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Abstract

Deep neural networks (DNNs) have achieved remarkable success in numerous domains, and
their application to PDE-related problems has been rapidly advancing. This paper provides
an estimate for the generalization error of learning Lipschitz operators over Banach spaces
using DNNs with applications to various PDE solution operators. The goal is to specify
DNN width, depth, and the number of training samples needed to guarantee a certain testing
error. Under mild assumptions on data distributions or operator structures, our analysis
shows that deep operator learning can have a relaxed dependence on the discretization
resolution of PDEs and, hence, lessen the curse of dimensionality in many PDE-related
problems including elliptic equations, parabolic equations, and Burgers equations. Our
results are also applied to give insights about discretization-invariance in operator learning.

1 Introduction

Nonlinear operator learning aims to learn a mapping from a parametric function space to the solution space
of specific partial di�erential equation (PDE) problems. It has gained significant importance in various fields,
including order reduction Peherstorfer & Willcox (2016), parametric PDEs Lu et al. (2021b); Li et al. (2021),
inverse problems Khoo & Ying (2019), and imaging problems Deng et al. (2020); Qiao et al. (2021); Tian
et al. (2020). Deep neural networks (DNNs) have emerged as state-of-the-art models in numerous machine
learning tasks Graves et al. (2013); Miotto et al. (2018); Krizhevsky et al. (2017), attracting attention for
their applications to engineering problems where PDEs have long been the dominant model. Consequently,
deep operator learning has emerged as a powerful tool for nonlinear PDE operator learning Lanthaler et al.
(2022); Li et al. (2021); Nelsen & Stuart (2021); Khoo & Ying (2019). The typical approach involves
discretizing the computational domain and representing functions as vectors that tabulate function values on
the discretization mesh. A DNN is then employed to learn the map between finite-dimensional spaces. While
this method has been successful in various applications Lin et al. (2021); Cai et al. (2021), its computational
cost is high due to its dependence on the mesh. This implies that retraining of the DNN is necessary when
using a di�erent domain discretization. To address this issue, Li et al. (2021); Lu et al. (2022); Ong et al.
(2022) have been proposed for problems with sparsity structures and discretization-invariance properties.
Another line of works for learning PDE operators are generative models, including Generative adversarial
models (GANs) and its variants Rahman et al. (2022); Botelho et al. (2020); Kadeethum et al. (2021) and
di�usion models Wang et al. (2023). These methods can deal with discontinuous features, whereas neural
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network based methods are mainly applied to operators with continuous input and output. However, most
of generative models for PDE operator learning are limited to empirical study and theoretical foundations
are in lack.

Despite the empirical success of deep operator learning in numerous applications, its statistical learning
theory is still limited, particularly when dealing with infinite-dimensional ambient spaces. The learning
theory generally comprises three components: approximation theory, optimization theory, and generalization
theory. Approximation theory quantifies the expressibility of various DNNs as surrogates for a class of
operators. The universal approximation theory for certain classes of functions Cybenko (1989); Hornik
(1991) forms the basis of the approximation theory for DNNs. It has been extended to other function
classes, such as continuous functions Shen et al. (2019); Yarotsky (2021); Shen et al. (2021), certain smooth
functions Yarotsky (2018); Lu et al. (2021a); Suzuki (2018); Adcock et al. (2022), and functions with integral
representations Barron (1993); Ma et al. (2022). However, compared to the abundance of theoretical works
on approximation theory for high-dimensional functions, the approximation theory for operators, especially
between infinite-dimensional spaces, is quite limited. Seminal quantitative results have been presented
in Kovachki et al. (2021); Lanthaler et al. (2022).

In contrast to approximation theory, generalization theory aims to address the following question:

How many training samples are required to achieve a certain testing error?

This question has been addressed by numerous statistical learning theory works for function regression using
neural network structures Bauer & Kohler (2019); Chen et al. (2022); Farrell et al. (2021); Kohler & Krzyøak
(2005); Liu et al. (2021); Nakada & Imaizumi (2020); Schmidt-Hieber (2020). In a d-dimensional learning
problem, the typical error decay rate is on the order of n≠O(1/d) as the number of samples n increases.
The fact that the exponent is very small for large dimensionality d is known as the curse of dimensionality

(CoD) Stone (1982). Recent studies have demonstrated that DNNs can achieve faster decay rates when
dealing with target functions or function domains that possess low-dimensional structures Chen et al. (2019;
2022); Cloninger & Klock (2020); Nakada & Imaizumi (2020); Schmidt-Hieber (2019); Shen et al. (2019).
In such cases, the decay rate becomes independent of the domain discretization, thereby lessening the CoD
Bauer & Kohler (2019); Chkifa et al. (2015); Suzuki (2018). However, it is worth noting that most existing
works primarily focus on functions between finite-dimensional spaces. To the best of our knowledge, previous
results de Hoop et al. (2021); Lanthaler et al. (2022); Lu et al. (2021b); Liu et al. (2022) provide the only
generalization analysis for infinite-dimensional functions. Our work extends the findings of Liu et al. (2022)
by generalizing them to Banach spaces and conducting new analyses within the context of PDE problems.
The removal of the inner-product assumption is crucial in our research, enabling us to apply the estimates
to various PDE problems where previous results do not apply. This is mainly because the suitable space
for functions involved in most practical PDE examples are Banach spaces where the inner-product is not
well-defined. Examples include the conductivity media function in the parametric elliptic equation, the drift
force field in the transport equation, and the solution to the viscous Burgers equation that models continuum
fluid. See more details in Section 3.

1.1 Our contributions

The main objective of this study is to investigate the reasons behind the reduction of the CoD in PDE-
related problems achieved by deep operator learning. We observe that many PDE operators exhibit a
composition structure consisting of linear transformations and element-wise nonlinear transformations with
a small number of inputs. DNNs are particularly e�ective in learning such structures due to their ability
to evaluate networks point-wise. We provide an analysis of the approximation and generalization errors
and apply it to various PDE problems to determine the extent to which the CoD can be mitigated. Our
contributions can be summarized as follows:

¶ Our work provides a theoretical explanation to why CoD is lessened in PDE operator learning. We
extend the generalization theory in Liu et al. (2022) from Hilbert spaces to Banach spaces, and apply
it to several PDE examples. Such extension holds great significance as it overcomes a limitation
in previous works, which primarily focused on Hilbert spaces and therefore lacked applicability
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in machine learning for practical PDEs problems. Comparing to Liu et al. (2022), our estimate
circumvented the inner-product structure at the price of a non-decaying noise estimate. This is a
tradeo� of accuracy for generalization to Banach space. Our work tackles a broader range of PDE
operators that are defined on Banach spaces. In particular, five PDE examples are given in Section
3 whose solution spaces are not Hilbert spaces.

¶ Unlike existing works such as Lanthaler et al. (2022), which only o�er posterior analysis, we provide
an a priori estimate for PDE operator learning. Our estimate does not make any assumptions about
the trained neural network and explicitly quantifies the required number of data samples and network
sizes based on a given testing error criterion. Furthermore, we identify two key structures—low-
dimensional and low-complexity structures (described in assumptions 5 and 6, respectively)—that
are commonly present in PDE operators. We demonstrate that both structures exhibit a sample
complexity that depends on the essential dimension of the PDE itself, weakly depending on the
PDE discretization size. This finding provides insights into why deep operator learning e�ectively
mitigates the CoD.

¶ Most operator learning theories consider fixed-size neural networks. However, it is important to
account for neural networks with discretization invariance properties, allowing training and evalua-
tion on PDE data of various resolutions. Our theory is flexible and can be applied to derive error
estimates for discretization invariant neural networks.

