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A B S T R A C T

This article proposes and analyzes the generalized weak Galerkin (gWG) finite element method
for the second order elliptic problem. A generalized discrete weak gradient operator is
introduced in the weak Galerkin framework so that the gWG methods would not only allow
arbitrary combinations of piecewise polynomials defined in the interior and on the boundary
of each local finite element, but also work on general polytopal partitions. Error estimates are
established for the corresponding numerical functions in the energy norm and the usual L2

norm. A series of numerical experiments are presented to demonstrate the performance of the
newly proposed gWG method.

1. Introduction

This paper will study the generalized weak Galerkin methods for the second order elliptic problems. For simplicity, we consider
the second order model problem that seeks an unknown function u satisfying

*( � (a(u) = f , in ⌦,

u = g, on )⌦,

(1.1)

where ⌦ is a bounded polytopal domain in Rd (d = 2, 3) and the coefficient tensor a À Rdùd is symmetric and uniformly positive
definite.

The weak formulation of the model problem (1.1) is as follows: Find u À H
1(⌦) satisfying u = g on )⌦, such that

(a(u,(v) = (f , v), ≈v À H
1
0 (⌦), (1.2)

where H
1
0 (⌦) = {v À H

1(⌦) : v = 0 on )⌦}.
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Numerous numerical methods have been developed for solving the second order elliptic problems. The conforming finite element
method is widely employed in scientific and engineering applications due to its simplicity and robustness. However, for certain
model problems involving high-order partial differential equations, it is difficult to construct the conforming finite element. To
address this challenge, several numerical methods have been introduced, such as the discontinuous Galerkin method [1,2], the
hybrid discontinuous Galerkin method [3], the mimetic finite differences method [4], the hybrid-high order method [5], the virtual
element method [6,7] and the weak Galerkin finite element method [8–14].

The weak Galerkin methods were first proposed in [10] for the second order elliptic problems. The most novel aspect of WG
methods is the introduction of locally designed weak partial derivatives. This innovation allows WG methods to offer several
advantages, including high flexibility in polynomial approximations and mesh generation. WG methods have been widely applied
in solving a diverse range of PDEs [15–23]. Later on, the primal–dual weak Galerkin (PDWG) methods were proposed to simulate
certain model problems that are challenging to solve using the traditional numerical methods, such as second-order elliptic equations
in non-divergence form [24], the Fokker–Planck equations [25,26], the elliptic Cauchy problems [27], the first-order transport
problems [28], the div–curl systems with low-regularity solutions [29,30]. Recently, the PDWG methods have been extended to
a more general Lp setting by using the L

p-primal–dual weak Galerkin methods. The L
p-PDWG methods have been developed for

div–curl systems [31], second order elliptic equations in non-divergence form [32], convection–diffusion equations [33], transport
problems [34].

This paper aims to develop a generalized weak Galerkin method for the second order elliptic problem (1.1). Different combina-
tions of finite elements lead to different weak Galerkin methods in which a typical gWG element is of the form P

k
(T )_P

j
()T )_[Pl(T )]d

where the weak function is discretized by the polynomial spaces P
k
(T ) and P

j
()T ), and its generalized discrete weak gradient is

approximated by the vector-valued space [Pl(T )]d . We have rigorously established the theory for the error estimates in a discrete
norm and the usual L2 norm for the newly proposed gWG methods. A series of numerical results have been demonstrated to verify
the established theory. Compared with other existing results on the standard weak Galerkin methods, the gWG methods can achieve
a convergence rate in a higher order for some combinations of weak finite elements. For example, for the P1(T )_P0()T )_[P1(T )]2
element, the standard WG method diverges; while the gWG method converges in an order O(h2) in the L

2 norm.
The paper is organized as follows. In Section 2, we introduce the definition of a generalized discrete weak gradient. Section 3

presents the generalized weak Galerkin scheme for the model problem (1.1). Section 4 derives an error equation for the generalized
weak Galerkin scheme. Section 5 presents some technical results. Section 6 is devoted to establishing some error estimates for the
numerical approximation in a discrete norm and the usual L2 norm. In Section 7, various numerical experiments are demonstrated.

Throughout this paper, we will follow the standard definitions for the Sobolev spaces and norms. Let D be any open bounded
domain with Lipschitz continuous boundary in Rd (d = 2, 3). Denote by  � 

s,D
and Ò � Ò

s,D
the seminorm and norm in the Sobolev

spaceHs(D) for any integer s g 0, respectively. When s = 0, the inner product and norm are denoted by (�, �)
D
and Ò�Ò

D
, respectively.

When D = ⌦, the subscript D shall be dropped in the corresponding inner product, seminorm and norm. We use the notation ‘‘ø’’
to mean ‘‘no greater than a generic positive constant independent of the meshsize or functions appearing in the inequalities’’.

2. Generalized discrete weak gradient

The goal of this section is to define the generalized discrete weak gradient. To this end, let T
h
be a finite element partition

of ⌦ that satisfies the shape regular assumption as described as in [10]. Denote by E
h
the set of all edges or flat faces in T

h
and

E
0
h
= E

h
‰ )⌦ the set of all interior edges or flat faces, respectively. Let h

T
be the diameter of T À T

h
and h = max

TÀTh hT be the
meshsize of the partition T

h
. For any given integer r g 0, denote by P

r
(T ) the set of polynomials defined on T with degree no more

than r.
Let T À T

h
be any polytopal element with boundary )T . By a weak function on T we mean v = {v0, vb} with v0 À L

2(T ) and
v
b
À L

2()T ). The first component v0 and the second component vb represent the values of v in the interior and on the boundary
of T , respectively. It should be pointed out that v

b
may not necessarily be the trace of v0 on )T . Let k g 0 and j g 0 be two given

integers. Let V
k,j
(T ) be the local weak function space on each T À T

h
given by

V
k,j
(T ) = {v = {v0, vb} : v

k
À P

k
(T ), v

b
À P

j
(e), e œ )T }.

Definition 2.1 (Generalized Discrete Weak Gradient). Let l g 0 be a given integer. A generalized discrete weak gradient for any weak
function v À V

k,j
(T ), denoted by (

g,T
v, is given by

(
g,T

v := (v0 + �
g
v, (2.1)

where �
g
v À [Pl(T )]d satisfies

(�
g
v, )

T
:= Ív

b
*Q

b
v0, � nÎ

)T
, ≈ À [Pl(T )]d , (2.2)

where n is the unit outward normal direction to )T , and Q
b
is the usual L2 projection operator onto P

j
(e).

3. Generalized weak Galerkin scheme

This section presents a generalized weak Galerkin scheme for the model problems (1.1). For simplicity of analysis, assume that
the coefficient a in (1.1) is piecewise constant with respect to the finite element partition T

h
. The following result can be easily

extended to variable coefficient tensor, provided that the tensor a is piecewise sufficiently smooth.
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The global weak finite element space V
h
is obtained by patching the local weak function space V

k,j
(T ) over all the elements

through a common value v
b
on the interior edges or faces E0

h
; i.e.,

V
h
= {v = {v0, vb} : v

T
À V

k,j
(T ), T À T

h
}.

Denote by V
0
h
the subspace of V

h
consisting of the weak functions with vanishing boundary value on )⌦ given by

V
0
h
= {v : v À V

h
, v

b

e
= 0, e œ )⌦}.

For simplicity of the notation, denote by (
g
the generalized discrete weak gradient (

g,T
computed by (2.1)–(2.2); i.e.,

((
g
v)

T
= (

g,T
(v

T
), v À V

h
.

For any w, v À V
h
, we introduce the following bilinear forms; i.e.,

a(w, v) =
…
TÀTh

(a(
g
w,(

g
v)

T
,

s(w, v) =
…
TÀTh

⇢h
�

T
ÍQ

b
w0 *w

b
,Q

b
v0 * v

b
Î
)T
,

where ⇢ > 0 and � À R.

GENERALIZED WEAK GALERKIN SCHEME 1. A numerical approximation for the model problems (1.1) based on the weak formulation
(1.2) can be obtained by seeking u

h
= {u0, ub} À V

h
such that u

b
= Q

b
g on )⌦ satisfying

a(u
h
, v) + s(u

h
, v) = (f , v0), ≈v À V

0
h
. (3.1)

Lemma 3.1. The generalized weak Galerkin scheme (3.1) has one and only one numerical approximation.

Proof. It suffices to show that the homogeneous gWG scheme (3.1) has only the trivial solution. To this end, we take f = 0 and
g = 0. Let v = u

h
À V

0
h
in (3.1) gives (a(

g
u
h
,(

g
u
h
) = 0 and s(u

h
, u

h
) = 0. This leads to (

g
u
h
= 0 on each T and Q

b
u0 = u

b
on each )T .

Using the generalized weak gradient (2.1)–(2.2) gives (u0 = 0 on each T and further u0 = const on each T . It follows from Q
b
u0 = u

b

on each )T and u
b
= 0 on )⌦ that u0 = 0 in ⌦ and u

b
= 0 on each )T . This completes the proof of the lemma. ∏

4. Error equations

This section is devoted to deriving an error equation for the gWG scheme (3.1). To this end, on each element T À T
h
, denote by

Q0 the usual L2 projection projector onto P
k
(T ). For each � À H

1(T ), let Q
h
� À V

h
be the L

2 projection such that on each element
T , we have

Q
h
� = {Q0�,Qb

�}.

Let s = min{j,l}. Denote by Q
s
the usual L2 projection operator onto [P

s
(T )]d .

Lemma 4.1. For any  
s
À [P

s
(T )]d and � À H

1(T ), there holds
((

g
Q

h
�, 

s
)
T
= ((�, 

s
)
T
+ (� *Q0�,( �  

s
)
T
.

Proof. Using the definition of generalized discrete weak gradient (2.1)–(2.2), s = min{j,l} and the usual integration by parts gives

((
g
Q

h
�, 

s
)
T

=((Q0� + �
g
Q

h
�, 

s
)
T

=((Q0�, s
)
T
+ ÍQ

b
� *Q

b
(Q0�), s

� nÎ
)T

=((Q0�, s
)
T
+ Í� *Q0�, s

� nÎ
)T

=((Q0�, s
)
T
+ ((�, 

s
)
T
+ (�,( �  

s
)
T
* (Q0�,( �  

s
)
T
* ((Q0�, s

)
T

=((�, 
s
)
T
+ (� *Q0�,( �  

s
)
T
.

This completes the proof of the lemma. ∏

Let u
h
À V

h
be the numerical solution of the gWG scheme (3.1) and u be the exact solution of the model problem (1.1). Denote

by e
h
the error function given by

e
h
= Q

h
u * u

h
= {e0, eb} = {Q0u * u0,Qb

u * u
b
}. (4.1)

Lemma 4.2. Let e
h
be the error function defined in (4.1). Then, the following error equation holds true

…
TÀTh

(a(
g
e
h
,(

g
v)

T
+ s(e

h
, v) = ⇣

u
(v), ≈v À V

0
h
, (4.2)
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where ⇣
u
(v) is given by

⇣
u
(v) =s(Q

h
u, v) +

…
TÀTh

(u *Q0u,( � (aQ
s
(
g
v))

T

+
…
TÀTh

((Q
s
* I)(a(u),(v0)T +

…
TÀTh

Í(I *Q
s
)(a(u) � n, v0 * v

b
Î
)T

+
…
TÀTh

(a(
g
Q

h
u, (I *Q

s
)(

g
v)

T
.

