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newly proposed gWG method.

1. Introduction

This paper will study the generalized weak Galerkin methods for the second order elliptic problems. For simplicity, we consider
the second order model problem that seeks an unknown function u satisfying

=V-(@Vu)=f, in Q,
u=g, on 0%,

(1.1)

where Q is a bounded polytopal domain in R(d = 2,3) and the coefficient tensor a € R¥? is symmetric and uniformly positive
definite.
The weak formulation of the model problem (1.1) is as follows: Find u € H'() satisfying u = g on 042, such that

(aVu, Vo) = (f,v), Vv € Hy (%) (1.2)

where H(;(Q) ={ve H(Q) : v=0on dR}.
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Numerous numerical methods have been developed for solving the second order elliptic problems. The conforming finite element
method is widely employed in scientific and engineering applications due to its simplicity and robustness. However, for certain
model problems involving high-order partial differential equations, it is difficult to construct the conforming finite element. To
address this challenge, several numerical methods have been introduced, such as the discontinuous Galerkin method [1,2], the
hybrid discontinuous Galerkin method [3], the mimetic finite differences method [4], the hybrid-high order method [5], the virtual
element method [6,7] and the weak Galerkin finite element method [8-14].

The weak Galerkin methods were first proposed in [10] for the second order elliptic problems. The most novel aspect of WG
methods is the introduction of locally designed weak partial derivatives. This innovation allows WG methods to offer several
advantages, including high flexibility in polynomial approximations and mesh generation. WG methods have been widely applied
in solving a diverse range of PDEs [15-23]. Later on, the primal-dual weak Galerkin (PDWG) methods were proposed to simulate
certain model problems that are challenging to solve using the traditional numerical methods, such as second-order elliptic equations
in non-divergence form [24], the Fokker-Planck equations [25,26], the elliptic Cauchy problems [27], the first-order transport
problems [28], the div—curl systems with low-regularity solutions [29,30]. Recently, the PDWG methods have been extended to
a more general L? setting by using the L?-primal-dual weak Galerkin methods. The L?-PDWG methods have been developed for
div—curl systems [31], second order elliptic equations in non-divergence form [32], convection-diffusion equations [33], transport
problems [34].

This paper aims to develop a generalized weak Galerkin method for the second order elliptic problem (1.1). Different combina-
tions of finite elements lead to different weak Galerkin methods in which a typical gWG element is of the form P,(T)/P;(dT)/[ P, M
where the weak function is discretized by the polynomial spaces P,(T) and P;(dT), and its generalized discrete weak gradient is
approximated by the vector-valued space [P,(T)]?. We have rigorously established the theory for the error estimates in a discrete
norm and the usual L? norm for the newly proposed gWG methods. A series of numerical results have been demonstrated to verify
the established theory. Compared with other existing results on the standard weak Galerkin methods, the gWG methods can achieve
a convergence rate in a higher order for some combinations of weak finite elements. For example, for the P,(T)/Py(dT)/[P,(T))>
element, the standard WG method diverges; while the gWG method converges in an order (9(h?) in the L? norm.

The paper is organized as follows. In Section 2, we introduce the definition of a generalized discrete weak gradient. Section 3
presents the generalized weak Galerkin scheme for the model problem (1.1). Section 4 derives an error equation for the generalized
weak Galerkin scheme. Section 5 presents some technical results. Section 6 is devoted to establishing some error estimates for the
numerical approximation in a discrete norm and the usual L? norm. In Section 7, various numerical experiments are demonstrated.

Throughout this paper, we will follow the standard definitions for the Sobolev spaces and norms. Let D be any open bounded
domain with Lipschitz continuous boundary in R?(d = 2,3). Denote by |- |, , and | - ||, the seminorm and norm in the Sobolev
space H*(D) for any integer s > 0, respectively. When s = 0, the inner product and norm are denoted by (-, ), and ||-|| p, respectively.
When D = Q, the subscript D shall be dropped in the corresponding inner product, seminorm and norm. We use the notation “5”
to mean “no greater than a generic positive constant independent of the meshsize or functions appearing in the inequalities”.

2. Generalized discrete weak gradient

The goal of this section is to define the generalized discrete weak gradient. To this end, let 7, be a finite element partition
of Q that satisfies the shape regular assumption as described as in [10]. Denote by &, the set of all edges or flat faces in 7, and
82 = &, \ 09 the set of all interior edges or flat faces, respectively. Let Ay be the diameter of T € 7, and h = maxy¢y, hr be the
meshsize of the partition 7. For any given integer r > 0, denote by P,.(T) the set of polynomials defined on T" with degree no more
than r.

Let T € T, be any polytopal element with boundary a7. By a weak function on 7 we mean v = {v,,v,} with v, € L*(T) and
v, € L*(@T). The first component v, and the second component v, represent the values of v in the interior and on the boundary
of T, respectively. It should be pointed out that v, may not necessarily be the trace of v, on dT. Let k > 0 and j > 0 be two given
integers. Let V ;(T) be the local weak function space on each T € 7, given by

Vi j(T) = {v=A{vg, vy} : vp € P(T),v, € Pj(e), eCIT}.
Definition 2.1 (Generalized Discrete Weak Gradient). Let # > 0 be a given integer. A generalized discrete weak gradient for any weak
function v € V| ;(T), denoted by Vg1, is given by

Vg,Tv = Vuyy+ 5gv, (2.1)
where 6,0 € [P,(T)]“ satisfies

B0y 1= (vy = Qpuo. ¥ Mgy, VY € [PA(T)IY, 22
where n is the unit outward normal direction to 9T, and Q, is the usual L? projection operator onto P;(e).
3. Generalized weak Galerkin scheme

This section presents a generalized weak Galerkin scheme for the model problems (1.1). For simplicity of analysis, assume that

the coefficient ¢ in (1.1) is piecewise constant with respect to the finite element partition 7. The following result can be easily
extended to variable coefficient tensor, provided that the tensor « is piecewise sufficiently smooth.
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The global weak finite element space V), is obtained by patching the local weak function space V, ;(T) over all the elements
through a common value v, on the interior edges or faces 82; ie.,
Vi ={v={vg, v} : vl €V, ;(T), T €Ty}
Denote by V}? the subspace of V), consisting of the weak functions with vanishing boundary value on 92 given by
V;?:{v TVEV, vyl, =0, eC0oR}.
For simplicity of the notation, denote by V, the generalized discrete weak gradient V, ; computed by (2.1)-(2.2); i.e.,
(VO = Ve r@lp), vEV,.
For any w, v € V,,, we introduce the following bilinear forms; i.e.,

aw,v) = Y (aVw, V),
TET,

s(w,v) = Z Phi(Qywy — Wy, QyPo = U)ot
TeT),

where p >0 and y € R.

GENERALIZED WEAK GALERKIN SCHEME 1. A numerical approximation for the model problems (1.1) based on the weak formulation
(1.2) can be obtained by seeking u;, = {uy,u,} € V}, such that u, = Q,g on 0£2 satisfying

a(uy, v) + sy, v) = (f,v),  VYoeV. (3.1)
Lemma 3.1. The generalized weak Galerkin scheme (3.1) has one and only one numerical approximation.

Proof. It suffices to show that the homogeneous gWG scheme (3.1) has only the trivial solution. To this end, we take f = 0 and
g=0.Letv=u, € Vh0 in (3.1) gives (aV,u, V,uy,) = 0 and s(uy, u,) = 0. This leads to V,u, = 0 on each T and Qyu, = u, on each 97T
Using the generalized weak gradient (2.1)-(2.2) gives Vu, = 0 on each T and further u, = const on each T. It follows from Q,u, = u,
on each 0T and u, = 0 on 042 that 4y =0 in 2 and u, = 0 on each 9T. This completes the proof of the lemma. [J

4. Error equations

This section is devoted to deriving an error equation for the gWG scheme (3.1). To this end, on each element 7' € 7, denote by
Q, the usual L? projection projector onto P,(T). For each ¢ € H'(T), let Q¢ € V}, be the L? projection such that on each element
T, we have

0p¢ = {Qoh. Oy}

Let s = min{j,#}. Denote by Q, the usual L? projection operator onto [P,(T)]‘.

Lemma 4.1. For any y, € [P(T)] and ¢ € H'(T), there holds

(Vth¢’ ‘I/S)T = (V¢! WS)T + (¢ - QO¢7 V- lI’s)T~

Proof. Using the definition of generalized discrete weak gradient (2.1)-(2.2), s = min{j, ¢} and the usual integration by parts gives

(V0o w)r
=(VQyd +6,0,9.wo)r
=(VOo, W) +(QpP — Qp(QpP), W - Mgr
=(VQo, W r + (b — Qpd, ¥, - m)gr
=(VOyp. ¥ )r + Vo, w)r + (@, V- -w)r —(Qod, V- w)r — (VO b w)r
=(Vo,y)r + (- 0pdh, V- -wy)r.
This completes the proof of the lemma. []

Let u;, € V), be the numerical solution of the gWG scheme (3.1) and u be the exact solution of the model problem (1.1). Denote
by e, the error function given by

ep = Qpu—uy = {eg, ey} = {Qou — up, Qpu — u, }. (4.1)

Lemma 4.2. Let ¢, be the error function defined in (4.1). Then, the following error equation holds true

Y @Vgey, Voo + ey, v) = §,(0), Vv EV], (4.2)
TeT),
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where ¢,(v) is given by
G0 =5(Qpu,0) + Y (= Qou,V - (aQ,V,v))p

TeT,

+ ) Q= D(@Vu), Vog)r + Y (U = Q)@Vu) - n, vy — vy )7 4.3)

TeT), TEeTy,

+ ) @V, Qpu, (I = Q)V,0)r.