1.2 Organization

In Section 2, we introduce the neural network structures and outline the assumptions made on the PDE
operator. Furthermore, we present the main results for generic PDE operators, and PDE operators that
have low-dimensional structure or low-complexity structure. At the end of the section, we show that the
main results are also valid for discretization invariant neural networks. In Section 3, we show that the
assumptions are satisfied and provide explicit estimates for five di�erent PDEs. Finally, in Section 4, we
discuss the limitations of our current work.

2 Problem setup and main results

Notations. In a general Banach space X , we represent its associated norm as Î · ÎX . Additionally, we
denote En

X
as the encoder mapping from the Banach space X to a Euclidean space RdX , where dX denotes

the encoding dimension. Similarly, we denote the decoder for X as Dn

X
: RdX æ X . The � notation for

neural network parameters in the main results section 2.2 denotes a lower bound estimate, that is, x = �(y)
means there exists a constant C > 0 such that x Ø Cy. The O notation denotes an upper bound estimate,
that is, x = O(y) means there exists a constant C > 0 such that x Æ Cy.

2.1 Operator learning and loss functions

We consider a general nonlinear PDE operator � : X – u ‘æ v œ Y over Banach spaces X and Y. In this
context, the input variable u typically represents the initial condition, the boundary condition, or a source
of a specific PDE, while the output variable v corresponds to the PDE solution or partial measurements
of the solution. Our objective is to train a DNN denoted as „(u; ◊) to approximate the target nonlinear
operator � using a given data set S = {(ui, vi), vi = �(ui)+Ái, i = 1, . . . , 2n}. The data set S is divided into
S

n

1 = {(ui, vi), vi = �(ui) + Ái, i = 1, . . . , n} that is used to train the encoder and decoders, and a training
data set S

n

2 = {(ui, vi), vi = �(ui) + Ái, i = n + 1, . . . , 2n}. Both S
n

1 and S
n

2 are generated independently
and identically distributed (i.i.d.) from a random measure “ over X , with Ái representing random noise.

In practical implementations, DNNs operate on finite-dimensional spaces. Therefore, we utilize empirical
encoder-decoder pairs, namely En

X
: X æ RdX and Dn

X
: RdX æ X , to discretize u œ X . Similarly, we

employ empirical encoder-decoder pairs, En

Y
: Y æ RdY and Dn

Y
: RdY æ Y, for v œ Y. These encoder-

decoder pairs are trained using the available data set S
n

1 or manually designed such that Dn

X
¶En

X
¥ IdX and

Dn

Y
¶ En

Y
¥ IdY . A common example of empirical encoders and decoders is the discretization operator, which
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Figure 1: The target nonlinear operator � : u ‘æ v is approximated by compositions of an encoder En

X
,

a DNN function �, and a decoder Dn

Y
. The finite dimensional operator � is learned via the optimization

problem equation 1.

maps a function to a vector representing function values at discrete mesh points. Other examples include
finite element projections and spectral methods, which map functions to coe�cients of corresponding basis
functions. Our goal is to approximate the encoded PDE operator using a finite-dimensional operator � so
that � ¥ Dn

Y
¶ � ¶ En

X
. Refer to Figure 1 for an illustration. This approximation is achieved by solving the

following optimization problem:

�NN œ argmin
�œFNN

1
n

nÿ

i=1
Î� ¶ En

X
(ui) ≠ En

Y
(vi)Î2

2. (1)

Here the function space FNN represents a collection of rectified linear unit (ReLU) feedforward DNNs denoted
as f(x), which are defined as follows:

f(x) = WL„L≠1 ¶ „L≠2 ¶ · · · ¶ „1(x) + bL , „i(x) := ‡(Wix + bi) , i = 1, . . . , L ≠ 1 , (2)

where ‡ is the ReLU activation function ‡(x) = max{x, 0}, and Wi and bi represent weight matrices and
bias vectors, respectively. The ReLU function is evaluated pointwise on all entries of the input vector. In
practice, the functional space FNN is selected as a compact set comprising all ReLU feedforward DNNs.
This work investigates two distinct architectures within FNN. The first architecture within FNN is defined
as follows:

FNN(d, L, p, K, Ÿ, M) = {� = [f1, f2, ..., fd]€ : for each k = 1, ..., d, fk(x) is in the form of (2)

with L layers, width bounded by p, ÎfkÎŒ Æ M, ÎWlÎŒ,Œ Æ Ÿ, ÎblÎŒ Æ Ÿ,
Lÿ

l=1
ÎWlÎ0 + ÎblÎ0 Æ K},

(3)

where ÎfÎŒ = maxx |f(x)|, ÎWÎŒ,Œ = maxi,j |Wi,j |, ÎbÎŒ = maxi |bi| for any function f , matrix W ,
and vector b with Î · Î0 denoting the number of nonzero elements of its argument. The functions in this
architecture satisfy parameter bounds with limited cardinalities. The second architecture relaxes some of
the constraints compared to the first architecture; i.e.,

FNN(d, L, p, M) = {� = [f1, f2, ..., fd]€ : for each k = 1, ..., d , fk(x) is in the form of (2)
with L layers, width bounded by p, ÎfkÎŒ Æ M}.

(4)

When there is no ambiguity, we use the notation FNN and omit its associated parameters.

We consider the following assumptions on the target PDE map �, the encoders En

X
, En

Y
, the decoders Dn

X
, Dn

Y
,

and the data set S in our theoretical framework.
Assumption 1 (Compactly supported measure). The probability measure “ is supported on a compact set
�X µ X . For any u œ �X , there exists RX > 0 such that ÎuÎX Æ RX . Here, Î · ÎX denotes the associated
norm of the space X .
Assumption 2 (Lipschitz operator). There exists L� > 0 such that for any u1, u2 œ �X ,

Î�(u1) ≠ �(u2)ÎY Æ L�Îu1 ≠ u2ÎX .

Here, Î · ÎY denotes the associated norm of the space Y.
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Remark 1. Assumption 1 and Assumption 2 imply that the images v = �(u) are bounded by RY := L�RX

for all u œ �X . The Lipschitz constant L� will be explicitly computed in Section 3 for di�erent PDE
operators.
Assumption 3 (Lipschitz encoders and decoders). The empirical encoders and decoders En

X
, Dn

X
, En

Y
, Dn

Y

satisfy the following properties:

En

X
(0X ) = 0 , Dn

X
(0) = 0X , En

Y
(0Y) = 0 , Dn

Y
(0) = 0Y ,

where 0 denotes the zero vector and 0X , 0Y denote the zero function in X and Y, respectively. Moreover,
we assume all empirical encoders are Lipschitz operators such that

ÎEn

P
u1 ≠ En

P
u2Î2 Æ LE

n
P

Îu1 ≠ u2ÎP , P = X , Y ,

where Î · Î2 denotes the Euclidean L2 norm, Î · ÎP denotes the associated norm of the Banach space P, and
LE

n
P

is the Lipschitz constant of the encoder En

P
. Similarly, we also assume that the decoders Dn

P
, P = X , Y

are also Lipschitz with constants LD
n
P

.
Assumption 4 (Noise). For i = 1, . . . , 2n, the noise Ái satisfies

1. Ái is independent of ui;

2. E[Ái] = 0;

3. There exists ‡ > 0 such that ÎÁiÎY Æ ‡.

Remark 2. The above assumptions on the noise and Lipschitz encoders imply that ÎEn

Y
(�(ui) + Ái) ≠

En

Y
(�(u))Î2 Æ LE

n
Y

‡.

2.2 Main Results

For a trained neural network �NN over the data set S, we denote its generalization error as

Egen(�NN) := ESEu≥“

#
ÎDn

Y
¶ �NN ¶ En

X
(u) ≠ �(u)Î2

Y

$
.

