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Abstract

Schrödinger bridge can be viewed as a
continuous-time stochastic control problem
where the goal is to find an optimally con-
trolled diffusion process whose terminal dis-
tribution coincides with a pre-specified tar-
get distribution. We propose to generalize
this problem by allowing the terminal distri-
bution to differ from the target but penalizing
the Kullback-Leibler divergence between the
two distributions. We call this new control
problem soft-constrained Schrödinger bridge
(SSB). The main contribution of this work
is a theoretical derivation of the solution to
SSB, which shows that the terminal distri-
bution of the optimally controlled process is
a geometric mixture of the target and some
other distribution. This result is further ex-
tended to a time series setting. One appli-
cation is the development of robust genera-
tive diffusion models. We propose a score
matching-based algorithm for sampling from
geometric mixtures and showcase its use via
a numerical example for the MNIST data set.

1 INTRODUCTION

1.1 Schrödinger Bridge and Its Applications

Let X = (Xt)0≤t≤T be a diffusion process over
the finite time interval [0, T ] with initial distribu-
tion µ0. Schrödinger bridge seeks an optimal steer-
ing of X towards a pre-specified terminal distribu-
tion µT such that the resulting controlled process is
closest to X in terms of Kullback-Leibler (KL) diver-
gence (Schrödinger, 1931, 1932). Under certain reg-
ularity conditions, the optimally controlled process is
another diffusion with the same diffusion coefficients
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as X but an additional drift term. This result has
been obtained via different approaches and at vary-
ing levels of generality, and among the seminal works
are Fortet (1940); Beurling (1960); Jamison (1975);
Föllmer (1988); Dai Pra (1991). For comprehensive
reviews detailing the historical development, we refer
readers to Léonard (2013) and Chen et al. (2021c).

The recent generative modeling literature has seen a
surge in the use of Schrödinger bridge. In these appli-
cations, µ0 is typically some distribution that is easy
to sample from, and µT is the unknown distribution
of a given data set. By numerically approximating the
solution to the Schrödinger bridge problem, one can
generate samples from µT (i.e., synthetic data points
that resemble the original data set). One such algo-
rithm is presented by De Bortoli et al. (2021), who pro-
posed to calculate the Schrödinger bridge by using a
score matching approximation to the iterative propor-
tional fitting procedure (Deming and Stephan, 1940).
Concurrently, Wang et al. (2021) developed a two-
stage method where an auxiliary Schrödinger bridge is
run first to generate samples from a smoothed version
of µT , and the second Schrödinger bridge transports
these samples towards µT . Both approaches general-
ize the denoising diffusion model methods of Ho et al.
(2020) and Song et al. (2021). Some other recent de-
velopments in this area include Chen et al. (2021a);
Song (2022); Peluchetti (2023); Richter et al. (2023);
Winkler et al. (2023); Hamdouche et al. (2023).

Though not the focus of this work, Schrödinger bridge
sampling methods can also be used when samples from
µT are not available but µT is known up to a normaliz-
ing constant; see, e.g., Huang et al. (2021); Zhang and
Chen (2021); Vargas et al. (2022), and see Heng et al.
(2024) for a recent review. For the connections be-
tween Schrödinger bridge, optimal transport and vari-
ational inference, see, e.g., Chen et al. (2016b, 2021b);
Tzen and Raginsky (2019).

1.2 Overview of This Work

The main contribution of this paper is the theoretical
development of a generalized Schrödinger bridge prob-
lem, which we call soft-constrained Schrödinger bridge
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(SSB). We take the stochastic control approach that
was employed by Mikami (1990); Dai Pra (1991); Pra
and Pavon (1990) for studying the original Schrödinger
bridge problem (see Problem 1). In SSB, the terminal
distribution of the controlled process does not need to
precisely match µT but needs to be close to µT in terms
of KL divergence. Formally, SSB differs from the orig-
inal problem in that we replace the hard constraint
on the terminal distribution with an additional cost
term, parameterized by β, in the objective function
to be minimized (see Problem 2). A larger β forces
the terminal distribution of the controlled process to
be closer to µT . We rigorously find the solution to
SSB and the expression for the drift term of the opti-
mally controlled process. We show that SSB general-
izes Schrödinger bridge in the sense that as β → ∞,
the solution to the former coincides with the solution
to the latter. An important implication of our results
is that the terminal distribution of the controlled pro-
cess should be a geometric mixture of µT and some
other distribution; when µ0 is a Dirac measure, the
other distribution is Law(XT ) (i.e., the terminal dis-
tribution of the uncontrolled process). We further ex-
tend our results to a time series generalization of SSB,
where we are interested in modifying the joint distri-
bution of (Xt1 , . . . , XtN ) for 0 < t1 < · · · < tN = T .

SSB can be used as a theoretical foundation for de-
veloping more flexible and robust sampling meth-
ods. First, when the KL divergence between µT and
Law(XT ) is infinite, Schrödinger bridge does not ad-
mit a solution, while SSB always does. A toy example
illustrating the consequences of this result is given in
Example 1. More importantly, β acts as a regulariza-
tion parameter preventing the algorithm from overfit-
ting to µT , which is crucial for some generative model-
ing tasks such as fine-tuning with limited data (Moon
et al., 2022). In such applications, µT contains infor-
mation from a small or noisy data set, and one wants
to improve the sample quality by harnessing knowl-
edge from a large high-quality reference data set. To
achieve this, we can train the uncontrolled process X
in SSB using the reference data set and then tune the
value of β. We present a simple normal mixture ex-
ample illustrating the effect of β (see Example 4). For
a more realistic example in generative modeling of im-
ages, we use the MNIST data set and consider the task
of generating new images of digit 8. We assume that
the training data set only has 50 noisy images of digit
8, but we can use the data set of all the other digits as
reference. As suggested by our theoretical findings, we
can train a Schrödinger bridge targeting a geometric
mixture of the distributions of the two data sets. Such
a Schrödinger bridge cannot be learned by existing
methods, and to address this, we propose a new score
matching algorithm that utilizes importance sampling.

We show that this approach yields high-quality images
of digit 8 when β is properly chosen.

The paper is structured as follows. In Section 2, we
present the stochastic control formulation of the SSB
problem, and we derive its solution when µ0 is a Dirac
measure. The solution to SSB for general initial con-
ditions is obtained in Section 3, which involves solving
a generalized Schrödinger system. Section 4 extends
the results to the time series setting. In Section 5, we
present a new algorithm for robust generative model-
ing and demonstrate its use via the MNIST data set.
Proofs and auxiliary results are deferred to Appendix.