(4.3)

Proof. From Lemma 4.1 with  
s
= aQ

s
(
g
v and � = u, one arrives at

((
g
Q

h
u, aQ

s
(
g
v)

T
= ((u, aQ

s
(
g
v)

T
+ (u *Q0u,( � (aQ

s
(
g
v))

T
. (4.4)

As to the first term on the right hand side of (4.4), using (2.1)–(2.2), s = min{j,l}, (3.1), and the usual integration by parts
gives

…
TÀTh

((u, aQ
s
(
g
v)

T

=
…
TÀTh

(Q
s
(a(u),(

g
v)

T

=
…
TÀTh

(Q
s
(a(u),(v0)T + Ív

b
*Q

b
v0,Qs

(a(u) � nÎ
)T

=
…
TÀTh

((Q
s
* I)(a(u),(v0)T * (( � (a(u), v0)T + Ía(u � n, v0Î)T

+ Ív
b
* v0,Qs

(a(u) � nÎ
)T

=
…
TÀTh

((Q
s
* I)(a(u),(v0)T + (f , v0) +

…
TÀTh

Í(I *Q
s
)(a(u) � n, v0 * v

b
Î
)T

=
…
TÀTh

((Q
s
* I)(a(u),(v0)T + (a(

g
u
h
,(

g
v)

T
+ s(u

h
, v)

+
…
TÀTh

Í(I *Q
s
)(a(u) � n, v0 * v

b
Î
)T

=
…
TÀTh

((Q
s
* I)(a(u),(v0)T * (a(

g
e
h
,(

g
v)

T
+ (a(

g
Q

h
u,(

g
v)

T

* s(e
h
, v) + s(Q

h
u, v) +

…
TÀTh

Í(I *Q
s
)(a(u) � n, v0 * v

b
Î
)T
,

(4.5)

where we have also used the first equation in (1.1), the fact
≥

TÀTh Ía(u � n, vbÎ)T = 0 since v
b
= 0 on )⌦.

Finally, substituting (4.5) into (4.4) gives rise to (4.2). This completes the proof of the lemma. ∏

5. Technical results

Some technical results will be discussed in this section.
Let T

h
be a finite element partition of ⌦ that is shape regular as described in [10]. For any T À T

h
and � À H

1(T ), the trace
inequality holds true [10]; i.e.,

Ò�Ò2
)T

ø h
*1
T
Ò�Ò2

T
+ h

T
Ò(�Ò2

T
. (5.1)

If � is a polynomial on T À T
h
, from the inverse inequality, there holds [10]

Ò�Ò2
)T

ø h
*1
T
Ò�Ò2

T
. (5.2)

Lemma 5.1. Let T
h
be a finite element partition of ⌦ that is shape regular as described in [10]. For any � À H

k+1(⌦) and ' À H
s+2(⌦),

there holds
…
TÀTh

Ò� *Q0�Ò2T +
…
TÀTh

h
2
T
Ò((� *Q0�)Ò2T ø h

2(k+1)Ò�Ò2
k+1, (5.3)

…
TÀTh

Ò(' *Q
s
('Ò2

T
+

…
TÀTh

h
2
T
Ò(((' *Q

s
(')Ò2

T
ø h

2(s+1)Ò'Ò2
s+2. (5.4)

Lemma 5.2. For any � À H
k+1(T ), there holds

Ò�
g
Q

h
�Ò

T
ø h

k

T
Ò�Ò

k+1,T .
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Proof. It follows from (2.2), the Cauchy–Schwarz inequality, the trace inequality (5.2) and (5.3) that

Ò�
g
Q

h
�Ò

T
= sup
 À[Pl (T )]d

(�
g
Q

h
�, )

T

Ò Ò
T

= sup
 À[Pl (T )]d

ÍQ
b
� *Q

b
(Q0�), � nÎ

)T

Ò Ò
T

ø sup
 À[Pl (T )]d

Ò� *Q0�Ò)T Ò Ò)T
Ò Ò

T

ø sup
 À[Pl (T )]d

h
*1
T
Ò� *Q0�ÒT Ò ÒT

Ò Ò
T

øh
k

T
Ò�Ò

k+1,T .

This completes the proof of the lemma. ∏

For any v À V
h
, the gWG scheme (3.1) induces a seminorm given by

v2 =
…
TÀTh

(a(
g
v,(

g
v)

T
+ s(v, v). (5.5)

It is easy to verify  �  is a norm in V
0
h
.

Lemma 5.3. For any v À V
h
, there holds

⇠ …
TÀTh

Ò(v0Ò2T
⇡ 1

2
ø (1 + h

*�*1
2 )v.

Proof. From the generalized discrete weak gradient (2.1) and (5.5), one arrives at

⇠ …
TÀTh

Ò(v0Ò2T
⇡ 1

2 =
⇠ …
TÀTh

Ò(
g
v * �

g
vÒ2

T

⇡ 1
2

øv +
⇠ …
TÀTh

Ò�
g
vÒ2

T

⇡ 1
2
.

(5.6)

We use (2.2), the Cauchy–Schwarz inequality and the trace inequality (5.2) to obtain

Ò�
g
vÒ

T
= sup
 À[Pl (T )]d

(�
g
v, )

T

Ò Ò
T

= sup
 À[Pl (T )]d

Ív
b
*Q

b
v0, � nÎ

)T

Ò Ò
T

ø sup
 À[Pl (T )]d

Òv
b
*Q

b
v0Ò)T Ò Ò)T
Ò Ò

T

øh
* 1

2
T

Òv
b
*Q

b
v0Ò)T .

This gives

⇠ …
TÀTh

Ò�
g
vÒ2

T

⇡ 1
2
ø h

*�*1
2 v. (5.7)

Substituting (5.7) into (5.6) completes the proof of the lemma. ∏

Lemma 5.4. Recall that s = min{j,l}. For any ' À H
k+1(⌦) „H

s+2(⌦) and v À V
h
, there holds

s(Q
h
', v) ø h

2k+1+�
2 Ò'Ò

k+1v, (5.8)


…
TÀTh

(' *Q0',( � (aQ
s
(
g
v))

T


ø

T
0, if s f 1, k g 0, or s > 1, k g s * 1,
h
kÒ'Ò

k+1v, if s > 1, k < s * 1,

(5.9)
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
…
TÀTh

((Q
s
* I)(a('),(v0)T 

ø

h
n
l
nj

0, if k f 1, or s g k * 1,

(h
2s+1*�

2 + h
s+1)Ò'Ò

s+2v, otherwise,

(5.10)


…
TÀTh

Í(I *Q
s
)(a(') � n, v0 * v

b
Î
)T


ø

h
n
l
nj

h

2s+1*�
2 Ò'Ò

s+2v, if k = 0,

(h
2s+1*�

2 + h
s+1)Ò'Ò

s+2v, otherwise,

(5.11)


…
TÀTh

(a(
g
Q

h
', (I *Q

s
)(

g
v)

T


ø

h
n
l
nj

0, if s g max{k * 1,l},
Ò'Ò1v, if k = 0, s < max{k * 1,l},
(hkÒ'Ò

k+1 + h
s+1Ò'Ò

s+2)v, otherwise.

(5.12)

Proof. As to the first inequality (5.8), by using the Cauchy–Schwarz inequality, (5.1) and Lemma 5.1, there holds

s(Q
h
', v) =

…
TÀTh

⇢h
�

T
ÍQ

b
(Q0') *Q

b
',Q

b
v0 * v

b
Î
)T


ø

⇠ …
TÀTh

⇢h
�

T
ÒQ0' * 'Ò2

)T

⇡ 1
2
⇠ …
TÀTh

⇢h
�

T
ÒQ

b
v0 * v

b
Ò2
)T

⇡ 1
2

ø

⇠ …
TÀTh

h
�

T
(h*1

T
ÒQ0' * 'Ò2

T
+ h

T
Ò((Q0' * ')Ò2

T
)
⇡ 1

2 v

øh

2k+1+�
2 Ò'Ò

k+1v.

To derive (5.9), for the case of s f 1 as well as the case of s > 1 and k g s * 1, we have from the definition of L2 projection
operator Q0 that


…
TÀTh

(' *Q0',( � (aQ
s
(
g
v))

T
 = 0.

Otherwise, the case of s > 1 and k < s * 1, we use the Cauchy–Schwarz inequality, the inverse inequality, Lemma 5.1 to obtain


…
TÀTh

(' *Q0',( � (aQ
s
(
g
v))

T


ø

⇠ …
TÀTh

ÒQ0' * 'Ò2
T

⇡ 1
2
⇠ …
TÀTh

Ò( � (aQ
s
(
g
v)Ò2

T

⇡ 1
2

øh
k+1Ò'Ò

k+1

⇠ …
TÀTh

h
*2
T
Ò(

g
vÒ2

T

⇡ 1
2

øh
kÒ'Ò

k+1v.

To analyze the inequality (5.10), for the case of k f 1 and the case of s g k * 1, there holds


…
TÀTh

((Q
s
* I)(a('),(v0)T  = 0.

For the case of k > 1 and the case of s < k * 1, using the Cauchy–Schwarz inequality, (5.4), and Lemma 5.3 gives


…
TÀTh

((Q
s
* I)(a('),(v0)T  ø

⇠ …
TÀTh

Ò(Q
s
* I)(a(')Ò2

T

⇡ 1
2
⇠ …
TÀTh

Ò(v0Ò2T
⇡ 1

2

øh
s+1(1 + h

*�*1
2 )Ò'Ò

s+2v.
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As to (5.11), for the case of k = 0, note that v0 = Q
b
v0, using the triangle inequality (5.1), and the Cauchy–Schwarz inequality

gives


…
TÀTh

Í(I *Q
s
)(a(') � n, v0 * v

b
Î
)T


ø
…
TÀTh

Í(I *Q
s
)a(' � n,Q

b
v0 * v

b
Î
)T


ø

⇠ …
TÀTh

⇢
*1
h
*�
T
Ò(I *Q

s
)a('Ò2

)T

⇡ 1
2
⇠ …
TÀTh

⇢h
�

T
ÒQ

b
v0 * v

b
Ò2
)T

⇡ 1
2

ø

⇠ …
TÀTh

⇢
*1
h
*�
T
(h*1

T
Ò(I *Q

s
)a('Ò2

T
+ h

T
Ò(((I *Q

s
)a(')Ò2

T
)
⇡ 1

2 v

øh

2s+1*�
2 Ò'Ò

s+2v.

For the case of k > 0, we use the Cauchy–Schwarz inequality, the trace inequalities (5.1)–(5.2), (5.4), and Lemma 5.3 to obtain


…
TÀTh

Í(I *Q
s
)(a(') � n, v0 * v

b
Î
)T


ø

⇠ …
TÀTh

Ò(I *Q
s
)(a(')Ò2

)T

⇡ 1
2
⇠ …
TÀTh

Òv0 * v
b
Ò2
)T

⇡ 1
2

ø

⇠ …
TÀTh

h
*1
T
Ò(I *Q

s
)a('Ò2

T
+

…
TÀTh

h
T
Ò(((I *Q

s
)a(')Ò2

T

⇡ 1
2

�
⇠ …
TÀTh

Òv0 *Q
b
v0Ò2)T +

…
TÀTh

ÒQ
b
v0 * v

b
Ò2
)T

⇡ 1
2

ø

⇠ …
TÀTh

h
2s+2*1
T

Ò'Ò2
s+2

⇡ 1
2
⇠ …
TÀTh

h
2
T
v021,)T + h

*� v2
⇡ 1

2

øh

2s+1
2 Ò'Ò

s+2

⇠ …
TÀTh

h
2
T
h
*1
T
(v02T + h

*� v2
⇡ 1

2

ø(h
2s+1*�

2 + h
s+1)Ò'Ò

s+2v.

As to (5.12), for the case of s g max{k*1,l}, it follows from the definition of the generalized discrete weak gradient (2.1)–(2.2),

and the definition of Q
s
that


…
TÀTh

(a(
g
Q

h
', (I *Q

s
)(

g
v)

T
 = 0.

