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Abstract. Automated methods are becoming increasingly used to sup-
port formative feedback on students’ science explanation writing. Most
of this work addresses students’ responses to short answer questions.
We investigate automated feedback on students’ science explanation es-
says, which discuss multiple ideas. Feedback is based on a rubric that
identifies the main ideas students are prompted to include in explana-
tory essays about the physics of energy and mass. We have found that
students revisions generally improve their essays. Here, we focus on two
factors that a↵ect the accuracy of the automated feedback. First, learned
representations of the six main ideas in the rubric di↵er with respect to
their distinctiveness from each other, and therefore the ability of auto-
mated methods to identify them in student essays. Second, sometimes
a student’s statement lacks su�cient clarity for the automated tool to
associate it more strongly with one of the main ideas above all others.
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1 Introduction

Science writing has been found to enhance students’ inquiry and reasoning skills
[5, 8]. Artificial Intelligence has been used to support formative assessment of
short answer responses to guide revision [3, 16]. However, using AI tools for
revision feedback of science essays is still novel, therefore little is known about
accuracy of AI feedback on essays. In a project that provides a web-delivered
short curriculum on middle school roller coaster physics, students are prompted
to write essays, then revise them based on automated feedback. We find that the
feedback accuracy depends on the inherent distinctiveness of propositions that
express the main ideas and on how clearly the students express themselves.

The essay feedback comes from PyrEval [2, 13], software that detects main
ideas in short passages written to the same prompt. PyrEval can use any pre-
trained model to convert spans of text to semantic vectors. Before classroom
deployment, to optimize accuracy of the feedback, we tested multiple semantic
vector methods on a set of manually labelled student data. After classroom use,
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we manually labeled a new set of essays to assess accuracy on the new classroom
sample. By examining patterns of cosine similarities of main idea vectors used
as exemplars versus students’ main idea vectors, we find that some main ideas
are more distinctive than others, and that some student statements have similar
cosine similarities to multiple ideas. Both factors that a↵ect PyrEval accuracy.

2 Related Work

Formative feedback, meaning feedback during a unit or course to support fur-
ther learning, has been found to be most beneficial when it focuses on the what,
how and why of a problem rather than on verification of results [12]. A series of
papers from a group at UC Berkeley have investigated the use of automated guid-
ance in support of short answer explanations from middle school students. They
have compared automated feedback alone and in combination with information
about the personalized nature of the feedback [14], alone or in combination with
students providing feedback on a sample essay [4], and finally alone or in combi-
nation with an interface that models the revision process [3]. In all three cases,
automated guidance was from the C-rater-ML tool [7], reported to have a 0.72
Pearson correlation with expert humans [14].

Similar investigations by the Concord Consortium [9, 17], mostly with high
school students, aimed at improving students’ understanding of uncertainty in
science [10]. All studies relied on C-rater-ML, achieving QWK scores with hu-
mans between 0.78 and 0.93, depending on the study. One study compared
generic argumentation feedback to student-specific feedback through use of C-
rater-ML, with the latter leading to greater improvements in revisions [17]. An-
other study compared feedback on argumentation writing alone or in combina-
tion with feedback on students’ use of science simulations and data [9].

There is relatively little work on automated formative feedback for essay re-
vision. Zhang et al. [16] presented eRevise, which provides rubric-based feedback
on students’ use of evidence for source-based essays. The authors found that re-
liance on word embeddings had the best combination of performance accuracy
and ability to provide student-specific feedback. Tests with middle school stu-
dents showed that eRevise led to improved scores on revisions. For our middle
school essays, we found that PyrEval performed better using word embeddings
rather than contextualized embeddings (cf. section 6), with accuracies from 0.74
to 0.80 across datasets.