TeT,

Proof. From Lemma 4.1 with y; = aQ,V,v and ¢ = u, one arrives at

(Vo 0phu,aQ,V,0)p = (Vu,aQ,V,0)p + - Qyu, V - (aQ,V,0)p. (4.4)

As to the first term on the right hand side of (4.4), using (2.1)-(2.2), s = min{j,#}, (3.1), and the usual integration by parts
gives

Y (Vu,aQ,V,v)r

TeT,
= Y (@Q,@Vw), V)
TET),
= 2 (Q@Vu), Vog)r + (v, = Qpvg. Qu(@Vu) - m)r
TeT),
= ) (@, = D)@Vu), Vog)y — (V - (aVu), vg)y + (aVuu - 1, vg) o7
TET),
+ (v — vy, Qs(aVu) - m)yp
= 3 (@~ D@Va). Vo) +(fo) + 3, (= Q)@Vu) - m,0g — v, “-5)
TET), TET,
= Z Qg — I(aVu), Vo) + (@Vgup, Vo 0)p + s(uy, v)
TeT,
+ Z (I = Q)(aVu) - n, vy — vy )gr
TET,
= Z (Q = I)(aVu), Vog)r — (aV zep, Vo 0)1 + (aV,Qyu, VY, U)r
TeT),
= s(ep v) + 5Qpuv) + Y (I = Q,)@Vu) - n, vy = 07,

TETy,

where we have also used the first equation in (1.1), the fact ZTGTh (aVu -n,vp)sr =0 since v, = 0 on 9£.
Finally, substituting (4.5) into (4.4) gives rise to (4.2). This completes the proof of the lemma. []

5. Technical results

Some technical results will be discussed in this section.
Let 7}, be a finite element partition of £ that is shape regular as described in [10]. For any T € 7, and ¢ € H'(T), the trace
inequality holds true [10]; i.e.,

615 < A7 N7 + hr VI 5.1
If ¢ is a polynomial on T € T,,, from the inverse inequality, there holds [10]

I3, < Bt lIlI3- (5.2)

Lemma 5.1. Let 7, be a finite element partition of Q that is shape regular as described in [10]. For any ¢ € H**(Q) and ¢ € H***(Q),
there holds

Y lle = ool + Y, h2lIV($— QoI S BP*DIIIZ, . .3)
TETy, TET),

2 Vo -QVel + 3, mlIVVe - QV@)l; $ B llgll, - 5.4)
TeT, TeT,

Lemma 5.2. For any ¢ € H**(T), there holds

16,040ll7 S Ml Bll 1 7-



D. Li et al. Journal of Computational and Applied Mathematics 445 (2024) 115833
Proof. It follows from (2.2), the Cauchy-Schwarz inequality, the trace inequality (5.2) and (5.3) that

(6,049 ¥)r
I6.0pdlly = sup ——mm—
welP, (T Iyl

(0pp — Op(Qpd), ¥ - M) o1
 yelp M llwlly
< sup llp — Oodllorllwllor
welP, () lwllr
< sup hM g = Codlirllwiir
iy vl

k
ShT”qb”kJrl,T'

This completes the proof of the lemma. []

For any v € V),, the gWG scheme (3.1) induces a seminorm given by

ol = )’ @V,0,V,0)p + 50, v). (5.5)
TeT),
It is easy to verify || - | is a norm in V0.

Lemma 5.3. For any v € V), there holds

1
7 o=l
(X 1veel2)® s A+ )liell.

TeT),

Proof. From the generalized discrete weak gradient (2.1) and (5.5), one arrives at

(X ||VU0||%)% (X ||Vgu—5gu||%)%

=y TeT,
< o 1 (5.6)
ol + (Y el ).
TEeT,
We use (2.2), the Cauchy-Schwarz inequality and the trace inequality (5.2) to obtain
(5 v, ‘I’)T
l6gollr = sup ————
vetem Wiz
_ (Vp = Qpo, ¥ - Mgy
= sup — —— "=
welP, (T [lwlly
< oy — Qpvollor llw llor
< sup
velP (D) lwlir
_1
Shy? llvy = Qpvollor
This gives
1
2\2 —r=1
(X 16.012)" s A7 poll. 57
TET,
Substituting (5.7) into (5.6) completes the proof of the lemma. []
Lemma 5.4. Recall that s = min{j,#}. For any ¢ € H*'(Q) n H**?(Q) and v € V), there holds
2k+1+4y
[s(Qpe, )| Sh 2 l@llgsillvll, (5.8)
| Y (0= 00,V - (aQ,V, )yl
TET,
(5.9)

< 0, ifs<l, k>0, 0ors>1, k>s—1,
T Aol ol s> 1 k<s—1,
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| Y (@, - D(@Ve), Veg)r|

TET,
0, ifk<l,ors>k—1, (5.10)
~ 25+1—y ) i
(h 2 +h"* el mllvll.  otherwise,
| Y (I = Qy)(@Ve) - m, vy = v)r ]
TeT,
2s+1-y . 11
h= 7 gl ol if k=0, 1D
~ 2s5+1-y 1 .
(b2 + " Ylellsallvll, otherwise,
| Y @V, 040.(1 - Q)V, )|
TET,
0, if s > max{k—1,7¢}, (5.12)
Sqllell il ifk=0, s <max{k—1,¢},
(h*Nl@llisr + B+l Do, otherwise.

Proof. As to the first inequality (5.8), by using the Cauchy-Schwarz inequality, (5.1) and Lemma 5.1, there holds
Q0 ) = Y, ph;(Q4(Qo®) = Q. Q0 — Vy)ar |

TeT),

2 2

SO CAT R R WA T A e
TeTy, TEeTy,
1

$( Y W 1000 - 0l + hrllV@op - @) ) P ol
TET,
2
<

ktl+y
Sh™ 2 ol vl

To derive (5.9), for the case of s < 1 as well as the case of s > 1 and k > s — 1, we have from the definition of L? projection
operator Q, that

| Y (0= 0pp,V - (@Q,V )| =0.

TeT),

1Y @ =0,V - (aQ,V,0))]

Otherwise, the case of s > 1 and k < s — 1, we use the Cauchy-Schwarz inequality, the inverse inequality, Lemma 5.1 to obtain
TET,

5( Z 100 — ¢||2T)5( Z v - (aQngU)“%“)%
TeT,

TeT),

— p)
SH Nl (X, 72 1V,013)

TeT),

k
Sh ol ol

To analyze the inequality (5.10), for the case of k < 1 and the case of s > k — 1, there holds

| Y, (@, - D)@Ve), Vog)r| = 0.

TeT,

For the case of k > 1 and the case of s < k — 1, using the Cauchy-Schwarz inequality, (5.4), and Lemma 5.3 gives

TET),

| ¥, (@ - D@V Verl 5( Y, 1@, - D@Vol2 ) (Y 1Vul )’
TeT),

TET,
4
2

. -1
SEH A+ A7)lell ool
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As to (5.11), for the case of k = 0, note that v, = Q,v,, using the triangle inequality (5.1), and the Cauchy-Schwarz inequality

gives

| Y (I = Qy)(@Ve) - m,v5 = v)r ]

TET,
SI DT = Q)aVe - n, Qyvg = vy)or|
TET,
1 1
. 3 !
S( Y oI - Qs)avqallfﬁ) ( PIWLA o y,,||§T)
TET, TeT),

1
S( X o7y I = Q)aV el + [V = QaVe)IR) ) el
TEeT,
25+

I-y
7 ll@llss2lloll.

<h
For the case of k > 0, we use the Cauchy-Schwarz inequality, the trace inequalities (5.1)-(5.2), (5.4), and Lemma 5.3 to obtain

| X (T = Q)@Ve) - n, vy = v)gr|

TeT,
1 1
S( X 10 -Qo@ol ) (X o = vl )’
TeT, TeT,

S( X A1 = QoaVel + Y bV - Q)aVe)l} )

TeT), TeT),
1
2 2 \2
(X oo = Qavalr + X, 1500 - sl )
TEeT, TeT),
1 1
25+2—1 2 2 2 2 - 2\2
O el T R WA )
TET, TeT),

1
2541 5
= 2 -1 2 - 2)2

$h72 Nollya( X Hh7 Vool +h7 o)

TET),

2541y

<tz + Yol vl

As to (5.12), for the case of s > max{k—1,7}, it follows from the definition of the generalized discrete weak gradient (2.1)—(2.2),

and the definition of Q, that

| Y @V,0,0,( -Q)V, )| =0.

TET,

For the case of s < max{k—1,7}, we apply (2.1), Lemma 4.1 with y; = aQ,V,v, the Cauchy-Schwarz inequality, Lemmas 5.1-5.2,

and the inverse inequality to obtain

| Y @V,0,0.(1 —Q)V, )|

TET),

=| Y (V404,000 = (V,040,aQ,V 07|
TET,

= D) (VO + 6,0,0,aV v}y — (V9,aQ,V,v)r — (@ — Q. V - (aQ,V,0))r |
TET,

= Y (VO - Vo,aV,u)r + (Vo — QVe,aV,0)r + (8,056, aV ,0)r
TET,

= (@ = Q9. V- (@Q,V, )yl

1 1
(X 1VC0w = Voll3 ) lloll + (Y 1V0 - Q.Vel ) el

TeT), TeTy,



D. Li et al. Journal of Computational and Applied Mathematics 445 (2024) 115833

(X ||agQ,,(p||§)%|uvu|+(2 ||¢—Qow||§)%( 3 ||V<a@svgu)||§)%

TET), TET), TET,
1 1 1
2 2 _ 2
(Zrer 1012, )" 0ol + (Zrer, 1012 1) (rer, 721V 0l )
< if k=0, s<max{k—-1,7},
B N1@llsr + B Nl + Ao l@llss + R A gl Do,
if k>0, s<max{k—-1,7},

<

~

llell Mo, if k=0, s <max{k—1,7},
Rl @llsr + 2 @l )l if k>0, s<max{k—-17}.
This completes the proof of the lemma. []

Lemma 5.5. Recall s = min{j,Z}. Let ® € H*(Q) and @ =0 on 082. For any u € H**'(Q) n H**(Q), there holds

R ull 1@l if k=0,
Is(Qput, Q@) 9 ot / (5.13)
e 17PN 11 PO /i
| Y@= Quu.V - (aQ,V,0,®))|
TeT,
0, ifs<l, k>0,0rs>1, k>s—1, (5.14)
Sqlully el ifk=0,5>1,
W |ull gy 1 @]l5,  otherwise,
| ) (@, = )(@Vu), VO @)y |
TeTy,
1
< 0, ifk<l,ors>k-1, (5.15)
T 22 Nully o PN, otherwise,
R+ ull g @l if k=0,
| D (U =Q)@Vu) - n,Qy® - Qy®)r| S 3 = *F , (5.16)
TEZT,, ' P2 ull o @l if k>0,
| Y @V 0pu, (I - Q)V,0,®)r
TET,
0, if s > max{k — 1,7}, (5.17)
S lullli@ll, if k=0, s <max{k—1,7},

W Nullgy + P2 ull )@, i k>0, s < max{k —1,¢}.