For the case of s < max{k*1,l}, we apply (2.1), Lemma 4.1 with  
s
= aQ

s
(
g
v, the Cauchy–Schwarz inequality, Lemmas 5.1–5.2,

and the inverse inequality to obtain


…
TÀTh

(a(
g
Q

h
', (I *Q

s
)(

g
v)

T


=
…
TÀTh

((
g
Q

h
', a(

g
v)

T
* ((

g
Q

h
', aQ

s
(
g
v)

T


=
…
TÀTh

((Q0' + �
g
Q

h
', a(

g
v)

T
* ((', aQ

s
(
g
v)

T
* (' *Q0',( � (aQ

s
(
g
v))

T


=
…
TÀTh

((Q0' * (', a(
g
v)

T
+ ((' *Q

s
(', a(

g
v)

T
+ (�

g
Q

h
�, a(

g
v)

T

* (' *Q0',( � (aQ
s
(
g
v))

T


ø

⇠ …
TÀTh

Ò(Q0' * ('Ò2
T

⇡ 1
2 v +

⇠ …
TÀTh

Ò(' *Q
s
('Ò2

T

⇡ 1
2 v
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+
⇠ …
TÀTh

Ò�
g
Q

h
'Ò2

T

⇡ 1
2 v +

⇠ …
TÀTh

Ò' *Q0'Ò2T
⇡ 1

2
⇠ …
TÀTh

Ò((aQ
s
(
g
v)Ò2

T

⇡ 1
2

ø

h
n
n
n
l
n
n
nj

⇠≥
TÀTh Ò'Ò21,T

⇡ 1
2 v +

⇠≥
TÀTh h

2
T
Ò'Ò21,T

⇡ 1
2
⇠≥

TÀTh h
*2
T
Ò(

g
'Ò2

T

⇡ 1
2
,

if k = 0, s < max{k * 1,l},
(hkÒ'Ò

k+1 + h
s+1Ò'Ò

s+2 + h
kÒ'Ò

k+1 + h
k+1

h
*1Ò'Ò

k+1)v,
if k > 0, s < max{k * 1,l},

ø

T
Ò'Ò1v, if k = 0, s < max{k * 1,l},
(hkÒ'Ò

k+1 + h
s+1Ò'Ò

s+2)v, if k > 0, s < max{k * 1,l}.
This completes the proof of the lemma. ∏

Lemma 5.5. Recall s = min{j,l}. Let � À H
2(⌦) and � = 0 on )⌦. For any u À H

k+1(⌦) „H
s+2(⌦), there holds

s(Q
h
u,Q

h
�) ø

T
h
�+1ÒuÒ1Ò�Ò2, if k = 0,

h
k+�+2ÒuÒ

k+1Ò�Ò2, if k > 0,
(5.13)


…
TÀTh

(u *Q0u,( � (aQ
s
(
g
Q

h
�))

T


ø

h
n
l
nj

0, if s f 1, k g 0, or s > 1, k g s * 1,
ÒuÒ1Ò�Ò2, if k = 0, s > 1,
h
k+1ÒuÒ

k+1Ò�Ò2, otherwise,

(5.14)


…
TÀTh

((Q
s
* I)(a(u),(Q0�)

T


ø

T
0, if k f 1, or s g k * 1,
h
s+2ÒuÒ

s+2Ò�Ò2, otherwise,

(5.15)


…
TÀTh

Í(I *Q
s
)(a(u) � n,Q0� *Q

b
�Î

)T
 ø

T
h
s+1ÒuÒ

s+2Ò�Ò2, if k = 0,
h
s+2ÒuÒ

s+2Ò�Ò2, if k > 0,
(5.16)


…
TÀTh

(a(
g
Q

h
u, (I *Q

s
)(

g
Q

h
�)

T


ø

h
n
l
nj

0, if s g max{k * 1,l},
ÒuÒ1Ò�Ò2, if k = 0, s < max{k * 1,l},
(hk+1ÒuÒ

k+1 + h
s+2ÒuÒ

s+2)Ò�Ò2, if k > 0, s < max{k * 1,l}.

(5.17)

Proof. As to (5.13), using the Cauchy–Schwarz inequality, the trace inequality (5.1), and (5.3) gives

s(Q
h
u,Q

h
�) =

…
TÀTh

⇢h
�

T
ÍQ

b
(Q0u) *Q

b
u,Q

b
(Q0�) *Q

b
�Î

)T


ø

⇠ …
TÀTh

⇢h
�

T
ÒQ0u * uÒ2

)T

⇡ 1
2
⇠ …
TÀTh

⇢h
�

T
ÒQ0� *�Ò2

)T

⇡ 1
2

ø

⇠ …
TÀTh

h
�

T
(h*1

T
ÒQ0u * uÒ2

T
+ h

T
Ò((Q0u * u)Ò2

T
)
⇡ 1

2

�
⇠ …
TÀTh

h
�

T
(h*1

T
ÒQ0� *�Ò2

T
+ h

T
Ò((Q0� *�)Ò2

T
)
⇡ 1

2

ø

h
n
l
nj

h

�+1
2 ÒuÒ1h

�+1
2 Ò�Ò1, if k = 0,

h

2k+1+�
2 h

3+�
2 ÒuÒ

k+1Ò�Ò2, if k > 0,

ø

T
h
�+1ÒuÒ1Ò�Ò2, if k = 0,

h
k+�+2ÒuÒ

k+1Ò�Ò2, if k > 0.

As to (5.14), for the case of s f 1 and the case of s > 1 and k g s * 1, using the definition of Q0 gives


…
TÀTh

(u *Q0u,( � (aQ
s
(
g
Q

h
�))

T
 = 0.
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For the case of s > 1 and k < s * 1, using the Cauchy–Schwarz inequality, (5.3), the generalized weak gradient (2.1), the inverse
inequality and Lemma 5.2, yields


…
TÀTh

(u *Q0u,( � (aQ
s
(
g
Q

h
�))

T


ø

⇠ …
TÀTh

Òu *Q0uÒ2T
⇡ 1

2
⇠ …
TÀTh

(
g
Q

h
�21,T

⇡ 1
2

øh
k+1

⇠ …
TÀTh

(Q0� + �
g
Q

h
�21,T

⇡ 1
2 ÒuÒ

k+1

øh
k+1

⇠ …
TÀTh

(Q0�21,T + h
*2
T
Ò�

g
Q

h
�Ò2

T

⇡ 1
2 ÒuÒ

k+1

ø

h
n
l
nj

h

⇠≥
TÀTh h

*2
T
Ò�Ò21,T

⇡ 1
2 ÒuÒ1, if k = 0,

h
k+1

⇠
Ò�Ò22 +

≥
TÀTh h

*2
T
h
2
T
Ò�Ò22,T

⇡ 1
2 ÒuÒ

k+1, if k > 0,

ø

T
ÒuÒ1Ò�Ò2, if k = 0,
h
k+1ÒuÒ

k+1Ò�Ò2, if k > 0.

As to (5.15), for the case of k f 1 and the case of s g k * 1, one arrives at


…
TÀTh

((Q
s
* I)(a(u),(Q0�)

T
 = 0.

For the case of k > 1 and s < k * 1, the definition of Q
s
, the Cauchy–Schwarz inequality and (5.4) are used to obtain


…
TÀTh

((Q
s
* I)(a(u),(Q0�)

T


=
…
TÀTh

((Q
s
* I)(a(u), (I *Q

s
)(Q0�)

T


ø

⇠ …
TÀTh

Ò(Q
s
* I)a(uÒ2

T

⇡ 1
2
⇠ …
TÀTh

Ò(I *Q
s
)(Q0�Ò2

T

⇡ 1
2

øh
s+1ÒuÒ

s+2 � hÒQ0�Ò2
øh

s+2ÒuÒ
s+2Ò�Ò2.

As to (5.16), applying the triangle inequality, s = min{j,l}, the definition of Q
b
, � = 0 on )⌦, the Cauchy–Schwarz inequality,

the trace inequality (5.1), (5.3)–(5.4) yields


…
TÀTh

Í(I *Q
s
)(a(u) � n,Q0� *Q

b
�Î

)T


=
…
TÀTh

Í(I *Q
s
)(a(u) � n,Q0� *�Î

)T
+

…
TÀTh

Í(I *Q
s
)(a(u) � n,� *Q

b
�Î

)T


=
…
TÀTh

Í(I *Q
s
)(a(u) � n,Q0� *�Î

)T
 + 

…
TÀTh

Ía(u � n,� *Q
b
�Î

)T


=
…
TÀTh

Í(I *Q
s
)(a(u) � n,Q0� *�Î

)T
 + Ía(u � n,� *Q

b
�Î

)⌦


ø

⇠ …
TÀTh

Ò(I *Q
s
)a(uÒ2

)T

⇡ 1
2
⇠ …
TÀTh

ÒQ0� *�Ò2
)T

⇡ 1
2

ø

⇠ …
TÀTh

h
*1
T
Ò(I *Q

s
)a(uÒ2

T
+ h

T
Ò(((I *Q

s
)a(u)Ò2

T

⇡ 1
2

�
⇠ …
TÀTh

h
*1
T
ÒQ0� *�Ò2

T
+ h

T
Ò((Q0� *�)Ò2

T

⇡ 1
2

ø

T
h
s+1ÒuÒ

s+2Ò�Ò1, if k = 0,
h

*1
2 h

s+1ÒuÒ
s+2 � h

*1
2 h

2Ò�Ò2, if k > 0,

ø

T
h
s+1ÒuÒ

s+2Ò�Ò2, if k = 0,
h
s+2ÒuÒ

s+2Ò�Ò2, if k > 0.
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As to (5.17), for the case of s g max{k * 1,l}, it follows from the definition of Q
s
that


…
TÀTh

(a(
g
Q

h
u, (I *Q

s
)(

g
Q

h
�)

T
 = 0.

For the case of s < max{k* 1,l}, using (2.1), the definition of Q
s
, the Cauchy–Schwarz inequality, Lemma 5.2, (5.3)–(5.4) and the

inverse inequality gives


…
TÀTh

(a(
g
Q

h
u, (I *Q

s
)(

g
Q

h
�)

T


=
…
TÀTh

((Q0u + �
g
Q

h
u, a(I *Q

s
)(

g
Q

h
�)

T


=
…
TÀTh

(((Q0u * (u) + (I *Q
s
)(u + �

g
Q

h
u, a(I *Q

s
)(

g
Q

h
�)

T


ø

⇠ …
TÀTh

Ò(Q0u * (uÒ2
T
+ Ò(I *Q

s
)(uÒ2

T
+ Ò�

g
Q

h
uÒ2

T

⇡ 1
2

�
⇠ …
TÀTh

Òa(I *Q
s
)(

g
Q

h
�Ò2

T

⇡ 1
2

ø

⇠ …
TÀTh

Ò(Q0u * (uÒ2
T
+ Ò(I *Q

s
)(uÒ2

T
+ h

2k
T
ÒuÒ2

k+1,T

⇡ 1
2

�
⇠ …
TÀTh

h
2
T
(

g
Q

h
�21,T

⇡ 1
2

ø

h
n
n
l
n
nj

⇠≥
TÀTh ÒuÒ21,T

⇡ 1
2
⇠≥

TÀTh Ò�gQh
�Ò2

T

⇡ 1
2
, if k = 0, s < max{k * 1,l},

⇠≥
TÀTh h

2k
T
ÒuÒ2

k+1,T + h
2s+2
T

ÒuÒ2
s+2,T + h

2k
T
ÒuÒ2

k+1,T

⇡ 1
2
⇠≥

TÀTh h
2
T
(Q0� + �

g
Q

h
�21,T

⇡ 1
2
,

if k > 0, s < max{k * 1,l},

ø

h
n
n
l
n
nj

⇠≥
TÀTh Ò�Ò21,T

⇡ 1
2 ÒuÒ1, if k = 0, s < max{k * 1,l},

(hkÒuÒ
k+1 + h

s+1ÒuÒ
s+2)

⇠≥
TÀTh h

2
T
Ò�Ò22,T + h

2
T
h
*2
T
Ò�

g
Q

h
�Ò2

T

⇡ 1
2
,

if k > 0, s < max{k * 1,l},

ø

h
n
n
l
n
nj

ÒuÒ1Ò�Ò2, if k = 0, s < max{k * 1,l},

(hkÒuÒ
k+1 + h

s+1ÒuÒ
s+2)

⇠≥
TÀTh h

2
T
Ò�Ò22,T + h

2
T
Ò�Ò22,T

⇡ 1
2
,

if k > 0, s < max{k * 1,l},

ø

T
ÒuÒ1Ò�Ò2, if k = 0, s < max{k * 1,l},
(hk+1ÒuÒ

k+1 + h
s+2ÒuÒ

s+2)Ò�Ò2, if k > 0, s < max{k * 1,l}.