1.3 Related Literature

Our development of SSB builds upon the work
of Dai Pra (1991), which formulates Schrödinger
bridge as a stochastic control problem and derives
the solution using the logarithmic transformation tech-
nique pioneered by Fleming (Fleming, 1977, 2005;
Fleming and Rishel, 2012) and the result of Jamison
(1975). The time series SSB problem is a general-
ization of the work of Hamdouche et al. (2023), who
extended the original Schrödinger bridge problem to
the time series setting but only considered the special
case where µ0 is a Dirac measure. Pavon and Wakol-
binger (1991); Blaquiere (1992) adopted an alternative
stochastic control approach to studying Schrödinger
bridge, which was rooted in the same logarithmic
transformation and also considered in Tzen and Ra-
ginsky (2019); Berner et al. (2022). This approach can
be applied to the SSB problem as well, but it requires
the use of verification theorem.

Motivated by robust network routing, a discrete ver-
sion of the SSB problem was proposed and solved
in Chen et al. (2019), where X is a discrete-time non-
homogeneous Markov chain with finite state space.
The techniques used in this paper are very different,
and to our knowledge, the continuous-time SSB prob-
lem has not been addressed in the literature.

2 PROBLEM FORMULATION

Let µ0, µT be two probability distributions on Rd such
that

∫
x2µ0(dx) < ∞ and µT ≪ λ, where λ denotes

the Lebesgue measure. Denote the density of µT by
fT = dµT /dλ. Let (Ω,F ,P) be a probability space, on
which we define a standard d-dimensional Brownian
motion W = (Wt)t≥0 and a random vector ξ that is
independent of W and has distribution µ0. We will
always use X = (Xt)0≤t≤T to denote a weak solution
to the following stochastic differential equation (SDE)

X0 = ξ, and dXt = b(Xt, t)dt+σdWt (2.1)
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for t ∈ [0, T ] ,where b : Rd×[0, T ] → Rd and σ ∈ (0,∞).
Given a control u = (ut)0≤t≤T , define the controlled
diffusion process by Xu

0 = ξ and

dXu
t = [b(Xu

t , t) + ut] dt+ σdWt. (2.2)

We say a control u is admissible if (i) ut is measur-
able with respect to σ((Xu

s )0≤s≤t), (ii) the SDE (2.2)

admits a weak solution, and (iii) E
∫ T

0
∥ut∥2dt < ∞,

where ∥ · ∥ denotes the L2 norm. Denote the set of
all admissible controls by U . Note that the initial dis-
tributions of both X and Xu are always fixed to be
µ0. For ease of presentation, throughout the paper we
adopt the following regularity assumption on b, which
was also used by Jamison (1975); Dai Pra (1991):

Assumption 1. For each 1 ≤ i ≤ d, bi is bounded
and continuous in Rd× [0, T ] and is Hölder continuous
in x, uniformly with respect to (x, t) ∈ Rd × [0, T ].

Under Assumption 1, X has a transition density func-
tion p(x, t | y, s); that is, for any 0 ≤ s < t ≤ T , y ∈ Rd,
and Borel set A in Rd,

E[Xt ∈ A |Xs = y] =

∫
A

p(x, t | y, s)λ(dx). (2.3)

We will use dx as a shorthand for λ(dx). More-
over, by Girsanov theorem, Assumption 1 implies that
the probability measures induced by (Xt)0≤t≤T and
(Bt)0≤t≤T are equivalent, where Bt = ξ+σWt. Hence,
for any t > s ≥ 0, p(x, t | y, s) is strictly positive and
Law(Xt) ≈ λ (i.e., two measures are equivalent). The
role of Assumption 1 in our theoretical results will be
further discussed in Remark 4.

Schrödinger bridge aims to find a minimum-energy
modification of the dynamics of X so that its terminal
distribution coincides with a pre-specified distribution
µT , where “energy” is measured by KL divergence.
Given σ-finite measures ν and µ such that ν ≪ µ, we
use DKL(ν, µ) =

∫
log( dνdµ )dν to denote the KL diver-

gence; if ν ̸≪ µ, define DKL(ν, µ) = ∞. Dai Pra (1991)
considered the following stochastic control formulation
of Schrödinger bridge.

Problem 1 (Schrödinger bridge). Let U0 = {u ∈
U : Law(Xu

T ) = µT } where (Xu
t )0≤t≤T is defined

in (2.2). Find V = infu∈U0
J(u), where

J(u) = E

∫ T

0

∥ut∥2

2σ2
dt, (2.4)

and find the optimal control u∗ such that J(u∗) = V .

Remark 1. Let PX (resp. Pu
X) denote the probabil-

ity measure induced by X (resp. Xu) on the space
of continuous functions on [0, T ]. For any admissi-
ble control u ∈ U , Girsanov theorem implies that
J(u) = DKL(P

u
X ,PX).

Problem 1 has been well studied in the literature. In
the special case where µ0 is a Dirac measure, the so-
lution can be succinctly described, and V is just the
KL divergence between two probability distributions;
we recall this in Theorem 1 below. In this paper, ∇
always denotes differentiation with respect to x.

Theorem 1 (Dai Pra (1991)). Let µ0 be the Dirac
measure such that µ0({x0}) = 1 for some x0 ∈ Rd,
and let X be a weak solution to (2.1). Assume
DKL(µT ,Law(XT )) < ∞. For Problem 1, the opti-
mal control is given by u∗t = σ2∇ log h(Xu∗

t , t), where

h(x, t) =

∫
p(z, T |x, t) fT (z)

p(z, T |x0, 0)
dz

=: E

[
fT (XT )

p(XT , T |x0, 0)

∣∣∣Xt = x

]
.

Moreover, J(u∗) = DKL(µT ,Law(XT )).

Remark 2. If DKL(µT ,Law(XT )) = ∞, then Prob-
lem 1 does not admit a solution in the sense that no
admissible control u can yield Law(Xu

T ) = µT .

We propose a relaxed stochastic control formulation of
the Schrödinger bridge problem by allowing the distri-
bution of Xu

T to be different from µT .

Problem 2 (Soft-constrained Schrödinger bridge).
For β > 0, find V = infu∈U Jβ(u), where

Jβ(u)

=βDKL(Law(Xu
T ), µT ) + E

∫ T

0

∥ut∥2

2σ2
dt,

(2.5)

and find the optimal control u∗ such that Jβ(u
∗) = V .

Problem 2 (i.e., the SSB problem) replaces the hard
constraint Law(Xu

T ) = µT in Problem 1 with a soft
constraint parameterized by β. When β = 0, it is clear
that the optimal control u∗ for Problem 2 is u∗t ≡ 0.
As β → ∞, the law of Xu

T is forced to agree with µT ,
and we will see in Theorem 2 that the optimal control
for Problem 2 converges to that for Problem 1.