Proof. As to (5.13), using the Cauchy-Schwarz inequality, the trace inequality (5.1), and (5.3) gives
[s(Qpu, Qp@)| =| Z PhE(Qy(Qou) — Opit, Q4(Qy @) — Oy P) o7 |

TETy,
1 1
2 2
(X oo —ul,)* (X ohilloe® - @1 )
TETy, TET),

1
5( ZT I (i 1o =l + Ry 9 Qg = ) )
TET,

1
(X 0 100 - @I + AV @y - D))
TeT,

jads s .
A2 ullyh 2 1@y, if k=0,

~ 2k+l4y 34y )
h= 2 h2 lullgg 192, if k>0,
< R ully 1@, if k=0,
RET2 ]|y D, if k>0.

As to (5.14), for the case of s <1 and the case of s > 1 and k > s — 1, using the definition of Q, gives

I Y, @=Qgu, V- (aQ,V,0,®)| =0.

TeT),
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For the case of s > 1 and k < s — 1, using the Cauchy-Schwarz inequality, (5.3), the generalized weak gradient (2.1), the inverse

inequality and Lemma 5.2, yields

| Y, @=Qgu, V- (aQ,V,0,®)|

TeT,
1 1
(X -0} )’ (X Iv,008,)°
TeT, TeT,

1

(Y 190y + 5,0, ) el
TeTy,
1

S (Y IV, + 215,041 ) il
TeT),

1
W(Srer, i1 ) lllly, i k=0,

~ 1

_ 2 .
#1913 + Srer, PRI, ) s if k>0,
_J Ml i k=0,
hk+1||u||k+l ll®ll,, if k>0.

As to (5.15), for the case of k < 1 and the case of s > k — 1, one arrives at

I Y (@Q - I)@Vu), VOy®)r| =0.

TeT,

For the case of k > 1 and s < k — 1, the definition of Q,, the Cauchy-Schwarz inequality and (5.4) are used to obtain

| Y (@ = D(@Vu), VO, @)7 |

TeT,
= Y (@, - D@V, (I - Q)VO®)r|
TET,
1 1
S( X 1@ = Daval)* (X 17 - Q)veol} )
TET), TET,

<Sh M ullyys - KIQu@II,
2
S |ull g4 | D,

As to (5.16), applying the triangle inequality, s = min{j, 7}, the definition of Q,, @ = 0 on d£2, the Cauchy-Schwarz inequality,
the trace inequality (5.1), (5.3)—(5.4) yields

| Y (U = Q)@Vu) - 0, Qg — Q) 51|

TeT,
= Y AU = Q)(@Vu) - n, Q0@ — B)yr + Y (I = Q,)(@Vu) - n,® — O,) 7|
TET, TET,
=| YU = Q)(@Vu) -0, Qp® — )yr| +| Y, (aVu-n,® — Q,®)yrl
TeT, TeT,
= D) (I = Qy)(@Vu) - n,0y® — D) yr| + [(aVu - 0, & = O, ®) 0]
TETy,
1 1
(X 10 -@)avul ) (Y 1w - @l )’
TEeT, TEeT,

TET,

1
S( X 5710 = @aVull + hr IV = Qaval )’

1
Y 1100 - @I+ hrIV(Qy@ = D) )

TeT,
< hstlllullﬁzII‘DIIl, ] if k=0,
T\ rT el - R RPN, if k>0,

< P ullgall@ll. if k=0,
T Al @, if k> 0.
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As to (5.17), for the case of s > max{k — 1,7}, it follows from the definition of Q, that

| Y, @V 04u,(I = Q)V,0,®)r| =0.

TeTy,
For the case of s < max{k — 1,¢}, using (2.1), the definition of Q,, the Cauchy-Schwarz inequality, Lemma 5.2, (5.3)-(5.4) and the
inverse inequality gives

| Y @V 04, (I = QV,0,®)r

TeT,

= D (VOuu + 8,01, a(l = Q)V,0,®)r|
TET),

=| Z (VQou —Vu)+ (I —Qy)Vu + 5thu, a(l — QX)VthtD)Tl
TEeTy,

1
S( X IV = VullZ + 11T = QVul + 116,040l )
TeT),

1
( 2 - QY0012
TET,
1

s( X 1IVQou = Vull3. + (I = Q) Vull3. + h%"nuniH,T) ’
TET,

(X miv.oon,)

TET,

1 1
(Zrer R )* (Zrer, 16,04@12) 7, if k=0, 5 <max{k =17},

1
(Sren, BN, + 12202+ BN, 1) (e, BIVO0® +6,0,@1 ),
if k>0, s<max{k—-1,7},

2=

A
-

1
(Srer, 1912, )y, if k=0, 5 <max{k—1,¢},

< 1

PN el + 1 Ml o) (Srer, BN, + 12 215,0,9112 )
if k>0, s<max{k—-1,7},

llull, @]y, if k=0, s <max{k—1,¢},

1
SVl + 0 Nl oi)( Brer, RIPIE .+ RIDIZ, ),
if k>0, s<max{k—1,7},

< J M@l if k=0, s <max{k—1,7},
T @ Nl + 22 ull )@, if k>0, s<max{k—1,7}.

This completes the proof of the lemma. []

6. Error estimates

The goal of this section is to establish some error estimates for the numerical approximation arising from the gWG scheme (3.1).

Theorem 6.1. Let s = min{j,#}. Assume that the exact solution u of the model problem (1.1) is sufficiently regular such that
u € H*'(Q) n H**2(Q). Let u, € V, be the numerical approximation arising from the gWG scheme (3.1). The error estimate holds
true

JE%% 2541y
(W2 +Dllully +h™ 2 Nullgyn, if k=0, s=jork=0,s=¢,7¢>1,
2s+1

I+y v
h72 lully + 4 lullgyos if k=0, s=2¢, £<1,

< 2kt1+y 2stloy ;
eall S 9 (A2 + Allullesy + (A~ 2 + A+ D)l
if k>0,s>1,k<s—1, or k>0,s <max{k—1,7},

2k+14y 25+1—y )
2 lullgpr + 2+ A5TY|ull o, otherwise.

h

10
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Proof. By takingv=e¢, € V,? in the error equation (4.2), one arrives at

e ll® = Cuen)- (6.1)
Substituting Lemma 5.4 through setting ¢ = u and v = ¢,, into the right hand of (6.1) yields

2541y

Lty . o
(h 2+ DllullyNlepll + 22 Nullg2llepll, if k=0, s=j, j<1,

147 25+1—y . . .
(h2" + Dllullllepll + 272 Nullsyollenll, if k=0, s=j, j>1,
14y 2s5+1—y

2 Nl llepl + 72 Nlullsiolllenll, if k=0, s=2¢, £ <1,

2s+1-y

llenlli> S3 (52 ;
rI”3Y (A2 + Dllull llepll + 22 Nullgolleyll, if k=0, s=¢, £> 1,

2k+1+y & 2s+1-y 1
A7 lull g Menll + A ullpr Mlenll + (A2 + A5 D) lull 12 les N

if k>0,s>1,k<s—1, or k>0,s <max{k—1,7},

2k+1+y 2s+1-y s+l X
h 2 lullgg llepll + (R 2 + A ) |ullyalllepll. otherwise,

I+y 25+1—y X .

((h2 + Dllully + A2 Nullgdllenll, if k=0, s=jork=0,s=¢, £>1,
I+y 25+1—y .

(2 flully + 22 lullgyllenll,  if k=0, s=¢, £<1,

2s5+1—y

2k+1+y k 1
(2 +hOullggy + 2 + R D)lull ) epl,
if k>0,s>1,k<s—1, or k>0,s <max{k—-1,7},

2k+14y 2s+1—y +1 X
(A2 lullggy + 2 + B ))lull ) lleplll otherwise,

N

which leads to the desired error estimate. This completes the proof of the Theorem. []

Remark 6.1. Theorem 6.1 implies that our gWG scheme (3.1) achieves a superconvergence order of @(h) in a discrete norm for
the case of k=0, s=¢, £ = 1, y = 1 and an optimal convergence order O(h*) for the case of k >0, s=k—1, y = —1.

We shall derive an error estimate for the numerical approximation in the usual L? norm by using the standard duality argument.
To this end, we shall consider the following dual problem that seeks @ € H?(f2) satisfying
—V - (aV®) =¢,, in 2,

(6.2)
D=0 09Q.

We assume that the dual problem (6.2) satisfies the H? regularity property in the sense that there exists a positive constant C such
that

121, < Cllegll- (6.3)

Theorem 6.2. Let s = min{j,#}. Let u, € V), and u € H**1(Q2) n H**2(Q) be the numerical solution of the gWG scheme (3.1) and the
exact solution of the model problem (1.1), respectively. In addition, assume that the dual problem (6.2) satisfies the H? regularity property
(6.3). Then, the following error estimate holds true

[ )
(2 +h2)leyll, if k=0, s=¢, £<1,
llegll S5 Mepll,  if k=0, s=¢, £>1, 0rk=0, s=j,

1z

34y
(2 +h 2 +Dlleyll, if k>0,

where [le,|| is given by Theorem 6.1.