Note that we omit its dependence on S in the notation. We also define the following quantity,

Enoise,proj := L2
�ESEu

#
Î�n

X ,dX (u) ≠ uÎ
2
X

$
+ ESEw≥�#“

#
Î�n

Y,dY (w) ≠ wÎ
2
Y

$
+ ‡2 + n≠1 ,

where �n

X ,dX
:= Dn

X
¶ En

X
and �n

Y,dY
:= Dn

Y
¶ En

Y
denote the encoder-decoder projections on X and Y

respectively. Here the first term shows that the encoder/decoder projection error ESEu

Ë
Î�n

X ,dX
(u) ≠ uÎ

2
X

È

for X is amplified by the Lipschitz constant; the second term is the encoder/decoder projection error for Y;
the third term stands for the noise; and the last term is a small quantity n≠1. It will be shown later that
this quantity appears frequently in our main results.
Theorem 1. Suppose Assumptions 1-4 hold. Let �NN be the minimizer of the optimization problem equa-

tion 1, with the network architecture FNN(dY , L, p, K, Ÿ, M) defined in equation 3 with parameters

L = �
3

ln( n

dY

)
4

, p = �
3

d
2≠dX
2+dX
Y

n
dX

2+dX

4
,

K = �(pL) , Ÿ = �(M2) , M Ø


dYLE

n
Y

RY ,

where the notation � contains constants that solely depend on LE
n
Y

, LD
n
Y

, LE
n
X

, LD
n
X

, RX and dX . Then there

holds

Egen(�NN) . d
6+dX
2+dX
Y

n≠
2

2+dX (1 + L2≠dX
� )

3
ln3 n

dY

+ ln2 n

4
+ Enoise,proj .

Here . contains constants that solely depend on LE
n
Y

, LD
n
Y

, LE
n
X

, LD
n
X

, RX and dX .
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Theorem 2. Suppose Assumptions 1-4 hold ture. Let �NN be the minimizer of the optimization problem

equation 1 with the network architecture FNN(dY , L, p, M) defined in equation 4 with parameters,

M Ø


dYLE

n
Y

RY , and Lp Ø

9
d

4≠dX
4+2dX
Y

n
dX

4+2dX

:
. (5)

Then we have

Egen(�NN) . L2
� log(L�)d

8+dX
2+dX
Y

n≠
2

2+dX log n + Enoise,proj , (6)

where . contains constants that depend on dX , LE
n
Y

, LE
n
X

, LD
n
Y

, LD
n
X

and RX .

Remark 3. The aforementioned results demonstrate that by selecting an appropriate width and depth for the
DNN, the generalization error can be broken down into three components: the generalization error of learning
the finite-dimensional operator �, the projection error of the encoders/decoders, and the noise. Comparing
to previous results Liu et al. (2022) under the Hilbert space setting, our estimates show that the noise term
in the generalization bound is non-decaying without the inner-product structure in the Banach space setting.
This is mainly caused by circumventing the inner-product structure via triangle inequalities in the proof. As
the number of samples n increases, the generalization error decreases exponentially. Although the presence
of dX in the exponent of the sample complexity n initially appears pessimistic, we will demonstrate that it
can be eliminated when the input data �X of the target operator exhibits a low-dimensional data structure
or when the target operator itself has a low-complexity structure. These assumptions are often satisfied
for specific PDE operators with appropriate encoders. These results also imply that when dX is large, the
neural network width p does not need to increase as the output dimension dY increases. The main di�erence
between Theorem 1 and Theorem 2 lies in the di�erent neural network architectures FNN(dY , L, p, K, Ÿ, M)
and FNN(dY , L, p, M). As a consequence, Theorem 2 has a smaller asymptotic lower bound �(n1/2) of the
neural network width p in the large dX regime, whereas the asymptotic lower bound is �(n) in Theorem 1.

Estimates with special data and operator structures

The generalization error estimates presented in Theorems 1-2 are e�ective when the input dimension dX is rel-
atively small. However, in practical scenarios, it often requires numerous bases to reduce the encoder/decoder
projection error, resulting in a large value for dX . Consequently, the decay rate of the generalization error
as indicated in Theorems 1-2 becomes stagnant due to its exponential dependence on dX .

Nevertheless, it is often assumed that the high-dimensional data lie within the vicinity of a low-dimensional
manifold by the famous “manifold hypothesis”. Specifically, we assume that the encoded vectors u lie on a
d0-dimensional manifold with d0 π dX . Such a data distribution has been observed in many applications,
including PDE solution set, manifold learning, and image recognition. This assumption is formulated as
follows.
Assumption 5. Let d0 < dX œ N. Suppose there exists an encoder EX : X æ RdX such that {EX (u) | u œ

�X } lies in a smooth d0-dimensional Riemannian manifold M that is isometrically embedded in RdX . The
reach Niyogi et al. (2008) of M is · > 0.

Under Assumption 5, the input data set exhibits a low intrinsic dimensionality. However, this may not hold
for the output data set that is perturbed by noise. The reach of a manifold is the smallest osculating circle
radius on the manifold. A manifold with large reach avoids rapid change and may be easier to learn by neural
networks. In the following, we aim to demonstrate that the DNN naturally adjusts to the low-dimensional
characteristics of the data set. As a result, the estimation error of the network depends solely on the intrinsic
dimension d0, rather than the larger ambient dimension dX . We present the following result to support this
claim.
Theorem 3. Suppose Assumptions 1-4, and Assumption 5 hold. Let �NN be the minimizer of the optimiza-

tion problem equation 1 with the network architecture FNN(dY , L, p, M) defined in equation 4 with parameters

L = �(L̃ log L̃) , p = �(dX dY p̃ log p̃) , M Ø


dYLE

n
Y

RY , (7)
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where L̃, p̃ > 0 are integers such that L̃p̃ Ø

9
d

≠3d0
4+2d0
Y

n
d0

4+2d0

:
. Then we have

Egen(�NN) . L2
� log(L�)d

8+d0
2+d0
Y

n≠
2

2+d0 log6 n + Enoise,proj , (8)

where the constants in . and �(·) solely depend on d0, log dX , RX , LE
n
X

, LE
n
Y

, LD
n
X

, LD
n
Y

, · , the surface area

of M.

It is important to note that the estimate equation 8 depends at most polynomially on dX and dY . The rate
of decay with respect to the sample size is no longer influenced by the ambient input dimension dX . Thus,
our findings indicate that the CoD can be mitigated through the utilization of the "manifold hypothesis." To
e�ectively capture the low-dimensional manifold structure of the data, the width of the DNN should be on the
order of O(dX ). Additionally, another characteristic often observed in PDE problems is the low complexity
of the target operator. This holds true when the target operator is composed of several alternating sequences
of a few linear and nonlinear transformations with only a small number of inputs. We quantify the notion
of low-complexity operators in the following context.
Assumption 6. Let 0 < d0 Æ dX . Assume there exists EX , DX , EY , DY such that for any u œ �X , we have

�Y,dY ¶ �(u) = DY ¶ g ¶ EX (u),

where g : RdX æ RdY is defined as

g(a) =
#
g1(V €

1 a), · · · , gdY (V €

dY
a)

$
,

where the matrix is Vk œ RdX ◊d0 and the real valued function is gk : Rd0 æ R for k = 1, . . . , dY . See an
illustration in (44).

In Assumption 6, when d0 = 1 and g1 = · · · = gdY , g(a) is the composition of a pointwise nonlinear transform
and a linear transform on a. In particular, Assumption 6 holds for any linear maps.
Theorem 4. Suppose Assumptions 1-4, and Assumption 6 hold. Let �NN be the minimizer of the optimiza-

tion problem (1) with the network architecture FNN(dY , L, p, M) defined in (4) with parameters

Lp = �
3

d
4≠d0

4+2d0
Y

n
d0

4+2d0

4
, M Ø


dYLE

n
Y

RY .

Then we have

Egen(�NN) . L2
� log(L�)d

8+d0
2+d0
Y

n≠
2

2+d0 log n + Enoise,proj , (9)

where the constants in . and �(·) solely depend on d0, RX , RY , LE
n
X

, LE
n
Y

, LD
n
X

, LD
n
Y

.