Before we try to solve Problem 2 in full generality,
we make a remark on how Problem 1 can be simpli-
fied. In the literature, Problem 1 is often called the
dynamic Schrödinger bridge problem. Since the ob-
jective function (2.4) is the KL divergence between
the laws of the controlled and uncontrolled processes
(recall Remark 1), we can use an additive property of
KL divergence to reduce Problem 1 to a static ver-
sion (Léonard, 2013), where one only needs to find
a joint distribution π with marginals µ0 and µT that
minimizes DKL(π,Law(X0, XT )). Although this prop-
erty is not directly used in this paper, the insight from
this observation underpins our stochastic control anal-
ysis of SSB. In particular, when µ0 is a Dirac measure,
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the solution to Problem 2 can be obtained by a sim-
ple argument which reduces the problem to optimizing
over the distribution of Xu

T instead of over the distri-
bution of the whole process (Xu

t )0≤t≤T .

Theorem 2. Let µ0 be as given in Theorem 1. For
Problem 2, the optimal control is given by u∗t =
σ2∇ log h(Xu∗

t , t), where

h(x, t) = h(x, t;β)

= C−1

∫
p(z, T |x, t) ·

(
fT (z)

p(z, T |x0, 0)

)β/(1+β)

dz,

and C =
∫
fT (x)

β/(1+β)p(x, T |x0, 0)1/(1+β)dx. More-
over, Jβ(u

∗) = −(1 + β) logC ∈ [0,∞), and

lim
β→∞

h(x, t;β) =

∫
p(z, T |x, t) fT (z)

p(z, T |x0, 0)
dz.

Proof. If Law(Xu
T ) ̸≪ µT , then u cannot be optimal

since Jβ(u) = ∞. Now fix an arbitrary u ∈ U such
that Law(Xu

T ) = µ ≪ µT . Letting J(u) be as given
in (2.4), we have

Jβ(u) = βDKL(µ, µT ) + J(u)

≥ βDKL(µ, µT ) +DKL(µ,Law(XT ))

=: J̃β(µ)

where the inequality follows from Theorem 1. Since
µT has density fT and Law(XT ) has density
p(x, T |x0, 0), we can apply Lemma B2 in Appendix
to get infµ J̃β(µ) = −(1+ β) logC ∈ [0,∞), where the
infimum is taken over all probability measures on Rd

and is attained at µ∗ such that

dµ∗

dλ
(x) = C−1fT (x)

β/(1+β)p(x, T |x0, 0)1/(1+β).

The convergence of h(x, t;β) as β → ∞ also follows
from Lemma B2.

It only remains to prove that Jβ(u
∗) = −(1+β) logC.

Observe that we can rewrite h as

h(x, t) =

∫
p(z, T |x, t) (dµ

∗/dλ)(z)

p(z, T |x0, 0)
dz.

Hence, Theorem 1 implies that u∗ is also the solution
to Problem 1 where the terminal constraint is given by
µ∗. So Theorem 1 yields that Jβ(u

∗) = J̃β(µ
∗), which

proves the claim.

Remark 3. When b is constant, the transition den-
sity p(x, t |x0, 0) is easy to evaluate. If fT is known
up to a normalizing constant, one can then use the
Monte Carlo sampling scheme proposed by (Huang
et al., 2021) to approximate the drift b+σ2∇ log h(x, t)
and simulate the controlled diffusion process (2.2). We

describe this method and generalize it using impor-
tance sampling techniques in Appendix A. More so-
phisticated score-based sampling schemes can also be
applied (Heng et al., 2024).

One difference between Theorem 1 and Theorem 2 is
that the condition DKL(µT ,Law(XT )) <∞ is not re-
quired for solving Problem 2. We give a toy example
illustrating the importance of this difference.

Example 1. Consider b ≡ 0, T = 1, x0 = 0 and
µT being the Cauchy distribution. Then, Law(XT ) is
just the normal distribution with mean zero and co-
variance σ2I, and we have DKL(µT ,Law(XT )) = ∞.
Problem 1 does not admit a solution in this case, but
Problem 2 has a solution for any β ∈ [0,∞) and the
associated optimal control has finite energy cost. In
Appendix A.2, we simulate the solution to Problem 2
with µT being the Cauchy distribution. We find that
when β = ∞, the numerical scheme is unstable and
fails to capture the heavy tails of the Cauchy distribu-
tion. In contrast, using a finite value of β significantly
stabilizes the algorithm.

3 SOLUTION TO SSB

When µ0 is not a Dirac measure, the solution to the
Schrödinger bridge problem is more difficult to de-
scribe and is characterized by the so-called Schrödinger
system (Léonard, 2013, Theorem 2.8). In this section,
we prove that the solution to Problem 2 can be ob-
tained in a similar way, but the Schrödinger system
for Problem 2 now depends on β.

The main idea behind our approach is to first show
that the optimal control must belong to a small class
parameterized by a function g and then use an argu-
ment similar to the proof of Theorem 2 to determine
the choice of g. To introduce this class of controls,
for each measurable function g : Rd → [0,∞), let T g
denote the function on Rd × [0, T ) given by

(T g)(x, t) = σ2∇ log h(x, t),

where

h(x, t) = E[g(XT ) |Xt = x]. (3.1)

Let U1 = {u ∈ U : ut = (T g)(Xu
t , t) for some g ≥ 0}

denote the set of all controls that are constructed by
this logarithmic transformation. We present in The-
orem B3 in Appendix some well-known results about
the controlled SDE (2.2) with u ∈ U1; in particular,
part (iv) of the theorem shows that such a process is
a Doob’s h-path process (Doob, 1959). Theorem B3 is
largely adapted from Theorem 2.1 of Dai Pra (1991),
and similar results are extensively documented in the
literature (Jamison, 1975; Fleming and Sheu, 1985;
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Föllmer, 1988; Doob, 1984; Fleming, 2005). We can
now prove a key lemma.

Lemma 3. Let u be an admissible control. Let h be
as given in (3.1) for some measurable g ≥ 0 such that
Eg(XT ) <∞ and h > 0 on Rd × [0, T ). We have

Jβ(u) ≥ βDKL(Law(Xu
T ), µT )+

E[log g(Xu
T )]−

∫
log h(x, 0)µ0(dx),

where Jβ is defined in (2.5). The equality holds when
ut = (T g)(Xu

t , t).

Proof. See Appendix C.

Remark 4. Assumption 1 guarantees that the
SDE (2.1) admits a unique (in law) weak solution.
More importantly, in the proof of Theorem B3 (which
is used to derive Lemma 3), Assumption 1 is used to
ensure that SDE (2.1) has a transition density function
such that the function h defined in (3.1) is sufficiently
smooth and satisfies ∂h

∂t + Lh = 0, where L denotes
the generator of X (see Theorem B3). This condition
can be relaxed; see Friedman (1975) and Karatzas and
Shreve (2012, Chap. 5.7) for details.

Observe that in the bound given in Lemma 3, the term∫
log h(x, 0)µ0(dx) is independent of the control u, and

the other terms depend on u only through the distri-
bution of Xu

T . This implies that among all the admis-
sible controls that result in the same distribution of
Xu

T , the cost Jβ is minimized by some u ∈ U1. We
can now prove the main theoretical result of this work
in Theorem 4. The existence of the solution will be
considered later in Theorem 5.

