for each iteration, we randomly
split the dataset into a train and test set, refit the model on the train set, and compute
performance metrics on the test set. We report the 95% confidence interval across shu✏es
(i.e., the 2.5th and 97.5th percentiles across the 1,000 shu✏es).

To quantify uncertainty in the performance of the predefined risk scores (NEWS and
CART), we do not need a train set (since the procedure for computing the scores is defined
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Figure S1: The availability of granular race data demonstrates no clear relation-
ship with structural factors. We examine the dependence of granular race availability
on the approximate year the patient appeared in the emergency department (anchor year),
arrival transport, disposition, and insurance status to determine whether race data collec-
tion may depend upon observable features. For each variable, there is no clear distinction
between patients with coarse race data and patients with granular race data.

by earlier work). Instead, we use bootstrapping, a standard procedure for quantifying uncer-
tainty (Efron and Tibshirani, 1994) which is widely used in medical applications (Mihaylova
et al., 2011; Myers et al., 2020; Kompa et al., 2021): for each iteration, we sample datapoints
with replacement from the original dataset to produce a “bootstrapped” dataset of the same
size as the original dataset; recompute performance metrics on the bootstrapped dataset;
and repeat this procedure for 1,000 iterations. We report the 95% confidence interval across
bootstraps.

We assess whether performance on a granular race group di↵ers significantly from per-
formance on the corresponding coarse group. To do so, we compute the z-score of the 1,000
di↵erences in granular and coarse performance (i.e., mean divided by standard deviation
over these 1,000 instances). We compute a two-tailed normal p-value for the z-score (we
verify that normal distributions fit the data well, and note that normality assumptions are
standard in many hypothesis tests). Because we examine many combinations of risk scores,
outcomes, and coarse race groups, we perform Bonferroni multiple hypothesis correction
on all p-values, multiplying them by 312 (3 outcomes · 4 metrics · 26 granular groups =
312 comparisons).

Appendix B. Supplementary Tables/Figures

34



Coarse race data conceals disparities in clinical risk score performance

Table S1: Features used to train ML-based clinical risk scores. We use 64 features,
describing information on demographic group, visit frequency, chief complaint, and comor-
bidities, to train each of the ML-based clinical risk scores. The rightmost column contains
observed ranges for each variable.

Category Name Type Range

Demographic Age Continuous (18,103)
Sex (True=Male) Binary {True,False}

Visit Frequency # of ED visits within 30d Continuous (0,20)
# of ED visits within 90d Continuous (0,41)
# of ED visits within 365d Continuous (0,112)
# of HOSP visits within 30d Continuous (0,15)
# of HOSP visits within 90d Continuous (0,30)
# of HOSP visits within 365d Continuous (0,70)
# of ICU visits within 30d Continuous (0,4)
# of ICU visits within 90d Continuous (0,7)
# of ICU visits within 365d Continuous (0,14)

Triage Temperature (C) Continuous (26.0,44.11)
Heartrate Continuous (1.0,256.0)
Respiratory Rate Continuous (0.0,209.0)
Oxygen saturation (%) Continuous (0.0,100.0)
Systolic Blood pressure Continuous (1.0,312.0)
Diastolic Blood Pressure Continuous (0.0,375.0)
Pain Continuous (0.0,10.0)
Emergency Severity Index Continuous (1.0,5.0)

Chief Complaint Chest pain Binary {True,False}
Abdominal pain Binary {True,False}
Headache Binary {True,False}
Shortness of breath Binary {True,False}
Back pain Binary {True,False}
Cough Binary {True,False}
Nausea vomiting Binary {True,False}
Fever chills Binary {True,False}
Syncope Binary {True,False}
Dizziness Binary {True,False}

Charlson Comorbidities Myocardial Infarction Binary {True,False}
Congestive Heart Failure Binary {True,False}
Peripheral Vasc. Disease Binary {True,False}
Cerebrovascular Disease Binary {True,False}
Dementia Binary {True,False}
Chronic Pulm. Disease Binary {True,False}
Rheumatic Disease Binary {True,False}
Peptic Ulcer Disease Binary {True,False}
Mild Liver Disease Binary {True,False}
Diabetes W/o Complication Binary {True,False}
Diabetes W/ Complication Binary {True,False}
Paralysis Binary {True,False}
Renal Disease Binary {True,False}
Malignancy Binary {True,False}
Moderate/severe Liver Disease Binary {True,False}
Tumor, Metastatic Solid Binary {True,False}
Aids/hiv Binary {True,False}

