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ABSTRACT
Successful supervised learning models rely on predictive features,

which rarely come from a single dataset. As a result, relevant da-

tasets need to be integrated before training the actual model. This

raises one natural question: “how can one efficiently search for pre-
dictive features from relevant datasets for integration with responsible
AI guarantees?". This paper formalizes the question as the data
augmentation search problem with an objective of minimizing the

search latency. We propose SET, an interactive system that intakes

a supervised learning task and searches for a set of join-compatible

datasets that optimally improve the performance of the task. Specif-

ically, SET manages a corpus of relational datasets, uses linear re-

gression as a proxy model to evaluate augmentation candidates, and

applies factorized machine learning to accelerate model training and

evaluation algorithmically. Furthermore, SET leverages system and

hardware optimizations to maximize parallelism across augmenta-

tion searches. These allow SET to search for a good augmentation

plan over 1 million datasets with a latency of 1.4 seconds.
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1 INTRODUCTION
Existing relational data repositories [4, 15] present themselves as

potential data sources to improve supervised learning tasks. How-

ever, the conventional method of keyword-based searching through

dataset metadata [5] requires significant manual efforts on integra-

tion and evaluation. As a result, task-based data search has emerged

as an autonomous solution for finding relevant datasets to improve

data-centric tasks such as supervised learning [7, 9, 10, 12–14, 16].

These search systems intake a task represented by a dataset 𝑇 and

a target variable 𝑌 , and identify datasets to augment the dataset by

joining with𝑇 to add new features (vertical augmentation). Training
an SL model on this augmented data can significantly improve its

accuracy. To maximize the accuracy of a downstream SL task, the
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Figure 1: Overview of SET Architecture.

search system aims to find the best sequence of vertical augmen-

tations (augmentation plan). To achieve responsible AI, human-in-

the-loop is often necessary in deciding an integration for datasets

discovered by the search system.

For human-in-the-loop tasks, latency is a crucial criteria; even

in a large data repository with over 1M join compatible features,

human expect quick and interactive responses (∼1s) to maintain

engagement. This paper formalizes the data preparation step for a

supervised learning task as the data augmentation search problem
where the objective is to minimize latency in identifying relevant

datasets. However, maintaining low latency is challenging for data

augmentation searching systems when processing large data repos-

itories due to expensive evaluation and the exponential search

space. Existing works identify a set of candidate tables for augmen-

tation and evaluate the prediction accuracy of each augmentation.

For example, techniques like ARDA [7] support vertical augmen-
tation; it materializes the augmented dataset and retrains a model

to assess the augmentation quality. Targeting general data tasks,

Metam [10] proposes clustering similar datasets to reduce the num-

ber of augmentation candidates and achieves comparable accuracy

enhancements. The main limitation of these approaches is that they

need to materialize joins, followed by time-consuming retraining,

making it impossible to achieve interactive speeds.

Saibot [12] is a differentially private data augmentation search

platform that leverages concepts in factorized learning to avoid

materializing joins. Firstly, Saibot introduces a cheap-to-train proxy
model, linear regression, to assess the quality of the prediction task

over augmentation candidates. Secondly, Saibot greedily finds the

next optimal vertical augmentation candidate, with a non-trivial

accuracy improvement, to account for the target variable 𝑌 ; this

approach reduces potential false positives over augmentation can-

didates. Finally, Saibot incorporates semi-ring aggregations to en-

hance its performance. Several semi-ring structures have been de-

signed to represent common statistics, such as counts and sums,

which support training a wide range of machine learning mod-

els, including linear regression. One of the key strengths of these

semi-ring structures is their inherent distributive property. This
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property allows for the efficient computation of statistics across

joins, even without the expensive materialization. As a result, Sai-

bot pre-computes semi-ring structures for each dataset differential

privately, indexing these structures by join keys to enhance data dis-

covery. This approach allows Saibot to achieve SOTA performance

in evaluating each augmentation candidate (∼1-5ms), whereas exist-

ing data search systems [7, 10] take seconds. However, even though

it is cheap to evaluate each augmentation candidate, sequentially

evaluating all of them in a large data corpus (>1M join compati-

ble features) is still expensive, even with multi-threading. This is

because Saibot has not fully harnessed hardware optimizations.