3 Roller Coaster Physics Curriculum

During a 2-3 week design-based physics unit, middle school students learned
about the physics of energy and energy transfer. They conducted virtual exper-
iments in a web-based environment using a roller coaster simulation, recorded
their data, and answered multiple choice and open-ended questions before sub-
mitting explanation essays and essay revisions. An essay prompt guided them
to explain six ideas, such as the influence of height on potential energy. The six
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ID Sim Text Description
1 0.69 The greater the height, the

greater the potential energy (PE)
2 0.77 As the cart moves downhill, PE de-

creases and kinetic energy increases
3 0.60 The total energy of the system is

always the sum of PE and KE
4 0.75 The law of conservation of energy

states that energy cannot be created
or destroyed, only transformed

5 0.75 The initial drop should be
higher than the hill

6 0.70 Higher mass of the cart corresponds
to greater total energy of the system

(a) The Six Main Ideas.

(b) Sample Feedback Checklist: a
green check mark means PyrEval de-
tected the idea; a gold question mark
indicates PyrEval did not. The ‘My
Confidence’ column reflects PyrEval’s
average accuracy for a given idea.

Fig. 1: Main Idea content units with average cosine similarities (Sim).

ideas are shown in Fig. 1a, with the type of checklist feedback they might receive
in Fig 1b. Elsewhere, we reported that students’ revised essays improved based
on the automated feedback [11].

4 PyrEval

PyrEval is designed as a lightweight content assessment tool, and is easily adapted
to new datasets due to its modular design. Its use of pre-trained semantic vec-
tors means that it requires no training data. Below we explain how we tuned it
to our data, including hyperparameter selection. Its three modules are an essay
preprocessor, a module to build the content model, and one to assess essays.

The preprocessor converts essays into lists of semantic vectors corresponding
to main clauses. This module supports user selection of di↵erent semantic vector
methods, as we demonstrate in experiments in section 6.

The second module automatically constructs a content model known as a
pyramid from five reference essays (exemplars). A pyramid is a list of weighted
content units where each content unit represents di↵erent ways of expressing the
same content extracted from the reference essays. It groups the clause vectors
from di↵erent exemplar essays into content units (CUs) of at most five vectors.
CUs with fewer than five vectors have lower importance. The typical pyramid
has a few CUs with the maximum weight of 5, and increasingly more content
units for each lower weight. Aligning a pyramid to our rubric is described below.

PyrEval’s assessment module [13] constructs a hypergraph graph for each
student essay. Each hypernode is a sentence with one internal node per clause,
where CUs are associated with internal nodes they are similar to. Edges connect
clauses in di↵erent sentences that are associated to the same CU. An adaption
of a greedy maximal independent set algorithm finds the set of matches (nodes)
that give highest sum of CU weights.



4 M. Sheikhi et al.

Method topk t Accuracy
WTMF 3 0.55 0.795
WTMF with MidPhys 3 -0.01 0.675
WTMF Refinement 3 -0.01 0.705
BERT 3 0.85 0.752
Fine Tuned BERT 3 0.83 0.752
BERT + WTMF 3 0.83 0.756

Table 1: Comparison of Six Semantic Vector Methods on GT1

5 Data

Two datasets are used here, one to tune PyrEval to the middle school essays,
and one to analyze PyrEval accuracy. In year 2 of the project, we selected 7 high
quality student essays to construct 21 pyramids to choose from. We labeled 39
additional essays of varying quality for presence of each main idea, which we
refer to as Ground Truth 1 (GT1). Three annotators from the project worked
independently, then arrived at a consensus labeling, which was updated several
times while testing alternative pyramids. We aimed for a pyramid with exactly
six content units of weight 5 (the maximum weight) corresponding one-to-one to
the six main ideas in the curriculum. After selecting the pyramid with the best
performance on GT1, we manually edited the 5 corresponding reference essays
to further improve the pyramid. The Sim column of Fig.1a shows the average
pairwise cosine similarity of the five vectors within each of the six main idea
content units in our final pyramid.

