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We present an asymptotic result for the Laplace transform of the time integral of the geometric Brownian
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1. Introduction

The Laplace transform F (6, T) = E[e~?XT] of the time-integral
of the geometric Brownian motion X7 = fOT e Wit@—30Mtge g
pears in many problems of applied probability and mathematical
finance. This expectation gives the prices of zero coupon bonds in
the Dothan model of stochastic interest rates [9]

Por =E [e—fJ rsds] . (1)

The Dothan model is a short rate model which assumes that
the short rate r; follows a geometric Brownian motion (gBM)

e = roe"wf“"_%”z)t in the risk-neutral measure Q. The Dothan
model can be regarded as the continuous time limit of the Black-
Derman-Toy model [2] which is a discrete time model where the
one-period interest rate is a geometric Brownian motion sampled
at the start of the period.

The expectation (1) appears also in credit risk, in default in-
tensity models where the default of a company is modeled as the
arrival of a Poisson process with intensity following a geometric
Brownian motion. In these models the expectation P r denotes
the survival probability up to time T, conditional on survival up to
time O.

The time-integral of the asset price At := fOT S¢dt plays an
important role in Asian options pricing where it determines the
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payoff of these options. In particular, in the Black-Scholes model,
the asset price S; = Soe®We+=4-39M)t follows a gBM, such that
A1 = SoXr with a =r—q (see [10] for a survey). This time-integral
also appears in the statistical mechanics of disordered media [7].

The evaluation of the distribution of Xy and of its Laplace
transform has received a great deal of attention in the literature.
An explicit expression for the distribution of Xr was given by
[27]. However, direct evaluation of the expectation (1) using the
distribution of Xt given in [27] is numerically inefficient. Several
alternative computational methods have been proposed for the nu-
merical evaluation of the Laplace transform.

(1). The Feynman-Kac PDE method. This method uses the fact
that the Laplace transform satisfies a parabolic PDE. This has been
solved by Dothan in [9]. The result for non-zero drift was corrected
in [17].

(2). Monte Carlo methods. A probabilistic representation for the
Laplace transform F (@, T) which is more amenable to MC numeri-
cal evaluation was given in [17]. Its evaluation was studied in [21].
An importance sampling MC simulation method using a change of
measure determined by large deviations theory was given recently
in [13], using a method proposed in [11,12].

The paper makes two main novel contributions. First, in Sec-
tion 2 we give an analytical result for the Laplace transform of the
time-integral of the gBM in a certain asymptotic limit ¢2T — 0
at fixed combinations of model parameters (3). The result is given
by the solution of a variational problem which was studied in a
different context in [19]. However, the new result is not simply
a consequence of the result in [19] since the setting is different
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(continuous-time vs discrete-time average of the gBM). This result
has practical applications to bond pricing in the Dothan model,
with non-zero drift, which are explored in detail in Section 4. Sec-
ond, in Section 3 we obtain an extension of the small-maturity
asymptotics for Asian option prices with continuous-time averag-
ing presented in [18], which allows for finite interest rates effects.
This is the continuous-time counterpart of a result obtained in
[19] for Asian options with discrete-time averaging. This result has
applications to pricing Asian options in the Black-Scholes model
with non-zero interest rates and dividends. Numerical study in [19]
shows that the effects of the interest rates can be significant and
their inclusion improves considerably agreement with exact (nu-
merical) computations. Our results extend these asymptotic results
to Asian options with continuous-time averaging.

Finally, the theoretical analysis in this paper relies on the large
deviations method [8], which has been used in similar contexts in
the previous literature [18-20]. The rate function for the large de-
viations in our context can be expressed as a variational problem
which does not have a simple closed form in general. This tech-
nical challenge makes practical implementation of the asymptotic
results less efficient. Our main theoretical contribution is to show
that in the context of time-integral of gBM (with drift), one can
still solve this variational problem analytically, and thus extends
the existing results in [18].

2. Main result

We prove here an asymptotic result for the Laplace transform:

F(G’ T) _ [ *GIT aWs+(a——a )sds] (2)

in a particular limit of the model parameters defined by taking
02T — 0 at fixed

b?:= —o26T2,

2

The zero coupon bond price in the Dothan model (1) corre-
sponds to identifying 6 — ro. This limit covers several cases of
practical relevance including small-volatility o at fixed maturity
T and large interest rate rg, and it also covers the case of short-
maturity T at fixed volatility o, and large interest rate rp. In the
context of credit risk modeling, 6 corresponds to the initial inten-
sity of default, which can become large for distressed companies.
(When the interest rate ro is small, the analysis is much simpler,
and for the sake of completeness, we include this regime in the
Online Appendix. We also discuss the large-maturity T regime in
the Online Appendix.)