Proof. Testing the dual equation (6.2) against e, and using the usual integration by parts, we have
llegll”> =(=V - (@Ve), ep)

= ) (@V®, Veg)r — (aVe@ - n,e)yr
TeT,

= Z (I = Qu)(aV®P),Veg)y —(aVD - n, ey — e;) o7
TET,

+ (Q,(aV®), Vey)r,

where we used the fact Yo7 (aV® -, e;)5r = 0 since e, = 0 on 9£2.

6.4

11
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To deal with the last term on the last line in (6.4), choosing u = @ and v = ¢, from the third line in (4.5), (4.4), and s = min{j, ¢},
we obtain

Y (@Q,(aVe), Veg)r
TeT),

= Y (V®,aQ,V,e;)r — (e — Qpeg, Qu(@Ved) - n)yr
TeT,

= ) (V,0,®,aQ,V ) — (@ = Qy®,V - (aQ,V e;))r ©5)
TET, :

= (ey — €, Qs(aVD) - m)yr

= Z (anQh(D,(QS - I)Vgeh)T + (anQh(P, Vgeh)T
TeT),

— (@ - QyD.V - (aQ,V,ep))r — (e — €9, Qs(aV®P) - myr.
Substituting (6.5) into (6.4) and using the error equation (4.2) with v = Q,® € Vho, we get

llegl® = Y (I = Q)@V®), Veo)r + (@, = )(@V®) - n,e) — €)o7
TEeTy,

+ (aV,0,P,(Q, — DVgep)r — (@ — Qp®@, V - (aQ,Vgep))r
+ §(0,D) — s(e;,, 0, D)

=—Lo(ep) + §(Q D) + 5(Q), D, epy) — s(ep, Oy P)

=—Colep) + §(0pP),

(6.6)

where the terms {4(e;,) and ¢,(Q,®) are given by (4.3).
Next, it suffices to deal with the two terms on the last line in (6.6). As to the first term {y(e;,), using (4.3), Lemma 5.4 with
@ =@, v=e, and (6.3), there holds
[Ca(ep)l
(2 + DIl eyl + A2 N1 @llallegll, if k=0, s=j, j <1,

(7 + Dl@llllepll + A2 N1 @llallepll, if k=0, s=j, j>1,

N

Ly 1y ,

h2 (@l llegll + A2 lI@laMlesll, if k=0, s=¢, £ <1,
Ly =y _

(T + Dl@llllepll + 22 1 @llallenll, if k=0, s=£,£>1,
EIt iy ,

(2 +h+h2)Pllyllepll, if k>0,

Ly Ly . 6.7)
hZ || @l llepll + 272 1@l llepll,  if k=0, s=¢, £<1,
SY 2+ DlI@llle,ll + A2 @l llesll,  if k=0, s=¢, £>1, 0r k=0, 5=,
Sﬂ

1y
(h2 +h2 +D)Plsllepll. if k>0,

14y

-
T + R D)legllllenll, if k=0, s=¢, £<1,

N

¥

14 1-
(2 +h 7 +Dlegllllenll.  if k=0, s=¢, £>1, or k=0, s=J,

EE A 7 )
(h2 +h 2 +h)llellllexll, if k>0.
As to the second term ¢,(Q,®), from Lemma 5.5 and (6.3), we have

[£.(0nP)]
(@ + Dllally + A ull D@, if k=0, s=j, j<1,
A+ Dlully + 2 ull gDl @N, if k=0, s=j, j>1,
A ully + 2 ull gDl @ll, if k=0, s=¢, £ <1,
59 (T Dlully + 2 ull gDl @, if k=0, s=¢, £> 1,
(A2 1 ROl g+ B2l )| D

if k>0,s>1,k<s—1, or k>0,s <max{k—1,7},

(W2 Nullepr + B+ ull gD 191l otherwise,

12
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W ully + A ullg)lleoll,  if k=0, s=¢, £<1,

(A + Dllally + A+ ull D lllegll, k=0, s=¢, £>1, or k=0, s=j,

A+ R gy + B2 (lull42) el (6.8
if k>0,s>1,k<s—1, or k>0,s <max{k—1,7},

72wl + B2 Nl ) lleo s otherwise.

N

Substituting (6.7)-(6.8) into (6.6) leads to the desired results. This completes the proof. []

Remark 6.2. Theorem 6.2 implies that ||e,|| has an optimal convergence order of O(h**!) for the case of k=0,s=¢,¢ =1,y =1
and the caseof k> 1,s=k—1,y =—1.

To establish the error estimates for e,, we introduce the following norm

1
2 \2
leslle, = (5 ArllesliZr )’

TET,

Theorem 6.3. In the assumptions of Theorem 6.1, we have the following error estimate

Lyl
(2 +h72)|legll, if k=0, s=¢,¢<1,
.
lleglle, <4 1 +hT’>|||e,,|||, ifk=0,s=¢,¢>1, ork=0,s=,
3+ 1
(B2 +hT 4 Wlleyll, if k>0,

where ||e,|| is given by Theorem 6.1.

Proof. It follows from the triangle inequality, the trace inequality (5.2) and (5.5) that

2 2 2
> hrliesly < Y hrllQyeollly + hrlle, = Qpeqlidy
TeT, TeT,

2 1- 2
SIQyeoll® + A lley i
2 1- 2
Slieoll? + A lle, 1%,

which, together with Theorems 6.1-6.2, leads to Theorem 6.3. This completes the proof of the theorem. []
7. Numerical experiments

In this section, a series of numerical experiments are presented to verify the convergence theory established in the previous
sections.

Recall that the generalized discrete weak gradient is computed by (2.1)—(2.2). For the simplicity of notation, the gWG element
and the generalized discrete weak gradient are denoted by P,(T)/P;(T)/ [P,(T)]* element. We choose a in the model problem (1.1)
to be an identity matrix on the unit square domain £ = (0, 1)*>. The uniform triangular partition and the uniform rectangular partition
are employed. The uniform triangular partition is obtained through a successive refinement of an initial triangular partition of the
domain 2 by connecting the middle points of the edges of each triangular element. The uniform rectangular partition is generated
from an initial 3 x 2 rectangular partition of £ with the next level of partition being obtained by connecting the middle points on
the two parallel edges. In all tables, “Theory.rate” means the convergence theory established in this paper; and “N/A” means the
convergence rate that has not been developed in this paper.

7.1. The gWG elements on the uniform triangular partition with smooth solutions

In this section, the uniform triangular partition is employed and the exact solution is chosen as u = cos(xx) cos(xy).

Table 7.1 illustrates the performance of the P,(T)/Py(dT)/[P,(T)]* elements with k = 3,4,5,6. The stabilization parameters are
given by p = 1 and y = —1. For k = 3,5, 6, the numerical convergence rate is in a good consistency with the theoretical convergence
rate for [le,ll, llegll and |le, |, respectively. For k = 4, the numerical convergence rate is consistent with the theoretical convergence
rate for |le,|| & and is higher than the theoretical convergence rate for [|e,[| and [legl|.

The numerical results for the Py(T)/P;(dT)/ [P,(T)]* element with y = 0 and y = 1 are shown in Tables 7.2-7.3. The stabilization
parameter is p = 1. We can see from Table 7.2 that the numerical results consist with the theoretical rates of convergence. In
addition, for the Py(T)/P;(oT)/ [P,(T)]? for j = 1,2 elements, the convergence rate for ||e,|| seems to be in an convergence order of
O(h) which exceeds the theoretical prediction @(h%3). We observe from Table 7.3 that the numerical performance of gWG methods
is typically better than what the theory predicts.

