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ABSTRACT

Recent platforms utilize ML task performance metrics, not meta-
data keywords, to search large data corpus. Requesters provide an
initial dataset, and the platform searches for additional datasets
that augment—join or union—requester’s dataset to most improve
the model (e.g., linear regression) performance. Although effective,
current task-based data searches are stymied by (1) high latency
which deters users, (2) privacy concerns for regulatory standards,
and (3) low data quality which provides low utility. We introduce
Mileena, a fast, private, and high-quality task-based dataset search
platform. At its heart, Mileena is built on pre-computed semi-ring
sketches for efficient ML training and evaluation. Based on semi-
ring, we develop a novel Factorized Privacy Mechanism that makes
the search differentially private and scales to arbitrary corpus sizes
and numbers of requests without major quality degradation. We
also demonstrate the early promise in using LLM-based agents for
automatic data transformation and applying semi-rings to support
causal discovery and treatment effect estimation.

1 INTRODUCTION

Existing relational data repositories [37, 40] offer the potential to
augment and improve data-oriented tasks such as machine learning,
and have motivated considerable work in both research [10, 17, 18]
and industry [2, 3, 29]. The traditional approach uses keyword
search [5] over metadata about datasets but requires the user to
guess relevant keywords, manually integrate each returned dataset,
and assess its utility. In response, recent work advocates for task-
based data search [10, 24, 32, 39, 46], which takes as input an ML
task (based on training and test datasets) and returns datasets in the
data store that augment the training dataset in a way to improve
the model quality. These augmentations can be any combination
of joins and unions with other relations in the data store to add
features, and with relations to add more samples.

In principle, such a system could enable a development cycle:
as data users develop predictive or causal models over their lo-
cal data, it searches for and automatically suggests or even inte-
grates datasets that concretely improves the user’s model. Existing
approaches develop a data discovery index [17] to identify union
and join candidate augmentations; but they laboriously evaluate
each candidate by applying the augmentation, retraining, and cross-
validating the model to assess utility. Other works cluster and prune
the candidates [18], but a single search query still takes minutes.

We believe practical task-based data search remains stymied by
three practical considerations:

e Latency: Machine learning is often performed as part of an it-
erative user-facing data analysis and development process [42].
As in web search, latency affects a user’s willingness to use the
system [7]. Unfortunately, existing data search systems take tens
of minutes to hours because candidate assessment relies on costly
model retraining and evaluation [10, 18]. These latencies pale in
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Figure 1: Mileena Architecture. Gray components are from
previous works, orange represents current progress, and red
indicates ongoing work. The blue workflow is offline for
providers, while the green workflow is online for requesters.

comparison to existing keyword-based dataset search services
which, despite their disconnect from the user’s data task, return
results in seconds and dominate current deployments [3, 5].

e Privacy: Even within a single organization, data privacy, and
access controls are major concerns. For instance, access and use
of data containing Personally Identifiable Information (PII) are
regulated by governments [1]. Differential privacy is a promising
approach that is rapidly gaining adoption due to its well-defined
mathematical guarantees [13]. It introduces noise to released
statistics in a way that masks the presence or absence of an
individual in the dataset, and was famously used to release fine-
grained statistics for the 2020 US Census [30]. Unfortunately,
existing applications of differential privacy have largely focused
on federated machine learning use cases to train a single model.
When applied to dataset search over even a handful of datasets,
it requires so much noise that search is no better than random.

o Data Quality: It is now a common refrain that 80-90% of effort in
data science goes into data preparation and cleaning, and this is
similarly true for machine learning applications [42]. However,
this challenge is exacerbated in a dataset search context, where
data providers may upload hundreds or thousands of datasets
and cannot be expected to prepare and clean each one. It’s simi-
larly unrealistic to expect the end-user to do the same for each
candidate augmentation. Yet, preparation and cleaning may be
necessary for search queries to return high-quality results that
most improve the user’s ML models. To this end, a scalable, ex-
tensible, and fully-automated cleaning procedure is necessary.
This paper describes our current progress to develop a fast, pri-

vate, and high-quality task-based dataset search platform called

Mileena. At its heart, the system is built on the concept of factor-

ized ML using semi-ring aggregation. Similar to data cubes which

rely on aggregations that distribute across unions to pre-compute
partial aggregates over partitions of a relation, semi-ring aggregates



distribute across unions and joins. Semi-rings have been designed
for common statistical aggregation functions, as well as a wide
range of machine learning models, including linear regression. This
is a natural match with dataset search, where the goal is to join
and union an initial training dataset with registered relations, and
evaluate a data task over the result. For data tasks that can be formu-
lated over semi-rings, such as training a linear model, the semi-ring
computation can be pushed to the base relations and pre-computed.