One key observation is that training and evaluating augmen-

tation candidates can be rewritten as matrix operations over the

semi-ring structures between matching join keys, making GPU a

good fit for optimization. However, a direct application of GPUs

faces a challenge due to their need for substantial data sizes and

uniform operations to operate effectively: first, each augmentation

candidate is too small to fully utilize GPU capacity, and second, dif-

ferent augmentation candidates join differently with 𝑇 . As a result,

even though naively clustering datasets solves the data size prob-

lem, the second challenge still persists. To allow fast evaluation of

all augmentation candidates in the data corpus while guaranteeing

a comparable quality of the augmentation plan, we propose SET, a
GPU-based data augmentation search system that builds on top of

Saibot. SET addresses the challenges by proposing a novel search

algorithm that (1) pre-clusters augmentation candidates based on

join key domains and (2) evaluates augmentation candidates on

the residuals of target variable 𝑌 , instead of 𝑌 itself. This approach

transforms the task of evaluating each augmentation candidate

into simultaneously evaluating a cluster of augmentation candi-

dates. Within each cluster, evaluating each augmentation candidate

becomes independent vector multiplications of the same dimension-

ality, making it possible to leverage GPU parallelization to expedite

the search process and ensure interactive latency.

SET’s key result is depicted in Figure 2, highlighting accuracy

improvement over time. This was tested on a collection of 322

datasets from NYC Open Data [4], 741 datasets from Data.gov [8],

and a synthetic dataset containing 1M join compatible features.

With clustering by join key and residual fitting, SET greatly reduces

the search latency between iterations from ∼ 150s to ∼ 1s. The

overall quality, measured in terms of accuracy, of the finalized

augmentation plan is consistent with that of Saibot.

2 BACKGROUND
Problem Definition. Let D = {𝐷1, 𝐷2, . . . } be a relational data
repository where each 𝐷𝑖 is provided by some data provider. A

user issues a supervised learning task by providing a dataset𝑇 that

contains the target variable 𝑌 . During the augmentation search,

SET aims to find a good augmentation plan P = [𝐴1, · · · , 𝐴𝑛] that
specifies a sequence of vertical augmentation 𝐴: 𝐴(𝐼 ) applies an
augmentation to a dataset 𝐼 , and is defined as 𝐴(𝐼 ) = 𝐼 ⋈𝑗𝐴 𝐷𝐴

for vertical augmentation
1
. Applying augmentation plan to the

1
For notational convenience, we assume the 𝑗𝐴 remains consistent between 𝐼 and 𝐷𝐴 .

More generally, SET employs Aurum [9] to discover augmentation candidates, which

supports equijoins; in fact, the factorized learning techniques support any type of join,

including theta and anti-joins.

>100x

Figure 2: The accuracy of the data augmentation discovered
by SET for the SAT dataset from a corpus with > 1M join-
compatible features. The accuracy in the y-axis uses the 𝑟2

score of a linear regression model evaluated on the discov-
ered augmentation plan; the x-axis measures the latency in
seconds with the logarithm scale.

training dataset𝑇 is defined as P(𝑇 ) = 𝐴𝑛 (𝐴𝑛−1 (· · ·𝐴1 (𝑇 ))). More

formally, the augmentation search problem can be defined as

Problem 1 (Task-Based Data Search.). Given a dataset 𝑇 and
a target variable 𝑌 as input where 𝑇 , find an augmentation plan P∗
that maximizes test accuracy with respect to 𝑇 :

P∗ = argmax

P
𝑎𝑐𝑐 (𝜃,P(𝑇 ))

𝑠 .𝑡 . 𝜃 = 𝑀.𝑡𝑟𝑎𝑖𝑛(P(𝑇 )),
𝜃 ∈ 𝑀 (model type constraint)

System Overview. Figure 1 presents the system components and

control flow, with components enclosed in black boxes representing

integral parts of SET, and the component in blue can be outsourced

to an external service (we use Aurum for augmentation candidate

discovery). At a high level, SET’s components are divided into on-
line and offline phases. While offline, SET collects a large volume

of datasets as augmentation candidates, preprocesses them, and

builds indexes to serve requests efficiently in the online phase.