13
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Table 7.1
Numerical errors and convergence rates for the P (T)/P,(dT)/[P,(T)]* elements.
1/h le,l Rate lleoll Rate lleslle, Rate
k=3
8 1.56E-04 3.00 1.33E-06 4.11 4.13E-06 3.99
16 1.95E-05 3.00 8.03E-08 4.04 2.60E-07 3.99
32 2.45E-06 3.00 4.96E-09 4.02 1.63E-08 3.99
64 3.06E-07 3.00 3.08E-010 4.01 1.02E-09 4.00
Theory.rate 3.0 4.0 4.0
k=4
4 1.85E-04 4.86 9.12E-06 5.90 1.55E-06 5.61
8 6.58E—-06 4.81 1.49E-07 5.94 3.79E-08 5.35
16 2.79E-07 4.56 2.59E-09 5.85 1.09E-09 5.12
32 1.47E-08 4.25 5.40E-011 5.58 3.34E-011 5.03
Theory.rate 4.0 5.0 5.0
k=5
2 5.89E-03 5.07 6.89E-04 6.08 5.15E-05 5.88
4 1.94E-04 4.92 1.13E-05 5.92 9.22E-07 5.80
8 6.15E-06 4.98 1.80E-07 5.98 1.50E-08 5.94
16 1.93E-07 4.99 2.81E-09 5.99 2.39E-010 5.97
Theory.rate 5.0 6.0 6.0
k=6
2 6.07E—-03 5.07 7.20E-04 6.08 5.32E-05 5.88
4 2.00E-04 4.92 1.19E-05 5.92 9.55E-07 5.80
8 6.34E-06 4.98 1.88E-07 5.98 1.56E-08 5.94
16 1.99E-07 4.99 2.95E-09 5.99 2.48E-010 5.98
Theory.rate 5.0 6.0 6.0
Table 7.2
Numerical errors and convergence rates for the Py(T)/P;(T)/[P, (T)]* elements when y = 0.
1/h eyl Rate lleol Rate lleyll, Rate
j=0,¢=0
16 9.35E-01 0.48 8.77E-02 0.99 9.17E-03 1.09
32 6.65E-01 0.49 4.42E-02 1.00 4.46E-03 1.04
64 4.71E-01 0.50 2.21E-02 1.00 2.20E-03 1.02
128 3.34E-01 0.50 1.11E-02 1.00 1.09E-03 1.01
Theory.rate 0.5 1.0 1.0
j=1,¢=0
16 9.96E-01 0.48 8.77E-02 0.96 5.55E-02 0.94
32 7.09E-01 0.49 4.42E-02 0.99 2.82E-02 0.98
64 5.03E-01 0.50 2.21E-02 1.00 1.42E-02 0.99
128 3.56E-01 0.50 1.11E-02 1.00 7.14E-03 0.99
Theory.rate 0.5 1.0 1.0
j=1,7¢=1
16 8.86E-02 1.01 1.27E-02 0.98 2.23E-02 1.01
32 4.39E-02 1.01 6.37E-03 1.00 1.11E-02 1.01
64 2.18E-02 1.01 3.18E-03 1.00 5.50E-03 1.01
128 1.09E-02 1.01 1.58E-03 1.00 2.74E-03 1.00
Theory.rate 0.5 1.0 1.0
j=2¢=1
16 8.98E-02 1.03 1.27E-02 0.98 2.24E-02 1.04
32 4.42E-02 1.02 6.37E-03 1.00 1.11E-02 1.02
64 2.19E-02 1.01 3.18E-03 1.00 5.50E-03 1.01
128 1.09E-02 1.01 1.58E-03 1.00 2.75E-03 1.00
Theory.rate 0.5 1.0 1.0
j=2¢=3
16 6.20E—00 —-0.03 1.62E-01 -0.01 2.85E-01 0.05
32 6.26E—00 -0.01 1.62E-01 0.00 2.81E-01 0.02
64 6.28E-00 -0.01 1.62E-01 0.00 2.80E-01 0.01
128 6.30E—00 —-0.00 1.61E-01 0.00 2.80E-01 0.00
Theory.rate 0.0 0.0 0.0
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Table 7.3
Numerical errors and convergence rates for the Py(T)/P;(0T)/[P, (T)]* elements when y = 1.
1/h le,l Rate llegll Rate lleslle, Rate
j=0,£=0
16 3.17E-00 -0.01 1.02E-00 -0.01 1.98E-03 1.99
32 3.17E-00 —-0.00 1.02E-00 —0.00 4.95E-04 2.00
64 3.18E-00 —-0.00 1.02E-00 —-0.00 1.24E-04 2.00
128 3.18E-00 —-0.00 1.02E-00 —-0.00 3.09E-05 2.00
Theory.rate 0.0 0.0 0.0
j=1,¢=0
16 3.17E-00 -0.01 1.02E-00 -0.01 5.48E-02 0.94
32 3.17E-00 —0.00 1.02E-00 —0.00 2.79E-02 0.97
64 3.18E-00 —-0.00 1.02E-00 —-0.00 1.41E-02 0.99
128 3.18E-00 —-0.00 1.02E-00 —-0.00 7.06E-03 0.99
Theory.rate 0.0 0.0 0.0
j=1,¢=1
16 1.46E-02 1.93 2.22E-03 1.92 3.88E-03 1.96
32 3.73E-03 1.97 5.62E-04 1.98 9.76E-04 1.99
64 9.38E-04 1.99 1.41E-04 1.99 2.45E-04 2.00
128 2.35E-04 2.00 3.53E-05 2.00 6.12E-05 2.00
Theory.rate 1.0 1.0 1.0
j=2¢=1
16 1.53E-02 1.93 2.22E-03 1.92 4.48E-03 1.96
32 3.88E-03 1.98 5.62E-04 1.98 1.13E-03 1.99
64 9.77E-04 1.99 1.41E-04 1.99 2.83E-04 2.00
128 2.45E-04 2.00 3.53E-05 2.00 7.07E-05 2.00
Theory.rate 1.0 1.0 1.0
j=2,¢=3
16 6.19E-00 -0.03 1.62E-01 -0.01 2.85E-01 0.05
32 6.25E-00 —-0.01 1.62E-01 0.00 2.81E-01 0.02
64 6.28E-00 —0.01 1.62E-01 0.00 2.80E-01 0.01
128 6.29E-00 —-0.00 1.61E-01 0.00 2.80E-01 0.00
Theory.rate 0.0 0.0 0.0

Table 7.4 reports some numerical results of the P5(T)/P;(dT)/[P, (T))? elements for different values of j. The stabilization
parameters are p = 1 and y = —1. These numerical results are greatly consistent with the established theory. The convergence
rates for [le,|l, llegll and lleylls, are the same when different j = 2,5,6,7 are applied.

Table 7.5 demonstrates the performance of the Py(T)/Py(dT)/[P,(T)]* elements for different values of #. The stabilization
parameters are given by p = 1 and y = —1. We observe that these numerical results are in an agreement with our theory. Moreover,
the convergence rates for the numerical approximations are the same for different £ = 3,4, 6.

Table 7.6 illustrates the numerical performance of the P,(T)/P;(dT)/[Ps(T)]* element with different values of y. The stabilization
parameter is p = 1. We observe that the theoretical rates of convergence for [|e,|l, llegll and |le,|| &, are consistent with the theoretical
prediction for the case of y = —1. The numerical results outperform the theory for y = —1073, —%, 1.

Table 7.7 presents the numerical results for the P5(T)/Ps(dT)/[P,(T)]* element with different values of p. The stabilization
parameter is y = —1. We can see that the convergence rates are perfectly consistent with the theory prediction for [le,|| and |ley]l,
and exceed the theory prediction for |le,]|.

Table 7.8 presents some numerical results for the P;(T)/P;(dT)/ [P,(T)]* elements for different values of j and # when p = 0 is
employed in the gWG scheme (3.1). Note that the theory established in the previous sections applies to p > 0. However, we have
observed from Table 7.8 that (1) For the case of j > 2 and # > 4, the convergence rates for [[e,|l, [legll and ||e,| e, are Oh3), Oh*)
and O(h*), respectively; (2) For the case of j = 1 and ¢ = 4, the convergence rates for |le,ll, |legll and ||e,]| &, are O(h?), O(h3) and
O(h?), respectively.

7.2. The gWG elements on the uniform rectangular partition with smooth solutions

In this section, the uniform rectangular partition is employed.

Table 7.9 illustrates the numerical performance of the P (T)/P,_;(T)/[P._,(T)]* element for k = 3,4 with the exact solution
u = cos(zx) cos(ry). The stabilization parameters are given by p = 1 and y = —1. We observe from Table 7.9 that the theoretical rates
of convergence for [le,ll, lleyll and |le,|| are verified by the numerical results.