This insight helps Mileena scale to thousands of datasets and
return high-quality augmentations within a few seconds. Data
providers pre-compute and upload semi-ring aggregates of each
dataset to Mileena. When a user submits a search request, Mileena
uses a semi-ring-based proxy model to find the most promising
augmentations, and then trains a final model that is returned to the
user. We also show that this approach is compatible with differen-
tial privacy, and develop a novel Factorized Privacy Mechanism that
makes the entire search process differentially private, while scaling
to arbitrary corpus sizes and numbers of requests without major
degradation in the search result quality.

We also present our ongoing work that improves data quality
and extends the semi-ring framework to causal inference. For data
quality, we propose an agent-based framework to automatically
transform and extract features from a provider’s dataset before reg-
istration with Mileena. The key idea is to use agents that perform
a range of exploratory data analysis and context-gathering tasks to
distill the semantics of the dataset into a compact representation,
which is then used to generate transformation and featurization
functions custom to the dataset. To support causal inference, we
are studying how semi-rings can be used for both causal discovery
and estimating average treatment effects, and novel challenges that
arise in the context of dataset search. By building on semi-rings,
causal inference tasks are automatically made differentially private.
Section 2 and 3 mainly summarizes our work in [21] and [24].

2 PROBLEM AND SOLUTION

In this section, we define the problem of differentially private task-
based dataset searches. We start with the background of the data
model, ML task, and differential privacy. Then, we lay out the
trust model, privacy needs, and search problem. Finally, we walk
through the architecture of Mileena to solve this problem. While
non-private search has been studied [10, 32, 39, 46], we are the first
to establish the trust and privacy requirements for practical dataset
search.

2.1 Problem Definition

Data Model. We follow the standard relational data model. Rela-
tions are denoted as R, attributes as A, and domains as dom(A). For
clarity, the schema is included in square brackets R[A1, - - - , Ap].

Data Task. We focus on ML task (M, R¢rqin, Rrest ), which seeks to
train a good model on a relation R containing features X C Sg and
target Y € Sg. The function M.Train(R;rqin) returns a model m that
predicts y from X. The function M.Evaluate(m, R;es;) returns the
task utility (typically cross-validation accuracy) on a test dataset.
The goal of dataset search is to augment R qin, With additional
features (via joins) and samples (via unions) so that the utility over
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the augmented dataset is maximized. Beyond ML tasks, Section 4.2
describes our ongoing work to support causal inference (CI) tasks.

Trust Model. The data search platform may contain data that in-
cludes Personally Identifiable Information (PII). To comply with
legal standards [1], organizations must protect data against misuse
by untrusted entities. To model trust, on the one extreme, the lo-
cal trust model used by Apple [11] and Google [15] assumes that
individuals don’t trust any aggregator. While this requires weak
assumption, its mechanisms provide limited utility [52]. At the
other extreme, others assume a global trust model [27], where in-
dividuals trust the central aggregator (central search). Mechanisms
for this model yield high utility but the assumption is unrealistic.
For dataset search, we introduce a two-level trust model (Figure 2)
inspired by private federated ML [49]. Here, individuals trust direct
15¢-level aggregators (e.g., patients trust their healthcare providers)
but not the 2"?-level aggregator (data search platform) and other
non-direct 1%?-level aggregators (e.g., other healthcare providers).
Under this trust model, existing techniques in Trusted Execution
Environments (TEEs) such as SGX [14, 41] are not applicable. This
is because this method still requires a trusted 21d_Jevel aggregator
to store individuals’ datasets.

Differential Privacy. For untrusted entities, rather than prohibit
access outright, differential privacy (DP) [13] supports analysis of
sensitive data while bounding the degree of privacy loss based on
the budget (e, §) set by each aggregator. Each query on the dataset
adds noise to the results, inversely proportional to the budget con-
sumed; when € = 0, the dataset becomes inaccessible. Formally:

Definition 2.1 ((e, §)-DP). Let f be a randomized algorithm that
takes a relation R as input. f is (¢, §)-DP if, for all relations Ry, Ry
that differ by adding or removing a row, and for every set S of
outputs from f, Pr[f(R;) € S] < e°Pr[f(Rz) € S]+6, where € and
d are non-negative real numbers (called privacy budget). e controls
the level of privacy, and § controls the level of approximation.