Elixhauser Comorbidities Cardiac Arrhythmias Binary {True,False}
Valvular Disease Binary {True,False}
Pulmonary Circ. Disorders Binary {True,False}
Hypertension, Compl. Binary {True,False}
Hypertension, Uncompl. Binary {True,False}
Other Neuro. Disorders Binary {True,False}
Hypothyroidism Binary {True,False}
Lymphoma Binary {True,False}
Coagulopathy Binary {True,False}
Obesity Binary {True,False}
Weight Loss Binary {True,False}
Fluid & Electrolyte Disorders Binary {True,False}
Blood Loss Anemia Binary {True,False}
Deficiency Anemia Binary {True,False}
Alcohol Abuse Binary {True,False}
Drug Abuse Binary {True,False}
Psychoses Binary {True,False}
Depression Binary {True,False}
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Coarse Race Granular Race ICD Code Ratio

Asian Asian* Alcohol abuse with intoxication, unspecified 2.28

Indian Hypothyroidism, unspecified 2.88
Unspecified acquired hypothyroidism 2.85

Chinese Chronic viral hepatitis B without mention of hepatic coma... 2.49
Unspecified essential hypertension 1.59
Acute kidney failure, unspecified 1.48
Essential (primary) hypertension 1.45
Anemia, unspecified 1.41

Korean Alcohol abuse, unspecified 3.49

SE Asian Acute kidney failure, unspecified 1.85

Black Black* Other, mixed, or unspecified drug abuse, unspecified 6.42
Body Mass Index 45.0-49.9, adult 5.56
Other psychoactive substance abuse, uncomplicated 4.61
Sarcoidosis 4.61
Body mass index (BMI) 50.0-59.9, adult 4.31

Cape Verdean Other viral diseases in the mother, delivered, with or wi... 4.31
Post-term pregnancy 3.58
Post term pregnancy, delivered, with or without mention o... 3.05
Second-degree perineal laceration, delivered, with or wit... 2.57
Streptococcus B carrier state complicating childbirth 2.26

Caribbean Island Nonspecific reaction to tuberculin skin test without acti... 3.48

Hisp./Latino Hisp./Latino* Suicide and self-inflicted injury by cutting and piercing... 9.53
Unspecified drug or medicinal substance causing adverse e... 7.02
Acute alcoholic intoxication in alcoholism, continuous 6.81
Other acute pain 6.67
Diabetes mellitus without mention of complication, type I... 5.55

Dominican Other specified pregnancy related conditions, first trime... 2.96
Abnormality in fetal heart rate and rhythm complicating l... 2.83
Single live birth 2.09
Essential (primary) hypertension 1.37

Puerto Rican Poisoning by heroin, accidental (unintentional), initial ... 12.27
Opioid abuse, uncomplicated 4.46
Unspecified viral hepatitis C without hepatic coma 3.06
Nicotine dependence, cigarettes, uncomplicated 2.47
Unspecified asthma, uncomplicated 1.96

White Portuguese Portal hypertension 3.90

White* Acute alcoholic intoxication in alcoholism, continuous 9.01
Driver of heavy transport vehicle injured in collision wi... 5.77
Unspecified episodic mood disorder 4.16
Alcohol abuse with intoxication, unspecified 3.13
Alcohol withdrawal 3.09

Brazilian Motorcycle driver injured in collision with fixed or stat... 3.45

Other European Obstructive sleep apnea (adult) (pediatric) 1.46
Gastro-esophageal reflux disease without esophagitis 1.31
Hyperlipidemia, unspecified 1.30
Essential (primary) hypertension 1.30
Personal history of nicotine dependence 1.29

Russian Unspecified hypertensive heart disease with heart failure 9.06
Bifascicular block 6.45
Nontoxic multinodular goiter 4.73
Sinoatrial node dysfunction 4.22
Unspecified glaucoma 3.64