Theorem 4. Suppose there exist σ-finite measures
ν0, νT such that ν0 ≈ µ0, νT ≈ µT and

dµ0

dν0
(y) =

∫
p(x, T | y, 0)νT (dx), (3.2)

dµT

dλ
(x) = ρT (x)

1+β
β

∫
p(x, T | y, 0)ν0(dy), (3.3)

where ρT = dνT /dλ and the transition density p
is defined in (2.3). Assume

∫
(dµ0/dν0)dµ0 < ∞.

Then u∗t = σ2∇ log h(Xu∗

t , t) solves Problem 2, where
h(x, t) = E[ρT (XT ) |Xt = x]. Moreover, Jβ(u

∗) =
−DKL(µ0, ν0) ∈ [0,∞).

Proof. See Appendix C.

Remark 5. As we derive in the proof, the terminal
distribution of the optimally controlled process is still
a geometric mixture of two distributions. Explicitly,
its density is proportional to

fT (x)
β/(1+β)

(∫
p(x, T | y, 0)ν0(dy)

)1/(1+β)

,

where we recall fT is the density of µT .

Remark 6. The assumption
∫
(dµ0/dν0)dµ0 < ∞

guarantees that we can use Lemma 3 and Theorem B3
and that Jβ(u

∗) <∞; it is also used in Dai Pra (1991).
Observe that u∗t = σ2∇ log h(Xu∗

t , t) is invariant to the
scaling of the function ρT and thus also the scaling
of ν0 and νT . This suggests that the system defined
by (3.2) and (3.3) can be generalized as follows. Let
a > 0 and σ-finite measures ν0 = ν0(a), νT = νT (a) be
the solution to the following system

dµ0

dν0
(y) =

∫
p(x, T | y, 0)νT (dx), (3.4)

dµT

dλ
(x) = (aρT (x))

1+β
β

∫
p(x, T | y, 0)ν0(dy), (3.5)

where ρT = dνT /dλ. We can use essentially the
same argument to show that the choice h(x, t) =
E[ρT (XT ) |Xt = x] is optimal, but now we have

Jβ(u
∗) = −(1 + β) log a−DKL(µ0, ν0(a)).

This is the same as that given in Theorem 4. Indeed,
if (ν∗0 , ν

∗
T ) is a solution to (3.2) and (3.3), then the so-

lution to (3.4) and (3.5) is given by dν0(a) = a1+βdν∗0
and dνT (a) = a−(1+β)dν∗T .

Example 2. Theorem 2 can be obtained from Theo-
rem 4 as a special case. If µ0 is a Dirac measure with
µ0({x0}) = 1, one can check that the solution to (3.2)
and (3.3) is given by ν0 = µ0 and

ρT (x) =

(
fT (x)

p(x, T |x0, 0)

)β/(1+β)

.

Example 3. Suppose b ≡ 0, and let ϕσ denote the
density function of the normal distribution with mean
0 and covariance matrix σ2I. We have p(x, T | y, 0) =
ϕσ

√
T (x − y). Assume µ0 ≪ λ has density f0, and

suppose that f0, fT satisfy

f0(y) = c−1

∫
ϕσ

√
T (x− y)fT (x)

β
1+β dx,

where c =
∫
fT (x)

β/(1+β)dx is the normalizing con-
stant assumed to be finite. A routine calculation us-
ing

∫
ϕσ

√
T (x − y)dy = 1 can verify that the solution

to (3.2) and (3.3) is given by

dν0
dλ

= c−(1+β), ρT (x) = cβfT (x)
β/(1+β).

According to Remark 6, by choosing a = c in (3.5), we
can also replace ν0, νT by ν0(a), νT (a), where ν0(a) co-
incides with λ and νT (a) is a probability distribution

with density c−1f
β/(1+β)
T . For the original Schrödinger

bridge problem (i.e., β = ∞), this solution has been
used in developing efficient generative sampling meth-
ods (Wang et al., 2021; Berner et al., 2022).
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Chen et al. (2019) studied a matrix optimal transport
problem which can be seen as the discrete analogue
to Problem 2, and they proved the solution to the
corresponding Schrödinger system admits a unique so-
lution. The main idea is to show that the solution
can be characterized as the fixed point of some opera-
tor with respect to the Hilbert metric (Bushell, 1973),
a technique that has been widely used in the liter-
ature on Schrödinger system (Fortet, 1940; Georgiou
and Pavon, 2015; Chen et al., 2016a; Essid and Pavon,
2019; Deligiannidis et al., 2024). For the Schrödinger
system defined by (3.2) and (3.3), an argument based
on the Hilbert metric can also be applied to prove the
existence and uniqueness of the solution when µ0, µT

are absolutely continuous and have compact support.

Theorem 5. Let K0 (resp. KT ) denote the support of
µ0 (resp. µT ). Assume that (i) K0,KT ⊂ Rd are com-
pact, (ii) f0 = dµ0/dλ, fT = dµT /dλ exist, where λ is
the Lebesgue measure, and (iii) (y, x) 7→ p(x, T | y, 0) is
continuous and strictly positive on K0 ×KT . For any
β ∈ (0,∞), there exists a unique pair of non-negative,
integrable functions (ρ0, ρT ) such that

f0(y) = ρ0(y)

∫
KT

p(x, T | y, 0)ρT (x)dx,

fT (x) = ρT (x)
(1+β)/β

∫
K0

p(x, T | y, 0)ρ0(y)dy.

Proof. See Appendix D.

Remark 7. The proof of Theorem 5 is adapted from
that for Proposition 1 in Chen et al. (2016a). Ob-
serve that the Schrödinger system naturally yields an
iterative algorithm for computing ρ0, ρT . Given an es-
timate for ρ0, denoted by ρ̂0, we can estimate ρT by

ρ̂T (x) =

(
fT (x)∫

K0
p(x, T | y, 0)ρ̂0(y)dy

)β/(1+β)

,

which then can be used to update ρ̂0 by

ρ̂new0 (y) =
f0(y)∫

KT
p(x, T | y, 0)ρ̂T (x)dx

.

Chen et al. (2016a) considered the original Schrödinger
bridge problem (i.e., β = ∞) and showed that this up-
dating scheme yields a strict contraction with respect
to the Hilbert metric. We note that when β < ∞,
this argument can be potentially made easier, since the
mapping ψ 7→ ψβ/(1+β) for a suitable function ψ can
be easily shown to be a strict contraction, and thus one
only needs to verify the other steps in the updating are
contractions (not necessarily strict); see Lemma D5 in
Appendix. The full scope of consequences of this ob-
servation and the existence proof for the general case
are left to future study.

4 EXTENSION TO TIME SERIES

Recently a time series version of Problem 1 was stud-
ied in Hamdouche et al. (2023), where the goal is to
generate time series samples from a joint probability
distribution on Rd × · · · × Rd. We can generalize our
Problem 2 to time series data analogously.