ExAMPLE 1. Healthcare providers collect data from patients (indi-
viduals); these datasets are classified as Protected Health Information
(PHI) by HIPAA. They are obligated by HIPAA to protect the security of
PHI, thus trusted by patients. Healthcare providers want to share data
to a central search platform for public benefit (providers) or improve
ML accuracy for better (requesters). Following HIPPA guidance, they
deidentify collected datasets through DP; these de-identified datasets
are no longer considered PHI and can be disclosed.

Differentially Private Task-based dataset search. Given a data
corpus with datasets from different providers, a requester sends a
request with datasets to augment a task (e.g., ML). The goal is to
identify a set of augmentable (join/union) datasets that maximize
task utility while satisfying trust and privacy requirements.

To formalize this, let R = {Ry, Ry, ...} be a data corpus collected
from some providers. Providers and requesters hope to disclose
datasets to the untrusted central search. Each sets a DP budget
(€3, ;) for each dataset R;, which is independent of other datasets
and the central search. Requester sends a request with training and
testing dataset (R¢rqin, Rrest), chooses a model M, and specifies
(€, 8). Requester’s goal is to train model M on R;qin and maximize
its performance on Ryes;, which we call the task’s utility.
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Figure 2: Mileena trust model: individuals only trust the di-
rect 1% -level aggregator, and not any others.

To maximize the utility, the requester aims to find a set of

data task). We currently Aurum [17] (Section 2.2.2). For utility as-
sessment, we propose novel semi-ring sketches, which are used for
efficient ML training and evaluation.

Factorized Privacy Mechanism. Semi-ring sketches are aggre-
gates over raw data, and can be privatized by adding appropriate
noise. Compared to standard privacy mechanisms for data discovery
index [16, 51], we introduce a novel Factorized Privacy Mechanism
for semi-ring sketches (Section 3.3). Once privatized, these sketches
can be repeatedly used across searches without any privacy cost.

2.2.2  Central Task-based dataset search. For each request, the cen-
tral task-based dataset search component solves Problem 1 online.

Central data store. By default, all provider and requester data is

provider datasets in R to augment data. The function Discover (R, augTypeprivatized before upload to the central data store, and all search

finds datasets in R that can be joined or unioned with R, given
augType € {pq,U}. Putting everything together:

PROBLEM 1 (TASK-BASED DATASET SEARCH.). For each request

(Rtrain> Reest. M, €,8), find the set of datasets R, Ry, C R such that

RO, Ry, = argmax M.Evaluate(M.Train(RerainAug)s Reest Aug)
RUsRM

s.t. Ry C Discover(R,U), Ry C Discover(R, ™),
RirainAug = (Rtrain UR,eR,, R1) MR,eRr,, R
RiestAug = Reest ™MReR,, R
The search over (Rirain, Rtest) is (€,8) — DP
The search over R; is (¢j, 6;) — DP,VR; € R

2.2 Mileena Walkthrough

In this section, we walk through Mileena’s architecture (Figure 1)
to solve Problem 1. Mileena stands on prior data discovery and
search systems [9, 10, 17]. However, these systems rely on slow
join/union operations and fail to meet privacy requirements. To
improve upon this, we use (1) a proxy model that can quickly esti-
mate the benefits of a candidate augmentation using pre-computed
semi-ring sketches (Section 3.2), (2) a factorized privacy mechanism
to ensure DP (Section 3.3), and (3) an agent-based automated data
transformation framework to improve data quality (Section 4.1).

2.2.1 Local Data Store. This locally manages each provider’s/requester’s

raw data. It transforms and pre-processes each dataset, and gen-
erates privatized sketches that will be uploaded to the central-
ized search platform. Providers specify a DP budget for each rela-
tion they register; requesters upload training (and possibly testing)
datasets with their DP budgets, and a task M.

Automatic Data Transformation. Raw datasets are noisy and
require parsing and transformations to derive predictive features.
We propose a fully automated approach based on LLM agents (Sec-
tion 4.1), so the transformed dataset is most useful to search tasks.
These costs can scale to the provider and requester’s willingness
to bear them. An enterprise may allocate resources to datasets in a
data lake to improve searchability, while data sellers already clean
and prepare data that they provide in existing data markets [26].
Discovery and Semi-ring Sketches. Data discovery indexes datasets
based on their schemas and column features to quickly find join
and union candidates (that need to be further assessed against the

algorithms are over these privatized sketches.