Our main result is the following theorem.

¢:=aT. (3)

Theorem 1. Consider the c2T — 0 limit with the constraint (3). Then,

2lim (02T)log F(6,T) = —Jg(b, ?), @)
o*T—0
where
Jg(b,©)
i 2 h(t) - ’ . 2
= heaclaihoeo | 2 / dt+2/(h O —¢)7dey, (5)
0 0

where AC[0, 1] denotes the space of absolutely continuous functions
from [0, 1] to R.
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Proof. By letting t :=s/T, we get

F(G T) =K |:€_9Tf0] eaWtTJr“*%dthdt]
—FE [e—GTfol E‘ZfT*“dt] , o
where
1
dZ=—-0dt+odW;,  Xo=0, (7)

which is equivalent to: dZt/(,z = —%dt + dB¢, with Xg =0, where
Bt =0 W, ;2 is a standard Brownian motion by the Brownian scal-
ing property.

Let Y; := Z;/,2. From the large deviations theory for small time
diffusions (see e.g. [25]), P(Y 2r) € -) satisfies a sample path
large deviation principle on Ly[0, 1], the space of functions from
[0,1] to R equipped with the supremum norm topology, with
the speed 1/(c?T) and the good rate function (we refer to the
definition of large deviation principle and good rate function to
[8] and general background of large deviations theory to [8,26])

1(g) = %/()1 (g/(t))zdt, with g(0) =0 and g € AC[0, 1], the space

of absolutely continuous functions from [0, 1] to R and I(g) = +o0
otherwise.
Since we have 6 = 2T' we obtain from (6) that
2
F@O.T)=E [e*% I eXfT*“dr]
o 2 et ®

_ap? 1
By using the fact that e o271 Jo expl¥y o2, +etde is uniformly bounded

between 0 and 1 and the map g — fol eSO+t dt is continuous
from L, [0,1] to R, we can apply Varadhan’s lemma [8] to ob-
tain:

11m (a T)logF©,T)

02T—0

(&) de

sup
g€.AC[0,1]:g(0)=0

N

1
_2p? / 8O+t gy
0

d
(9)

where the supremum is taken over all functions g :[0,1] — R
which are absolutely continuous and satisfy g(0) = 0. By defining
h(t) = g(t) + ¢t, the extremal problem in (9) reproduces (5) and
hence completes the proof. O

The variational problem (5) giving the rate function Jg(b,¢) is
identical with the variational problem appearing in Theorem 3 in
[19], where it gives the Lyapunov exponent associated with the
moment generating function of the discrete sum of a geometric
Brownian motion.

This variational problem was solved completely in [19], and
the solution was reduced to the solution of a calculus problem in
Proposition 4 of this paper. We quote the solution in the notations
used here, adding the explicit condition on ¢, b distinguishing the
two cases. The result of Proposition 4 of [19] is mapped to our
case by substituting a +> 2b%, b1, p — ¢.

Proposition 1. The rate function of Theorem 1 is given explicitly by
Jg(b, 2) = —2b%R(b, ), which is defined as follows.
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i) For b < 747 we have
R(b,¢) =1+ sinh?(8/2) (1 + %) _@- C)Slr;h(s
! 1 h($/2 & i h(s/2 ;2
+ ;3¢ log| cosh(3/2) + < sinh(3/2) ) — 5.5,

where § € [0, ¢] is the solution of the equation

2 -5 = 4b2<cosh(8/2) + % sinh(8/2))2. (10)

ii) For b > =*— we have

=47

(4-0
4¢€2

R(b,;)=1—sinzs(1+ )+ gz_;sin(zg)

ing _i

C
b2 log (coss + §¥> 22

where & is the unique solution £ € (0, Z) of the equation

262 (4§2+;2) — 2b% (2€ coSE + ¢ sin€)> (11)

We note that in Proposition 1, for b = 2+§, the two cases i) and
ii) give the common result R(b,¢)=—-1+¢ — 5(2 +0)%+ 2(2 +
¢)*log(1+¢/2).

2.1. Limiting casea =0
The solution simplifies greatly in the driftless GBM case a =0

which corresponds to ¢ = 0. For ¢ = 0 the rate function Jp (b, 0) is
given by case (ii) of Proposition 1 (see also Corollary 5 in [19]):

sin2A
]B(b,O):2b2( - —coszk), (12)
where A is the solution of the equation
22
A 13
cos2 A (13)

We give the asymptotics of Jg(b, 0) for small and large b, which
is convenient for efficient numerical evaluation.