During the online phase, SET greedily constructs the optimal aug-

mentation plan P∗ in Problem 1.

Offline Phase. SET clusters datasets inD sharing similar join keys,

forming distinct clusters {𝐶1,𝐶2, . . . }. For each cluster 𝐶𝑖 , a join

key domain J𝑖 is specified (detailed in Section 3). Additionally, SET
computes sketches to facilitate data discovery and augmentation

search—it pre-aggregates attribute profiles with respect to each

dataset’s corresponding join key domain. SET also implements

basic cleaning, standardization, and feature transformations.

Online Phase. The user submits request (𝑇,𝑀), SET sets the initial
P∗ to be an empty set, and finds horizontal augmentation candi-

dates by matching schemas and vertical augmentation candidates by
matching join key domains. For each iteration, SET greedily adds

the best augmentation candidate to the current augmentation plan.

This process continues if the improvement on accuracy, (adjusted)

𝑟2
score in our implementation, of the proxy model evaluated on

P(𝑇 ) is over a hyper-parameter 𝛿 .

Annotated Relations and Semi-ring Aggregates. The annotated
relational model, as described in [6], maps a tuple 𝑡 ∈ 𝐷𝑖 to a

commutative semi-ring (D, ⊕, ⊗, 0, 1), where D is a set, ⊕ and ⊗
are commutative binary operators closed over D. The elements
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Figure 3: Factorized learning optimization to compute suffi-
cient statistics for simple linear regression over 𝐷1 ⋈𝐴 𝐷2.

0/1 represent the zero/unit elements in D satisfying 𝑥 ⊕ 0 = 𝑥

and 𝑥 ⊗ 1 = 𝑥 . As a concrete example, ordinary addition (+) and

multiplication (×) over real numbers, R, form a commutative semi-

ring. An annotation for 𝑡 ∈ 𝐷𝑖 is denoted as 𝐷𝑖 (𝑡), and 𝐷𝑖 (𝑡) = 0

for 𝑡 ∉ 𝐷𝑖 . Some group-by aggregations, unions and joins can be

rewritten as operations over annotations:

• (𝛾A𝐷𝑖 ) (𝑡) =
∑︁{𝐷𝑖 (𝑡1) | 𝑡1 ∈ 𝐷𝑖 , 𝜋A (𝑡) = 𝜋A (𝑡1)}.

• (𝐷1 ⋈ 𝐷2) (𝑡) = 𝐷1 (𝜋𝑆𝐷
1

(𝑡)) ⊗ 𝐷2 (𝜋𝑆𝐷
2

(𝑡)).
(1) The annotation of tuple 𝑡 after a group-by sum aggregation

is the sum of all annotations sharing the same A with 𝑡 . Here,
∑︁

represents pairwise ⊕ operation across all annotations.

Factorized Linear Regression. SET employ factorized learning

to train linear regression over augmented datasets and prevent

the expensive cost of materializing the joins and unions. Here, we

provide the high-level intuition; the technical details can be found

in [13]. Given the training data (X, y) for X ∈ R𝑛×𝑘 and y ∈ R𝑛×1
,

the analytic solution for a linear regression model is (X𝑇X)−1X𝑇 y.
If we treat 𝑌 as a special feature, the core statistics in the analytic

solution are the sum of pairwise products between features (X𝑇X
and X𝑇 y). These statistics can be be derived from aggregating