Data Discovery. For each request, we employ Aurum [17] to dis-
cover augmentable data; Aurum finds union- and join-compatible
datasets based on the column Jaccard similarity (minhash sketches)
and cosine similarity (TF-IDF sketches).

Search algorithm. Given the candidate augmentations, the search
algorithm greedily finds a sequence of vertical and horizontal aug-
mentations that maximizes expected task utility. The basic algo-
rithm (Algorithm 1) iterates over each augmentation, materializes
the augmented dataset, trains the model, evaluates its training ac-
curacy (or other quality measure), selects the augmentation that
most improves the utility, and repeats. Augmentation, training, and
evaluation (L5) are so expensive that existing works [9, 10, 18]
primarily focus on aggressively pruning the set of augmentation
to evaluate. In addition to these pruning methods, we use a semi-
ring-compatible proxy model (e.g., linear regression) to directly
derive the augmented model parameters and compute the model’s
utility in time independent of the relation sizes. This allows us to
evaluate candidates in milliseconds. When used to power an Au-
toML service, Mileena improves final model accuracy, and reduces
both query latency and monetary cost by orders of magnitude as
compared to existing dataset search platforms and AutoML services
(Section 3.2.3).

Algorithm 1 Search Algorithm

: Input: R, ML model
: Ry, Rea — {1, {}
. for k times do
for all Ryyg € Reorpus do
Augment R with Rayg, train and evaluate ML

1S I N O I

6 end for

7 Greedily add the next best Raug to Ry, Ru
8: R « Augment R with Ryyg

9: end for

: Return: (Ry, Rw)

—_
=1

System output. Upon the completion of Mileena’s search oper-
ation, the requester will be presented with an augmentation plan
(query plan that first unions with Ry then joins with Ry) as shown

!Semi-aggregates can express complex models like linear regression [47], gradient
boosting and random forests [23], and approximate generalized linear models [25].
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Figure 3: Augmentation plan generated by Mileena.

in fig. 3, detailing the discovered tables. Specifically, for datasets
classified as public, a download link will be available. In cases involv-
ing sensitive data, Mileena will leverage established methodologies
such as [33] to facilitate secure data sharing in data markets.

3 PRIVATE SEMI-RING SKETCHES

In this section, we delve into Semi-ring Sketches, exploring how
they can efficiently train and evaluate the proxy model (linear re-
gression), as well as the associated differential privacy mechanism.

3.1 Semi-ring Aggregates Primer

Augmentations are composed of joins and unions (R, R, in Prob-
lem 1) with relevant datasets. For efficient heuristic data search, it
is necessary to reevaluate the data task (e.g., retraining and eval-
uating an ML model) after augmenting (joining or unioning) the
training data in time independent of the relation sizes. Our main
observation is that semi-ring aggregations are a natural fit for this
use case.

Annotated Relations and Semi-ring Aggregates. The anno-
tated relational [6] model maps ¢ € R to a commutative semi-ring
(D,®,®,0,1), where D is a set, ® and ® are commutative binary
operators closed over D, and 0/1 are zero/unit elements. An anno-
tation for ¢t € R is denoted as R(t), and R(t) =0 fort ¢ R.
Aggregation Query with Semi-ring. Some aggregation queries
can be reformulated using annotations of relations.

e (yaR)(t) = 2{R(t1)| t1 € R ma(t) = ma(t1)}.

o (RLURY(D) = Ri(t) @ Ro(0).

o (Ri 2 R)(1) = Ri(rsy, (1) ® Ro(irsy, (1)).

(1) The annotation for tuple ¢ after a sum aggregation group-by A
on R is the sum (&) of the annotations across all join keys corre-
sponding to ¢. (2) The annotation for union Ry U Ry is the sum of
annotations in Ry and Rs. (3) The annotation for join R;>R; is the
product of contributing annotations.