Proposition 2. The rate function J(b, 0) = 2b*R(b, 0) has the follow-
ing asymptotic expansions:
i) small-b asymptotics. As b — 0 we have
92 ¢ 1072

4
—p*— b+ —=p® +0(b1°). (14
15 315° T 2835° ( ) (14)

i) large-b asymptotics. As b — oo we have

1
R(b,O):l—§b2+

2 n?  n?
RB,O) =2 —— — o(b ) 15
®.0) b 16b2 8b3 + (15)
Proof. i) As b — 0 the solution of (13) approaches A — 0, and is

expanded iteratively as A) = bcos (AY~D) starting with 1@ = 0.
Substituting the result into (12) reproduces (14).

ii) As b — oo the solution of the equation (13) approaches
A — Z from below. Denote A = - — ¢, and invert (13) written as

ns/i‘;fg = 1/b. This gives an expansion in 1/b for &:
b4 724+ 7?) 4
=————4+— =40 (b ) . 16
2b  2b? 48b3 + (16)
Substituting into (12) and expanding in 1/b reproduces (15). O
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Fig. 1. Maximum maturity Tmax(ro, o) Vs ro for several values of o, for which the
series expansion (14) of R(b, 0) converges.

The function R(b,0) appears also in the short maturity expan-
sion of the at-the-money (ATM) implied volatility in the 8 =1
SABR model in the combined small vol-of-vol and large volatility
limit, see Proposition 23 in [20]. An examination of the singulari-
ties of the function R(b, 0) in the b complex plane shows that the
series expansion (14) has a finite convergence radius. By Proposi-
tion 2 in [15], the series for R(b, 0) converges for

Yo
osh yg

where yo = 1.19968 is the positive solution of the equation
ytanhy =1.

In the context of bond pricing in the Dothan model, the con-
dition (17) gives the maximum maturity for which the expan-
sion of Pg r in powers of T converges. This condition reads T <

Tmax (0, 0) = Gio 0‘5082. We show in Fig. 1 the range of the model

parameters where this condition is satisfied. The curves in this fig-
ure show Tmax(ro, o) vs rg for several values of o ={0.3, 0.5, 1.0}.
The maximum maturity decreases with o and ry.

Outside of the circle of convergence the series expansion (14)
cannot be used, and the exact result in (12) must be used. How-
ever we emphasize that the asymptotic result R(b, ¢) exists and is
well behaved for all real values of b, not only within the region of
convergence.

bl < Rp = c =0.662743, (17)

3. Large deviations for the time-integral of the gBM

The asymptotic result of the previous section is related to an-
other application in mathematical finance: the large deviations
property of the time average of the geometric Brownian motion.
Denoting X7 := [, e Wet@=30Mtge it was shown in [18] that
P (X7 /T € -) satisfies a large deviation principle on R with speed
1/T and the rate function ﬁ]gs(), where Jps(X) is given in ex-
plicit form in Proposition 12 in [18]. As is shown in [18], this result
implies a short maturity asymptotics for out-of-the-money (OTM)
Asian options in the Black-Scholes model where a :=r — q with r
denoting the interest rate and g the dividend yield, and neither r
or q appears in the asymptotic result, which is a general feature of
the short-maturity limit T — 0 at fixed r and q.

We study here the large deviations for X7 in a different limit:
0?T — 0 at fixed aT = ¢ with a :=r — q. The advantage of this
limit is that it includes interest rates effects at leading order in
the short maturity expansion. The asymptotic regime is valid when
02T is small, which is typically the case in practice.

Theorem 2. P (X7 /T € -) satisfies a large deviation principle as 0>T —
0 at fixed ¢ := aT with speed 1/(c>T) and rate function

1
. 1

Is() = inf / W) —c)dy,  (18)
he AC[0,11:h(0)=0, f ehVdy= x 2 J
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where AC[O0, 1] denotes the space of absolutely continuous functions
from [0, 1] to R.