Remark 4. Under Assumption 6, our result indicates that the CoD can be mitigated to a cost O(n
≠2

2+d0 )
because the main task of DNNs is to learn the nonlinear transforms g1, · · · , gdY that are functions over Rd0 .

In practice, a PDE operator might be the repeated composition of operators in Assumption 6. This motivates
a more general low-complexity assumption below.
Assumption 7. Let 0 < d1, . . . , dk Æ dX and 0 < ¸0, . . . , ¸k Æ min{dX , dY} with ¸0 = dX and ¸k = dY .
Assume there exists EX , DX , EY , DY such that for any u œ �X , we have

�Y,dY ¶ �(u) = DY ¶ Gk
¶ · · · ¶ G1

¶ EX (u),

where Gi : R¸i≠1 æ R¸i is defined as

Gi(a) =
#
gi

1((V i

1 )€a), · · · , gi

¸i
((V i

¸i
)€a)

$
,

where the matrix is V i

j
œ Rdi◊¸i≠1 and the real valued function is gi

j
: Rdi æ R for j = 1, . . . , ¸i, i = 1, . . . , k.

See an illustration in (45).
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Theorem 5. Suppose Assumptions 1-4, and Assumption 7 hold. Let �NN be the minimizer of the optimiza-

tion (1) with the network architecture FNN(dY , kL, p, M) defined in equation 4 with parameters

Lp = �
3

d
4≠dmax

4+2dmax
Y

n
dmax

4+2dmax

4
, M Ø


¸maxLE

n
Y

RY ,

where dmax = max{di}
k

i=1 and ¸max = max{¸i}
k

i=1. Then we have

Egen(�NN) . L2
� log(L�)¸

8+dmax
2+dmaxmax n≠

2
2+dmax log n + Enoise,proj ,

where the constants in . and �(·) solely depend on k, dmax, ¸max, RX , LE
n
X

, LE
n
Y

, LD
n
X

, LD
n
Y

.

Discretization invariant neural networks

In this subsection, we demonstrate that our main results also apply to neural networks with the discretization
invariant property. A neural network is considered discretization invariant if it can be trained and evaluated
on data that are discretized in various formats. For example, the input data ui, i = 1, . . . , n may consist
of images with di�erent resolutions, or ui = [ui(x1), . . . , ui(xsi)] representing the values of ui sampled at
di�erent locations. Neural networks inherently have fixed input and output sizes, making them incompatible
for direct training on a data set {(ui, vi), i = 1, . . . , n} where the data pairs (ui œ Rdi , vi œ Rdi) have
di�erent resolutions di, i = 1, . . . , n. Modifications of the encoders are required to map inputs of varying
resolutions to a uniform Euclidean space. This can be achieved through linear interpolation or data-driven
methods such as nonlinear integral transforms Ong et al. (2022).

Our previous analysis assumes that the data (ui, vi) œ X ◊ Y is mapped to discretized data (ui, vi) œ

RdX ◊ RdY using the encoders En

X
and En

Y
. Now, let us consider the case where the new discretized data

(ui, vi) œ Rsi ◊ Rsi are vectors tabulating function values as follows:

ui =
#
ui(xi

1) ui(xi

2) . . . ui(xi

si
)
$

, vi =
#
vi(xi

1) vi(xi

2) . . . vi(xi

si
)
$

. (10)

The sampling locations x
i := [xi

1, . . . , xi

si
] are allowed to be di�erent for each data pair (ui, vi). We

can now define the sampling operator on the location x
i as Pxi : u ‘æ u(xi), where u(xi) :=#

u(xi

1) u(xi

2) . . . u(xi

si
)
$

. For the sake of simplicity, we assume that the sampling locations are equally
spaced grid points, denoted as si = (ri + 1)d, where ri + 1 represents the number of grid points in
each dimension. To achieve the discretization invariance, we consider the following interpolation opera-
tor Ixi : u(xi) ‘æ ũ, where ũ represents the multivariate Lagrangian polynomials (refer to Leaf & Kaper
(1974) for more details). Subsequently, we map the Lagrangian polynomials to their discretization on a
uniformly spaced grid mesh x̂ œ RdX using the sampling operator Px̂. Here dX = (r + 1)d and r is the
highest degree among the Lagrangian polynomials ũ. We further assume that the grid points x

i of all given
discretized data are subsets of x̂. We can then construct a discretization-invariant encoder as follows:

Ei

X
= Px̂ ¶ Ixi ¶ Pxi .

We can define the encoder Ei

Y
in a similar manner. The aforementioned discussion can be summarized in

the following proposition:
Proposition 1. Suppose that the discretized data {(ui, vi), i = 1, . . . , n} defined in equation 10 are images

of a sampling operator Pxi applied to smooth functions (ui, vi), and the sampling locations xi
are equally

spaced grid points with grid size h. Let x̂ œ RdX represent equally spaced grid points that are denser than all

xi, i = 1, . . . , n with dX = (r+1)d
. Define the encoder Ei

X
= Ei

Y
= Px̂ ¶Ixi ¶Pxi , and decoder Di

X
= Di

Y
= Ix̂.

Then the encoding error can be bounded as the following:

Eu

#
Î�i

X ,dX (u) ≠ uÎ
2
Œ

$
Æ Ch2r

ÎuÎ
2
Cr+1 , Ev

#
Î�i

Y,dY (v) ≠ vÎ
2
Œ

$
Æ Ch2r

ÎvÎ
2
Cr+1 , (11)

where C > 0 is an absolution constant, �i

X ,dX
:= Di

X
¶ Ei

X
and �i

Y,dY
:= Di

Y
¶ Ei

Y
.

Proof. This result follows directly from the principles of Multivariate Lagrangian interpolation and Theorem
3.2 in Leaf & Kaper (1974).
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Remark 5. To simplify the analysis, we focus on the LŒ norm in equation 11. However, it is worth noting
that Lp estimates can be easily derived by utilizing Lp space embedding techniques. Furthermore, Cr

estimates can be obtained through the proof of Theorem 3.2 in Leaf & Kaper (1974). By observing that the
discretization invariant encoder and decoder in Proposition 1 satisfy Assumption 2 and Assumption 4, we can
conclude that our main results are applicable to discretization invariant neural networks. In this section, we
have solely considered polynomial interpolation encoders, which require the input data to possess a su�cient
degree of smoothness and for all training data to be discretized on a finer mesh than the encoding space
RdX . The analysis of more sophisticated nonlinear encoders and discretization invariant neural networks is
a topic for future research.

In the subsequent sections, we will observe that numerous operators encountered in PDE problems can
be expressed as compositions of low-complexity operators, as stated in Assumption 6 or Assumption 7.
Consequently, deep operator learning provides means to alleviate the curse of dimensionality, as confirmed
by Theorem 4 or its more general form, as presented in Theorem 5.

3 Explicit complexity bounds for various PDE operator learning

In practical scenarios, enforcing the uniform bound constraint in architecture (3) is often inconvenient. As
a result, the preferred implementation choice is architecture (4). Therefore, in this section, we will solely
focus on architecture (4). In this section, we will provide five examples of PDEs where the input space
X and output space Y are not Hilbert. For simplicity, we assume that the computational domain for all
PDEs is � = [≠1, 1]d. Additionally, we assume that the input space X exhibits Hölder regularity. In other
words, all inputs possess a bounded Hölder norm Î · ÎCs , where s > 0. The Hölder norm is defined as
ÎfÎCs = ÎfÎCk + max—=k |D—f |C0,– , where s = k + –, k is an integer, 0 < – < 1 and | · |C0,– represents
the –-Hölder semi-norm |f |C0,– = sup

x”=y

|f(x)≠f(y)|

Îx≠yÎ– . It can be shown that the output space Y also admits
Hölder regularity for all examples considered in this section. Similar results can be derived when both the
input space and output space have Sobolev regularity. Consequently, we can employ the standard spectral
method as the encoder/decoder for both the input and output spaces. Specifically, the encoder En

X
maps

u œ X to the space P r

d
, which represents the product of univariate polynomials with a degree less than r. As

a result, the input dimension is thus dX = dimP r

d
= rd.We then assign Lp-norm (p > 1) to both the input

space X and output space Y. The encoder/decoder projection error for both X and Y can be derived using
the following lemma from Schultz (1969).
Lemma 1 (Theorem 4.3 (ii) of Schultz (1969)). Let an integer k Ø 0 and 0 < – < 1. For any f œ

Cs([≠1, 1]d) with s = k + –, denote by f̃ its spectral approximation in P r

d
, there holds

Îf ≠ f̃ÎŒ Æ CdÎfÎCsr≠s.