Problem 3. Consider N fixed time points 0 < t1 <
· · · < tN = T . Let µN be a probability distribution
on Rd×N such that µN ≪ λ. For β > 0, find V =
infu∈U J

N
β (u), where

JN
β (u) = βDKL(Law((Xti)1≤i≤N ), µN )

+ E

∫ T

0

∥ut∥2

2σ2
dt,

(4.1)

and find the optimal control u∗ such that JN
β (u∗) = V .

Recall that in Section 3, we started by considering
functions h such that h(Xt, t) = E[g(XT ) | Ft] for some
function g, where Ft = σ((Xs)0≤s≤t). It turns out
that this technique can be used to solve Problem 3 as
well, but now we need to consider conditional expec-
tations of the form E[g(Xt1 , . . . , XtN ) | Ft]. To sim-
plify the notation, we will write xj = (x1, . . . , xj),
Xj = (Xt1 , . . . , Xtj ), and Xu

j = (Xu
t1 , . . . , X

u
tj ); when

j = 0, xj , Xj , X
u
j all denote the empty vector.

Given a measurable function g : Rd×N → [0,∞), the
Markovian property of X enables us to express the
conditional expectation g(XN ) by

E[g(XN ) | Ft] =

N−1∑
j=0

1[tj ,tj+1)(t) · hj(Xt, t;Xj),

where we set t0 = 0, and the function hj is defined by

hj(x, t;xj)

= E
[
g(xj , Xtj+1

, . . . , XtN )
∣∣∣Xt = x

]
,

(4.2)

for (x, t) ∈ Rd× [tj , tj+1). Let TNg denote the function
on Rd × [0, T )× Rd×N given by

(TNg)(x, t,xN )

=
N−1∑
j=0

1[tj ,tj+1)(t) · σ
2∇ log hj(x, t;xj).

(4.3)

We prove in Lemma C4 in Appendix that it suffices to
consider controls in the set

UN = {u ∈ U : ut = (TNg)(Xu
t , t,X

u
N ) for some g ≥ 0}.

This result is a generalization of Lemma 3 and ob-
tained by applying Theorem B3 to each time inter-
val [tj , tj+1) separately. Note although we express
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u ∈ UN as a function of Xu
N , by (4.3), ut is mea-

surable with respect to σ((Xu
s )0≤s≤t). To formulate

the Schrödinger system for the time series SSB prob-
lem, let pN (xN | y) denote the transition density from
X0 = y to XN = xN , which is given by

pN (xN | y) = p(x1, t1 | y, 0)
N−1∏
j=1

p(xj+1, tj+1 |xj , tj).

Theorem 6. Consider Problem 3. Suppose there exist
σ-finite measures ν0 on Rd and νN on Rd×N such that
ν0 ≈ µ0, νN ≈ µN and

dµ0

dν0
(y) =

∫
pN (xN | y)νN (dxN ),

dµN

dλ
(xN ) = ρN (xN )

1+β
β

∫
pN (xN | y)ν0(dy),

where ρN = dνN/dλ. Assume
∫
(dµ0/dν0)dµ0 < ∞.

Then u∗t = (TNρN )(Xu∗

t , t,Xu∗

N ) solves Problem 3,
where TN is defined by (4.3). Moreover, JN

β (u∗) =
−DKL(µ0, ν0) ∈ [0,∞).

Proof. See Appendix C.

Comparing the Schrödinger system in Theorem 4 and
that in Theorem 6, we see that the solution to Prob-
lem 3 has essentially the same structure as that to
Problem 2. The only difference is that in Theorem 4
the Schrödinger system is constructed by using the
joint distribution of (X0, XT ), while in Theorem 6 it
is replaced by the joint distribution of (X0,XN ). We
also note that Hamdouche et al. (2023) only consid-
ered the time series Schrödinger bridge problem with
µ0 being a Dirac measure, and by letting β → ∞,
Theorem 6 gives the solution to their problem in the
general case.

5 EXPERIMENTS

5.1 Problem Setup

We consider an application of SSB to robust generative
modeling in the following scenario. Let Dref denote a
large collection of high-quality samples with distribu-
tion µref , and let Dobj be a small set of noisy samples
with distribution µobj. Our objective is to generate
realistic samples resembling those in Dobj, but due to
the limited availability of training samples, we want to
leverage information from Dref to enhance the sample
quality.

A natural idea is to use SSB as a regularization method
to mitigate overfitting to the noisy samples in Dobj.
This can be implemented in two steps. For simplicity,
we assume in this section that the uncontrolled process

X is given by Xt = σWt; that is, we assume X0 =
0 and b ≡ 0 in (2.1). Then XT has density ϕσ

√
T

(recall this is the density of the normal distribution
with mean 0 and covariance matrix (σ2T )I). Let fref
denote the density of µref with respect to the Lebesgue
measure. Let Xref = (Xref

t )0≤t≤T be the Schrödinger
bridge targeting µref evolving by

dXref
t = bref(Xref

t , t)dt+ σdWt, (5.1)

for t ∈ [0, T ], where

bref(Xt, t) = σ2∇ log E

[
fref(XT )

ϕσ
√
T (XT )

∣∣∣Xt = x

]
.

Theorem 1 implies that Xref
T has distribution µref .

Next, we solve Problem 2 using Xref as the reference
process and µobj as the target distribution. This yields
the process Xobj with dynamics given by

dXobj
t = bobj(Xobj

t , t)dt+ σdWt, (5.2)

for t ∈ [0, T ], where

bobj(Xobj
t , t) = bref(Xobj

t , t)+

σ2∇ log E

[(
fobj(X

ref
T )

fref(Xref
T )

)β/(1+β) ∣∣∣Xref
t = x

]
.

By Theorem 2, the distribution of Xobj
T will be close to

µobj if β is relatively large. It turns out that there is no
need to train Xref and Xobj separately. The following
lemma shows that we can directly train a Schrödinger
bridge targeting a geometric mixture of µref and µobj.

Lemma 7. Let Xt = σWt and Xref and Xobj be as
given in (5.1) and (5.2). Equivalently, we can express
the drift of Xobj by

bobj(Xobj
t , t)

= σ2∇ log E

[
fref(XT )

1
1+β fobj(XT )

β
1+β

ϕσ
√
T (XT )

∣∣∣Xt = x

]
.

Proof. See Appendix E.

Remark 8. Lemma 7 follows from a change-of-
measure argument. It still holds if X is not a Brownian
motion but X solves the SDE (2.1) with X0 = x0 ∈ Rd

almost surely (see Appendix E).