annotations instead of the original data. By leveraging the fact that

⊗ can be distributed over ⊕ in commutative semi-rings, we may

aggregate features locally per join key before joining the relations

to train linear regression over them. Such pre-aggregation step

is conducted offline. Then, aggregated semi-ring sketches can be

combined using (𝑐1, s1,Q1
) ⊗ (𝑐2, s2,Q2

) = (𝑐1𝑐2, 𝑐1s2+𝑐2s1, 𝑐1Q2
+

𝑐2Q1
+ s1s𝑇

2
). Finally, a sum aggregation (⊕) over the annotations

across all join keys yields X𝑇X and X𝑇 y. We provide an example

in Figure 3 to illustrate how aggregates (𝑐, 𝑠,𝑄 for 0
𝑡ℎ, 1𝑠𝑡 , and

2
𝑛𝑑

order monomials among features) can be computed via local

aggregation as highlighted in blue. For concreteness, consider the

statistics

∑︁
𝑋 = 6 over 𝐷1 ⋈ 𝐷2 in Figure 3; this can be computed

by locally summing 𝑋 across join key 𝑎1 in 𝐷1, multiplied by the

count across 𝑎1 in 𝐷1.

3 PERFORMANCE OPTIMIZATION
The online search algorithm for P is detailed in Algorithm 2. We

use forward feature selection to greedily select the next most bene-

ficial feature that enhances model accuracy. This involves training

and evaluating supervised learning models on augmented datasets

Algorithm 1 Vertical Augmentation Search Algorithm

1: Input: 𝑇,𝑌
2: P ← {}
3: 𝑇 [𝑌 ] ← update 𝑇 [𝑌 ] with prediction residuals

4: for 𝑘 times do
5: for all 𝐷𝑖 ∈ D do
6: for all 𝑓 ∈ 𝐷𝑖 do
7: Augment 𝑇 with 𝑓 , train and evaluate

8: end for
9: end for
10: 𝑓𝑜𝑝𝑡 ← feature improving accuracy the most.

11: Greedily add the next best 𝑓𝑜𝑝𝑡 ∈ 𝐷𝑜𝑝𝑡 to P
12: 𝑇 ← Augment 𝑇 with 𝐷𝑜𝑝𝑡 and update residual

13: end for
14: Return: P

Algorithm 2 Augmentation Search Algorithm

1: 𝑇 ← Original input dataset

2: for all all augmentation candidate in data corpus do
3: Evaluate augmentation by augmenting𝑇 with the candidate

4: end for
5: Return: Optimal augmentation candidate

for each augmentation candidate within D (Lines 5-9). Although

this search process allows for high parallelization across augmen-

tation candidates, scaling the process to match the cardinality of

D is still infeasible, especially for large relational data reposito-

ries. Minimizing latency between search iterations could be signifi-

cantly enhanced by clustering multiple augmentation candidates

and evaluating them simultaneously within a single thread. With

this objective, SET pre-clusters augmentation candidates according

to their join key domains and merges semi-ring structures for all

candidates within each cluster. It then uses a boosting-like method

to predict the residuals of 𝑌 for each search iteration.

3.1 Hardware Optimization
The semi-ring annotations allow us to rewrite training linear regres-

sion over joins as matrix operations over matching join keys. This

makes GPUs well-suited for accelerating such operations. How-

ever, using GPUs effectively is challenging: (1) We need a large

number of threads, typically at least a thousand, to take advan-

tage of a GPU’s capabilities. (2) GPU threads are less versatile than

CPU threads, particularly in handling varied tasks with branching.

They require uniform, straightforward instructions for each task.

In data search, different augmentation candidates join differently

with the input dataset 𝑇 (L6-8 in Algorithm 2), evaluating a single
join candidate using GPUs (1) and the varying join key value sets

for each augmentation candidate (2) can limit the effectiveness of

GPU acceleration.

Cluster by Join Key Domains. To tackle challenge (1), GPU ac-

celeration is selectively applied to popular join keys with a high

number of join candidates, focusing primarily on spatial, temporal,

and domain-specific common key types such as District Borough

Number in NYC open data [4]. For challenge (2), we implement

an offline preprocessing phase. This phase clusters augmentation

candidates based on their join key value sets using hierarchical
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clustering, based on the Jaccard similarity of the join key domain

with a minimum similarity of 0.5. For each cluster, we construct

three tensors in PyTorch, each of size𝑚 ×𝑘 , where𝑚 is the domain

size and 𝑘 is the number of features. These tensors correspond to∑︁
𝑓 2,

∑︁
𝑓 ,
∑︁

1 for each feature 𝑓 (i.e. 𝑋 in Figure 3), including the

special feature 𝑌 , for each join key, and are initialized with zero

for absent domain values. These tensors are stored on disk and

transferred to the GPU as needed. We use GPU acceleration for join

keys with at least a cluster size of 1K.