We can then bound the projection error

Î�n

X ,dX u ≠ uÎ
p

Lp([≠1,1]d) =
⁄

[≠1,1]d

|u ≠ ũ|
pdx Æ Cp

d
2d

ÎuÎ
p

Csr≠ps
Æ Cp

d
2d

ÎuÎ
p

Csd
≠

ps
d

X
.

Therefore,
Î�n

X ,dX u ≠ uÎ
2
Lp([≠1,1]d) Æ C2

d
22d/p

ÎuÎ
2
Csd

≠
2s
d

X
. (12)

Similarly, we can also derive that

Î�n

Y,dY (w) ≠ wÎ
2
Lp([≠1,1]d) Æ C2

d
22d/p

ÎuÎ
2
Ctd

≠
2t
d

Y
L2

�, (13)

given that the output w = �(u) is in Ct for some t > 0.

In the following, we present several examples of PDEs that satisfy di�erent assumptions, including the low-
dimensional Assumption 5, the low-complexity Assumption 6, and Assumption 7. In particular, the solution
operators of Poisson equation, parabolic equation, and transport equation are linear operators, implying that
Assumption 6 is satisfied with gi’s being the identity functions with d0 = 1. The solution operator of Burgers

9
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equation is the composition of multiple numerical integration, the pointwise evaluation of an exponential
function g1

j
(·) = exp(·), and the pointwise division g2

j
(a, b) = a/b. It thus satisfies Assumption 7 with d1 = 1

and d2 = 2. In parametric equations, we consider the forward operator that maps a media function a(x)
to the solution u. In most applications of such forward maps, the media function a(x) represents natural
images, such as CT scans for breast cancer diagnosis. Therefore, it is often assumed that Assumption 5
holds.

3.1 Poisson equation

Consider the Poisson equation which seeks u such that

�u = f, (14)

where x œ Rd, and |u(x)| æ 0 as |x| æ Œ. The fundamental solution of equation 14 is given as

�(x) =
; 1

2fi
ln |x| , for d = 2,

≠1
wd

|x|
2≠d , for d Ø 3,

where wd is the surface area of a unit ball in Rd. Assume that the source f(x) is a smooth function compactly
supported in Rd. There exists a unique solution to equation 14 given by u(x) = �úf . Notice that the solution
map f ‘æ u is a convolution with the fundamental solution, u(x) = � ú f . To show the solution operator is
Lipschitz, we assume the sources f, g œ Ck(Rd) with compact support and apply Young’s inequality to get

Îu ≠ vÎCk(Rd) = ÎDk(u ≠ v)ÎLŒ(Rd) = Î� ú Dk(f ≠ g)ÎLŒ(Rd) Æ Î�ÎLp(Rd)Îf ≠ gÎCk(�)|�|
1/q, (15)

where p, q Ø 1 so that 1/p + 1/q = 1. Here � is the support of f and g.

For the Poisson equation (14) on an unbounded domain, the computation is often implemented over a
truncated finite domain �. For simplicity, we assume the source condition f is randomly generated in the
space Ck(�) from a random measure “. Since the solution u is a convolution of source f with a smooth
kernel, both f and u are in Ck(�).

We then choose the encoder and decoder to be the spectral method. Applying equation 12, the encoder and
decoder error of the input space can be calculated as follows

Ef

Ë
Î�n

X ,dX (f) ≠ fÎ
2
Lp(�)

È
Æ Cd,pd

≠
2k
d

X
Ef

Ë
ÎfÎ

2
Ck(�)

È
.

Similarly, applying Lemma 1 and equation 15, the encoder and decoder error of the output space is

ESEf≥“

Ë
Î�n

Y,dY (u) ≠ uÎ
2
Lp(�)

È
Æ Cd,pd

≠
2k
d

Y
Ef

Ë
Î� ú fÎ

2
Ck(�)

È
Æ Cd,p,�d

≠
2k
d

Y
Ef

Ë
ÎfÎ

2
Ck(�)

È
.

Notice that the solution u(y) =
s
Rd �(y ≠ x)f(x)dx is a linear integral transform of f , and that all linear

maps are special cases of Assumption 6 with g being the identity map. In particular, Assumption 6 thus
holds true by setting the column vector Vk as the numerical integration weight of �(x ≠ yk), and setting gk’s
as the identity map with d0 = 1 for k = 1, · · · , dY . By applying Theorem 4, we obtain that

ESEf ÎDn

Y
¶ �NN ¶ En

X
(f) ≠ �(f)Î2

Lp(�) . r3dn≠2/3 log n + (‡2 + n≠1) + r≠2kEf

Ë
ÎfÎ

2
Ck(�)

È
, (16)

where the input dimension dX = dY = rd and . contains constants that depend on dX , d, p and |�|.
Remark 6. The above result equation 16 suggests that the generalization error is small if we have a large
number of samples, a small noise, and a good regularity of the input samples. Importantly, the decay rate
with respect to the number of samples is independent from the encoding dimension dX or dY .

3.2 Parabolic equation

We consider the following parabolic equation that seeks u(x, t) such that
;

ut ≠ �u = 0 in Rd
◊ (0, Œ),

u = g on Rd
◊ {t = 0}.

(17)

10
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The fundamental solution to equation 17 is given by �(x, t) = (4fit)≠d/2e≠
|x|2

4t for x œ Rd, t > 0. The solution
map g(·) ‘æ u(T, ·) can be expressed as a convolution with the fundamental solution u(·, T ) = �(·, T ) ú g,
where T is the terminal time. Applying Young’s inequality, the Lipschitz constant is Î�(·, T )Îp, where
1 Æ p Æ Œ. As an example, we can explicitly calculate this number in 3D as Î�(·, T )Îp = p

3
2p . For the

parabolic equation (17), we consider a truncated finite computation domain � ◊ [0, T ] and assume an initial
condition g œ Ck(�). Due to the similar convolution structure of the solution map compared to the Poisson
equation, we can obtain a similar result by applying Theorem 4.

ESEgÎDn

Y
¶ �NN ¶ En

X
(g) ≠ �(g)Î2

Lp(�) . r3dn≠2/3 log n+(‡2 + n≠1) + r≠2kEg

Ë
ÎgÎ

2
Ck(�)

È
, (18)

where the encoding dimension dX = dY = rd, the symbol “.” denotes that the expression on the left-hand
side is bounded by the expression on the right-hand side, where the constants involved depend on dX , d, p,
and |�|. The reduction of the CoD in the parabolic equation follows a similar approach as in the Poisson
equation.