The assumption that µ0 (the initial distribution of X)
is a Dirac measure greatly simplifies the calculations
and enables us to directly target the unnormalized

density function f
1/(1+β)
ref f

β/(1+β)
obj . We will propose

in the next subsection a score matching algorithm for
learning this geometric mixture distribution. For ap-
plications where a general initial distribution is desir-
able, one may need to build iterative algorithms by
borrowing ideas from the iterative proportional fitting
procedure (De Bortoli et al., 2021).
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Example 4. For an illustrative toy example, let µref

be a mixture of four bivariate normal distributions
with means (1, 1), (1,−1), (−1, 1), (−1,−1) respec-
tively and the same covariance matrix 0.052I. Let µobj

be a mixture of two normal distributions with means
(1.2, 0.8), (−1.5,−0.5) respectively and the same co-
variance matrix 0.52I. So µobj essentially contains
two components of µref but with small bias and much
larger noise. Since the density functions are known,
we can directly simulate a Schrödinger bridge process

targeting f
1/(1+β)
ref f

β/(1+β)
obj using the method described

in Remark 3. We provide the results in Appendix A.3,
which show that by targeting a geometric mixture with
a moderate value of β, we can effectively compel the
terminal distribution of the controlled process to ac-
quire a covariance structure similar to µref .

5.2 A Score Matching Algorithm for
Learning Geometric Mixtures

Let µ∗ denote a probability distribution with den-
sity function f∗(x) = C−1fref(x)

1/(1+β)fobj(x)
β/(1+β)

where C is the normalizing constant. To generate sam-
ples from µ∗, one can use existing score-based diffusion
model methods, but, as we will see shortly, one major
challenge is how to train the score functions without
samples from the distribution µ∗.

Let µ∗
σ be the probability distribution with density

f∗σ(x) =

∫
f∗(x)ϕσ(x− y)dy,

which can be thought of as a smoothed version of f∗,
and suppose that we can generate samples from the
distribution µ∗

σ. Solving the Schrödinger bridge prob-
lem with initial distribution µ∗

σ and terminal distri-
bution µ∗, we obtain the controlled process X∗ with
Law(X∗

0 ) = µ∗
σ and dynamics given by

dX∗
t = b∗(X∗

t , t)dt+ σdWt,

where b∗(x, t) = σ2∇ log f∗
σ
√
T−t

(x).
(5.3)

The process X∗ satisfies Law(X∗
T ) = µ∗ (note that

this result is a special case of Example 3 with β = ∞).

We now describe how to simulate the dynamics given
in (5.3) and generate samples from µ∗

σ. First, to learn
the drift function in (5.3), we propose to combine the
score matching technique with importance sampling.
Let sθ(x, σ̃) denote our approximation to ∇ log f∗σ̃(x),
where σ̃ ∈ [0, σ

√
T ] and the unknown parameter θ typ-

ically denotes a neural network. According to the well-
known score matching technique (Hyvärinen, 2005;
Vincent, 2011), we can estimate θ for a given σ̃ by min-

imizing the objective function Ex∼µ∗ [L(x, θ; σ̃)], where

L(x, θ; σ̃)

= Ex̃∼N (x,σ̃2I)

[
∥sθ(x̃, σ̃)−∇x̃ log f

∗
σ̃(x̃ |x)∥

2
]

= Ex̃∼N (x,σ̃2I)

[∥∥∥∥sθ(x̃, σ̃) + x̃− x

σ̃2

∥∥∥∥2
]
.

Unfortunately, the existing score matching methods
estimate Ex∼µ∗ [L(x, θ; σ̃)] by using samples from µ∗,
which are not applicable to our problem since we only
have access to samples from µref and µobj but not from
µ∗. We propose to use importance sampling to tackle
this issue. Let µ̃ denote an auxiliary distribution with
density q = dµ̃/dλ, and assume that we can generate
samples from µ̃ (e.g. we can let µ̃ = µref , µobj or the
smoothed versions of them). By a change of measure,
we can express Ex∼µ∗ [L(x, θ; σ̃)] as

C−1 Ex∼µ̃

[
L(x, θ; σ̃)

(
fref(x)

q(x)

) 1
1+β

(
fobj(x)

q(x)

) β
1+β

]
.

The density ratios fref/q and fobj/q can be learned
by using samples from µref , µobj, µ̃ and minimizing the
logistic regression loss as in Wang et al. (2021). We do
not need to know C since it does not affect the drift
term in (5.3). In particular, when µ̃ = µref , we get

Ex∼µ∗ [L(x, θ; σ̃)]

= C−1 Ex∼µref

[
L(x, θ; σ̃)

(
fobj(x)

fref(x)

) β
1+β

]
,

where the ratio fobj/fref can be learned by using sam-
ples from Dobj, Dref . A similar expression can be
easily derived for µ̃ = µobj. This importance sam-
pling method enables us to estimate the expectation
Ex∼µ∗ [L(x, θ; σ̃)] by using samples from Dobj,Dref . By
averaging over σ̃ randomly drawn from the interval
[0, σ

√
T ], we obtain an estimated loss for the parame-

ter θ. Minimizing this loss we get the estimate θ̂, and
we can approximate ∇ log f∗σ̃(x) using sθ̂(x, σ̃).

Simulating the SDE (5.3) requires us to generate sam-
ples from µ∗

σ. There are a few possible approaches.
First, if σ is chosen to be sufficiently large, one may
argue that we can simply approximate f∗σ using the
normal density ϕσ, and thus we only need to draw X0

from the normal distribution. This is the approach
taken in the score-based generative models based on
backward SDEs (Song and Ermon, 2019). Second, one
can run an additional Schrödinger bridge process with
terminal distribution µ∗

σ, as proposed in the two-stage
Schrödinger bridge algorithm of Wang et al. (2021).
The dynamics they considered is simply the solution
to Problem 1 given in Theorem 1, where the uncon-
trolled process is a Brownian motion started at 0. The
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drift term is approximated by a Monte Carlo scheme
(see Remark 3 and Appendix A.1), which also requires
an estimate of the density ratio f∗σ/ϕσ and the score
of f∗σ . Third, one can also run the Langevin diffu-
sion dX̃t = σ2∇ log f∗σ(X̃t)dt+ σdWt for a sufficiently
long duration, which has stationary distribution µ∗

σ.
We found in our experiments that this approach yields
more robust results, probably because it does not re-
quire Monte Carlo sampling which may yield drift es-
timates with large variances.

5.3 An Example Using MNIST

We present a numerical example using the MNIST
data set (Deng, 2012), which consists of images of
handwritten digits from 0 to 9. All images have size
28 × 28 and pixels are rescaled to [0, 1]. To construct
Dobj, we randomly select 50 images labeled as eight
and reduce their quality by adding Gaussian noise with
mean 0 and variance 0.4; see Fig. F4 in Appendix F.
The reference data set Dref includes all images that
are not labeled as eight, a total of 54,149 samples.