Proof. Following a similar argument as in the proof of Theorem 1,

we have
1
0

Xr

T

Z[T +§tdt

~ I

T
/ o0 Wet(a— 702)tdt _
0

e t02T+£tdt (19)

1
-/
in distribution where Z; is defined in (7) and Y; := Zy/52 sat-
isfies a sample path large deviation principle on Ly[0, 1], the
space of functions from [0, 1] to R equipped with the supremum
norm topology, with the speed 1/(c2T) and the good rate function
1(g) = %f()] (g’(t))zdt with g(0) =0 and g € AC[0, 1], the space of
absolutely continuous functions from [0,1] to R and I(g) = +o0
otherwise. Since the map g — fol e8O+¢tds is continuous from
L[0,1] to R, we can apply the contraction principle from large
deviations theory [8] to conclude that P (X7 /T € -) satisfies a large
deviation principle with speed 1/(o2T) and rate function

Jiors

By introducing h(t) := g(t) + ¢t, we complete the proof. O

—_—

inf
2€.AC[0,11:8(0)=0, [} es+¢tdr—x 2

Igs(x) = ‘(1)) (20)

Using Theorem 2, one can obtain the out-of-the-money (OTM)
asymptotics for Asian call and put options. Denote the Asian
call and put option prices as: C(T) := e "TE[(Ar — K)*] and
P(T) := e*rT]E[(K — Ap)*l, where Ar := 1 [ S.dt with S, =
SpeTD+oWe=502t \we have the following result which is the ana-
log of Theorem 2 in [18], improved by keeping terms of O ((rT)")
to all orders.

Corollary 1.

(i) When K > Sy,
2llm (a T)log C(T) = —Ips(K/So) -
o

(ii) When K < Sy, llm (02 T)log P(T) =

02T—0

—Ips(K/So).

Proof. The corollary follows from Theorem 2 by using a similar
argument as in the proof of Theorem 2 in [18]. O

The variational problem in Theorem 2 is identical to the varia-
tional problem appearing in Proposition 6 in [19]. This variational
problem was solved in closed form and the solution is given in
Proposition 9 in [19]. This solution is mapped to our case by the
substitutions 28+ 1, p+— ¢, So—~ 1.

We get the following result for Igs(x), which is the continuous-
time counterpart of the discrete-time result of [19].

Proposition 3. i) For x > 1+ 3¢ we have

, 2tanh(8/2)
Ips(x) = (5 —¢ ) <1 - m>
—2¢ log <cosh(8/2) +¢ smhgﬂ) +¢2,
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)
where § is the solution of the equation "% Smh‘s +2¢ Smha# =X
ii)for0 <x<1+ 7; we have
&+ %{ tané

Ips(x) =2 (sz+ %;2> ( - 1)
sin&

1 2
—2;10g<cos%‘+5§T> +¢°,

where & € (0, ) is the solution of the equation 5‘“(525) <] +1¢ %) =
X.

tané

The properties of Igs(x) are studied in detail in Section 4.1 of
[19]. We mention here only two properties. i) The rate function
Igs(x) vanishes at x = %(e‘ — 1). ii) For ¢ =0 we have Igs(x) =
JBs(x) where Jgs(x) is the rate function for OTM Asian options
studied in [18].

Corollary 1 can be used to obtain an approximation for Asian
option prices similar to the approach followed in Section 4.2 of
[18]. Under this approximation, Asian options can be priced as
European options with the same strike and maturity and an equiv-
alent log-normal volatility Zin(K, Sg) given by

log?(K / Afwa)
21ps(K/So)

This reduces to the result of Proposition 18 in [18] in the ¢ =0
limit, and improves it by taking into account interest rates ef-
fects. Numerical tests of this improved approximation performed in
Sec. 4.2 of [19] demonstrate good agreement with precise bench-
marks, which is better than that given by the asymptotic result
in [18] which neglects interest rates effects. The asymptotic result
gives an alternative to other proposed pricing methods for Asian
options, such as the spectral approach [16], the Laplace transform
method [4,6], the small-time expansion method [5].

SN (K, T) = (21)

4. Numerical tests for bond pricing in the Dothan model

The asymptotic result of Proposition 1 can be used to obtain an
approximation for the bond prices in the Dothan model

Basympt(T) =e—r0TR(b,§), (22)

where R(b, ¢) is given by Proposition 1. In the limiting case ¢ =0
this simplifies further as shown in (12). In this section we present
tests of this approximation under several scenarios.

Scenario 1. We start by considering scenarios with a = 0. An
exact solution for B(T) := Pt was given in [9] and is represented
as a double integral. For a = 0 this reduces to a single integral

B(T) = ﬁ/ sin(2,/y sinh z)

0
-2

. [e_ZErfc <¥> — e%Erfc (
24/s

s+22)} dz
24/
+2/yK1(2VY),

where K; is the modified Bessel function of order 1 with y := 2r°

and s = T(T —t).