Table S2: Granular race groups exhibit significantly di↵erent patterns of ICD
codes compared to their coarse groups. We list ICD codes that are significantly
enriched in a particular granular race group, as measured by the ratio of the prevalence
of an ICD code among patients in a granular race to the prevalence of an ICD code in
the remainder of the coarse subgroup. For example, the ICD code for “Hypothyroidism”
is 2.9 times more common among Indian patients compared to patients from other Asian
subgroups. We apply a Bonferroni correction for multiple hypothesis testing and only report
significantly enriched ICD codes. If a granular race group does not appear in the table, it
is because no ICD code is significantly enriched in that patient subgroup.
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Coarse Race Granular Race ICD Code Ratio

Asian Indian Hypothyroidism 3.14

Chinese Tumor (w/ Metastasis) 2.06
Tumor (w/o Metastasis) 1.97
Renal Failure 1.96
Coagulopathy 1.94
Hypertension, Compl. 1.93

SE Asian Weight Loss 2.62
Chronic Pulm. Disease 2.12
Hypertension, Compl. 1.97
Tumor (w/o Metastasis) 1.85
Fluid & Electrolyte Disorders 1.66

Black Black* Drug Abuse 2.54
Rheumatoid Arthritis 2.20
Alcohol Abuse 2.11
Obesity 2.05
Chronic Pulm. Disease 1.98

Hisp./Latino Puerto Rican Drug Abuse 4.14
Chronic Pulm. Disease 2.62
Psychoses 2.37
Alcohol Abuse 2.24
Depression 2.03

White Portuguese Liver Disease 2.53
Coagulopathy 2.00
Tumor (w/o Metastasis) 1.84
Diabetes, Uncompl. 1.72

White* Drug Abuse 1.59
Alcohol Abuse 1.32

Other European Tumor (w/o Metastasis) 1.46
Tumor (w/ Metastasis) 1.45
Obesity 1.31
Cardiac Arrhythmias 1.21
Hypertension, Uncompl. 1.21

Russian Hypertension, Compl. 2.82
Diabetes, Uncompl. 2.82
Congestive Heart Failure 2.72
Renal Failure 2.65
Hypertension, Uncompl. 2.26

Table S3: Granular race groups are significantly enriched for certain ECI codes
compared to the remaining patients in a coarse race group. We list ECI codes that
are significantly enriched in a granular race group, as measured by the ratio of the prevalence
of an ECI code among patients in a granular race to the prevalence of an ECI code in the
remainder of the coarse subgroup. For example, the ECI code for “Hypothyroidism” is
3.14 times more common among Indian patients compared to patients from other Asian
subgroups. All p-values are computed with Bonferroni multiple hypothesis correction and
are below .05, measured using a Fisher exact test for a di↵erence in proportions. We exclude
ECI codes which appear fewer than 10 times in a granular race group for privacy reasons.
If a granular race does not appear here, it is because no ECI code is significantly enriched
in that group.
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Table S4: Granular variation in performance of the NEWS clinical risk score. For
each metric and coarse group, asterisks denote whether there is at least one granular group
with significantly di↵erent predictive performance than the coarse group. All p-values are
computed with Bonferroni multiple hypothesis correction. ?: p < 0.05, ??: p < 0.01, ? ? ?:
p < 0.001, - not significant.

Metric AUPRC AUROC FPR FNR
Outcome Coarse Race

Hospitalization

Asian ? ? ? - ?? -
Black ? ? ? - ? ? ? -
Hispanic/Latino ? ? ? - ? ? ? -
White ? ? ? ?? ? ? ? -

Critical

Asian - - - -
Black - - ? ? ? -
Hispanic/Latino - - ?? -
White ? ? ? ? ? ? ? ? ? ??

Revisit

Asian - - ? -
Black ? ? ? - ? ? ? -
Hispanic/Latino ? ? ? - ? ? ? -
White ? ? ? - ? ? ? -

Table S5: Granular variation in performance of the CART clinical risk score. For
each metric and coarse group, asterisks denote whether there is at least one granular group
with significantly di↵erent predictive performance than the coarse group. All p-values are
computed with Bonferroni multiple hypothesis correction. ?: p < 0.05, ??: p < 0.01, ? ? ?:
p < 0.001, - not significant.