3.3 Transport equation

We consider the following transport equation that seeks u such that
I

ut + a(x) · Òu = 0 in (0, Œ) ◊ Rd,

u(0, x) = u0(x) in Rd ,
(19)

where a(x) is the drift force field and u0(x) is the initial data. For convenience, we assume that the drift force
field satisfies a œ C2(Rd) fl W 1,Œ(Rd). By employing the classical theory of ordinary di�erential equations
(ODE), we consider the initial value problem dx(t)

dt
= a(x(t)), x(0) = x, which admits a unique solution for

any x œ Rd, t æ x(t) = Ït(x) œ C1(R;Rd). Applying the Characteristic method, the solution of equation 19
is given by u(t, x) := u0(Ï≠1

t
(x)). If we further assume that u0 is randomly sampled with bounded Hs norm,

s > 3d

2 , then by Theorem 5 of Section 7.3 of Evans (2010), we have u œ C1([0, Œ);Rd). More specifically, we
have

Îu(T, ·)ÎC1(Rd) Æ Îu0ÎHs(Rd)Ca,T,�,

where Ca,T,� > 0 is a constant that depends on the media a, terminal time T , and the support � of the
initial data. Since the initial data has C1 regularity, by equation 12 the encoder/decoder projection error of
the input space is controlled via

Eu0

Ë
Î�n

X ,dX (u0) ≠ u0Î
2
Lp(�)

È
Æ Cd,p,�d

≠
2
d

X
Ef

Ë
Îu0Î

2
C1(�)

È
.

Similarly, for the projection error of the output space, we have

ESEu≥�#“

Ë
Î�n

Y,dY (u) ≠ uÎ
2
Lp(�)

È
Æ Cd,p,�d

≠
2
d

Y
Eu0

Ë
Îu(T )Î2

C1(�)

È
Æ Cd,p,a,T,�d

≠
2
d

Y
Eu0

Ë
Îu0Î

2
Hs(�)

È
.

We again use the spectral encoder/decoder so dX = dY = rd. Notice that solution u(T, x) = u0(Ï≠1
T

(x)) is a
translation of the initial data u0 by Ï≠1

T
, which is a linear transform. Let V œ RdX ◊dY be the corresponding

permutation matrix that characterizes the translation by Ï≠1
T

, then V €

k
is the k-th row of V . Then by setting

gk’s as the identity map, Assumption 6 holds with d0 = 1. Apply Theorem 4 to derive that

ESEuÎDn

Y
¶ �NN ¶ En

X
(u) ≠ �(u)Î2

Lp(�) . r3dn≠2/3 log n + (‡2 + n≠1)+r≠2Eg

Ë
Îu0Î

2
C1(�) + Îu0Î

2
Hs(�)

È
,

(20)
where . contains constants that depend on d, p, a, r, T and �. The CoD in transport equation is lessened
according to equation 20 in the same manner as in the Poisson and parabolic equations.
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3.4 Burgers equation

We consider the 1D Burgers equation with periodic boundary conditions:
Y
_]

_[

ut + uux = Ÿuxx , in R ◊ (0, Œ),
u(x, 0) = u0(x) ,

u(≠fi, t) = u(fi, t) ,

(21)

where Ÿ > 0 is the viscosity constant. and we consider the solution map u0(·) ‘æ u(T, ·). This solution map
can be explicitly written using the Cole-Hopf transformation u = ≠2Ÿvx

v
where the function v is the solution

to the following di�usion equation
I

vt = Ÿvxx

v(x, 0) = v0(x) = exp
1

≠
1

2Ÿ

s
x

≠fi
u0(s)ds

2
.

The solution to the above di�usion equation is given by

v(x, T ) = ≠2Ÿ

s
R ˆxK(x, y, T )v0(y)dys
R K(x, y, T )v0(y)dy

, (22)

where the integration kernel K is defined as K(x, y, t) = 1
Ô

4fiŸt
exp

1
≠(x≠y)2

4fit

2
. Although there will be no

shock formed in the solution of viscous Burger equation, the solution may form a large gradient in finite
time for certain initial data, which makes it extremely hard to be approximated by a NN. We assume that
the terminal time T is small enough so a large gradient is not formed yet. In fact, it is shown in Heywood
& Xie (1997) (Theorem 1) that if T Æ CÎu0Î

≠4
H1 , then Îu(·, T )ÎH1 Æ CÎu0ÎH1 . We then assume an initial

data u0 is randomly sampled with a uniform bounded H1 norm. By Sobolev embedding, we have

Îu0ÎC0,1/2 Æ CÎu0ÎH1 , Îu(·, T )ÎC0,1/2 Æ CÎu0ÎH1 ,

By 12, we can control the encoder/decoder projection error for the initial data

Eu0

Ë
Î�n

X ,dX (u0) ≠ u0Î
2
Lp(�)

È
Æ Cd,pd≠1

X
Eu0

#
Îu0Î

2
H1

$
.

Since the terminal solution u(·, T ) has same regularity as the initial solution, by 13 we also have

Eu0

Ë
Î�n

X ,dX (u(·, T )) ≠ u(·, T )Î2
Lp(�)

È
Æ Cd,pd≠1

Y
Eu0

#
Îu(·, T )Î2

H1
$

Æ Cd,pd≠1
Y

Eu0

#
Îu0Î

2
H1

$
.

Similarly, we can choose dX = dY = r. The solution map is a composition of three mappings u0 ‘æ v0, v0 ‘æ

v(·, T ) and v(·, T ) ‘æ u(·, T ). More specifically, v0(x) = exp
1

≠
1

2Ÿ

s
x

≠fi
u0(s)ds

2
so we can set V 1

k
= RdX ◊1

as the numerical integration vector on [≠fi, xk] and g1
k
(x) = exp(≠x

2Ÿ
) for all k = 1, . . . , dY . For the second

mapping v0 ‘æ v(·, T ) (c.f. 22), we set V 2
k

œ RdX ◊2 where the first row is the numerical integration with
kernel ˆxK and the second row is the numerical integration with kernel K, and we let g2

k
(x, y) = ≠2Ÿx

y
for

all k = 1, · · · , dX . For the third mapping u = ≠2Ÿvx
v

, we can set V 3
k

œ RdX ◊2, where the first row is the
k-row of the numerical di�erentiation matrix, and the second row is the Dirac-delta vector at xk, and we let
g3

k
(x, y) = ≠2Ÿx

y
for all k = 1, · · · , dY . Therefore, Assumption 7 holds with dmax = 2 and lmax = dX = dY = r.

Then apply Theorem 5 to derive that

ESEuÎDn

Y
¶ �NN ¶ En

X
(u0) ≠ u(·, T )Î2

Lp(�) . r5/2n≠1/2 log n + (‡2 + n≠1) + r≠1Eg

Ë
Îu0Î

2
Hs(�)

È
, (23)

where . contains constants that depend on p, r and T . The CoD in Burgers equations is lessened according
to equation 23 as well as in all other PDE examples.
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3.5 Parametric elliptic equation

We consider the 2D elliptic equation with heterogeneous media in this subsection.
I

≠div(a(x)Òxu(x)) = 0 , in � µ R2,

u = f , on ˆ�.
(24)

The media coe�cient a(x) satisfies that – Æ a(x) Æ — for all x œ �, where – and — are positive constants.
We further assume that a(x) œ C1(�). We are interested NN approximation of the forward map � : a ‘æ u
with a fixed boundary condition f , which has wide applications in inverse problems. The forward map
is Lipschitz, see Appendix A.2. We apply Sobolev embedding and derive that u œ C0,1/2(�). Since the
parameter a has C1 regularity, the encoder/decoder projection error of the input space is controlled

Ea

Ë
Î�n

X ,dX (a) ≠ aÎ
2
Lp(�)

È
Æ Cpd≠1

X
Ef

Ë
ÎaÎ

2
C1(�)

È
.

The solution has 1
2 Hölder regularity, so we have

ESEu≥�#“

Ë
Î�n

Y,dY (u) ≠ uÎ
2
Lp(�)

È
= Ea

#
Î�n

Y,dY (u) ≠ uÎLp(�)
$2

Æ Cpd
≠

1
2

Y
Ea

Ë
ÎuÎ

2
C0,1/2(�)

È
Æ Cp,–,—,f d

≠
1
2

Y
.