In year 3 of the project, original and revised essays from 60 students were la-
beled, which we refer to as Ground Truth 2 (GT2). Raters examined the PyrEval
feedback, and labeled it as correct or incorrect. Inter-rater reliability was mea-
sured on 20% of the essays from two researchers working independently. Sub-
stantial agreement of Cohen’s Kappa = 0.768 was achieved. Then one of the
researchers labeled the remainder of the data.

6 Experiments and Results

Our previous work found WTMF, a matrix factorization vector method, to out-
perform other word embedding methods [6]. Here we compare six additional
vector methods: 1) WTMF with its original corpus; 2) WTMF on the original
corpus augmented with MidPhys, a dataset consisting of 11,245 constructed re-
sponses from middle school students to 55 physics questions; 3) refinement of the
WTMF vector space; 4) BERT contextualized vectors [1] ; 5) BERT fine-tuned
on MidPhys; 6) concatenation of vectors 4 and 5. For each method, we performed
grid search over two PyrEval hyperparameters: t, the threshold cosine similarity
value of a student essay vector to a pyramid content unit to be added to the
assessment hypergraph, and topk, the number of di↵erent student essay vectors
that can be associated with the same content unit.
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Dataset PAcc. NAcc. Acc. Rec. Pre. F1
GT1 80.64 76.56 79.50 92.77 80.20 86.03
GT2-O 73.73 77.14 74.72 88.67 73.72 80.51
GT2-R 77.00 55.32 74.17 91.98 76.99 83.82
GT2 75.53 70.39 74.44 90.50 75.52 82.34
All 76.78 70.05 75.47 91.09 76.71 83.28

Table 2: PyrEval accuracies, recall, precision and F1.

The third method adapts an approach to refine vectors for opposite sentiment
words to have lower cosine similarity [15], that relied on a human ranking of
sentiment words. We refined the cosine similarities of a set of key physics terms
to be more distant, for word pairs like “potential” and “kinetic,” using tf-idf
scores computed on the MidPhys corpus to rank words.

Table 1 compares the six semantic vector methods on the original ground
truth dataset GT1. Because method 1 had the highest accuracy, we used this
method in our project.

Table 2 reports accuracy on the GT2 dataset. That it is somewhat lower
than on GT1 is to be expected, given that GT1 was relatively small in size.
Accuracies are broken down into positive accuracy (or sensitivity) and negative
accuracy (or specificity). PyrEval’s use of a greedy maximal independent set
approach optimizes for the highest sum of matched CU weights, thus inherently
favors positive over negative accuracy.

Table 3 shows varied accuracy across the six main ideas. (Accuracy ”bins”
in the Fig. 1b checklist are based on GT1 results.) In GT2, the ideas PyrEval
identifies most accurately are, in descending order, statements that: define the
law of conservation of energy (main idea 4), explain the roller coaster initial drop
must be higher than the hill that follows (main idea 5), and that greater mass of
the cart results in greater total energy (main idea 6). Main idea three accuracy
is modest (71.66%), and accuracy is lower for main ideas one and two.

7 Distinctiveness of Ideas and Student Writing Clarity

PyrEval has higher accuracy on the fourth and fifth main ideas (MIs), which we
attribute to greater distinctiveness of lexical items used to express them, such
as transformed, transferred for MI4 and initial, drop, hill for MI5. All the other

Dataset MI 1 MI 2 MI 3 MI 4 MI 5 MI 6
GT1 76.92 82.05 69.23 89.74 71.79 84.62
GT2 O 63.33 56.66 66.66 91.66 86.66 83.33
GT2 R 63.33 61.66 76.66 86.66 86.66 70.00
GT2 63.33 59.16 71.66 89.16 86.66 76.66
All 66.66 64.77 71.06 89.30 83.01 78.61

Table 3: Accuracy on Main Ideas 1-6 (as percentages).
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ideas mention energy, potential energy and kinetic energy, which are relatively
close in vector space. While the term mass is unique to MI6, its embedding is
close to energy terms. The distinctiveness of the main ideas can be quantified
by average cosine similarities of all pairs of vectors from the main idea content
units, as shown in Table 4. Averaging across pairs gives the lowest similarities
(greatest distinctiveness) for MI4 (0.27) and MI5 (0.28), moderate for MI3 (0.37),
and around 0.43 for MIs 6, 2 and 1. See below for the Count column.