The direct numerical evaluation of the integral in (23) be-
comes unstable for large y due to fact that the integrand is
rapidly oscillating. We found it convenient to add and subtract
in the square brackets the term 2e~%. The term proportional
to +2e~% can be evaluated in closed form using the relation
fo dze #sin(asinhz) = - —K1 (a), which gives

(23)
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Fig. 2. Tests with a = 0. Plots of _roLT log B(T) vs o at fixed T, rp. Solid curves: asymptotic result, dots: exact numerical evaluation of B(T), dashed curve: series expansion

(14) of the asymptotic result, keeping terms up to O (b%).

B(T) = ﬁ/sin(Zﬁsinhz)
0

s—2z s+2z
- | e~?Erfc — e%Erfc
[ < 2./s ) ( 2./s

The integrand in this expression is still oscillatory, but its ampli-
tude falls off much faster, and the calculation of the integral is
more stable. We used (24) for the numerical evaluation of B(T).

Fig. 2 shows the results for —rOLTlogB(T) obtained by evalu-
ation from (24) (red dots), comparing them with the asymptotic
result of Proposition 1 (solid blue curves). The dashed blue curves
show the series expansion of the asymptotic result, Eq. (14), keep-
ing the first 8 terms.

The upper three plots in Fig. 2 correspond to a moderate inter-
est rates regime ro = 5% and the lower plots to a high interest rates
regime ro = 10%. Selected numerical evaluations with ro = 10% are
shown in Table 1.

From an examination of these tests we make a few observa-
tions:

i) The asymptotic result is most precise at small volatilities o
and small maturities T. As either of these parameters increases,
the agreement of the asymptotic result with the exact values wors-
ens. Still, the asymptotic result gives a reasonably good approx-
imation, better than 1%, for all volatilities less than 20%, at all
maturities less than 10Y, which corresponds to many cases of prac-
tical interest.

ii) As the interest rate ro increases, the agreement of the
asymptotic result with the exact result improves, as expected from
the scaling of the model parameters assumed in the asymptotic
limit considered here.

iii) The series expansion (14) truncated to a finite order ex-
plodes at a certain threshold to unphysical values (R(b, 0) becomes
larger than 1, or smaller than 0). The explosion is to +(—)oco when
the series is truncated to even/odd order, corresponding to the sign
of the last term included. However, the exact asymptotic result
(12) does not show any explosion. As explained above, the failure
of the series expansion is due to its finite convergence radius, and

) —2e‘z}dz+1.

(24)

350

Table 1

Numerical evaluation of R(T) := 7%logB(T) vs o at
fixed T,ro = 0.1 and a = 0. The fourth column shows
the exact result obtained by numerical evaluation using
(24), and the last column shows the asymptotic result
from Proposition 1.

T o B(T) R(T) Rasympt (T)
1 0.1 0.904853 9.998%  9.998%
1 0.2 0.904898 9.993%  9.993%
1 0.3 0.904976 9.985%  9.985%
1 0.4 0.905087 9.972%  9.973%
1 0.5 0.905235 9.956%  9.959%
5 0.1 0.607799 9.958%  9.959%
5 0.2 0.611650 9.832%  9.840%
5 0.3 0.618183 9.619%  9.655%
5 0.4 0.627431 9.322%  9.421%
5 0.5 0.639230 8.950%  9.155%
10 01 0.373968 9.836%  9.839%
10 02 0.391646 9.374%  9.421%
10 03 0.418920 8.701%  8.869%
10 04 0.452708 7.925%  8.282%
10 05 0.489961 7.134% 7.714%

not to a failure of the asymptotic expansion itself, which remains
well behaved over the entire range of parameter values.

Overall, the error of the asymptotic expansion is below 3.5% for
volatilities below o = 0.4 and maturities up to 10 years, which
covers a wide range of the parameters relevant for practical appli-
cations.

Scenario 2. We present also numerical tests with a # 0 using
the benchmark scenarios of [21,13], which considered the pricing
of a zero coupon bond in the Dothan model with (a — %02) =
0.045 which corresponds to a = 0.09 in our notations. The initial
interest rate is ro = 0.06 and volatility o =0.3.

In these papers the zero coupon bond prices have been evalu-
ated in two ways: i) by Monte Carlo evaluation of the expectation
(1) with importance sampling and control variate [21] and opti-
mal change of drift [13], and ii) by evaluation of an alternative
probabilistic representation of this quantity as an expectation of a
function of a generalized hyperbolic secant random variable [21].
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Table 2

Zero coupon bond prices in the Dothan model under the scenario
of [21], comparing the asymptotic result Basympt(T) with the ex-
act evaluation of B(T) from [21] (last column).