3.2 System Optimization
Through clustering by join key domains, the number of threads

required to parallel the search process reduced from the number

of datasets in D to the number of clusters. We exploit system

optimization to evaluate various clusters simultaneously.

• Multiple threads. On a single machine, we use multiple threads,

with each thread dedicated to identifying the optimal feature

within a specific cluster.

• Distributed Systems. SET distribute clusters across different

machines. Each machine independently identifies the best fea-

tures among those allocated to it. When a cluster exceeds the

memory capacity of the GPU, SET partitions the features of the

cluster into batches. All batches are indexed by the same join

key domain, and distributed to different machines.

3.3 Algorithmic Optimization
While the system and hardware optimizations allows perfect paral-

lel execution, they introduce a new challenge: for each iteration and

a fixed augmentation feature 𝑓 , SET needs to compute

∑︁
𝑓𝑖 𝑓𝑗 for

𝑓𝑖 , 𝑓𝑗 ∈ P ∪ {𝑓 }. The number of unique

∑︁
𝑓𝑖 𝑓𝑗 increases quadrat-

ically with respect to the number of features in P. Further, the
dimension of the required statistics X𝑇X and X𝑇 y increases lin-

early where computing the matrix inverse could be expensive. To

align better with the GPU architecture, we improve the model train-

ing and evaluation process (L7) with the following algorithmic

optimizations motivated by forward-stagewise regression [11]:

• Residual Fitting. Given the input dataset 𝑇 , SET leverages an

existing AutoML service, such as FLAML [17], and uses features

in 𝑇 to predict the target variable 𝑌 . It then updates 𝑌 to be

the residual of this prediction (L3 in Algorithm 2). SET then

re-calibrate the semi-ring structure of 𝑇 , which only contains∑︁
1,
∑︁
𝑌,

∑︁
𝑌 2

for each join key.

• Boosting. Inspired by boosting, for each iteration of the greedy

search, rather than combining all features inP with the candidate

feature to predict 𝑌 , SET approximate the best augmentation

candidate by finding the one that best predicts the residual of 𝑌 .

After identifying the optimal augmentation candidate, 𝑓𝑜𝑝𝑡 , for

each iteration, SET first augment 𝑇 with 𝑓𝑜𝑝𝑡 and train a linear

regression model to predict𝑌 . Then it updates𝑌 to the residual of

the linear regression model, and finally re-calibrate the semi-ring

structure of 𝑇 (L12 in Algorithm 2).

This approach simplifies multi-variable linear regression mod-

els to incremental simple linear regression models throughout the

search. The training and evaluation of each augmentation candi-

date is further reduced to vector inner products followed by simple

Algorithm 3 GPU Vertical Augmentation Search Algorithm

1: Input: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟1, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑥 , 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑥2 , 𝑢𝑠𝑒𝑟1, 𝑢𝑠𝑒𝑟𝑦, 𝑢𝑠𝑒𝑟𝑦2

2: 𝑐𝑜𝑣𝑥2 ← sum(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑥2 × 𝑢𝑠𝑒𝑟1, dim = 0) ⊲ × represents

matrix multiplication

3: 𝑐𝑜𝑣𝑥 ← sum(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑥 × 𝑢𝑠𝑒𝑟1, dim = 0)
4: 𝑐𝑜𝑣1 ← sum(𝑐𝑙𝑢𝑠𝑡𝑒𝑟1 × 𝑢𝑠𝑒𝑟1, dim = 0)
5: 𝑐𝑜𝑣𝑥𝑦 ← sum(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑥 × 𝑢𝑠𝑒𝑟𝑦, dim = 0)
6: 𝑐𝑜𝑣𝑦2 ← sum(𝑐𝑙𝑢𝑠𝑡𝑒𝑟1 × 𝑢𝑠𝑒𝑟𝑦2 , dim = 0)
7: 𝑐𝑜𝑣𝑦 ← sum(𝑐𝑙𝑢𝑠𝑡𝑒𝑟1 × 𝑢𝑠𝑒𝑟𝑦, dim = 0)
8: 𝑐𝑜𝑣𝑥 ← 𝑐𝑜𝑣𝑥/𝑐𝑜𝑣1 ⊲ element-wise division between vectors