Fig. 2 illustrate cases of clauses with � t similarity to multiple MIs. The
top of the figure shows two phrases that are more poorly written, and that are
candidate matches to three main ideas. The lower half of the figure shows two
well articulated statements, with � t similarity to exactly one main idea. Column
2 of Table 4 shows how often each MI in a given pair is a candidate match for
multiple clauses in a student essay. Pairs of main ideas are shown in ascending
order of the number of clauses that have a similarity to both MIs above the
threshold t. Main ideas 1 and 5 are the most “confusable” for PyrEval, with
1,152 clauses having similarity � t to both.

We plotted distributions of cosine similarities of student vectors to main ideas
in a random selection of 117 GT2 essays (out of 159), then verified the consistency
of our observations on the remaining 42. We selected one plot to show here. We
binned essays by number of PyrEval errors into High, (N=58; 0-1 errors), Mid
(N=45; 2 errors), and Low (N=14; � 3 errors) accuracy. Clauses from the High
and Mid bins had similarities above t for 1.63 main ideas (sd=0.84). Clauses
from the Low bin exceeded t for 1.73 main ideas (sd=0.78). When a clause is a
candidate match for up to 3 (topk) content units, the algorithm is more likely
to err. Fig. 3 plots the cosine similarity (x-axis) by number of clause-main idea
pairs at that cosine similarity (y-axis) in an accurately assessed essay of average
length versus an inaccurately assessed long essay. The accurate essay (darker
bars) has a lower count of clauses overall, but more importantly, very few that
have a cosine similarity of 0.70 and above. In contrast, the inaccurate essay has
about ten times as many at that cosine similarity and above, which increases
the chances that the assessment algorithm would select the wrong node.

8 Conclusion

Through error analysis of a software tool that provides formative feedback on
students’ science explanation essays, we presented two perspectives on distinc-
tiveness of ideas. First, science explanation statements converted to semantic
vectors have di↵erent degrees of distinctiveness. Second, students’ statements of
an idea can be more or less clearly articulated. Both factors a↵ect the accuracy
of a software tool we employed to provide formative feedback on students’ essays.
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1. an object has the more PE it will have at the top of the drop and the more total
energy (low clarity)

2. the stored energy will turn into kinetic energy because of the gravity (low clarity)
3. but, since the law of Conservation of Energy states that energy can not be created

or destroyed, the PE, does not just disappear (high clarity)
4. because, based on the data that was collected, the hill height has to be smaller

than the initial drop height (high clarity)

ID 1 2 3 4 5 6
Low Clarity Examples

1 0.63 - 0.52 0.51 - 0.57
2 - 0.58 - 0.53 - 0.52

High Clarity Examples
3 - - - 0.71 - -
4 - - - - - 0.69

Fig. 2: Clauses with low versus high clarity, and main ideas they are similar to.

Pair Count Avg. Sim.
4-5 5 0.06
1-4 6 0.21
3-4 16 0.38
3-5 25 0.16
2-4 57 0.30
4-6 69 0.40
1-3 158 0.38
5-6 170 0.27
2-3 214 0.39
2-5 472 0.40
1-6 532 0.44
3-6 534 0.54
2-6 802 0.48
1-2 986 0.59
1-5 1,152 0.53

Table 4: Average cosine simi-
larity of all pairs of main ideas.

Fig. 3: Cosine similarity distributions of clauses
in the full assessment hypergraph for an accurate
short essay, and a long inaccurate essay.
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