T & — 108 Basympt(T)  Basympte(T) ~ B(T)
1 0.030345 0.06272 0.939 0.939
2 0.068373 0.06547 0.877 0.877
3 0.112756 0.06821 0.814 0.815
4 0.162295 0.07091 0.753 0.753
5 0.215833 0.07354 0.692 0.693
10 0.507276 0.08454 0.429 0.438
15 0.777869 0.09113 0.255 0.275
20 1.001668 0.09411 0.152 0.179

The results of the two approaches are shown in Figures 3.2 and 3.4
of [21], respectively.

For our tests we use the asymptotic result of Proposition 1 to
compute R(b), which is used to obtain Basympt(T) using (22). For
this test we use the scenario of [21] (ro = 0.06,0 =0.3,a =0.09).
The asymptotic results are shown in columns 3 and 4 of Table 2
for several values of the maturity up to T = 20 years. The second
column shows &, the solution of the equation (11) determining the
rate function in Proposition 1. The last column shows the exact
numerical evaluation of B(T) obtained using the methods of [21].
The approximation error of the asymptotic result is about 2% at
T =10 and increases to 15% at T = 20.

5. Discussion and comparison with the literature

In this note we derived an asymptotic result for the Laplace
transform of the integral of the geometric Brownian motion
F(0,T) in a new limit 62T — 0 at fixed ¢20T2. This result was
applied to the pricing of zero coupon bond prices in the Dothan
model. For this case the limit includes the case of small volatility
at fixed maturity T and large interest rate ro. The asymptotic re-
sult can be used to obtain an efficient numerical evaluation of the
bond prices. We demonstrate good agreement in these regimes
with a numerical evaluation using an integral representation pro-
posed by [9]. The method proposed here requires only the solution
of a non-linear equation and can be used in practical applications
for a fast and precise evaluation.

Several authors presented asymptotic expansions of bond prices
in models with log-normal rates, including the Dothan model. We
discuss briefly the relation to our work.

Ref. [22] derived a Taylor expansion of the log of the bond
prices in maturity T, see also [3] for a survey. The approach was
applied to several one-factor short rate models with constant co-
efficients, including the Dothan model. Expressed in our notation,
the first few terms in this expansion read (for simplicity we as-
sume a =0)

1 1 5, 2 1 4 3
_ro_TIOgB(T)_l_ ia roT _IG roT

1 6 T 42)q74 5
—<§ar0—ﬁar0>T +0(T).

Taking the limit 02T — 0 at fixed b> = 102rgT? this expansion
becomes 1 — 1b% + 7£b* + ..., which reproduces indeed the first
few terms in the expansion (14). This shows that the asymptotic
approximation (22) corresponds to summing a subset of the terms
in the exact expansion, to all orders in T. As shown in Sec. 2.1 this
subset of the full series converges with a finite convergence radius.
It would be interesting to study the convergence of the full series
of logB(T) in powers of T. We mention [14] which studied the
small-T expansion of bond prices in several short rate models.
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Several groups derived small volatility expansions for zero
coupon bond prices in short rate models. [24] presented an ex-
pansion of zero coupon bonds in powers of volatility in a short
rate model with short rate r; = ro(1 + vXp)"/Y where X; is an
Ornstein-Uhlenbeck (OU) process. This model recovers the Black-
Karasinski model in the limit v — 0, which in turn reduces to the
Dothan model in the limit of positive mean-reversion. A similar
expansion was proposed by [1]; their approach rescales simul-
taneously the mean-reversion level and the volatility of the OU
process. [23] derived an expansion for the Arrow-Debreu functions
Y(ro, 7, T) :=E[e™ o 145§ (rp — rg)] using the so-called Exponent
Expansion. This recovers the zero coupon bonds in the Dothan
model by an integration.

Expansion-based approximations truncated to a finite order will
typically fail as the maturity or volatility exceeds a certain value.
This is similar to the failure of the expansion of the function
R(b, 0) in powers of b seen in the numerical tests in Fig. 2. Our re-
sults suggest that these failures are not necessarily associated with
the small-maturity or volatility limits considered, but are due to:
i) truncation of a convergent series within its convergence radius,
or ii) the finite convergence radius of the expansion. Using the full
asymptotic result removes the singular behavior observed in the
truncated series.
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