We use the spectral encoder/decoder and choose dX = dY = r2. We further assume that the media functions
a(x) are randomly sampled on a smooth d0-dimensional manifold. Applying Theorem 3, the generalization
error is thus bounded by

ESEuÎDn

Y
¶ �NN ¶ En

X
(u) ≠ �(u)Î2

Lp(�) . d
8+d0
2+d0
Y

n≠
2

2+d0 log6 n + (‡2 + n≠1) + r≠2Ea

Ë
ÎaÎ

2
C1(�)

È
+ r≠1 ,

where . contains constants that depend on p, �, –, — and f . Here d0 is a constant that characterized the
manifold dimension of the data set of media function a(x). For instance, the 2D Shepp-Logan phantom
Gach et al. (2008) contains multiple ellipsoids with di�erent intensities thus the images in this data set lies
on a manifold with a small d0. The decay rate in terms of the number of samples n solely depends on d0,
therefore the CoD of the parametric elliptic equations is mitigated.

4 Limitations and discussions

Our work focuses on exploring the e�cacy of fully connected DNNs as surrogate models for solving general
PDE problems. We provide an explicit estimation of the training sample complexity for generalization
error. Notably, when the PDE solution lies in a low-dimensional manifold or the solution space exhibits low
complexity, our estimate demonstrates a logarithmic dependence on the problem resolution, thereby reducing
the CoD. Our findings o�er a theoretical explanation for the improved performance of deep operator learning
in PDE applications.

However, our work relies on the assumption of Lipschitz continuity for the target PDE operator. Conse-
quently, our estimates may not be satisfactory if the Lipschitz constant is large. This limitation hampers
the application of our theory to operator learning in PDE inverse problems, which focus on the solution-
to-parameter map. Although the solution-to-parameter map is Lipschitz in many applications (e.g., electric
impedance tomography, optical tomography, and inverse scattering), certain scenarios may feature an expo-
nentially large Lipschitz constant, rendering our estimates less practical. Therefore, our results cannot fully
explain the empirical success of PDE operator learning in such cases.

While our primary focus is on neural network approximation, determining suitable encoders and decoders
with small encoding dimensions (dX and dY) remains a challenging task that we did not emphasize in this
work. In Section 2.2, we analyze the naive interpolation as a discretization invariant encoder using a fully
connected neural network architecture. However, this analysis is limited to cases where the training data is
sampled on an equally spaced mesh and may not be applicable to more complex neural network architectures
or situations where the data is not uniformly sampled. Investigating the discretization invariant properties
of other neural networks, such as IAE-net Ong et al. (2022), FNO Li et al. (2021), and DeepONet, would be
an interesting avenue for future research.
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A Appendix

A.1 Proofs of the main theorems

Proof of Theorem 1. The L2 squared error can be decomposed as
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We aim to derive an upper bound of the first term I. First, note that the decoder Dn
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Conditioned on the data set S1, we can obtain
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To obtain an upper bound of T1, we apply triangle inequality to separate the noise from T1
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To bound the first term on the last line of Equation equation 27, we consider the discrete transform �n

d
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En

Y
¶ � ¶ Dn
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œ FNN. Note that it is a vector filed that maps RdX to RdY , and by Assumption 1, 2, and
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We now apply the following lemma to the component functions of �n

d
.
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Here all constants hidden in �(·) do not dependent on any parameters.

Proof. This is a direct consequence of proof of Theorem 1 in Yarotsky (2017) for Fn,d.

Let hi : RdX æ R, i = 1, . . . , dY be the components of �n
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where we used the definition of infinimum in the first inequality, the triangle inequality in the second
inequality, and the approximation equation 29 in the third inequality. Using the definition of �, we obtain
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where we used the Lipschitz continuity of � and En

Y
in the inequality above. Combining equation 32 and

equation 27, and apply Assumption 4, we have

T1 Æ 8dYÁ2
1 + 8L2

E
n
Y

L2
�Eu

#
Î�n

X ,dX (u) ≠ uÎ
2
X

$
+ 6L2

E
n
Y

‡2. (33)

To deal with the term T2, we shall use the covering number estimate of FNN(dY , L, p, K, Ÿ, M), which has
been done in Lemma 6 and Lemma 7 in Liu et al. (2022). A direct consequence of these two lemmas is
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where we combine the choice in equation 34 and equation 30 as
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Combining equation 25 and equation 35, we have

ESEu≥“

#
ÎDn

Y
¶ �NN ¶ En

X
(u) ≠ �(u)Î2

Y

$
.d

6+dX
2+dX
Y

n≠
2

2+dX (1 + L2≠dX
� ))

3
(ln n

dY

)3 + (ln n)2
4

+ L2
�Eu

#
Î�n

X ,dX (u) ≠ uÎ
2
X

$
+ ESEw≥�#“

#
Î�n

Y,dY (w) ≠ wÎ
2
Y

$

+ ‡2 + n≠1.

20



Published in Transactions on Machine Learning Research (10/2023)

Proof of Theorem 2. Similarly to the proof of Theorem 1, we have

ESEuÎDn

Y
¶ �NN ¶ En

X
(u) ≠ �(u)Î2

Y
Æ I + II,

and
I Æ 2L2

D
n
Y

(T1 + T2) ,

where T1 and T2 are defined in equation 26. Following the same procedure in equation 27, we have

T1 Æ 4 inf
�œFNN

Eu

#
Î� ¶ En

X
(u) ≠ En

Y
¶ �(u)Î2

2
$

+ 6ES2
1
n

2nÿ

i=n+1
ÎÁiÎ

2
Y

.

To obtain an approximation of the discretized target map �n

d
:= En
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, we apply the following lemma

for each component function of �n

d
.

Lemma 3 (Theorem 1.1 in Shen et al. (2019)). Given f œ C([0, 1]d), for any L œ N+
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where Êf (·) is the modulus of continuity.
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, we can find a neural network h̃i œ FNN(1, L, p̃, M) such that
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Similarly to the derivations in equation equation 31 and equation 32, we obtain that
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where the notation . contains constants that depend on dX and LE
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. To deal with term T2, we apply the
following lemma concerning the covering number.

Lemma 4. [Lemma 10 in Liu et al. (2022)] Under the conditions of Theorem 2, we have
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Combining Lemma 4 with equation 36, we derive that
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By the definition of covering number (c.f. Definition 5 in Liu et al. (2022)), we first note that the covering
number of FNN(dY , L, p, M) is bounded by that of FNN(1, L, p, M):
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B
Æ CedY N

A
”

4dYLE
n
Y

RY

, FNN(1, L, p, M), 2n

B
.

Thus it su�ces to find an estimate on the covering number of FNN(1, L, p, M). A generic bound for classes
of functions is provided by the following lemma.
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Lemma 5 (Theorem 12.2 of Anthony et al. (1999)). Let F be a class of functions from some domain � to

[≠M, M ]. Denote the pseudo-dimension of F by Pdim(F ). For any ” > 0, we have

N (”, F, m) Æ

3
2eMm

”Pdim(F )

4Pdim(F )
(38)

for m > Pdim(F ).

The next lemma shows that for a DNN FNN(1, L, p, M), its pseudo-dimension of can be bounded by the
network parameters.

Lemma 6 (Theorem 7 of Bartlett et al. (2019)). For any network architecture FNN with L layers and U
parameters, there exists an universal constant C such that

Pdim(FNN) Æ CLU log(U). (39)

For the network architecture FNN(1, L, p, M), the number of parameters is bounded by U = Lp2. We apply
Lemma 5 and 6 to bound the covering number by its parameters:

log N

A
”

4dYLE
n
Y

RY

, FNN(dY , L, p, M), 2n

B
Æ C1dYp2L2 log

!
p2L

"
A

log
A

R2
X

dYLE
n
Y

L�

L2p2 log(Lp2)

B
+ log ”≠1 + log n

B
,

(40)

when 2n > C2p2L2 log(p2L) for some universal constants C1 and C2. Note that p, L are integers such that
pL =

Ï
dYÁ≠dX /2

1

Ì
, therefore we have

log N

A
”

4dYLE
n
Y

RY

, FNN(dY , L, p, M), 2n

B
. d3

Y
Á≠dX

1 log(dYÁ≠1
1 )

!
log L� ≠ log(dYÁ≠1) + log ”≠1 + log n

"
,

(41)
where the notation . contains constants that depend on RX , dX and LE

n
Y

.