This completes the proof of the lemma. ∏

6. Error estimates

The goal of this section is to establish some error estimates for the numerical approximation arising from the gWG scheme (3.1).

Theorem 6.1. Let s = min{j,l}. Assume that the exact solution u of the model problem (1.1) is sufficiently regular such that
u À H

k+1(⌦) „ H
s+2(⌦). Let u

h
À V

h
be the numerical approximation arising from the gWG scheme (3.1). The error estimate holds

true

e
h
 ø

h
n
n
n
n
l
n
n
n
nj

(h
1+�
2 + 1)ÒuÒ1 + h

2s+1*�
2 ÒuÒ

s+2, if k = 0, s = j or k = 0, s = l, l > 1,

h

1+�
2 ÒuÒ1 + h

2s+1*�
2 ÒuÒ

s+2, if k = 0, s = l, l f 1,

(h
2k+1+�

2 + h
k)ÒuÒ

k+1 + (h
2s+1*�

2 + h
s+1)ÒuÒ

s+2,

if k > 0, s > 1, k < s * 1, or k > 0, s < max{k * 1,l},

h

2k+1+�
2 ÒuÒ

k+1 + (h
2s+1*�

2 + h
s+1)ÒuÒ

s+2, otherwise.
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Proof. By taking v = e
h
À V

0
h
in the error equation (4.2), one arrives at

e
h
2 = ⇣

u
(e

h
). (6.1)

Substituting Lemma 5.4 through setting ' = u and v = e
h
into the right hand of (6.1) yields

e
h
2 ø

h
n
n
n
n
n
n
l
n
n
n
n
n
nj

(h
1+�
2 + 1)ÒuÒ1eh + h

2s+1*�
2 ÒuÒ

s+2eh, if k = 0, s = j, j f 1,

(h
1+�
2 + 1)ÒuÒ1eh + h

2s+1*�
2 ÒuÒ

s+2eh, if k = 0, s = j, j > 1,

h

1+�
2 ÒuÒ1eh + h

2s+1*�
2 ÒuÒ

s+2eh, if k = 0, s = l, l f 1,

(h
1+�
2 + 1)ÒuÒ1eh + h

2s+1*�
2 ÒuÒ

s+2eh, if k = 0, s = l, l > 1,

h

2k+1+�
2 ÒuÒ

k+1eh + h
kÒuÒ

k+1eh + (h
2s+1*�

2 + h
s+1)ÒuÒ

s+2eh,
if k > 0, s > 1, k < s * 1, or k > 0, s < max{k * 1,l},

h

2k+1+�
2 ÒuÒ

k+1eh + (h
2s+1*�

2 + h
s+1)ÒuÒ

s+2eh, otherwise,

ø

h
n
n
n
n
l
n
n
n
nj

((h
1+�
2 + 1)ÒuÒ1 + h

2s+1*�
2 ÒuÒ

s+2)eh, if k = 0, s = j or k = 0, s = l, l > 1,

(h
1+�
2 ÒuÒ1 + h

2s+1*�
2 ÒuÒ

s+2)eh, if k = 0, s = l, l f 1,

((h
2k+1+�

2 + h
k)ÒuÒ

k+1 + (h
2s+1*�

2 + h
s+1)ÒuÒ

s+2)eh,
if k > 0, s > 1, k < s * 1, or k > 0, s < max{k * 1,l},

(h
2k+1+�

2 ÒuÒ
k+1 + (h

2s+1*�
2 + h

s+1)ÒuÒ
s+2)eh, otherwise,

which leads to the desired error estimate. This completes the proof of the Theorem. ∏

Remark 6.1. Theorem 6.1 implies that our gWG scheme (3.1) achieves a superconvergence order of O(h) in a discrete norm for
the case of k = 0, s = l, l = 1, � = 1 and an optimal convergence order O(hk) for the case of k > 0, s = k * 1, � = *1.

We shall derive an error estimate for the numerical approximation in the usual L2 norm by using the standard duality argument.
To this end, we shall consider the following dual problem that seeks � À H

2(⌦) satisfying

*( � (a(�) = e0, in ⌦,

� = 0, )⌦.

(6.2)

We assume that the dual problem (6.2) satisfies the H
2 regularity property in the sense that there exists a positive constant C such

that

Ò�Ò2 f CÒe0Ò. (6.3)

Theorem 6.2. Let s = min{j,l}. Let u
h
À V

h
and u À H

k+1(⌦) „H
s+2(⌦) be the numerical solution of the gWG scheme (3.1) and the

exact solution of the model problem (1.1), respectively. In addition, assume that the dual problem (6.2) satisfies the H2 regularity property
(6.3). Then, the following error estimate holds true

Òe0Ò ø

h
n
n
l
n
nj

(h
1+�
2 + h

1*�
2 )e

h
, if k = 0, s = l, l f 1,

e
h
, if k = 0, s = l, l > 1, or k = 0, s = j,

(h
3+�
2 + h

1*�
2 + h)e

h
, if k > 0,

where e
h
 is given by Theorem 6.1.

Proof. Testing the dual equation (6.2) against e0 and using the usual integration by parts, we have

Òe0Ò2 =(*( � (a(�), e0)
=

…
TÀTh

(a(�,(e0)T * Ía(� � n, e0Î)T

=
…
TÀTh

((I *Q
s
)(a(�),(e0)T * Ía(� � n, e0 * e

b
Î
)T

+ (Q
s
(a(�),(e0)T ,

(6.4)

where we used the fact
≥

TÀTh Ía(� � n, e
b
Î
)T

= 0 since e
b
= 0 on )⌦.
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To deal with the last term on the last line in (6.4), choosing u = � and v = e
h
, from the third line in (4.5), (4.4), and s = min{j,l},

we obtain
…
TÀTh

(Q
s
(a(�),(e0)T

=
…
TÀTh

((�, aQ
s
(
g
e
h
)
T
* Íe

b
*Q

b
e0,Qs

(a(�) � nÎ
)T

=
…
TÀTh

((
g
Q

h
�, aQ

s
(
g
e
h
)
T
* (� *Q0�,( � (aQ

s
(
g
e
h
))
T

* Íe
b
* e0,Qs

(a(�) � nÎ
)T

=
…
TÀTh

(a(
g
Q

h
�, (Q

s
* I)(

g
e
h
)
T
+ (a(

g
Q

h
�,(

g
e
h
)
T

* (� *Q0�,( � (aQ
s
(
g
e
h
))
T
* Íe

b
* e0,Qs

(a(�) � nÎ
)T
.

(6.5)

Substituting (6.5) into (6.4) and using the error equation (4.2) with v = Q
h
� À V

0
h
, we get

Òe0Ò2 =
…
TÀTh

((I *Q
s
)(a(�),(e0)T + Í(Q

s
* I)(a(�) � n, e0 * e

b
Î
)T

+ (a(
g
Q

h
�, (Q

s
* I)(

g
e
h
)
T
* (� *Q0�,( � (aQ

s
(
g
e
h
))
T

+ ⇣
u
(Q

h
�) * s(e

h
,Q

h
�)

= * ⇣
�
(e

h
) + ⇣

u
(Q

h
�) + s(Q

h
�, e

h
) * s(e

h
,Q

h
�)

= * ⇣
�
(e

h
) + ⇣

u
(Q

h
�),

(6.6)

where the terms ⇣
�
(e

h
) and ⇣

u
(Q

h
�) are given by (4.3).

Next, it suffices to deal with the two terms on the last line in (6.6). As to the first term ⇣
�
(e

h
), using (4.3), Lemma 5.4 with

' = �, v = e
h
and (6.3), there holds

⇣
�
(e

h
)

ø

h
n
n
n
n
l
n
n
n
nj

(h
1+�
2 + 1)Ò�Ò1eh + h

1*�
2 Ò�Ò2eh, if k = 0, s = j, j f 1,

(h
1+�
2 + 1)Ò�Ò1eh + h

1*�
2 Ò�Ò2eh, if k = 0, s = j, j > 1,

h

1+�
2 Ò�Ò1eh + h

1*�
2 Ò�Ò2eh, if k = 0, s = l, l f 1,

(h
1+�
2 + 1)Ò�Ò1eh + h

1*�
2 Ò�Ò2eh, if k = 0, s = l, l > 1,

(h
3+�
2 + h + h

1*�
2 )Ò�Ò2eh, if k > 0,

ø

h
n
n
l
n
nj

h

1+�
2 Ò�Ò1eh + h

1*�
2 Ò�Ò2eh, if k = 0, s = l, l f 1,

(h
1+�
2 + 1)Ò�Ò1eh + h

1*�
2 Ò�Ò2eh, if k = 0, s = l, l > 1, or k = 0, s = j,

(h
3+�
2 + h

1*�
2 + h)Ò�Ò2eh, if k > 0,

ø

h
n
n
l
n
nj

(h
1+�
2 + h

1*�
2 )Òe0Òeh, if k = 0, s = l, l f 1,

(h
1+�
2 + h

1*�
2 + 1)Òe0Òeh, if k = 0, s = l, l > 1, or k = 0, s = j,

(h
3+�
2 + h

1*�
2 + h)Òe0Òeh, if k > 0.

(6.7)

As to the second term ⇣
u
(Q

h
�), from Lemma 5.5 and (6.3), we have

⇣
u
(Q

h
�)

ø

h
n
n
n
n
n
l
n
n
n
n
nj

((h�+1 + 1)ÒuÒ1 + h
s+1ÒuÒ

s+2)Ò�Ò2, if k = 0, s = j, j f 1,
((h�+1 + 1)ÒuÒ1 + h

s+1ÒuÒ
s+2)Ò�Ò2, if k = 0, s = j, j > 1,

(h�+1ÒuÒ1 + h
s+1ÒuÒ

s+2)Ò�Ò2, if k = 0, s = l, l f 1,
((h�+1 + 1)ÒuÒ1 + h

s+1ÒuÒ
s+2)Ò�Ò2, if k = 0, s = l, l > 1,

((hk+�+2 + h
k+1)ÒuÒ

k+1 + h
s+2ÒuÒ

s+2)Ò�Ò2,
if k > 0, s > 1, k < s * 1, or k > 0, s < max{k * 1,l},

(hk+�+2ÒuÒ
k+1 + h

s+2ÒuÒ
s+2)Ò�Ò2, otherwise,
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ø

h
n
n
n
l
n
n
nj

(h�+1ÒuÒ1 + h
s+1ÒuÒ

s+2)Òe0Ò, if k = 0, s = l, l f 1,
((h�+1 + 1)ÒuÒ1 + h

s+1ÒuÒ
s+2)flÒe0Ò, k = 0, s = l, l > 1, or k = 0, s = j,

(hk+1(1 + h
�+1)ÒuÒ

k+1 + h
s+2ÒuÒ

s+2)Òe0Ò,
if k > 0, s > 1, k < s * 1, or k > 0, s < max{k * 1,l},

(hk+�+2ÒuÒ
k+1 + h

s+2ÒuÒ
s+2)Òe0Ò, otherwise.