Table 7.10 shows some numerical results for the PO(T)/PI-(aT)/[Pf(T)J2 element with different values of j and #. The exact
solution is given by u = cos(zx)sin(ry). The stabilization parameters are p = 1 and y = 0, respectively. These numerical results
suggest that (1) for the Py(T)/P,(0T)/[Py(T)]? element and the Py(T)/P;(dT)/[P,(T)]* element, the convergence rates for [[e, [, [l |l
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Table 7.4
Numerical errors and convergence rates for the P5(T)/P;(dT)/[P, (T))? elements.
1/h lenll Rate lleoll Rate lleslle, Rate
j=0
8 2.53E-01 1.02 6.75E-03 2.12 6.61E-03 1.90
16 1.26E-01 1.01 1.65E-03 2.03 1.68E-03 1.98
32 6.30E-02 1.00 4.09E-04 2.01 4.21E-04 1.99
64 3.15E-02 1.00 1.02E-04 2.00 1.05E-04 2.00
Theory.rate 1.0 2.0 2.0
j=2
8 5.52E-02 1.98 2.23E-03 3.00 5.32E-04 3.67
16 1.38E-02 2.00 2.78E-04 3.00 4.55E-05 3.55
32 3.46E-03 2.00 3.48E-05 3.00 4.67E-06 3.28
64 8.66E-04 2.00 4.34E-06 3.00 5.46E-07 3.10
Theory.rate 2.0 3.0 3.0
Jj=5
8 5.52E-02 1.98 2.23E-03 3.00 5.71E-04 3.61
16 1.38E-02 2.00 2.78E-04 3.00 5.25E-05 3.44
32 3.46E-03 2.00 3.48E-05 3.00 5.72E-06 3.20
64 8.66E-04 2.00 4.34E-06 3.00 6.85E-07 3.06
Theory.rate 2.0 3.0 3.0
j=6
8 5.52E-02 1.98 2.23E-03 3.00 5.71E-04 3.61
16 1.38E-02 2.00 2.78E-04 3.00 5.25E-05 3.44
32 3.46E-03 2.00 3.48E-05 3.00 5.72E-06 3.20
64 8.66E-04 2.00 4.34E-06 3.00 6.85E-07 3.06
Theory.rate 2.0 3.0 3.0
ji=1
8 5.52E-02 1.98 2.23E-03 3.00 5.71E-04 3.61
16 1.38E-02 2.00 2.78E-04 3.00 5.25E-05 3.44
32 3.46E-03 2.00 3.48E-05 3.00 5.72E-06 3.20
64 8.66E-04 2.00 4.34E-06 3.00 6.85E-07 3.06
Theory.rate 2.0 3.0 3.0
Table 7.5
Numerical errors and convergence rates for the P,(T)/P,(dT)/[P,(T))* elements.
1/h lenll Rate lleoll Rate lleslle, Rate
£=1
8 5.52E-02 1.98 2.23E-03 3.00 5.33E-04 3.67
16 1.38E-02 2.00 2.78E-04 3.00 4.57E-05 3.55
32 3.46E-03 2.00 3.47E-05 3.00 4.67E-06 3.28
64 8.66E-03 2.00 4.34E-06 3.00 5.45E-07 3.10
Theory.rate 2.0 3.0 3.0
‘=3
8 2.82E-04 3.32 5.42E-06 4.76 1.57E-06 3.94
16 3.25E-05 3.11 2.43E-07 4.48 9.87E-08 3.99
32 3.98E-06 3.03 1.32E-08 4.20 6.18E-09 4.00
64 4.95E-07 3.01 7.93E-010 4.06 3.86E-010 4.00
Theory.rate 3.0 4.0 4.0
=4
8 2.22E-04 2.98 2.34E-06 3.97 1.63E-06 4.04
16 2.67E-05 2.99 1.47E-07 3.99 9.97E-08 4.03
32 3.34E-06 3.00 9.18E-09 4.00 6.20E-09 4.01
64 4.17E-07 3.00 5.74E-010 4.00 3.87E-010 4.00
Theory.rate 3.0 4.0 4.0
=6
4 1.84E-03 3.44 3.49E-05 4.10 2.99E-05 3.83
8 1.99E-04 3.21 2.11E-06 4.05 1.69E-06 4.14
16 2.38E-05 3.07 1.30E-07 4.02 1.01E-07 4.07
32 2.94E-06 3.02 8.13E-09 4.00 6.22E-09 4.02
Theory.rate 3.0 4.0 4.0
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Table 7.6
Numerical errors and convergence rates for the P,(T)/P;(dT)/[Ps(T)]* element.
1/h le,l Rate lleoll Rate lleslle, Rate
y=-107
2 1.16E-03 4.03 3.58E-05 4.29 1.67E-04 5.78
4 3.57E-05 5.02 5.62E-07 5.99 2.75E-06 5.92
8 1.08E-06 5.04 8.67E-09 6.02 4.34E-08 5.98
16 3.43E-08 4.98 1.35E-010 6.01 6.82E-010 5.99
Theory.rate 4.0 4.5 4.5
y=-1
2 9.09E-05 4.07 1.40e—-06 5.06 4.75E-06 5.31
4 9.09E-05 4.07 1.34E-06 5.06 4.75E-06 5.31
8 5.61E-06 4.02 4.33E-08 5.01 1.37E-07 5.12
16 3.50E-07 4.00 1.35E-09 5.00 4.20E-09 5.03
Theory.rate 4.0 5.0 5.0
=_1
r="3
2 1.33E-03 4.55 4.07e-05 5.53 3.44E-06 5.68
4 5.67E-05 4.55 8.85E-07 5.53 3.44E-06 5.68
8 2.46E-06 4.52 1.95E-08 5.50 6.90E—-08 5.64
16 1.10E-07 4.49 4.34E-010 5.49 1.45E-09 5.58
Theory.rate 4.0 4.75 4.75
r=1
2 8.92E-04 4.69 2.79e-05 4.97 1.53E-04 5.91
4 1.52E-05 5.87 2.43E-07 6.84 2.28E-06 6.07
8 2.44E-07 5.96 1.96E-09 6.95 3.49E-08 6.03
16 1.60E-08 3.93 3.65E-011 5.75 2.29E-09 3.93
Theory.rate 4.0 4.0 4.0
Table 7.7
Numerical errors and convergence rates for the Py(T)/P5(0T)/[Py(T)]* element.
1/h le,l Rate lleoll Rate lleslle, Rate
p=10"*
2 6.21E-01 5.07 7.19E-00 6.08 2.78E-00 -8.30
4 2.05E-02 4.92 1.18E-01 5.93 2.30E-02 6.91
8 6.48E-04 4.98 1.87E-03 5.98 1.83E-04 6.97
16 2.03E-05 5.00 2.93E-05 6.00 1.61E-06 6.83
Theory.rate 5.0 6.0 6.0
p=10"
2 1.95E-02 5.07 7.16E—-03 6.08 2.78E-03 0.26
4 6.44E-04 4.92 1.18E-04 5.93 2.31E-05 6.91
8 2.04E-05 4.98 1.86E—-06 5.98 1.84E-07 6.97
16 6.39E—-07 5.00 2.92E-08 6.00 1.63E-09 6.82
Theory.rate 5.0 6.0 6.0
p=1
2 5.89E-03 5.07 6.88E-04 6.08 2.85E-04 3.42
4 1.94E-04 4.92 1.13E-05 5.92 2.50E-06 6.83
8 6.15E-06 4.98 1.79E-07 5.98 2.38E-08 6.71
16 1.93E-07 5.00 2.81E-09 6.00 2.88E-010 6.37
Theory.rate 5.0 6.0 6.0
p=10*
2 4.51E-02 5.06 7.26E-05 6.10 1.37E-04 6.09
4 1.47E-03 4.94 1.18E-06 5.95 2.18E-06 5.97
8 4.65E—-05 4.98 1.83E-08 6.01 3.28E-08 6.05
16 1.46E-06 5.00 2.83E-010 6.01 5.01E-010 6.03
Theory.rate 5.0 6.0 6.0

and ||e,|| are consistent with the developed theory; (2) For the Py(T)/Py(dT)/[P,(T)]* element, the convergence rates for [[e, ]I, [l |l
and ||e,|| outperform the theoretical prediction.

Table 7.11 demonstrates the numerical performance of the Ps(T)/P;(oT)/ [P,(T)]* element when j < #. We choose p = | and
y = —1. The exact solution is u = x? cos(zy). We observe from Table 7.11 that (1) the convergence rates for [|e, |, ||eo|l and |le,|| consist
with the theoretical convergence rates when the cases of (j,¢) = (0,5), (j,¢) = (1,4) are applied; (2) for the case of (j,?) = (2,3), the
convergence rates for [le,ll, lleoll are consistent with the theoretical convergence rates while the convergence rate for |le,||, seems
to exceed the theoretical convergence rate of O(h*).
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Table 7.8
Numerical errors and convergence rates for the Py(T)/P;(0T)/[P, (T))? elements.
1/h lexl Rate lleoll Rate lleplle, Rate
j=1,¢=4
16 1.75E-03 2.00 1.52E-05 3.01 1.84E-05 2.93
32 4.37E-04 2.00 1.89E-06 3.01 2.34E-06 2.97
64 1.09E-04 2.00 2.36E-07 3.00 2.95E-07 2.99
128 2.74E-05 2.00 2.94E-08 3.00 3.70E-08 2.99
Theory.rate N/A N/A N/A
j=2¢=4
8 9.80E-04 2.97 7.52E-06 4.03 7.99E-06 3.91
16 1.23E-04 2.99 4.63E-07 4.02 5.12E-07 3.96
32 1.54E-05 3.00 2.87E-08 4.01 3.23E-08 3.98
64 1.93E-06 3.00 1.79E-09 4.00 2.03E-09 3.99
Theory.rate N/A N/A N/A
j=3,¢=4
8 9.07E-04 2.97 6.61E-06 4.09 1.02E-05 3.99
16 1.14E-04 2.99 4.00E-07 4.05 6.36E-07 4.00
32 1.43E-05 3.00 2.47E-08 4.02 3.98E-08 4.00
64 1.79E-06 3.00 1.53E-09 4.01 2.49E-09 4.00
Theory.rate N/A N/A N/A
j=2,¢=5
8 1.66E-03 2.97 1.02E-05 4.05 1.25E-05 3.93
16 2.09E-04 2.99 6.26E-07 4.03 7.95E-07 3.97
32 2.62E-05 3.00 3.87E-08 4.02 5.01E-08 3.99
64 3.29E-06 3.00 2.41E-09 4.01 3.14E-09 4.00
Theory.rate N/A N/A N/A
Table 7.9
Numerical errors and convergence rates for the P (T)/P,_,(dT)/[P,_,(T)]* element.
1/h lexl Rate lleoll Rate lleslle, Rate
k=3
16 3.71E-04 2.97 3.32E-06 4.03 1.17E-05 3.69
32 4.67E-05 2.99 2.05E-07 4.02 7.98E-07 3.88
64 5.86E-06 2.99 1.27E-08 4.01 5.17E-08 3.95
128 7.34E-07 3.00 7.93E-010 4.00 3.29E-09 3.98
Theory.rate 3.0 4.0 4.0
k=4
8 1.33E-04 3.96 2.30E-06 5.00 5.14E-06 4.29
16 8.39E-06 3.84 7.15E-08 5.01 1.95E-07 4.72
32 5.27E-07 3.99 2.23E-09 5.00 6.60E-09 4.89
64 3.30E-08 4.00 6.94E-011 5.00 2.13E-010 4.95
Theory.rate 4.0 5.0 5.0

Table 7.12 reports the errors and convergence rates for the Py(T)/P;(oT)/ [P,(T)]* element when j > ¢. The stabilization
parameters are p = | and y = —1. The exact solution is given by u = x? cos(xy). Table 7.12 implies that the convergence rates for
llenll, lleoll and |le, || are consistent with the theoretical convergence rates when the cases of (j,#) = (1,1), (j,¢) = (3,3), (j. £) = (4,3),
and (j,?) = (2,1) are applied.

Table 7.13 presents some numerical results for the P;(T)/P,(dT)/[P;(T)]? element for p = 1 and different stabilization parameter
y. The exact solution is u = x? cos(zy). We observe from Table 7.13 that (1) for y = —1, the convergence rates for |le,[| and ||, ||
are in great consistency with the theoretical convergence rates; while the convergence rate for ||ey|| is higher than the theoretical
prediction; (2) for y = —3,0, 1, the convergence rates for [|e,|l, |leyll and |le,|| are higher than what our theory predicts.

Table 7.14 illustrates the numerical performance of the gWG scheme (3.1) when p = 0 and the P,(T)/P;(dT)/ [P,(T)]* element
are applied. The exact solution is u = x? cos(zy). We observe from Table 7.14 that (1) for the cases of (j,#) = (1,4), (j,#) = (1,5) and
(j,¢) = (2,4), the convergence rates for ||e,|l, lleyll and |le, || &, arein an order of O(h?), O(h*) and O(h?), respectively; (2) for the case
of (j,£) = (1,3), the convergence rates for [|e,|l, lleyll and ||e|| g, are in an order of O(h?), O(h*) and O(h*), respectively; and (3) for
the case of (j,?) = (0,4), the convergence rates for [le,l, |legll and ||e,]| &, arein an order of O(h), O(h?) and O(h?), respectively. Note
that our theory established in this paper does not apply to the case of p = 0. Readers are encouraged to draw their own conclusions.