Metric AUPRC AUROC FPR FNR
Outcome Coarse Race

Hospitalization

Asian ? ? ? - ? ? ? ? ? ?
Black - ? ? ? ? ? ? ? ? ?
Hispanic/Latino ? ? ? ? ? ? ? ? ? ?
White ? ? ? ? ? ? ? ? ? ?

Critical

Asian - ? ? ? ? ? ? ?
Black - - ? ? ? -
Hispanic/Latino - - ? ? ? ?
White - - ? ? ? ? ? ?

Revisit

Asian - ? ? ? ? ? ? ? ? ?
Black ? ? ? - ? ? ? -
Hispanic/Latino ? ? ? - ? ? ? -
White ? ? ? - ? ? ? ? ? ?
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Table S6: Replicating granular variation results using XGBoost machine learning
models. This table replicates Table 2, except uses results from a more complex machine
learning model, instead of logistic regression. As mentioned in §3, the results are very
similar to the results for the simpler logistic regression model discussed in the text.

Metric AUPRC AUROC FPR FNR
Outcome Coarse Race

Hospitalization

Asian ? ? ? - ? ? ? ? ? ?
Black - ? ? ? ? ? ? ?
Hispanic/Latino - - ? ? ? ?
White ? ? ? ? ? ? ? ? ? ?

Critical

Asian - - ? ? ? -
Black - - ? ? ? -
Hispanic/Latino - - - -
White ? - ? ? ? -

Revisit

Asian - - - -
Black ? ? ? ? ? ? ? ? ? ? ? ?
Hispanic/Latino ?? ? ? ? ? ? ? ?
White ? ? ? ? ? ? ? ? ? ? ? ?

Table S7: Likelihood ratio test p-values for a regression with interaction
terms. The regressions being compared are y ⇠ X + granular race and y ⇠ X +

granular race + X*(granular race), subsetting the data to one coarse race group at
a time. The null hypothesis is that, when accounting for the additional parameters of
the more complex model, the two regressions have the same goodness-of-fit. All p-values
strongly reject the null, except for the Revisit outcome for the Asian coarse group. This
means that the interaction terms improve the model’s fit, i.e. the feature-outcome relation-
ships p(y | X) in our dataset vary with granular race.

Hospitalization Critical Revisit

White 2⇥ 10�12 2⇥ 10�18 6⇥ 10�5

Black 3⇥ 10�14 4⇥ 10�26 1⇥ 10�4

Hispanic/Latino 1⇥ 10�28 2⇥ 10�31 5⇥ 10�25

Asian 3⇥ 10�7 4⇥ 10�29 0.13
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Figure S2: Granular AUROCs for machine learning models (logistic regression)
trained on MIMIC-ED. Analogous to Figure 1.
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Figure S3: Granular false positive rates (FPRs) for machine learning models
(logistic regression) trained on MIMIC-ED. Analogous to Figure 1.
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Figure S4: Granular false negative rates (FNRs) for machine learning models
(logistic regression) trained on MIMIC-ED. Analogous to Figure 1.
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Figure S5: Calibration error for machine learning risk scores trained on MIMIC-
ED. While the risk scores are relatively well-calibrated on the entire dataset, they are
miscalibrated for certain groups. In particular, certain granular groups experience partic-
ularly poor calibration. See Appendix A.5 for more details on the definition of expected
calibration error (ECE).
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Figure S6: Granular AUPRCs for the National Early Warning Score (NEWS), a
previously-defined clinical risk score. Analogous to Figure 1. The granular disparity
trends for NEWS are similar to the ML models: compared to the ML models, the Spearman
correlations for the median AUPRCs across granular groups are 0.93, 0.89, and 0.56 for the
three outcomes, respectively.