(6.8)

Substituting (6.7)–(6.8) into (6.6) leads to the desired results. This completes the proof. ∏

Remark 6.2. Theorem 6.2 implies that Òe0Ò has an optimal convergence order of O(hk+1) for the case of k = 0, s = l, l = 1, � = 1
and the case of k g 1, s = k * 1, � = *1.

To establish the error estimates for e
b
, we introduce the following norm

Òe
b
ÒEh =

⇠ …
TÀTh

h
T
Òe

b
Ò2
)T

⇡ 1
2
.

Theorem 6.3. In the assumptions of Theorem 6.1, we have the following error estimate

Òe
b
ÒEh ø

h
n
n
l
n
nj

(h
1+�
2 + h

1*�
2 )e

h
, if k = 0, s = l, l f 1,

(1 + h

1*�
2 )e

h
, if k = 0, s = l, l > 1, or k = 0, s = j,

(h
3+�
2 + h

1*�
2 + h)e

h
, if k > 0,

where e
h
 is given by Theorem 6.1.

Proof. It follows from the triangle inequality, the trace inequality (5.2) and (5.5) that
…
TÀTh

h
T
Òe

b
Ò2
)T

ø

…
TÀTh

h
T
ÒQ

b
e0Ò2)T + h

T
Òe

b
*Q

b
e0Ò2)T

øÒQ
b
e0Ò2 + h

1*� e
h
2

øÒe0Ò2 + h
1*� e

h
2,

which, together with Theorems 6.1–6.2, leads to Theorem 6.3. This completes the proof of the theorem. ∏

7. Numerical experiments

In this section, a series of numerical experiments are presented to verify the convergence theory established in the previous
sections.

Recall that the generalized discrete weak gradient is computed by (2.1)–(2.2). For the simplicity of notation, the gWG element
and the generalized discrete weak gradient are denoted by P

k
(T )_P

j
()T )_[Pl(T )]2 element. We choose a in the model problem (1.1)

to be an identity matrix on the unit square domain ⌦ = (0, 1)2. The uniform triangular partition and the uniform rectangular partition
are employed. The uniform triangular partition is obtained through a successive refinement of an initial triangular partition of the
domain ⌦ by connecting the middle points of the edges of each triangular element. The uniform rectangular partition is generated
from an initial 3 ù 2 rectangular partition of ⌦ with the next level of partition being obtained by connecting the middle points on
the two parallel edges. In all tables, ‘‘Theory.rate’’ means the convergence theory established in this paper; and ‘‘N/A’’ means the
convergence rate that has not been developed in this paper.

7.1. The gWG elements on the uniform triangular partition with smooth solutions

In this section, the uniform triangular partition is employed and the exact solution is chosen as u = cos(⇡x) cos(⇡y).
Table 7.1 illustrates the performance of the P

k
(T )_P4()T )_[P4(T )]2 elements with k = 3, 4, 5, 6. The stabilization parameters are

given by ⇢ = 1 and � = *1. For k = 3, 5, 6, the numerical convergence rate is in a good consistency with the theoretical convergence
rate for e

h
, Òe0Ò and Òe

b
ÒEh respectively. For k = 4, the numerical convergence rate is consistent with the theoretical convergence

rate for Òe
b
ÒEh , and is higher than the theoretical convergence rate for eh and Òe0Ò.

The numerical results for the P0(T )_Pj
()T )_[Pl(T )]2 element with � = 0 and � = 1 are shown in Tables 7.2–7.3. The stabilization

parameter is ⇢ = 1. We can see from Table 7.2 that the numerical results consist with the theoretical rates of convergence. In
addition, for the P0(T )_Pj

()T )_[P1(T )]2 for j = 1, 2 elements, the convergence rate for Òe0Ò seems to be in an convergence order of
O(h) which exceeds the theoretical prediction O(h0.5). We observe from Table 7.3 that the numerical performance of gWG methods
is typically better than what the theory predicts.
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Table 7.1
Numerical errors and convergence rates for the P

k
(T )_P4()T )_[P4(T )]2 elements.

1_h e
h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

k = 3

8 1.56E*04 3.00 1.33E*06 4.11 4.13E*06 3.99
16 1.95E*05 3.00 8.03E*08 4.04 2.60E*07 3.99
32 2.45E*06 3.00 4.96E*09 4.02 1.63E*08 3.99
64 3.06E*07 3.00 3.08E*010 4.01 1.02E*09 4.00
Theory.rate 3.0 4.0 4.0

k = 4

4 1.85E*04 4.86 9.12E*06 5.90 1.55E*06 5.61
8 6.58E*06 4.81 1.49E*07 5.94 3.79E*08 5.35
16 2.79E*07 4.56 2.59E*09 5.85 1.09E*09 5.12
32 1.47E*08 4.25 5.40E*011 5.58 3.34E*011 5.03
Theory.rate 4.0 5.0 5.0

k = 5

2 5.89E*03 5.07 6.89E*04 6.08 5.15E*05 5.88
4 1.94E*04 4.92 1.13E*05 5.92 9.22E*07 5.80
8 6.15E*06 4.98 1.80E*07 5.98 1.50E*08 5.94
16 1.93E*07 4.99 2.81E*09 5.99 2.39E*010 5.97
Theory.rate 5.0 6.0 6.0

k = 6

2 6.07E*03 5.07 7.20E*04 6.08 5.32E*05 5.88
4 2.00E*04 4.92 1.19E*05 5.92 9.55E*07 5.80
8 6.34E*06 4.98 1.88E*07 5.98 1.56E*08 5.94
16 1.99E*07 4.99 2.95E*09 5.99 2.48E*010 5.98
Theory.rate 5.0 6.0 6.0

Table 7.2
Numerical errors and convergence rates for the P0(T )_Pj

()T )_[Pl (T )]2 elements when � = 0.

1_h e
h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

j = 0, l = 0

16 9.35E*01 0.48 8.77E*02 0.99 9.17E*03 1.09
32 6.65E*01 0.49 4.42E*02 1.00 4.46E*03 1.04
64 4.71E*01 0.50 2.21E*02 1.00 2.20E*03 1.02
128 3.34E*01 0.50 1.11E*02 1.00 1.09E*03 1.01
Theory.rate 0.5 1.0 1.0

j = 1, l = 0

16 9.96E*01 0.48 8.77E*02 0.96 5.55E*02 0.94
32 7.09E*01 0.49 4.42E*02 0.99 2.82E*02 0.98
64 5.03E*01 0.50 2.21E*02 1.00 1.42E*02 0.99
128 3.56E*01 0.50 1.11E*02 1.00 7.14E*03 0.99
Theory.rate 0.5 1.0 1.0

j = 1, l = 1

16 8.86E*02 1.01 1.27E*02 0.98 2.23E*02 1.01
32 4.39E*02 1.01 6.37E*03 1.00 1.11E*02 1.01
64 2.18E*02 1.01 3.18E*03 1.00 5.50E*03 1.01
128 1.09E*02 1.01 1.58E*03 1.00 2.74E*03 1.00
Theory.rate 0.5 1.0 1.0

j = 2, l = 1

16 8.98E*02 1.03 1.27E*02 0.98 2.24E*02 1.04
32 4.42E*02 1.02 6.37E*03 1.00 1.11E*02 1.02
64 2.19E*02 1.01 3.18E*03 1.00 5.50E*03 1.01
128 1.09E*02 1.01 1.58E*03 1.00 2.75E*03 1.00
Theory.rate 0.5 1.0 1.0

j = 2, l = 3

16 6.20E*00 *0.03 1.62E*01 *0.01 2.85E*01 0.05
32 6.26E*00 *0.01 1.62E*01 0.00 2.81E*01 0.02
64 6.28E*00 *0.01 1.62E*01 0.00 2.80E*01 0.01
128 6.30E*00 *0.00 1.61E*01 0.00 2.80E*01 0.00
Theory.rate 0.0 0.0 0.0
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Table 7.3
Numerical errors and convergence rates for the P0(T )_Pj

()T )_[Pl (T )]2 elements when � = 1.

1_h e
h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

j = 0, l = 0

16 3.17E*00 *0.01 1.02E*00 *0.01 1.98E*03 1.99
32 3.17E*00 *0.00 1.02E*00 *0.00 4.95E*04 2.00
64 3.18E*00 *0.00 1.02E*00 *0.00 1.24E*04 2.00
128 3.18E*00 *0.00 1.02E*00 *0.00 3.09E*05 2.00
Theory.rate 0.0 0.0 0.0

j = 1, l = 0

16 3.17E*00 *0.01 1.02E*00 *0.01 5.48E*02 0.94
32 3.17E*00 *0.00 1.02E*00 *0.00 2.79E*02 0.97
64 3.18E*00 *0.00 1.02E*00 *0.00 1.41E*02 0.99
128 3.18E*00 *0.00 1.02E*00 *0.00 7.06E*03 0.99
Theory.rate 0.0 0.0 0.0

j = 1, l = 1

16 1.46E*02 1.93 2.22E*03 1.92 3.88E*03 1.96
32 3.73E*03 1.97 5.62E*04 1.98 9.76E*04 1.99
64 9.38E*04 1.99 1.41E*04 1.99 2.45E*04 2.00
128 2.35E*04 2.00 3.53E*05 2.00 6.12E*05 2.00
Theory.rate 1.0 1.0 1.0

j = 2, l = 1

16 1.53E*02 1.93 2.22E*03 1.92 4.48E*03 1.96
32 3.88E*03 1.98 5.62E*04 1.98 1.13E*03 1.99
64 9.77E*04 1.99 1.41E*04 1.99 2.83E*04 2.00
128 2.45E*04 2.00 3.53E*05 2.00 7.07E*05 2.00
Theory.rate 1.0 1.0 1.0

j = 2, l = 3

16 6.19E*00 *0.03 1.62E*01 *0.01 2.85E*01 0.05
32 6.25E*00 *0.01 1.62E*01 0.00 2.81E*01 0.02
64 6.28E*00 *0.01 1.62E*01 0.00 2.80E*01 0.01
128 6.29E*00 *0.00 1.61E*01 0.00 2.80E*01 0.00
Theory.rate 0.0 0.0 0.0

Table 7.4 reports some numerical results of the P5(T )_Pj
()T )_[P1(T )]2 elements for different values of j. The stabilization

parameters are ⇢ = 1 and � = *1. These numerical results are greatly consistent with the established theory. The convergence
rates for e

h
, Òe0Ò and Òe

b
ÒEh are the same when different j = 2, 5, 6, 7 are applied.

Table 7.5 demonstrates the performance of the P4(T )_P2()T )_[Pl(T )]2 elements for different values of l. The stabilization
parameters are given by ⇢ = 1 and � = *1. We observe that these numerical results are in an agreement with our theory. Moreover,
the convergence rates for the numerical approximations are the same for different l = 3, 4, 6.

Table 7.6 illustrates the numerical performance of the P4(T )_P7()T )_[P5(T )]2 element with different values of �. The stabilization
parameter is ⇢ = 1. We observe that the theoretical rates of convergence for e

h
, Òe0Ò and Òe

b
ÒEh are consistent with the theoretical

prediction for the case of � = *1. The numerical results outperform the theory for � = *10*5,* 1
2 , 1.

Table 7.7 presents the numerical results for the P5(T )_P5()T )_[P4(T )]2 element with different values of ⇢. The stabilization
parameter is � = *1. We can see that the convergence rates are perfectly consistent with the theory prediction for e

h
 and Òe0Ò,

and exceed the theory prediction for Òe
b
Ò.