Table 7.15 shows the numerical results for the P;(T)/P,(0T)/[Py(T))?> element with different values of p and y. We observe from
Table 7.15 that (1) for the cases of (p,y) = (1,—1) and (p,y) = (102, —1), the rates of convergence for [le,|l, |leqll and lleylls, are
consistent with the theoretical rates of convergence; (2) for the case of (p,y) = (10712, -1), the convergence rates for [le,ll, lle|l
and |le,|| &, seem to outperform the theoretical prediction; (3) for the case of p = 0 where the stabilizer is 0 for any value of y, the
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Table 7.10
Numerical errors and convergence rates for the Py(T)/P;(0T)/[P, (T))? elements.
1/ el Rate lleo Rate lleslls, Rate
j=2,¢=0
16 1.13E-00 0.48 7.65E—02 0.99 1.23E-01 0.87
32 8.06E-01 0.49 3.81E-02 1.01 6.56E-02 0.90
64 5.72E-01 0.50 1.90E-02 1.01 3.42E-02 0.94
128 4.05E-01 0.50 9.46E-03 1.00 1.75E-02 0.97
Theory.rate 0.5 1.0 1.0
j=3¢=1
16 2.00E-01 0.55 3.33E-03 1.06 6.30E—-02 0.90
32 1.42E-01 0.49 1.62E-03 1.04 3.40E-02 0.89
64 1.02E-01 0.47 8.00E-04 1.02 1.81E-02 0.91
128 7.39e-02 0.47 3.97E-04 1.01 9.50E-03 0.93
Theory.rate 0.5 1.0 1.0
j=0,¢=1
16 3.44E-02 1.09 3.33E-03 1.06 1.65E-02 1.09
32 1.66E—02 1.05 1.62E-03 1.04 7.97E-03 1.05
64 8.15E-03 1.03 8.00E-04 1.02 3.92E-03 1.02
128 4.04E-03 1.01 3.97E-04 1.01 1.94E-03 1.01
Theory.rate 0.0 0.0 0.0
Table 7.11
Numerical errors and convergence rates for the P5(T)/P;(dT)/ [P,(T)}? elements.
1/h lle, ll Rate llegll Rate \|eb||5h Rate
j=0,¢=5
8 1.11E-01 0.98 1.59E-03 1.97 1.42E-03 1.94
16 5.56E—02 0.99 4.00E-04 1.99 3.57E-04 1.99
32 2.78E-02 1.00 1.00E-04 2.00 8.95E-05 2.00
64 1.39E-02 1.00 2.50E-05 2.00 2.24E-05 2.00
Theory.rate 1.0 2.0 2.0
j=1,¢=4
8 2.99E-03 1.91 2.51E-05 2.78 1.25E-04 2.51
16 7.70E—-04 1.96 3.38E-06 2.89 1.77E-05 2.83
32 1.95E-04 1.98 4.37E-07 2.95 2.32E-06 2.93
64 4.92E-05 1.99 5.55E-08 2.98 2.97E-07 2.97
Theory.rate 2.0 3.0 3.0
j=2,¢=3
8 1.27E-04 3.12 1.74E-06 4.19 8.24E-07 4.49
16 1.55E-05 3.04 1.04E-07 4.06 2.96E-08 4.80
32 1.92E-06 3.01 6.45E-09 4.01 9.81E-010 4.92
64 2.40E-07 3.00 4.02E-010 4.00 3.16E-011 4.96
Theory.rate 3.0 4.0 4.0

convergence rates for el lleyll and |le,lls, seem to be in an order of O(h*), O(h) and O(h%), respectively. Again, our established
theory does not cover the case of p = 0.

7.3. Solutions with low regularity

In this section, the exact solution is given by u = x(x — Dy(y— 1)(x? + y*)“2+®/2 where a € (0, 1]. It is easy to verify u € H!**7(Q)
for an arbitrary small r > 0. We should point out that our theory is not developed for the low regularity solution.

Table 7.16 illustrates the numerical performance of the P,(T)/P,(0T)/[P,_,(T)]* element for different k on the uniform triangular
partition. We choose a = % This implies the exact solution u € H'377(£2) does not satisfy the required regularity assumption. The
stabilization parameters are p = 1 and y = —1. We can observe that the convergence rates for [[e,ll, |leyll and [le,]| &, seem to be in
an order of O(h%%), O(h'7) and O(h'?), respectively.

Table 7.17 presents some numerical results for the P,(T)/P,(oT)/ [PO(T)]2 element on the uniform rectangular partition. The
stabilization parameters are given by p = 1 and y = —1. We can observe from Table 7.17 that (1) for « = 1, the convergence rates for
llexlls lleoll and [le,ll¢, seem to be in an order of O(h*?), O(h'?) and O(h'?), respectively; (2) for « = % % and 3]—2, the convergence
rates for [le,ll, llegll and lleyllg, seem to be in an order of O(h%), O(h'**) and O(h'*?), respectively.

Table 7.18 presents some computational results for the P,(T)/Py(dT)/[P,(T)]*> element on the uniform triangular partition. We
take p = 0 for which there is no theory available. We can observe from Table 7.18 that (1) for « = 1, the convergence rates for
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Table 7.12
Numerical errors and convergence rates for the Py(T)/P;(0T)/[P, (T))? elements.
1/h lenll Rate lleoll Rate lleslle, Rate
j=17¢=1
16 5.87E-03 1.91 6.15E-05 2.90 4.70E-04 2.76
32 1.51E-03 1.95 7.99E-06 2.94 6.32E-05 2.89
64 3.84E-04 1.98 1.02E-06 2.97 8.18E-06 2.95
128 9.67E-05 1.99 1.29E-07 2.99 1.04E-06 2.98
Theory.rate 2.0 3.0 3.0
j=3,¢=3
8 5.93E-05 3.54 6.31E-07 4.91 4.95E-06 4.57
16 6.09E-06 3.28 2.23E-08 4.83 2.16E-07 4.52
32 7.12E-07 3.10 9.29E-010 4.58 1.11E-08 4.28
64 8.75E-08 3.02 4.79E-011 4.28 6.47E-010 4.10
Theory.rate 3.0 4.0 4.0
j=4,¢=3
8 6.27E-05 3.49 6.31E-07 4.91 5.94E-06 4.41
16 6.66E—06 3.23 2.23E-08 4.83 3.06E-07 4.28
32 7.93E-07 3.07 9.29E-010 4.58 1.78E-08 4.10
64 9.80E-08 3.02 4.79E-011 4.28 1.09E-09 4.02
Theory.rate 3.0 4.0 4.0
j=2¢=1
8 2.19E-02 1.82 4.58E-04 2.81 3.20E-03 2.51
16 5.86E-03 1.90 6.15E-05 2.90 4.71E-04 2.76
32 1.51E-03 1.95 7.99E-06 2.94 6.35E-05 2.89
64 3.84E-04 1.98 1.02E-06 2.97 8.21E-06 2.95
Theory.rate 2.0 3.0 3.0
Table 7.13
Numerical errors and convergence rates for the Py(T)/P,(dT)/[Py(T)]* element.
1/h lexl Rate lleoll Rate lleslle, Rate
r=-3
8 1.26E-03 1.79 2.77E-06 3.45 2.13E-05 3.55
16 3.28E-04 1.94 2.62E-07 3.40 1.50E-06 3.83
32 8.27E-05 1.99 2.93E-08 3.16 1.17E-07 3.69
64 2.07E-05 2.00 3.56E-09 3.04 1.14E-08 3.35
Theory.rate 2.0 2.0 2.0
r=-1
8 5.41E-05 3.48 5.68E-07 4.97 2.68E-06 4.00
16 5.87E-06 3.20 2.01E-08 4.82 1.63E-07 4.04
32 7.04E-07 3.06 8.72E-010 4.52 1.01E-08 4.01
64 8.73E-08 3.01 4.68E-011 4.22 6.30E-010 4.00
Theory.rate 3.0 4.0 4.0
y=0
8 1.03E-04 3.47 6.00E-06 3.97 6.88E-07 4.62
16 9.17E-06 3.49 3.79E-07 3.99 2.38E-08 4.86
32 8.12E-07 3.50 2.38E-08 3.99 7.73E-010 4.94
64 7.19E-08 3.50 1.49E-09 4.00 2.46E-011 4.97
Theory.rate 2.5 3.0 3.0
r=1
8 3.24E-04 2.98 5.95E-05 2.98 5.95E-07 4.56
16 4.07E-05 3.00 7.47E-06 2.99 2.12E-08 4.81
32 5.09E-06 3.00 9.35E-07 3.00 7.02E-010 4.92
64 6.36E-07 3.00 1.17E-07 3.00 2.26E-011 4.96
Theory.rate 2.0 2.0 2.0

llexlls lleoll and [le,lle, seem to be in an order of O(h*?), O(h'?) and O(h'?), respectively; (2) for a = % and é, the convergence
rates for [le,ll, lleoll and [le, | &, seem to be in an order of O(h%), O(h'*%) and O(h'+*), respectively.

Tables 7.19 demonstrates the numerical performance of the P.(T)/P,_,(dT)/[P, +1(T)]2 element on the uniform rectangular
partition. We take p = 0 and « = 2. The exact solution has the regularity of H?/5-7() for an arbitrary small = > 0. These numerical
results indicate that for k£ = 1,2,3, the convergence rates for [le,ll, Ileyll and |le,l| &, seem to be in an order of ©@(h%*), O(h'*) and

O(h'#*), respectively.