Figure S7: After downsampling, within-coarse variation remains comparable to
between-coarse variation. We replicate this result after downsampling the coarse group
sizes at a ratio of N coarse groups

N granular groups (⇠0.15⇥ their original size), so that the average number of
patients in the downsampled coarse groups is equal to the average number of patients in a
granular group. The between-coarse CIs widen, but the result that within-coarse variation
is often larger than between-coarse variation still holds. Thus, this finding does not seem
to be attributable to di↵erences in coarse and granular group size.
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Table S8: Feature interactions with granular race for the critical outcome. Sig-
nificant p-values mean that the feature’s coe�cient varies within the corresponding coarse
race group, i.e., there are granular di↵erences in p(y | x). The p-values shown are uncor-
rected, but we only display the p-value if it remains significant after a Bonferroni correction
for the 120 hypothesis that are tested in this table (all displayed p-values are less than
0.05/120 = 0.00042). For this analysis, we kept only the most predictive groups of features
in order to restrict the number of tested hypotheses.

White Black Hispanic/Latino Asian

age - - - -
gender M - - - -
n hosp 365d - - - 3.2e-07
n ed 365d - - - -
triage temperature - - - -
triage heartrate - - - 1.7e-05
triage resprate 2.1e-06 - 4.5e-08 -
triage o2sat - 1.9e-07 0.00025 -
triage sbp - - - -
triage dbp - - - -
triage pain - - - -
triage acuity 2.2e-08 1.9e-10 - 4.4e-06
eci Arrhythmia - - - 2.7e-09
eci Valvular - - 0.00029 -
eci PHTN - - - -
eci HTN1 - - 0.00025 -
eci HTN2 - - - 3.4e-05
eci NeuroOther - 0.00032 - 2.5e-09
eci Hypothyroid - - 0.00033 -
eci Lymphoma - - - -
eci Coagulopathy - - - -
eci Obesity - - - -
eci WeightLoss - - 0.00027 -
eci FluidsLytes - 0.00012 - 5.5e-06
eci BloodLoss - 2.8e-05 - -
eci Anemia - 7.8e-05 - 0.00036
eci Alcohol - - 7.5e-08 0.00019
eci Drugs - - 8.7e-06 -
eci Psychoses - - - -
eci Depression - 5.6e-06 - -

45



Coarse race data conceals disparities in clinical risk score performance

Table S9: Feature interactions with granular race for the hospitalization out-
come. Significant p-values mean that the feature’s coe�cient varies within the correspond-
ing coarse race group, i.e., there are granular di↵erences in p(y | x). The p-values shown
are uncorrected, but we only display the p-value if it remains significant after a Bonferroni
correction for the 120 hypothesis that are tested in this table (all displayed p-values are less
than 0.05/120 = 0.00042). For this analysis, we kept only the most predictive groups of
features in order to restrict the number of tested hypotheses.

White Black Hispanic/Latino Asian

Age - - - -
Sex (True=Male) - - - -
# of HOSP visits within 365d 4e-09 4.2e-08 5.6e-25 -
# of ED visits within 365d 9.4e-07 2.1e-06 2.1e-08 -
Temperature (C) - - - -
Heartrate - - - -
Respiratory Rate - - - -
Oxygen saturation (%) - - - -
Systolic Blood Pressure - - - -
Diastolic Blood Pressure - - - -
Triage Pain - - - -
Triage Severity Index - - - -
Cardiac Arrhythmias 5.5e-08 - - -
Valvular Disease - - - -
Pulmonary Circ. Disorders - - - -
Hypertension, Compl. - 2.7e-05 - 4.3e-05
Hypertension, Uncompl. - 2.7e-05 - -
Other Neuro. Disorders - - - -
Hypothyroidism - - - -
Lymphoma - - - -
Coagulopathy 4.7e-07 - - -
Obesity - - - -
Weight Loss - - - -
Fluid & Electrolyte Disorders - 2.9e-10 0.00011 -
Blood Loss Anemia - - - -
Deficiency Anemia - - - -
Alcohol Abuse - - 3.7e-07 -
Drug Abuse - - 1.9e-06 -
Psychoses - 5.2e-05 7.4e-08 -
Depression - - - -
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Figure S8: Spearman correlation in hold-out predictions between a model trained
on x% of the data vs. a model trained with 80% of the data. Note the log-scale of
the x-axis. The model only needed about 30% of the training data to achieve predictions
that were nearly indistinguishable from the predictions of a model trained on 80% of the
data. As a result, we used a 30%/70% train/test split for our 1,000 shu✏ed experiments,
because a larger test set gave us higher statistical power to detect performance disparities
on the test set.
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