We first run the algorithm of Wang et al. (2021) us-
ing only Dobj, and the generated samples are noisy as
expected; see Fig. F5 in Appendix F. Next, we run
our algorithm described in Section 5.2 with different
choices of β. The density ratio and scores are trained
by using one GPU (RTX 6000). Generated samples are
shown in Fig. 1, and we report in Table 1 the Fréchet
Inception Distance score (Heusel et al., 2017) assessing
the disparity between our generated images (sample
size = 40K) and the collection of clean digit 8 images
from the MNIST dataset (sample size ≈ 6K). When
β is too small, the generated images do not resemble
those in Dobj and we frequently observe the influence
of other digits; if β = 0, the images are essentially
generated from µref . When β is too large, the influ-
ence from the reference data set becomes negligible,
but the algorithm tends to overfit to the noisy data in
Dobj. For moderate values of β, we observe a blend of
characteristics from both data sets, and when β = 1.5,
FID is minimized (among all tried values) and we get
high-quality images of digit 8. This experiment illus-
trates that the information from Dobj can help cap-
ture the structural features associated with the digit
8, while the samples from Dref can guide the algo-
rithm towards effective noise removal. In Appendix F,
we further analyze the generated images using t-SNE
plots and inception scores (Salimans et al., 2016).

Table 1: FID Scores for MNIST Experiment

β 0 0.25 0.7 1.5 4 100
FID 67.4 66.4 61.0 56.3 110.9 182.4

Figure 1: SSB Samples for MNIST Experiment

6 CONCLUDING REMARKS

We propose the soft-constrained Schrödinger bridge
(SSB) problem and find its solution. Our theory en-
compasses the existing stochastic control results for
Schrödinger bridge in Dai Pra (1991) and Hamdouche
et al. (2023) as special cases. The paper focuses on
the theory of SSB, and the numerical examples are
designed to be uncomplicated but illustrative. More
advanced algorithms for solving Problems 2 and 3 in
full generality need to be developed. It will also be
interesting to study the applications of SSB to other
generative modeling tasks, such as conditional genera-
tion, style transfer (Shi et al., 2022; Shi and Wu, 2023;
Su et al., 2022) and time series data generation (Ham-
douche et al., 2023). Some further generalization of
the objective function may be considered as well; for
example, one can add a time-dependent cost as in Pra
and Pavon (1990) or consider a more general form of
the terminal cost.
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tique. In Annales de l’institut Henri Poincaré, vol-
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Appendix for “Soft-constrained Schrödinger Bridge: a Stochastic
Control Approach”

The code for all experiments (Cauchy simulation in Appendix A.2, normal mixture simulation in Ap-
pendix A.3 and MNIST example in Section 5.3) is at the GitHub repository https://github.com/gargjhanvi/

Soft-constrained-Schrodinger-Bridge-a-Stochastic-Control-Approach.

A SIMULATION WITH KNOWN DENSITY FUNCTIONS

A.1 Monte Carlo Simulation with Densities Known up to a Normalization Constant

Let the uncontrolled process X be the Brownian motion with b ≡ 0 and X0 = 0, and set T = 1. Let ϕσ denote
the density of normal distribution with mean zero and covariance matrix σ2I. Given a target distribution with
density fT (which we simply denote by f in this section), the solution to SSB is given by

dX∗
t = u∗tdt+ σdWt, (A.1)

where the drift u∗ is determined by u∗(x, t) = ∇ log h(x, t) and

h(x, t) ∝ (1− t)−d/2

∫
ϕσ

(
z − x√
1− t

)
·
(
f(z)

ϕσ(z)

)β/(1+β)

dz.

Note that to determine u∗, we only need to know f up to a normalization constant. Since ∇ log h = h−1∇h, we
can rewrite u∗ as

u∗(x, t) =
Ez∼ϕσ

[r(x+
√
1− tz)∇ log r(x+

√
1− tz)]

Ez∼ϕσ
[r(x+

√
1− tz)]

(A.2)

where we set

r(x) =

(
f(x)

ϕσ(x)

)β/(1+β)

.

We can then approximate the numerator and denominator in (A.2) separately using Monte Carlo samples.

For some target distributions, this approach can be made more efficient by using importance sampling. When
f has a heavy tail (e.g. Cauchy distribution), r(x) may grow super-exponentially with x, and Monte Carlo
estimates for the numerator and denominator in (A.2) with z drawn from the normal distribution may have
large variances. Observe that the numerator can be written as

Ez∼ϕσ
[r(x+

√
1− tz)∇ log r(x+

√
1− tz)] =

∫
ϕσ(z)r(x+

√
1− tz)β/(1+β)∇ log r(x+

√
1− tz)dz.

The term ∇ log r(x+
√
1− tz) is often polynomial in z (that is, it does not grow too fast). Hence, intuitively, the

integral is likely to be well approximated by a Monte Carlo estimate with z drawn from a density proportional
to ϕσ(z)r(x+

√
1− tz)β/(1+β). Such a density may not be easily accessible, but if one knows the tail decay rate

of f , one can try to find a proposal distribution for z with tails not lighter than ϕσ(z)r(x+
√
1− tz)β/(1+β). In

the experiment given below, we propose z from some distribution with tail decay rate same as fβ/(1+β)ϕ
1/(1+β)
σ .

Letting w denote our proposal density, we express the numerator in (A.2) as

Ez∼ϕσ
[r(x+

√
1− tz)∇ log r(x+

√
1− tz)] = Ez∼w

[
ϕσ(z)r(x+

√
1− tz)

w(z)
∇ log r(x+

√
1− tz)

]
, (A.3)

and estimate the right-hand side using a Monte Carlo average.

https://github.com/gargjhanvi/Soft-constrained-Schrodinger-Bridge-a-Stochastic-Control-Approach
https://github.com/gargjhanvi/Soft-constrained-Schrodinger-Bridge-a-Stochastic-Control-Approach
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Similarly, the denominator can be expressed by

Ez∼ϕσ
[r(x+

√
1− tz)] = Ez∼w

[
ϕσ(z)r(x+

√
1− tz)

w(z)

]
(A.4)

and estimated by a Monte Carlo average.

A.2 Simulating the Cauchy Distribution

Fix b ≡ 0, σ = 1, X0 = 0 and T = 1. Let f be the density of the standard Cauchy distribution i.e., f(x) =
π−1(1 + x2)−1. Theorem 2 shows that the solution to SSB is a Schrödinger bridge such that the terminal
distribution has density

f∗β = C−1
β ϕ(x)1/(1+β)f(x)β/(1+β), (A.5)

where Cβ is the normalization constant and ϕ is the density of the standard normal distribution. We plot f∗β
and log f∗β in Figure A1 for β = ∞, 100, 50, 20. For x close to zero, the density of f∗β(x) remains approximately
the same for the four choices of β. When β = ∞, f∗β is the Cauchy distribution which has a heavy tail. But for
any β <∞, the tail decay rate of f∗β is dominated by the Gaussian component.

Figure A1: Densities of Geometric Mixtures of Normal Cauchy Distributions.