1
8
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Table 7.14
Numerical errors and convergence rates for the P,(T)/P;(0T)/[P, (T))? elements.
1/h lexl Rate lleoll Rate lleslle, Rate
j=1,¢=3
16 2.04E-05 2.99 2.18E-07 3.99 5.03E-05 3.99
32 2.55E-06 3.00 1.37E-08 4.00 3.14E-06 4.00
64 3.19E-07 3.00 8.55E-010 4.00 1.97E-07 4.00
128 3.99E-08 3.00 5.38E-011 3.99 1.24E-010 4.00
Theory.rate N/A N/A N/A
j=1,¢=4
16 2.88E-03 1.95 5.25E-06 3.01 6.36E-05 2.97
32 7.33E-04 1.98 6.55E-07 3.00 8.02E-06 2.99
64 1.85E-04 1.99 8.18E-08 3.00 1.01E-06 2.99
128 4.64E-05 1.99 1.02E-08 3.00 1.26E-07 3.00
Theory.rate N/A N/A N/A
j=1,¢=5
16 2.84E-03 1.92 5.15E-06 2.99 6.07E-05 2.90
32 7.27E-04 1.96 6.48E—07 2.99 7.84E-06 2.95
64 1.84E-04 1.98 8.14E-08 2.99 9.96E-07 2.98
128 4.63E-05 1.99 1.02E-08 3.00 1.25E-07 2.99
Theory.rate N/A N/A N/A
j=2¢=4
16 2.89E-03 1.95 5.44E-06 3.13 6.41E-05 3.00
32 7.33E-04 1.98 6.61E-07 3.04 8.04E-06 3.00
64 1.85E-04 1.99 8.20E-08 3.01 1.01E-06 3.00
128 4.64E-05 1.99 1.02E-08 3.00 1.26E-07 3.00
Theory.rate N/A N/A N/A
j=0,¢=4
16 5.55E-02 0.99 4.00E-04 1.99 3.57E-04 1.99
32 2.78E-02 1.00 1.00E-04 2.00 8.95E-05 2.00
64 1.39E-02 1.00 2.50E-05 2.00 2.24E-05 2.00
128 6.95E-03 1.00 6.26E—06 2.00 5.59E-06 2.00
Theory.rate N/A N/A N/A
Table 7.15
Numerical errors and convergence rates for the Py(T)/P,(dT)/[Py(T)]* element.
1/h le,l Rate lleoll Rate lleylle, Rate
p=0,Vy
4 1.95E-04 3.97 4.57E-06 4.79 1.15E-05 5.09
8 1.24E-05 3.98 1.54E-07 4.89 3.68E-07 4.96
16 7.82E-07 3.99 4.98E-09 4.95 1.19E-08 4.95
32 4.91E-08 3.99 1.58E-010 4.98 3.79E-010 4.97
Theory.rate N/A N/A N/A
p=107"2, y =-1
4 1.95E-04 3.97 4.57E-06 4.79 1.15E-05 5.09
8 1.24E-05 3.98 1.54E-07 4.89 3.68E-07 4.96
16 7.82E-07 3.99 4.98E-09 4.95 1.19E-08 4.95
32 4.91E-08 3.99 1.58E-010 4.98 3.79E-010 4.97
Theory.rate 3.0 4.0 4.0
p=1r=-1
4 1.13E-03 3.00 1.16E-05 4.30 1.16E-04 3.69
8 1.43E-04 2.99 5.88E-07 4.15 7.69E-06 3.91
16 1.79E-05 2.99 3.31E-08 4.07 4.90E-07 3.97
32 2.25E-06 3.00 1.97E-09 4.03 3.08E-08 3.99
Theory.rate 3.0 4.0 4.0
p=10% y=-1
16 5.06E-04 3.00 3.66E-07 4.20 3.14E-06 4.08
32 6.32E-05 3.00 2.12E-08 4.11 1.91E-07 4.04
64 7.91E-06 3.00 1.28E-09 4.05 1.18E-08 4.02
128 9.88E-07 3.00 7.99E-011 4.01 7.37E-010 4.00
Theory.rate 3.0 4.0 4.0
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Table 7.16
Numerical errors and convergence rates for the P,(T)/P.(0T)/[P,_(T)]* element.
1/h lexl Rate lleoll Rate lleslle, Rate
k=1
8 8.04E-01 0.47 4.32E-02 1.48 3.95E-02 1.54
16 5.75E-01 0.48 1.54E-02 1.49 1.38E-02 1.52
32 4.10E-01 0.49 5.49E-03 1.49 4.83E-03 1.51
64 2.91E-01 0.49 1.95E-03 1.49 1.70E-03 1.51
Theory.rate N/A N/A N/A
k=2
8 6.42E-01 0.50 2.40E-02 1.50 2.43E-02 1.54
16 4.55E-01 0.50 8.47E-03 1.50 8.48E-03 1.52
32 3.22E-01 0.50 2.99E-03 1.50 2.98E-03 1.51
64 2.28E-01 0.50 1.06E-03 1.50 1.05E-03 1.50
Theory.rate N/A N/A N/A
k=3
8 5.16E-01 0.49 1.55E-02 1.50 1.56E-02 1.53
16 3.66E-01 0.50 5.48E-03 1.50 5.46E-03 1.51
32 2.59E-01 0.50 1.94E-03 1.50 1.92E-03 1.51
64 1.83E-01 0.50 6.86E—04 1.50 6.78E-04 1.50
Theory.rate N/A N/A N/A
k=4
8 3.93E-01 0.49 1.01E-02 1.50 9.24E-03 1.52
16 2.78E-01 0.50 3.57E-03 1.50 3.24E-03 1.51
32 1.97E-01 0.50 1.26E-03 1.50 1.14E-03 1.51
64 1.39E-01 0.50 4.47E-04 1.50 4.03E-04 1.50
Theory.rate N/A N/A N/A
Table 7.17
Numerical errors and convergence rates for the P,(T)/Py(dT)/[Py(T)]* element.
1/h le,l Rate lleoll Rate lleslle, Rate
a=1
16 6.41E-02 0.87 1.33E-03 1.83 2.60E-03 1.67
32 3.46E-02 0.89 3.65E-04 1.86 7.53E—-04 1.78
64 1.85E-02 0.90 9.89E-05 1.88 2.10E-04 1.84
128 9.82E-03 0.91 2.65E-05 1.90 5.75E-05 1.87
Theory.rate N/A N/A N/A
a=1/2
16 5.89E-01 0.49 9.84E-03 1.49 9.15E-03 1.41
32 4.19E-01 0.49 3.50E-03 1.49 3.34E-03 1.45
64 2.97E-01 0.50 1.24E-03 1.49 1.20E-03 1.48
128 2.10E-01 0.50 4.40E-04 1.50 4.27E-04 1.49
Theory.rate N/A N/A N/A
a=1/8
16 5.01E-00 0.12 8.17E-02 1.12 9.43E-02 1.12
32 4.60E-00 0.12 3.75E-02 1.12 4.33E-02 1.12
64 4.22E-00 0.12 1.72E-02 1.12 1.99E-02 1.12
128 3.87E-00 0.12 7.90E-03 1.12 9.11E-03 1.12
Theory.rate N/A N/A N/A
a=1/32
16 8.80E-00 0.03 1.44E-01 1.03 1.76E-01 1.03
32 8.63E-00 0.03 7.04E-02 1.03 8.62E-02 1.03
64 8.45E-00 0.03 3.45E-02 1.03 4.22E-02 1.03
128 8.27E-00 0.03 1.69E-02 1.03 2.06E-02 1.03
Theory.rate N/A N/A N/A

Data availability

Data will be made available on request.
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Table 7.18
Numerical errors and convergence rates for the P,(T)/Py(dT)/[Py(T)]* element.
1/h le,l Rate lleoll Rate lleylle, Rate
a=1
32 1.44E-02 0.83 1.29E-04 1.77 2.20E-04 1.79
64 7.92E-03 0.86 3.63E-05 1.82 6.14E—05 1.84
128 4.30E-03 0.88 1.00E-05 1.86 1.68E-05 1.87
256 2.31E-03 0.90 2.72E-06 1.88 4.51E-06 1.89
Theory.rate N/A N/A N/A
a=2/5
16 2.33E-01 0.41 3.40E-03 1.41 4.32E-03 1.41
32 1.76E-01 0.41 1.28E-03 1.41 1.63E-03 1.41
64 1.33E-01 0.40 4.84E-04 1.40 6.16E—-04 1.40
128 1.01E-01 0.40 1.83E-04 1.40 2.33E-04 1.40
Theory.rate N/A N/A N/A
a=1/8
16 1.07E-00 0.13 1.68E-02 1.13 2.25E-02 1.13
32 9.76E-01 0.13 7.68E—03 1.13 1.03E-02 1.13
64 8.95E-01 0.13 3.51E-03 1.13 4.71E-03 1.13
128 8.20E-01 0.13 1.61E-03 1.13 2.52E-03 1.13
Theory.rate N/A N/A N/A
a=1/32
16 1.78E-00 0.03 2.83E-02 1.03 3.85E-02 1.03
32 1.74E-00 0.03 1.39E-02 1.03 1.88E-02 1.03
64 1.70E-00 0.03 6.77E-03 1.03 9.20E-03 1.03
128 1.67E-00 0.03 3.31E-03 1.03 4.50E-03 1.03
Theory.rate N/A N/A N/A
Table 7.19
Numerical errors and convergence rates for the P (T)/P,_,(dT)/[P,,,(T)]* element.
1/h le,l Rate llegll Rate lley e, Rate
k=1
8 3.27E-01 0.41 6.35E-03 1.39 3.10E-02 1.39
16 2.47E-01 0.40 2.40E-03 1.40 1.17E-02 1.40
32 1.87E-01 0.40 9.06E-04 1.41 4.42E-03 1.41
64 1.42E-01 0.40 3.43E-04 1.40 1.67E-03 1.40
Theory.rate N/A N/A N/A
k=2
8 2.99E-01 0.40 3.56E-03 1.40 1.05E-02 1.39
16 2.26E-01 0.40 1.35E-03 1.40 4.00E-03 1.39
32 1.71E-01 0.40 5.11E-04 1.40 1.52E-03 1.40
64 1.30E-01 0.40 1.94E-04 1.40 5.77E—04 1.40
Theory.rate N/A N/A N/A
k=3
8 2.98E-01 0.40 2.45E-03 1.40 5.38E-03 1.39
16 2.26E-01 0.40 9.30E-04 1.40 2.05E-03 1.39
32 1.71E-01 0.40 3.53E-04 1.40 7.78E—04 1.40
64 1.30E-01 0.40 1.34E-04 1.40 2.95E-04 1.40
Theory.rate N/A N/A N/A
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