Table 7.8 presents some numerical results for the P3(T )_Pj
()T )_[Pl(T )]2 elements for different values of j and l when ⇢ = 0 is

employed in the gWG scheme (3.1). Note that the theory established in the previous sections applies to ⇢ > 0. However, we have
observed from Table 7.8 that (1) For the case of j g 2 and l g 4, the convergence rates for e

h
, Òe0Ò and Òe

b
ÒEh are O(h3), O(h4)

and O(h4), respectively; (2) For the case of j = 1 and l = 4, the convergence rates for e
h
, Òe0Ò and Òe

b
ÒEh are O(h2), O(h3) and

O(h3), respectively.

7.2. The gWG elements on the uniform rectangular partition with smooth solutions

In this section, the uniform rectangular partition is employed.
Table 7.9 illustrates the numerical performance of the P

k
(T )_P

k*1()T )_[Pk*1(T )]2 element for k = 3, 4 with the exact solution
u = cos(⇡x) cos(⇡y). The stabilization parameters are given by ⇢ = 1 and � = *1. We observe from Table 7.9 that the theoretical rates
of convergence for e

h
, Òe0Ò and Òe

b
Ò are verified by the numerical results.

Table 7.10 shows some numerical results for the P0(T )_Pj
()T )_[Pl(T )]2 element with different values of j and l. The exact

solution is given by u = cos(⇡x) sin(⇡y). The stabilization parameters are ⇢ = 1 and � = 0, respectively. These numerical results
suggest that (1) for the P0(T )_P2()T )_[P0(T )]2 element and the P0(T )_P3()T )_[P1(T )]2 element, the convergence rates for eh, Òe0Ò
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Table 7.4
Numerical errors and convergence rates for the P5(T )_Pj

()T )_[P1(T )]2 elements.

1_h e
h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

j = 0

8 2.53E*01 1.02 6.75E*03 2.12 6.61E*03 1.90
16 1.26E*01 1.01 1.65E*03 2.03 1.68E*03 1.98
32 6.30E*02 1.00 4.09E*04 2.01 4.21E*04 1.99
64 3.15E*02 1.00 1.02E*04 2.00 1.05E*04 2.00
Theory.rate 1.0 2.0 2.0

j = 2

8 5.52E*02 1.98 2.23E*03 3.00 5.32E*04 3.67
16 1.38E*02 2.00 2.78E*04 3.00 4.55E*05 3.55
32 3.46E*03 2.00 3.48E*05 3.00 4.67E*06 3.28
64 8.66E*04 2.00 4.34E*06 3.00 5.46E*07 3.10
Theory.rate 2.0 3.0 3.0

j = 5

8 5.52E*02 1.98 2.23E*03 3.00 5.71E*04 3.61
16 1.38E*02 2.00 2.78E*04 3.00 5.25E*05 3.44
32 3.46E*03 2.00 3.48E*05 3.00 5.72E*06 3.20
64 8.66E*04 2.00 4.34E*06 3.00 6.85E*07 3.06
Theory.rate 2.0 3.0 3.0

j = 6

8 5.52E*02 1.98 2.23E*03 3.00 5.71E*04 3.61
16 1.38E*02 2.00 2.78E*04 3.00 5.25E*05 3.44
32 3.46E*03 2.00 3.48E*05 3.00 5.72E*06 3.20
64 8.66E*04 2.00 4.34E*06 3.00 6.85E*07 3.06
Theory.rate 2.0 3.0 3.0

j = 7

8 5.52E*02 1.98 2.23E*03 3.00 5.71E*04 3.61
16 1.38E*02 2.00 2.78E*04 3.00 5.25E*05 3.44
32 3.46E*03 2.00 3.48E*05 3.00 5.72E*06 3.20
64 8.66E*04 2.00 4.34E*06 3.00 6.85E*07 3.06
Theory.rate 2.0 3.0 3.0

Table 7.5
Numerical errors and convergence rates for the P4(T )_P2()T )_[Pl (T )]2 elements.
1_h e

h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

l = 1

8 5.52E*02 1.98 2.23E*03 3.00 5.33E*04 3.67
16 1.38E*02 2.00 2.78E*04 3.00 4.57E*05 3.55
32 3.46E*03 2.00 3.47E*05 3.00 4.67E*06 3.28
64 8.66E*03 2.00 4.34E*06 3.00 5.45E*07 3.10
Theory.rate 2.0 3.0 3.0

l = 3

8 2.82E*04 3.32 5.42E*06 4.76 1.57E*06 3.94
16 3.25E*05 3.11 2.43E*07 4.48 9.87E*08 3.99
32 3.98E*06 3.03 1.32E*08 4.20 6.18E*09 4.00
64 4.95E*07 3.01 7.93E*010 4.06 3.86E*010 4.00
Theory.rate 3.0 4.0 4.0

l = 4

8 2.22E*04 2.98 2.34E*06 3.97 1.63E*06 4.04
16 2.67E*05 2.99 1.47E*07 3.99 9.97E*08 4.03
32 3.34E*06 3.00 9.18E*09 4.00 6.20E*09 4.01
64 4.17E*07 3.00 5.74E*010 4.00 3.87E*010 4.00
Theory.rate 3.0 4.0 4.0

l = 6

4 1.84E*03 3.44 3.49E*05 4.10 2.99E*05 3.83
8 1.99E*04 3.21 2.11E*06 4.05 1.69E*06 4.14
16 2.38E*05 3.07 1.30E*07 4.02 1.01E*07 4.07
32 2.94E*06 3.02 8.13E*09 4.00 6.22E*09 4.02
Theory.rate 3.0 4.0 4.0
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Table 7.6
Numerical errors and convergence rates for the P4(T )_P7()T )_[P5(T )]2 element.
1_h e

h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

� = *10*5

2 1.16E*03 4.03 3.58E*05 4.29 1.67E*04 5.78
4 3.57E*05 5.02 5.62E*07 5.99 2.75E*06 5.92
8 1.08E*06 5.04 8.67E*09 6.02 4.34E*08 5.98
16 3.43E*08 4.98 1.35E*010 6.01 6.82E*010 5.99
Theory.rate 4.0 4.5 4.5

� = *1

2 9.09E*05 4.07 1.40e*06 5.06 4.75E*06 5.31
4 9.09E*05 4.07 1.34E*06 5.06 4.75E*06 5.31
8 5.61E*06 4.02 4.33E*08 5.01 1.37E*07 5.12
16 3.50E*07 4.00 1.35E*09 5.00 4.20E*09 5.03
Theory.rate 4.0 5.0 5.0

� = * 1
2

2 1.33E*03 4.55 4.07e*05 5.53 3.44E*06 5.68
4 5.67E*05 4.55 8.85E*07 5.53 3.44E*06 5.68
8 2.46E*06 4.52 1.95E*08 5.50 6.90E*08 5.64
16 1.10E*07 4.49 4.34E*010 5.49 1.45E*09 5.58
Theory.rate 4.0 4.75 4.75

� = 1

2 8.92E*04 4.69 2.79e*05 4.97 1.53E*04 5.91
4 1.52E*05 5.87 2.43E*07 6.84 2.28E*06 6.07
8 2.44E*07 5.96 1.96E*09 6.95 3.49E*08 6.03
16 1.60E*08 3.93 3.65E*011 5.75 2.29E*09 3.93
Theory.rate 4.0 4.0 4.0

Table 7.7
Numerical errors and convergence rates for the P5(T )_P5()T )_[P4(T )]2 element.
1_h e

h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

⇢ = 10*4

2 6.21E*01 5.07 7.19E*00 6.08 2.78E*00 *8.30
4 2.05E*02 4.92 1.18E*01 5.93 2.30E*02 6.91
8 6.48E*04 4.98 1.87E*03 5.98 1.83E*04 6.97
16 2.03E*05 5.00 2.93E*05 6.00 1.61E*06 6.83
Theory.rate 5.0 6.0 6.0

⇢ = 10*1

2 1.95E*02 5.07 7.16E*03 6.08 2.78E*03 0.26
4 6.44E*04 4.92 1.18E*04 5.93 2.31E*05 6.91
8 2.04E*05 4.98 1.86E*06 5.98 1.84E*07 6.97
16 6.39E*07 5.00 2.92E*08 6.00 1.63E*09 6.82
Theory.rate 5.0 6.0 6.0

⇢ = 1

2 5.89E*03 5.07 6.88E*04 6.08 2.85E*04 3.42
4 1.94E*04 4.92 1.13E*05 5.92 2.50E*06 6.83
8 6.15E*06 4.98 1.79E*07 5.98 2.38E*08 6.71
16 1.93E*07 5.00 2.81E*09 6.00 2.88E*010 6.37
Theory.rate 5.0 6.0 6.0

⇢ = 104

2 4.51E*02 5.06 7.26E*05 6.10 1.37E*04 6.09
4 1.47E*03 4.94 1.18E*06 5.95 2.18E*06 5.97
8 4.65E*05 4.98 1.83E*08 6.01 3.28E*08 6.05
16 1.46E*06 5.00 2.83E*010 6.01 5.01E*010 6.03
Theory.rate 5.0 6.0 6.0

and Òe
b
Ò are consistent with the developed theory; (2) For the P0(T )_P0()T )_[P1(T )]2 element, the convergence rates for eh, Òe0Ò

and Òe
b
Ò outperform the theoretical prediction.

Table 7.11 demonstrates the numerical performance of the P5(T )_Pj
()T )_[Pl(T )]2 element when j < l. We choose ⇢ = 1 and

� = *1. The exact solution is u = x
2 cos(⇡y). We observe from Table 7.11 that (1) the convergence rates for e

h
, Òe0Ò and Òe

b
Ò consist

with the theoretical convergence rates when the cases of (j,l) = (0, 5), (j,l) = (1, 4) are applied; (2) for the case of (j,l) = (2, 3), the
convergence rates for e

h
, Òe0Ò are consistent with the theoretical convergence rates while the convergence rate for ÒebÒEh seems

to exceed the theoretical convergence rate of O(h4).
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Table 7.8
Numerical errors and convergence rates for the P3(T )_Pj

()T )_[Pl (T )]2 elements.