Aggregation Pushdown. Semi-rings allow for aggregations’ distri-
bution (pushdown) through joins and unions [6], akin to projection
pushdown before joins. Consider the query

yp(R1[A, B] > Rz[B,C] = R3[C, D])

Rather than apply y after the join (which is O(n®) where n is relation
size), y can be performed on R; (and similarly on Ry, R3) before
joining with Ry, in O(n):

¥ (yc(yB(R1[A, B]) = Ry[B,C]) » R3[C, D])
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Annotation

Y((R1U Ry) >4 Rg)

Augment Centrally
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'YA(Rl U Rz)
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Figure 4: y((R; U Ry) »4 R3) computes linear regression; ag-
gregations are pushed before joins, and are pre-computed
locally to accelerate central data search.

Associativity of additions can be exploited for union:
YA(Ri[A, B] U Rz[A, B]) = ya(Ri[A, B]) U ya(Rz[A, B])

Application to Linear Regression. Given the training data X €
R™™_and the target variable y € R™*!, linear regression [47]
computes 0*=(XTX)"1XTy. By considering y as a special feature,
we find that XT XeR™*™ is the core sufficient statistics to compute,
which contains the count, sum of features and sum of products
between features [47]. Thus, computing X” X over joins and unions
boils down to an aggregation query over these operations, which
is supported by semi-ring operations through annotations, as we
have just discussed. We provide an example for sum:

EXAMPLE 2. Given Ry, Ry, R3 in fig. 4, we aim to compute the sum
of feature B over (R1 U Ry) >4 Rs. Naively, we will first materialize
the union and join results and then aggregate B. On the other hand,
we design a simplified version of the covariance matrix semi-ring as
a pair (¢, s) € (Z,R), which contains the count and sum, respectively.
® and ® are defined as (c1,s1) ® (c2,82) = (c1 + c2,51 + s2) and
(c1,51) ® (€2, 52) = (c1¢2, €152 + c251). Concretely, each tuple will be
augmented with 2 additional columns: one is initialized with a value
of 1 representing c, and the other with the value of B representing s (or
0 if B is absent). Subsequently, aggregation is prioritized before any
union or join operations; we pre-aggregate annotations for each join
key as highlighted in blue in fig. 4. Next, unioning and joining are
translated into corresponding @& and ® operators over the semi-ring
annotations. Finally, an aggregation is performed to compute the sum
of B over A, yielding s = 18.

3.2 Pre-computed Semi-ring Sketches

Although aggregation pushdown optimizes training and evaluation
for a single augmentation, the whole search process still requires the
recomputation of semi-ring aggregates across all augmentations. To
optimize this, we aggressively pre-compute aggregate as sketches
locally. Online, the evaluation for horizontal augmentation reduces
O(n) to O(1) and O(d) for vertical augmentation, with n being the
relation size and d the join key cardinality. Typically, d << n.



The Fast and the Private: Task-based Dataset Search

ame —=- Auto-SK

Kitana

0.5 ] --- ARDA
N H -g' ~=- Vertex Al
e o %% 3 ® | ——- Novelty

T T T T T *  Proxy
[t ® AutoML

-140
20 40 60 80 100

Runtime (minutes)

Figure 5: Task utility (testing R2) with 10 minutes time budget
(dotted line). Mileena searches a corpus of 517 datasets with
linear regression and reaches R2 =~ 0.7; Mileena then sends
the augmented dataset to AutoML and further improves R2
to 0.82. Other baselines are either slow or have low R2.

3.2.1 Horizontal Augmentation. Horizontal augmentationAh unions
training data R. As discussed earlier, the aggregation can be pushed
before unioning. The key optimization is to pre-compute aggre-
gations for R and A" as y(R) and y(A"), when data is uploaded
to the local data store. y(R) is shared across all candidate hori-
zontal augmentations, and y(AP) is shared across user requests.
Now, horizontal augmentation adds pre-computed aggregates in
near-constant time.

3.22  Vertical Augmentation. Vertical augmentation is more com-
plex because pushing aggregation through the join needs to con-
sider join keys. Consider A, which joins the training data R using
join key j, and similarly, aggregations for R and A? can be pre-
computed as y;(R) and y;(A?), yj(R) is shared among all vertical
augmentation candidates with join key j. Thus, we pre-compute
yjr (R) for all of its valid join keys j’. We also pre-compute y; (A°)
for all of its valid join keys, and share them across all requests
where A” is a vertical candidate.