9: 𝑐𝑜𝑣 𝑦̄ ← 𝑐𝑜𝑣𝑦/𝑐𝑜𝑣1

10: 𝑆𝑥𝑥 ← 𝑐𝑜𝑣2

𝑥 − 2𝑐𝑜𝑣𝑥 × 𝑐𝑜𝑣𝑥 + 𝑐𝑜𝑣1 × 𝑐𝑜𝑣𝑥 2 ⊲ sum of square

deviation of 𝑥

11: 𝑆𝑥𝑦 ← 𝑐𝑜𝑣𝑥𝑦 − 𝑐𝑜𝑣𝑥 × 𝑐𝑜𝑣𝑦 − 𝑐𝑜𝑣𝑥 × 𝑐𝑜𝑣 𝑦̄ + 𝑐𝑜𝑣1 × 𝑐𝑜𝑣𝑥 × 𝑐𝑜𝑣 𝑦̄
⊲ sum of cross-deviations of 𝑥 and 𝑦

12: 𝑠𝑙𝑜𝑝𝑒 ← 𝑆𝑥𝑦/𝑆𝑥𝑥
13: 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 ← 𝑐𝑜𝑣 𝑦̄ − 𝑠𝑙𝑜𝑝𝑒 × 𝑐𝑜𝑣𝑥
14: 𝑇𝑆𝑆 ← 𝑐𝑜𝑣𝑦2 − 2𝑐𝑜𝑣 𝑦̄ × 𝑐𝑜𝑣𝑦 + 𝑐𝑜𝑣1 × 𝑐𝑜𝑣 𝑦̄2

15: 𝑅𝑆𝑆 ← 𝑐𝑜𝑣2

𝑦 + 𝑐𝑜𝑣1 × 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡2 + 𝑠𝑙𝑜𝑝𝑒2 × 𝑐𝑜𝑣2

𝑥 − 2(𝑠𝑙𝑜𝑝𝑒 ×
𝑐𝑜𝑣𝑥𝑦 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 × 𝑐𝑜𝑣𝑦 − 𝑠𝑙𝑜𝑝𝑒 × 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 × 𝑐𝑜𝑣𝑥 )

16: 𝑟2 ← 1⃗ − (𝑅𝑆𝑆/𝑇𝑆𝑆)
17: Return: argmax(𝑟2) ⊲ return the index of 𝑓𝑜𝑝𝑡

algebraic operations. For concreteness, consider the right half of

Figure 3 for an illustrating example. With this optimization, the

number of unique

∑︁
𝑓𝑖 𝑓𝑗 to be computed for each augmentation

candidate is constrained to a fixed constant. Moreover, it completely

avoids the expensive matrix inverse operation (X𝑇X)−1
. We em-

pirically show that the quality of the final augmentation plan P(𝑇 )
with approximation using linear regression to predict 𝑌 has similar

accuracy (measured in 𝑟2
) as compared to that without approxima-

tion, while reducing the runtime by over 100x. We leave a rigorous

proof of the accuracy guarantee to future work.

To this end, we may expand line 5-9 of Algorithm 2 (highlighted

in blue) with all our optimization techniques, as shown in Algo-

rithm 3. When processing input data, each iteration of the greedy

search begins with identifying the cluster with overlapping join

key domains. SET then preprocess the residual into three tensors

indexed by the same join key domain, each has dimension𝑚 × 1.

For each iteration of search for best feature (L5-9 in Algorithm 2),

we employ GPU acceleration (Algorithm 3) to parallelize the com-

putation shown in Figure 3.