1_h e
h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

j = 1, l = 4

16 1.75E*03 2.00 1.52E*05 3.01 1.84E*05 2.93
32 4.37E*04 2.00 1.89E*06 3.01 2.34E*06 2.97
64 1.09E*04 2.00 2.36E*07 3.00 2.95E*07 2.99
128 2.74E*05 2.00 2.94E*08 3.00 3.70E*08 2.99
Theory.rate N/A N/A N/A

j = 2, l = 4

8 9.80E*04 2.97 7.52E*06 4.03 7.99E*06 3.91
16 1.23E*04 2.99 4.63E*07 4.02 5.12E*07 3.96
32 1.54E*05 3.00 2.87E*08 4.01 3.23E*08 3.98
64 1.93E*06 3.00 1.79E*09 4.00 2.03E*09 3.99
Theory.rate N/A N/A N/A

j = 3, l = 4

8 9.07E*04 2.97 6.61E*06 4.09 1.02E*05 3.99
16 1.14E*04 2.99 4.00E*07 4.05 6.36E*07 4.00
32 1.43E*05 3.00 2.47E*08 4.02 3.98E*08 4.00
64 1.79E*06 3.00 1.53E*09 4.01 2.49E*09 4.00
Theory.rate N/A N/A N/A

j = 2, l = 5

8 1.66E*03 2.97 1.02E*05 4.05 1.25E*05 3.93
16 2.09E*04 2.99 6.26E*07 4.03 7.95E*07 3.97
32 2.62E*05 3.00 3.87E*08 4.02 5.01E*08 3.99
64 3.29E*06 3.00 2.41E*09 4.01 3.14E*09 4.00

Theory.rate N/A N/A N/A

Table 7.9
Numerical errors and convergence rates for the P

k
(T )_P

k*1()T )_[Pk*1(T )]2 element.
1_h e

h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

k = 3

16 3.71E*04 2.97 3.32E*06 4.03 1.17E*05 3.69
32 4.67E*05 2.99 2.05E*07 4.02 7.98E*07 3.88
64 5.86E*06 2.99 1.27E*08 4.01 5.17E*08 3.95
128 7.34E*07 3.00 7.93E*010 4.00 3.29E*09 3.98
Theory.rate 3.0 4.0 4.0

k = 4

8 1.33E*04 3.96 2.30E*06 5.00 5.14E*06 4.29
16 8.39E*06 3.84 7.15E*08 5.01 1.95E*07 4.72
32 5.27E*07 3.99 2.23E*09 5.00 6.60E*09 4.89
64 3.30E*08 4.00 6.94E*011 5.00 2.13E*010 4.95
Theory.rate 4.0 5.0 5.0

Table 7.12 reports the errors and convergence rates for the P3(T )_Pj
()T )_[Pl(T )]2 element when j g l. The stabilization

parameters are ⇢ = 1 and � = *1. The exact solution is given by u = x
2 cos(⇡y). Table 7.12 implies that the convergence rates for

e
h
, Òe0Ò and Òe

b
Ò are consistent with the theoretical convergence rates when the cases of (j,l) = (1, 1), (j,l) = (3, 3), (j,l) = (4, 3),

and (j,l) = (2, 1) are applied.
Table 7.13 presents some numerical results for the P3(T )_P2()T )_[P3(T )]2 element for ⇢ = 1 and different stabilization parameter

�. The exact solution is u = x
2 cos(⇡y). We observe from Table 7.13 that (1) for � = *1, the convergence rates for e

h
 and Òe

b
Ò

are in great consistency with the theoretical convergence rates; while the convergence rate for Òe0Ò is higher than the theoretical
prediction; (2) for � = *3, 0, 1, the convergence rates for e

h
, Òe0Ò and Òe

b
Ò are higher than what our theory predicts.

Table 7.14 illustrates the numerical performance of the gWG scheme (3.1) when ⇢ = 0 and the P2(T )_Pj
()T )_[Pl(T )]2 element

are applied. The exact solution is u = x
2 cos(⇡y). We observe from Table 7.14 that (1) for the cases of (j,l) = (1, 4), (j,l) = (1, 5) and

(j,l) = (2, 4), the convergence rates for e
h
, Òe0Ò and Òe

b
ÒEh are in an order of O(h2), O(h3) and O(h3), respectively; (2) for the case

of (j,l) = (1, 3), the convergence rates for e
h
, Òe0Ò and Òe

b
ÒEh are in an order of O(h3), O(h4) and O(h4), respectively; and (3) for

the case of (j,l) = (0, 4), the convergence rates for e
h
, Òe0Ò and Òe

b
ÒEh are in an order of O(h), O(h2) and O(h2), respectively. Note

that our theory established in this paper does not apply to the case of ⇢ = 0. Readers are encouraged to draw their own conclusions.
Table 7.15 shows the numerical results for the P3(T )_P2()T )_[P4(T )]2 element with different values of ⇢ and �. We observe from

Table 7.15 that (1) for the cases of (⇢, �) = (1,*1) and (⇢, �) = (102,*1), the rates of convergence for e
h
, Òe0Ò and Òe

b
ÒEh are

consistent with the theoretical rates of convergence; (2) for the case of (⇢, �) = (10*12,*1), the convergence rates for e
h
, Òe0Ò

and Òe
b
ÒEh seem to outperform the theoretical prediction; (3) for the case of ⇢ = 0 where the stabilizer is 0 for any value of �, the
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Table 7.10
Numerical errors and convergence rates for the P0(T )_Pj

()T )_[Pl (T )]2 elements.

1_h e
h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

j = 2, l = 0

16 1.13E*00 0.48 7.65E*02 0.99 1.23E*01 0.87
32 8.06E*01 0.49 3.81E*02 1.01 6.56E*02 0.90
64 5.72E*01 0.50 1.90E*02 1.01 3.42E*02 0.94
128 4.05E*01 0.50 9.46E*03 1.00 1.75E*02 0.97
Theory.rate 0.5 1.0 1.0

j = 3, l = 1

16 2.00E*01 0.55 3.33E*03 1.06 6.30E*02 0.90
32 1.42E*01 0.49 1.62E*03 1.04 3.40E*02 0.89
64 1.02E*01 0.47 8.00E*04 1.02 1.81E*02 0.91
128 7.39e*02 0.47 3.97E*04 1.01 9.50E*03 0.93
Theory.rate 0.5 1.0 1.0

j = 0, l = 1

16 3.44E*02 1.09 3.33E*03 1.06 1.65E*02 1.09
32 1.66E*02 1.05 1.62E*03 1.04 7.97E*03 1.05
64 8.15E*03 1.03 8.00E*04 1.02 3.92E*03 1.02
128 4.04E*03 1.01 3.97E*04 1.01 1.94E*03 1.01
Theory.rate 0.0 0.0 0.0

Table 7.11
Numerical errors and convergence rates for the P5(T )_Pj

()T )_[Pl (T )]2 elements.

1_h e
h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

j = 0, l = 5

8 1.11E*01 0.98 1.59E*03 1.97 1.42E*03 1.94
16 5.56E*02 0.99 4.00E*04 1.99 3.57E*04 1.99
32 2.78E*02 1.00 1.00E*04 2.00 8.95E*05 2.00
64 1.39E*02 1.00 2.50E*05 2.00 2.24E*05 2.00
Theory.rate 1.0 2.0 2.0

j = 1, l = 4

8 2.99E*03 1.91 2.51E*05 2.78 1.25E*04 2.51
16 7.70E*04 1.96 3.38E*06 2.89 1.77E*05 2.83
32 1.95E*04 1.98 4.37E*07 2.95 2.32E*06 2.93
64 4.92E*05 1.99 5.55E*08 2.98 2.97E*07 2.97
Theory.rate 2.0 3.0 3.0

j = 2, l = 3

8 1.27E*04 3.12 1.74E*06 4.19 8.24E*07 4.49
16 1.55E*05 3.04 1.04E*07 4.06 2.96E*08 4.80
32 1.92E*06 3.01 6.45E*09 4.01 9.81E*010 4.92
64 2.40E*07 3.00 4.02E*010 4.00 3.16E*011 4.96
Theory.rate 3.0 4.0 4.0

convergence rates for e
h
, Òe0Ò and Òe

b
ÒEh seem to be in an order of O(h4), O(h5) and O(h5), respectively. Again, our established

theory does not cover the case of ⇢ = 0.

7.3. Solutions with low regularity

In this section, the exact solution is given by u = x(x*1)y(y*1)(x2 +y
2)(*2+↵)_2 where ↵ À (0, 1]. It is easy to verify u À H

1+↵*⌧ (⌦)
for an arbitrary small ⌧ > 0. We should point out that our theory is not developed for the low regularity solution.

Table 7.16 illustrates the numerical performance of the P
k
(T )_P

k
()T )_[P

k*1(T )]2 element for different k on the uniform triangular
partition. We choose ↵ = 1

2 . This implies the exact solution u À H
1.5*⌧ (⌦) does not satisfy the required regularity assumption. The

stabilization parameters are ⇢ = 1 and � = *1. We can observe that the convergence rates for e
h
, Òe0Ò and Òe

b
ÒEh seem to be in

an order of O(h0.5), O(h1.5) and O(h1.5), respectively.
Table 7.17 presents some numerical results for the P1(T )_P0()T )_[P0(T )]2 element on the uniform rectangular partition. The

stabilization parameters are given by ⇢ = 1 and � = *1. We can observe from Table 7.17 that (1) for ↵ = 1, the convergence rates for
e

h
, Òe0Ò and Òe

b
ÒEh seem to be in an order of O(h0.9), O(h1.9) and O(h1.9), respectively; (2) for ↵ = 1

2 ,
1
8 and

1
32 , the convergence

rates for e
h
, Òe0Ò and Òe

b
ÒEh seem to be in an order of O(h↵), O(h1+↵) and O(h1+↵), respectively.

Table 7.18 presents some computational results for the P1(T )_P0()T )_[P2(T )]2 element on the uniform triangular partition. We
take ⇢ = 0 for which there is no theory available. We can observe from Table 7.18 that (1) for ↵ = 1, the convergence rates for
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Table 7.12
Numerical errors and convergence rates for the P3(T )_Pj

()T )_[Pl (T )]2 elements.

1_h e
h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

j = 1, l = 1

16 5.87E*03 1.91 6.15E*05 2.90 4.70E*04 2.76
32 1.51E*03 1.95 7.99E*06 2.94 6.32E*05 2.89
64 3.84E*04 1.98 1.02E*06 2.97 8.18E*06 2.95
128 9.67E*05 1.99 1.29E*07 2.99 1.04E*06 2.98
Theory.rate 2.0 3.0 3.0

j = 3, l = 3

8 5.93E*05 3.54 6.31E*07 4.91 4.95E*06 4.57
16 6.09E*06 3.28 2.23E*08 4.83 2.16E*07 4.52
32 7.12E*07 3.10 9.29E*010 4.58 1.11E*08 4.28
64 8.75E*08 3.02 4.79E*011 4.28 6.47E*010 4.10
Theory.rate 3.0 4.0 4.0

j = 4, l = 3

8 6.27E*05 3.49 6.31E*07 4.91 5.94E*06 4.41
16 6.66E*06 3.23 2.23E*08 4.83 3.06E*07 4.28
32 7.93E*07 3.07 9.29E*010 4.58 1.78E*08 4.10
64 9.80E*08 3.02 4.79E*011 4.28 1.09E*09 4.02
Theory.rate 3.0 4.0 4.0

j = 2, l = 1

8 2.19E*02 1.82 4.58E*04 2.81 3.20E*03 2.51
16 5.86E*03 1.90 6.15E*05 2.90 4.71E*04 2.76
32 1.51E*03 1.95 7.99E*06 2.94 6.35E*05 2.89
64 3.84E*04 1.98 1.02E*06 2.97 8.21E*06 2.95
Theory.rate 2.0 3.0 3.0

Table 7.13
Numerical errors and convergence rates for the P3(T )_P2()T )_[P3(T )]2 element.
1_h e

h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

� = *3

8 1.26E*03 1.79 2.77E*06 3.45 2.13E*05 3.55
16 3.28E*04 1.94 2.62E*07 3.40 1.50E*06 3.83
32 8.27E*05 1.99 2.93E*08 3.16 1.17E*07 3.69
64 2.07E*05 2.00 3.56E*09 3.04 1.14E*08 3.35
Theory.rate 2.0 2.0 2.0

� = *1

8 5.41E*05 3.48 5.68E*07 4.97 2.68E*06 4.00
16 5.87E*06 3.20 2.01E*08 4.82 1.63E*07 4.04
32 7.04E*07 3.06 8.72E*010 4.52 1.01E*08 4.01
64 8.73E*08 3.01 4.68E*011 4.22 6.30E*010 4.00
Theory.rate 3.0 4.0 4.0

� = 0

8 1.03E*04 3.47 6.00E*06 3.97 6.88E*07 4.62
16 9.17E*06 3.49 3.79E*07 3.99 2.38E*08 4.86
32 8.12E*07 3.50 2.38E*08 3.99 7.73E*010 4.94
64 7.19E*08 3.50 1.49E*09 4.00 2.46E*011 4.97
Theory.rate 2.5 3.0 3.0

� = 1

8 3.24E*04 2.98 5.95E*05 2.98 5.95E*07 4.56
16 4.07E*05 3.00 7.47E*06 2.99 2.12E*08 4.81
32 5.09E*06 3.00 9.35E*07 3.00 7.02E*010 4.92
64 6.36E*07 3.00 1.17E*07 3.00 2.26E*011 4.96
Theory.rate 2.0 2.0 2.0

e
h
, Òe0Ò and Òe

b
ÒEh seem to be in an order of O(h0.9), O(h1.9) and O(h1.9), respectively; (2) for ↵ = 2

5 ,
1
8 and

1
32 , the convergence

rates for e
h
, Òe0Ò and Òe

b
ÒEh seem to be in an order of O(h↵), O(h1+↵) and O(h1+↵), respectively.