Substituting the above covering number estimate back to equation 37 gives

I .L2
�dYÁ2

1 + L2
�Eu

#
Î�n

X ,dX (u) ≠ uÎ
2
X

$
+ ‡2

+ L2
�n≠1d4

Y
Á≠dX

1 log(dYÁ≠1
1 )

!
log L� ≠ log(dYÁ≠1) + log ”≠1 + log n

"
+ ”,

where the notation . contains constant that depends on LE
n
Y

, LD
n
Y

, LE
n
X

, LD
n
X

, RX and dX . Letting

Á1 = d
3

2+dX
Y

n≠
1

2+dX , ” = n≠1,

we have

I .L2
�d

8+dX
2+dX
Y

n≠
2

2+dX + L2
�Eu

#
Î�n

X ,dX (u) ≠ uÎ
2
X

$
+ (‡2 + n≠1) + L2

� log(L�)d
8+dX
2+dX
Y

n≠
2

2+dX log (n)

.L2
� log(L�)d

8+dX
2+dX
Y

n≠
2

2+dX log n + (‡2 + n≠1) + L2
�Eu

#
Î�n

X ,dX (u) ≠ uÎ
2
X

$
,

(42)

where . contains constants that depend on LE
n
Y

, LD
n
Y

, LE
n
X

, LD
n
X

, RX and dX . Combining our estimate
equation 42 and equation 25, we have

ESEuÎDn

Y
¶ �NN ¶ En

X
(u) ≠ �(u)Î2

Y
.L2

� log(L�)d
8+dX
2+dX
Y

n≠
2

2+dX log n + (‡2 + n≠1)
+ L2

�Eu

#
Î�n

X ,dX (u) ≠ uÎ
2
X

$
+ ESEw≥�#“

#
Î�n

Y,dY (w) ≠ wÎ
2
Y

$
.
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Proof of Theorem 3. Under Assumption 5, the target finite dimensional map becomes �n

d
:= EY ¶ � ¶ DX :

M æ RdY , which is a Lipschitz map defined on M µ RdX . Similar to the proof of Theorem 2, the
generalization error is decomposed as the following

ESEuÎDY ¶ �NN ¶ EX (u) ≠ �(u)Î2
Y

Æ T1 + T2 + II , (43)

where T1, T2 and II are defined in equation 26 and equation 25 respectively. Following the same procedure
in equation 27, we obtained that

T1 Æ 4 inf
�œFNN

Eu

#
Î� ¶ En

X
(u) ≠ En

Y
¶ �(u)Î2

2
$

+ 6ES2
1
n

2nÿ

i=n+1
ÎÁiÎ

2
Y

.

We then replace Lemma 3 by the following modified version of lemma 17 from Liu et al. (2022) to obtain an
FNN approximation to �n

d
.

Lemma 7 (Lemma 17 in Liu et al. (2022)). Suppose assumption 5 holds, and assume that ÎaÎŒ Æ B for

all a œ M. For any Lipschitz function f with Lipschitz constant R on M, and any integers L̃, p̃ > 0, there

exists f̃ œ FNN(1, L, p, M) such that

Îf̃ ≠ fÎŒ Æ CRL̃≠
2

d0 p̃≠
2

d0 ,

where the constant C solely depends on d0, B, · and the surface area of M. The parameters of FNN(1, L, p, M)
are chosen as the following

L = �(L̃ log L̃) , p = �(dX p̃ log p̃) , M = R .

The constants in � depend on d0, B, · and the surface area of M.

Apply the above lemma to each component of EY ¶ � ¶ DX and assemble all individual neural networks
together, we obtain a neural network �̃n

d
œ F (dY , L, p, M) such that

Î�̃n

d
≠ �n

d
ÎŒ . L�Á ,

Here the parameters L = �(L̃ log L̃), p = �(dX dY p̃ log p̃), M = �(L�) with L̃p̃ = �(Á). The notation .
and � contains constants that solely depend on d0, RX , LEX , · and surface area of M. The rest of the proof
follows the same procedure as in proof of Theorem 2.

Proof of Theorem 4. The proof is similar to that of Theorem 2 with a slight change of the neural network
construction, so we only provide a brief proof below.

While Assumption 6 holds, the target map � : X ‘æ Y can be decomposed as the following

Rd0 R

X RdX Rd0 R RdY Y .

Rd0 R

g1

E
n
X Vi

V1

VdY

gi D
n
Y

gdY

(44)

Notice that each route contains a composition of a linear function Vi and a nonlinear map gi : Rd0 æ R.
The nonlinear function gi can be approximated by a neural network with a size that is independent from
dX , while the linear functions Vi can be learned through a linear layer of neural network. Consequently, the
function hi := Vi ¶ gi can be approximated by a neural network h̃i œ FNN(1, L + 1, p̃, M) such that

Îhi ≠ h̃iÎŒ Æ CL�Á
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where L, p̃ > 0 are integers with Lp = ÁÁ≠d0/2
1 Ë, and the constant C depends on d0. Assembling the neural

networks h̃i together, we can find a neural network �̃n

d
in FNN(dY , L + 1, p, M) with p = dY p̃, such that

Î�̃n

d
≠ �n

d
ÎŒ Æ CL�Á1 .

The rest of the proof follows the same as in the proof of Theorem 2.

Proof of Theorem 5. The proof is very similar to that of Theorem 4. Under Assumption 7, the target map
� has the following structure:

Rd1 R Rd2 R

X RdX Rd1 R Rl1 Rd2 R Rl2 · · · RdY Y .

Rd1 R Rd2 R

g
1
1 g

2
1

E
n
X V

1
i

V
1

1

V
1

l1

g
1
i

V
2

1

V
2

i

V
2

l2

g
2
i D

n
Y

g
1
l1 g

2
l2

(45)
where the abbreviation notation · · · denotes blocks Gi, i = 3, . . . , Gk. The neural network construction
for each block Gi is the same as in the proof of Theorem 4. Specifically, there exists a neural network
Hi œ FNN(li, L + 1, lip̃, M) such that

ÎGi
≠ Hi

ÎŒ Æ CLGiÁ1 , for all i = 1, . . . , k.

Concatenate all neural networks Hi together, we obtain the following approximation

ÎGk
¶ · · · ¶ G1

≠ Hk
¶ · · · ¶ H1

Î Æ CL�Á1 .

The rest of the proof follows the same as in the proof of Theorem 2.

A.2 Lipschitz constant of parameter to solution map for Parametric elliptic equation

The solution u to equation 24 is unique for any given boundary condition f so we can define the solution
map:

Sa : f œ H1
‘æ u œ H3/2.

To obtain an estimate of the Lipschitz constant of the parameter-to-solution map �, we compute the Frechét
derivative DSa[”] with respect to a and derive an upper bound of the Lipschitz constant. It can be shown
that the Frechét derivative is

DSa[”] : f ‘æ v”,

where v” satisfies the following equation
I

≠div(a(x)Òxv”(x)) = div(”Òu) , in �,

v” = 0 , on ˆ�.

The above claim can be proved by using standard linearization argument and adjoint equation methods.
Using classical elliptic regularity results, we derive that

Îv”ÎH3/2 Æ CÎdiv(”Òu)ÎH≠1/2

ÆCÎ”ÎLŒÎuÎH3/2 Æ CÎ”ÎLŒÎfÎH1 ,

where C solely depends on the ambient dimension d = 2 and –, —. Therefore, the Lipschitz constant is
CÎfÎH1 .
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