L2-7 computes various semi-ring aggregates over join. L8-13 cal-

culates statistics for a simple linear regression model. This involves

computing means for the explanatory and target variables (denoted

as 𝑥 and 𝑦), and then determining the sum of squares (L10) and

cross-deviations (L11), which are essential for deriving the slope

and intercept of a simple linear regression model. L14-16 computes

the (adjusted) 𝑟2
value. L17 finds the feature with the highest 𝑟2

value, indicating the feature with the most explanatory power in

the regression model. As shown in Figure 2, our results demonstrate

that this approach allows us to evaluate each iteration with ∼ 1.4

seconds for > 1M features over a join key domain of ∼ 500.
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Figure 4: Accuracy of a linear regression model evaluated on P(𝑇 ), SET finds an augmentation plan with similar accuracy as
compared to that discovered by Saibot while Saibot require 100x more time.
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Figure 5: Cumulative runtime with respect to search iterations for different combinations of optimization techniques.

4 EXPERIMENT
Our evaluation aims to understand two main questions: Q1: How
effectively does the residual-fitting approximation achieve its in-

tended accuracy? and Q2: To what extent do the optimization tech-

niques introduced in Section 3 reduce search latency?

4.1 Q1: Accuracy
Data and Workload. We aim to evaluate the accuracy guarantees

of our proposed method. We collected 322 datasets from NYC open

data [4] and 741 datasets from Data.gov [8]. Among all datasets,

we form 4 different clusters indexed by popular join key domains:

• Year has a domain size of 265 with 2656 joinable features.

• Borough has a domain size of 58 with 1357 joinable features.

• District has a domain size of 923 with 1105 joinable features.

• DBN has a domain size of 6423 with 5168 joinable features.

We then create three supervised learning tasks using the follow-

ing 3 datasets:

• SAT [3] contains 2012 SAT scores, and can be joinedwith features

indexed by DBN.
• Attendence [2] contains 2013-19 school attendance data and

can be joined with features indexed by Year and DBN.
• Math [1] contains 2013-18 Math grades and can be joined with

features indexed by Borough and DBN.
To create supervised learning tasks, we adopt a leave-one-out

strategy: choose 1 of the 1063 datasets from NYC open data and

Data.gov as the input and use the remaining datasets to form the

relational data repository for SET to search from.

Figure 4 shows cumulative latency with respect to the 𝑟2
score

of the augmentation plan, evaluated by training a linear regression

model using all features in P. Empirical results reveal that the 𝑟2

score obtained from a linear regression model, when trained on the

augmentation set identified by SET, has equivalent performance as

that discovered by Saibot.

4.2 Optimization Effectiveness
One key tuning knob for our optimization is the number of clusters

in the relational data repository. Our goal is to understand how

different number of clusters impact the performance of SET’s al-
gorithm. We create synthetic datasets containing 1M numerical

features, and vary the number of clusters (𝑛𝑐𝑙𝑡 = {1, 10000, 1𝑀})
by generating 𝑛𝑐𝑙𝑡 synthetic join keys for each cluster, respectively.

Then, we construct an input dataset that includes a target variable

along with 𝑛𝑐𝑙𝑡 different join keys, corresponding to each cluster.

We report the latency over 5 iterations of the augmentation search

with respect to different combinations of optimization techniques.

Figure 5 shows the cumulative latency with respect to 5 search

iterations. For one single cluster containing 1M features, by cluster-

ing based on join key domains (CLT), SET the cumulative runtime

for more than 10x as compared to Saibot [12]. By incorporating

residual fitting (RF), we observe a stabilization in latency across

iterations. Additionally, the use of GPUs further cuts the cumulative

runtime by another 10x. However, with 10,000 clusters, the benefits

of our optimizations diminish, while SET is still >50x faster than

Saibot [12]. In the extreme case where each cluster only contains

1 feature, residual fitting 𝑅𝐹 guarantees constant latency across

search iterations, whereas the advantage of our hardware optimiza-

tion vanishes.
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5 CONCLUSION
SET is a data augmentation search platform that searches large rela-

tional data repositories to find join-compatible datasets to improve

supervised learning performance. SET employs both hardware and

algorithmic optimizations by introducing a novel approximation

algorithm that transform the search process into matrix operations,

which fits perfectly with the architecture of GPUs. SET is able to

achieve 1.4s latency in finding the optimal feature from over 1M

features, with >100x faster than existing techniques.
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