3.2.3 Experiments. We use Mileena to power an AutoML service
that uses up to 10 minutes for data search. Then, we material-
ize the augmented dataset and use the remaining time to run an
AutoML library or service [24]. We compared it with existing ML-
based dataset search systems (ARDA [10], Novelty [32]), AutoML
libraries (Auto-sklearn), and Google’s Vertex Al on 517 datasets
from NYC Open Data [40]. Figure 5 reports R2 from Mileena’s
proxy model (stars) and the AutoML models (circle). Note that
ARDA and Vertex Al don’t enforce the time budgets. Pure AutoML
approaches perform poorly because the dataset lacks predictive
features; ARDA eventually finds a good model after ~50min that
is slightly worse than Mileena. Novelty assesses augmentations
based on how “novel” the data is compared to the training data, but
is uncorrelated with model utility and actually degrades the final
model. Mileena returns a high-quality model almost immediately,
and converges to the highest quality model within the budget.

3.3 Factorized Privacy Mechanism

Private task-based data search is particularly challenging: even a
single request requires model retraining across a vast number of
augmented datasets as join/union results. How can we ensure a scal-
able data search with large number of datasets and requests, without
depleting the privacy budgets of both requesters and providers?

(a) (b) (c)
0.3 0.3 0.3
Non-Pri
N 0.2 1 0.2 0.2 EPM
= ] o APM
0.1 8 0.1 ‘\ o1 g} Tom
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Figure 6: Task utility (non-private r2) for ML over augmented
dataset from different private searches (a) across 10 runs with
the median as a red cross, (b) varying the corpus size, and
(c) varying the number of requests. FPMnotably outperforms

even with a high volume of corpus datasets and requests.

Our key insight is that the semi-ring sketches, once privatized,
are composable (through semi-ring operators) and reusable (as post-
processing without additional DP cost), making them ideal for data
search that trains ML across joins and unions from different sets of
relations. We name our mechanism Factorized Privacy Mechanism
(FPM), which applies Gaussian mechanism [12] to these sketches
(blue in Figure 4) locally before transferring to the central data
corpus. We further develop novel budget allocations that optimize
the proxy model’s accuracy [21].

3.3.1 Experiments. Using NYC Open Data and regression models
(utility is R2), Figure 6 shows how FPMscales far beyond existing
mechanisms in terms of corpus size and number of search requests
as compared to APM [50], which applies DP mechanism to aggre-
gates after computing the join/union results under a global trust
model, and TPM [53], applies DP mechanism to individual tuples.
Non-P reports results without any privacy; although FPMachieves
up to ~40—90% of the Non-P utility, the gap can be further reduced
by clustering and smoothing join groups [28] in the future works.

4 ONGOING WORK

We now describe two directions of ongoing work.

4.1 Hand-Free Data Transformation

Data transformation is pivotal for ML [45], but Mileena uses private
sketches rather than transformable raw data during the search. Is it
possible to transform datasets locally prior to sketch computation
in ways that benefit a variety of data tasks?

Recent data transformation approaches rely on deep-learning [20,
36], including Language Learning Models (LLMs) [38]. Although
powerful and promising, LLMs need to serialize datasets into a
textual form to include in the prompt context. In contrast, LLMs
have limited context lengths (GPT-4 supports 8K input tokens) and
are very costly (GPT-4 costs $0.03/1K tokens). Long contexts also
lead to unreliably attention and hallucinations [34].

Our intuition is that developers and data scientists do not de-
sign features in one-shot from the raw data either. Instead, they
perform exploratory data analysis (EDA), and understand the prob-
lem context—both to reduce the amount of information to keep
in their human memory, identify the salient semantics relevant to
the problem, and then use the knowledge to synthesize features
that incorporate the problem semantics. To this end, we propose
an agent-based framework for data transformation. Each agent
specializes in a particular task and summarizes the information
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Figure 7: (a) Architecture for Agent-based Data Transforma-
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mance (R2) across different ML models.

in a form consumable by an LLM or another agent. The design is
illustrated in Figure 7a, with the following agents:

o EDA: This agent explores data and related docs to suggest trans-
formations. Our implementation inputs the ML task contexts, a
sample of ten rows, and column aggregates (min, max, median),
and let this agent output a list of data transformations in NL.

e Coder: Each suggested transformation by EDA is designated to
one Coder, which also inputs the related column samples and
outputs a Python function to implement the transformation.

e Debugger: This agent inputs the function, accesses a Python
environment, and ensures that the function can run. Following
[43], Debugger iteratively modifies the function based on error
messages. By default, the debugging is retried up to 10 times; if
it still fails, that transformation is ignored.

e Reviewer: This agent evaluates the outputs from Debugger to
ensure transformations meet EDA’s requirements. It reviews the
sample transformed data, and confirms if it aligns with the NL
description by EDA to finalize the transformation.