Tables 7.19 demonstrates the numerical performance of the P
k
(T )_P

k*1()T )_[Pk+1(T )]2 element on the uniform rectangular
partition. We take ⇢ = 0 and ↵ = 2

5 . The exact solution has the regularity of H
7_5*⌧ (⌦) for an arbitrary small ⌧ > 0. These numerical

results indicate that for k = 1, 2, 3, the convergence rates for e
h
, Òe0Ò and Òe

b
ÒEh seem to be in an order of O(h0.4), O(h1.4) and

O(h1.4), respectively.
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Table 7.14
Numerical errors and convergence rates for the P2(T )_Pj

()T )_[Pl (T )]2 elements.

1_h e
h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

j = 1, l = 3

16 2.04E*05 2.99 2.18E*07 3.99 5.03E*05 3.99
32 2.55E*06 3.00 1.37E*08 4.00 3.14E*06 4.00
64 3.19E*07 3.00 8.55E*010 4.00 1.97E*07 4.00
128 3.99E*08 3.00 5.38E*011 3.99 1.24E*010 4.00
Theory.rate N/A N/A N/A

j = 1, l = 4

16 2.88E*03 1.95 5.25E*06 3.01 6.36E*05 2.97
32 7.33E*04 1.98 6.55E*07 3.00 8.02E*06 2.99
64 1.85E*04 1.99 8.18E*08 3.00 1.01E*06 2.99
128 4.64E*05 1.99 1.02E*08 3.00 1.26E*07 3.00
Theory.rate N/A N/A N/A

j = 1, l = 5

16 2.84E*03 1.92 5.15E*06 2.99 6.07E*05 2.90
32 7.27E*04 1.96 6.48E*07 2.99 7.84E*06 2.95
64 1.84E*04 1.98 8.14E*08 2.99 9.96E*07 2.98
128 4.63E*05 1.99 1.02E*08 3.00 1.25E*07 2.99
Theory.rate N/A N/A N/A

j = 2, l = 4

16 2.89E*03 1.95 5.44E*06 3.13 6.41E*05 3.00
32 7.33E*04 1.98 6.61E*07 3.04 8.04E*06 3.00
64 1.85E*04 1.99 8.20E*08 3.01 1.01E*06 3.00
128 4.64E*05 1.99 1.02E*08 3.00 1.26E*07 3.00
Theory.rate N/A N/A N/A

j = 0, l = 4

16 5.55E*02 0.99 4.00E*04 1.99 3.57E*04 1.99
32 2.78E*02 1.00 1.00E*04 2.00 8.95E*05 2.00
64 1.39E*02 1.00 2.50E*05 2.00 2.24E*05 2.00
128 6.95E*03 1.00 6.26E*06 2.00 5.59E*06 2.00
Theory.rate N/A N/A N/A

Table 7.15
Numerical errors and convergence rates for the P3(T )_P2()T )_[P4(T )]2 element.
1_h e

h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

⇢ = 0, ≈�

4 1.95E*04 3.97 4.57E*06 4.79 1.15E*05 5.09
8 1.24E*05 3.98 1.54E*07 4.89 3.68E*07 4.96
16 7.82E*07 3.99 4.98E*09 4.95 1.19E*08 4.95
32 4.91E*08 3.99 1.58E*010 4.98 3.79E*010 4.97
Theory.rate N/A N/A N/A

⇢ = 10*12, � = *1

4 1.95E*04 3.97 4.57E*06 4.79 1.15E*05 5.09
8 1.24E*05 3.98 1.54E*07 4.89 3.68E*07 4.96
16 7.82E*07 3.99 4.98E*09 4.95 1.19E*08 4.95
32 4.91E*08 3.99 1.58E*010 4.98 3.79E*010 4.97
Theory.rate 3.0 4.0 4.0

⇢ = 1, � = *1

4 1.13E*03 3.00 1.16E*05 4.30 1.16E*04 3.69
8 1.43E*04 2.99 5.88E*07 4.15 7.69E*06 3.91
16 1.79E*05 2.99 3.31E*08 4.07 4.90E*07 3.97
32 2.25E*06 3.00 1.97E*09 4.03 3.08E*08 3.99
Theory.rate 3.0 4.0 4.0

⇢ = 102, � = *1

16 5.06E*04 3.00 3.66E*07 4.20 3.14E*06 4.08
32 6.32E*05 3.00 2.12E*08 4.11 1.91E*07 4.04
64 7.91E*06 3.00 1.28E*09 4.05 1.18E*08 4.02
128 9.88E*07 3.00 7.99E*011 4.01 7.37E*010 4.00
Theory.rate 3.0 4.0 4.0
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Table 7.16
Numerical errors and convergence rates for the P

k
(T )_P

k
()T )_[P

k*1(T )]2 element.
1_h e

h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

k = 1

8 8.04E*01 0.47 4.32E*02 1.48 3.95E*02 1.54
16 5.75E*01 0.48 1.54E*02 1.49 1.38E*02 1.52
32 4.10E*01 0.49 5.49E*03 1.49 4.83E*03 1.51
64 2.91E*01 0.49 1.95E*03 1.49 1.70E*03 1.51
Theory.rate N/A N/A N/A

k = 2

8 6.42E*01 0.50 2.40E*02 1.50 2.43E*02 1.54
16 4.55E*01 0.50 8.47E*03 1.50 8.48E*03 1.52
32 3.22E*01 0.50 2.99E*03 1.50 2.98E*03 1.51
64 2.28E*01 0.50 1.06E*03 1.50 1.05E*03 1.50
Theory.rate N/A N/A N/A

k = 3

8 5.16E*01 0.49 1.55E*02 1.50 1.56E*02 1.53
16 3.66E*01 0.50 5.48E*03 1.50 5.46E*03 1.51
32 2.59E*01 0.50 1.94E*03 1.50 1.92E*03 1.51
64 1.83E*01 0.50 6.86E*04 1.50 6.78E*04 1.50
Theory.rate N/A N/A N/A

k = 4

8 3.93E*01 0.49 1.01E*02 1.50 9.24E*03 1.52
16 2.78E*01 0.50 3.57E*03 1.50 3.24E*03 1.51
32 1.97E*01 0.50 1.26E*03 1.50 1.14E*03 1.51
64 1.39E*01 0.50 4.47E*04 1.50 4.03E*04 1.50
Theory.rate N/A N/A N/A

Table 7.17
Numerical errors and convergence rates for the P1(T )_P0()T )_[P0(T )]2 element.
1_h e

h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

↵ = 1

16 6.41E*02 0.87 1.33E*03 1.83 2.60E*03 1.67
32 3.46E*02 0.89 3.65E*04 1.86 7.53E*04 1.78
64 1.85E*02 0.90 9.89E*05 1.88 2.10E*04 1.84
128 9.82E*03 0.91 2.65E*05 1.90 5.75E*05 1.87
Theory.rate N/A N/A N/A

↵ = 1_2

16 5.89E*01 0.49 9.84E*03 1.49 9.15E*03 1.41
32 4.19E*01 0.49 3.50E*03 1.49 3.34E*03 1.45
64 2.97E*01 0.50 1.24E*03 1.49 1.20E*03 1.48
128 2.10E*01 0.50 4.40E*04 1.50 4.27E*04 1.49
Theory.rate N/A N/A N/A

↵ = 1_8

16 5.01E*00 0.12 8.17E*02 1.12 9.43E*02 1.12
32 4.60E*00 0.12 3.75E*02 1.12 4.33E*02 1.12
64 4.22E*00 0.12 1.72E*02 1.12 1.99E*02 1.12
128 3.87E*00 0.12 7.90E*03 1.12 9.11E*03 1.12
Theory.rate N/A N/A N/A

↵ = 1_32

16 8.80E*00 0.03 1.44E*01 1.03 1.76E*01 1.03
32 8.63E*00 0.03 7.04E*02 1.03 8.62E*02 1.03
64 8.45E*00 0.03 3.45E*02 1.03 4.22E*02 1.03
128 8.27E*00 0.03 1.69E*02 1.03 2.06E*02 1.03
Theory.rate N/A N/A N/A

Data availability

Data will be made available on request.
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Table 7.18
Numerical errors and convergence rates for the P1(T )_P0()T )_[P2(T )]2 element.
1_h e

h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

↵ = 1

32 1.44E*02 0.83 1.29E*04 1.77 2.20E*04 1.79
64 7.92E*03 0.86 3.63E*05 1.82 6.14E*05 1.84
128 4.30E*03 0.88 1.00E*05 1.86 1.68E*05 1.87
256 2.31E*03 0.90 2.72E*06 1.88 4.51E*06 1.89
Theory.rate N/A N/A N/A

↵ = 2_5

16 2.33E*01 0.41 3.40E*03 1.41 4.32E*03 1.41
32 1.76E*01 0.41 1.28E*03 1.41 1.63E*03 1.41
64 1.33E*01 0.40 4.84E*04 1.40 6.16E*04 1.40
128 1.01E*01 0.40 1.83E*04 1.40 2.33E*04 1.40
Theory.rate N/A N/A N/A

↵ = 1_8

16 1.07E*00 0.13 1.68E*02 1.13 2.25E*02 1.13
32 9.76E*01 0.13 7.68E*03 1.13 1.03E*02 1.13
64 8.95E*01 0.13 3.51E*03 1.13 4.71E*03 1.13
128 8.20E*01 0.13 1.61E*03 1.13 2.52E*03 1.13
Theory.rate N/A N/A N/A

↵ = 1_32

16 1.78E*00 0.03 2.83E*02 1.03 3.85E*02 1.03
32 1.74E*00 0.03 1.39E*02 1.03 1.88E*02 1.03
64 1.70E*00 0.03 6.77E*03 1.03 9.20E*03 1.03
128 1.67E*00 0.03 3.31E*03 1.03 4.50E*03 1.03
Theory.rate N/A N/A N/A

Table 7.19
Numerical errors and convergence rates for the P

k
(T )_P

k*1()T )_[Pk+1(T )]2 element.
1_h e

h
 Rate Òe0Ò Rate Òe

b
Ò
E
h

Rate

k = 1

8 3.27E*01 0.41 6.35E*03 1.39 3.10E*02 1.39
16 2.47E*01 0.40 2.40E*03 1.40 1.17E*02 1.40
32 1.87E*01 0.40 9.06E*04 1.41 4.42E*03 1.41
64 1.42E*01 0.40 3.43E*04 1.40 1.67E*03 1.40
Theory.rate N/A N/A N/A

k = 2

8 2.99E*01 0.40 3.56E*03 1.40 1.05E*02 1.39
16 2.26E*01 0.40 1.35E*03 1.40 4.00E*03 1.39
32 1.71E*01 0.40 5.11E*04 1.40 1.52E*03 1.40
64 1.30E*01 0.40 1.94E*04 1.40 5.77E*04 1.40
Theory.rate N/A N/A N/A

k = 3

8 2.98E*01 0.40 2.45E*03 1.40 5.38E*03 1.39
16 2.26E*01 0.40 9.30E*04 1.40 2.05E*03 1.39
32 1.71E*01 0.40 3.53E*04 1.40 7.78E*04 1.40
64 1.30E*01 0.40 1.34E*04 1.40 2.95E*04 1.40
Theory.rate N/A N/A N/A
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