4.1.1  Experiments. We evaluated linear regression, XGBoost, Auto-
Sklearn, and TabNet [8] (SOTA DNN for tabular data) on the Kaggle
Airbnb data [4], and report model R2. We compare no transforma-
tions, transformations using GPT-4 agents (us), and transformations
using ada-002 embeddings (which create high-dimensional features
for string columns). Figure 7b shows that agent-based transforma-
tion trumps model complexity and transformation approaches. The
agents suggested diverse and useful transformations, from standard
one-hot-encoding to more complex ones, such as string extraction
and calculating stay duration from date strings. The most exciting
result is that, with agent-based transformations, linear regres-
sion (which is easy to maintain, and fast to train & predict as
compared to NN models) out-performed all others.

Our ongoing work moves toward a data store that continuously
evolves and improves the transformations. This introduces novel
challenges, such as how to efficiently update the sketches under
DP [22], incorporate new information about datasets over time (e.g.,
crawl the web for data documentation), manage a library of diverse
agents, and interact with the central data store.

4.2 Causal Inference

Causal Inference (CI) seeks to answer questions such as “What is
smoking’s impact on cancer?" It is distinguished from standard ML,
which focuses on learning correlations (e.g., “How correlated is

Zezhou Huang, Jiaxiang Liu, Haonan Wang, and Eugene Wu

smoking to cancer?”) because relationships are asymmetric, and
the causal direction matters. CI queries rely on an accurate causal
model, represented as a directed acyclic graph (DAG). Without
key confounders [54], its intervention estimates can be arbitrarily
incorrect. Dataset search offers the potential to find these missing
variables and discover a sufficient causal model.

Factorized Causal Discovery. Existing causal discovery algo-
rithms [19] only infer an equivalence class of DAGs given obser-
vational data alone. For example, conditional independence tests
may determine that smoking and cancer are dependent, but cannot
infer smoking causes cancer. Fortunately, the causal direction can
be determined assuming sufficiency (no unobserved confounders),
non-Gaussian noise, and linear relationships [48]. Consider, X and
Y with X ~ U(0,10) and Y = 2X + € ~ U(0, 10). A linear regressor
using X to predict Y yields residuals resy AL X because e UL X, but
the residuals when using Y to predict X yields resy AL Y.

However, the assumptions are not realistic in practice. Fortu-
nately, 1-N and N-N relationships between relations create colliders,
on a lifted representation of variables, discoverable by conditional
independence tests [35] that relax the linearity and non-Gaussian
noise assumptions. Our ongoing work focuses on using semi-rings
to integrate these ideas into Mileena’s fast and DP framework.

Differentially Private Treatment Effects. Given a causal dia-
gram, existing techniques [44] that evaluate treatment effects re-
quire the distribution of treatment, target, and adjustment variables,
potentially from different relations. This requires joining privatized
relations, which may amplify DP noise so much that the resultant
join distribution is ineffective. However, [31] shows that treatment
effects are computable from marginal distributions.

We ran a synthetic experiment with 3 relations Ry (T, Y), Rz (T, G),
R3(P, A, Y); with binary attributes student qualification (T), overall
score (Y), gender (G), student participation (P), and assignment com-
pletion (A), DP budgets € = 1and § = 107, and 1-to-1 relationships.
The causal diagramis T — P — A — Y and D is a confounder
between T and Y (T « D — Y). We intervene on T and estimate
its expected effect on Y, E[Y | do(T = 1)] (ATE = E[Y | do(T =
1)] — E[Y | do(T = 0)]). We compare relative error using (1) back-
door adjustment by estimating P(X, Y, G) from privatized R; and Ry,
thenRy > Rp. (2) Xy y Xy P(a|t) Zp P(y | a,p)P(p) by estimating
P(A, T) from privatized Ry and R3, then R; > Rz along with a noisy
histogram of R3. Their respective relative errors were 10.25% and
0.21%. Surprisingly, splitting the privacy budget between R3 and its
histogram greatly improves estimate accuracy. Our ongoing work
designs intermediates from each dataset based on semi-ring aggre-
gations to (1) represent the marginal distribution of the dataset, and
(2) support computation of the joint distribution through joins.
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