We simulate the solution to SSB given in (A.1) over the time interval [0, 1] using the Euler-Maruyama method
with 200 time steps. The drift is approximated by the importance sampling scheme. When β = ∞ (i.e., the
terminal distribution is Cauchy), we let the proposal distribution w in (A.3) and (A.4) be the t-distribution
with 2 degrees of freedom (we have also tried directly proposing z from the standard Cauchy distribution and
obtained very similar results). When β < ∞, we let w be the normal distribution with mean 0 and variance
1 + β. We simulate the SSB process 10,000 times, and in Table A1 we report the number of failed runs; these
failures happen because Monte Carlo estimates for the numerator and denominator in (A.2) become unstable
when |x| is large, resulting in numerical overflow. When β = ∞, we observe that numerical overflow is still
common even if we use 1, 000 Monte Carlo samples for each estimate. In contrast, when we use β ≤ 100 and
only 200 Monte Carlo samples, the algorithm becomes very stable. In Figure A2, we compare the distribution of
generated samples (i.e., the distribution of X∗

T with T = 1) with their corresponding target distributions. The
first panel compares the distribution of the samples generated with β = ∞ (failed runs ignored) with the Cauchy
distribution, and the second compares the distribution the samples generated with β = 100 with the geometric
mixture given in (A.5). It is clear that simulating the Schrödinger bridge process (i.e, using β = ∞) cannot
recover the heavy tails of the Cauchy distribution, but the numerical simulation of SSB with β = 100 accurately
yields samples from the geometric mixture distribution. Recall that the KL divergence between standard Cauchy
and normal distributions is infinite, which, by Theorem 1, means that there is no control with finite energy cost
that can steer a standard Brownian motion towards the Cauchy distribution at time T = 1. Our experiment
partially illustrates the practical consequences of this fact in numerically simulating the Schrödinger bridge, and
it also suggests that SSB may be a numerically more robust alternative.
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Table A1: Number of Failed Attempts in 10,000 Trials. Nmc denotes the number of Monte Carlo samples used
to approximate the expectations defined in (A.3) and (A.4).

Nmc 20 50 100 200 500 1000
β = ∞ 1149 933 714 610 444 308
β = 100 495 29 6 1 0 0
β = 50 124 18 6 0 0 0
β = 20 48 4 2 0 1 0

Figure A2: Q-Q plots for the SSB Samples with Nmc = 1, 000.

A.3 Simulating Mixtures of Normal Distributions

In Example 4, we let µref be a mixture of four bivariate normal distributions,

µref = 0.1N ((1, 1), 0.052I) + 0.2N ((−1, 1), 0.052I) + 0.3N ((1,−1), 0.052I) + 0.4N ((−1,−1), 0.052I),

where the weights and the mean vector of the four component distributions are different. Let µobj be a mixture
of two equally weighted bivariate normal distributions

µobj = 0.5N ((1.2, 0.8), 0.52I) + 0.5N ((−1.5,−0.5), 0.52I).

The first component of µobj has mean close to (1, 1) (which is the mean vector of the first component of µref), and
the second component of µobj has mean close to (−1,−1) (which is the mean vector of the last component of µref).
Hence, we can interpret µref as a distribution of high-quality samples from four different classes, and interpret
µobj as a distribution of noisy samples from two of the four classes. Let f∗β = C−1

β fref(x)
1/(1+β)fobj(x)

β/(1+β) be
the density of our target distribution.

We generate 1, 000 samples from f∗β by simulating the SDE (A.1) over the time interval [0, 1] with f = f∗β
and σ = 1. We use 200 time steps for discretization and generate 200 Monte Carlo samples at each step for
estimating the drift. The trajectories of the simulated processes are shown in Figure A3 for β = 0, 2, 10,∞,
and the samples we generate correspond to t = 1. It can be seen that when β = 2 or 10, the majority of the
generated samples form two clusters, one with mean close to (1, 1) and the other with mean close to (−1,−1).
Further, the two clusters both exhibit very small within-cluster variation, which indicates that the noise from
µobj has been effectively reduced.
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Figure A3: SSB Trajectories for Normal Mixture Targets.

B AUXILIARY RESULTS

We first present two lemmas about the minimization of Kullback-Leibler divergence.

Lemma B1. Let (Ω,F , π) be a σ-finite measure space, and let ν ≪ π be a measure with density f = dν/dπ such
that C = ν(Ω) ∈ (0,∞). Let Pπ denote the set of all probability measures absolutely continuous with respect to
π. Then,

inf
µ∈Pπ

DKL(µ, ν) = − logC.

The infimum is attained by the probability measure µ∗ such that dµ∗/dπ = C−1f(x).

Proof of Lemma B1. Since DKL(µ, ν) = ∞ if µ ̸≪ ν, it suffices to consider µ ∈ Pπ such that µ ≪ ν. It is
straightforward to show that DKL(µ, ν) = DKL(µ, µ

∗)− logC. Since
∫
dµ∗ = C−1

∫
fdπ = C−1

∫
dν = 1, µ∗ is a

probability measure. The claim then follows from the fact that the KL divergence between any two probability
measures is non-negative.

Lemma B2. Let (Ω,F , π) and Pπ be as given in Lemma B1. For i = 0, 1, let νi be a finite measure (i.e.,
νi(Ω) <∞) with density fi = dνi/dπ. Assume that ν1 ≪ ν0. For β ≥ 0,

inf
µ∈Pπ

DKL(µ, ν0) + βDKL(µ, ν1) = −(1 + β) logCβ ,

where Cβ =
∫
f0(x)

1/(1+β)f1(x)
β/(1+β)π(dx) ∈ (0,∞). The infimum is attained by the probability measure µ∗

β

such that

f∗β =
dµ∗

β

dπ
= C−1

β f
1/(1+β)
0 f

β/(1+β)
1 .

When ν0, ν1 ∈ Pπ, we have Cβ ∈ (0, 1]. Further,

lim
β→∞

Cβ = ν1(Ω), lim
β→∞

DKL(µ
∗
β , ν0) = DKL(ν1, ν0).
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Proof of Lemma B2. Since ν1 ≪ ν0, we have C > 0. By Hölder’s inequality,

Cβ ≤
(∫

f0dπ

)1/(1+β)(∫
f1dπ

)β/(1+β)

= ν0(Ω)
1/(1+β)ν1(Ω)

β/(1+β) <∞.

Clearly, if ν0, ν1 ∈ Pπ, the above inequality implies C ≤ 1. Observe that

DKL(µ, ν0) + βDKL(µ, ν1) = (1 + β)DKL(µ, ν)

where ν is the measure with density dν/dπ = f
1/(1+β)
0 f

β/(1+β)
1 = Cβf

∗
β . Hence, we can apply Lemma B1 to

prove that µ∗
β is the minimizer.

To prove the convergence as β → ∞, let A = {x : f0(x) ≥ f1(x)} and write Cβ = Cβ,0 + Cβ,1, where

Cβ,0 =

∫
A

f0(x)
1/(1+β)f1(x)

β/(1+β)π(dx), Cβ,1 =

∫
Ω\A

f0(x)
1/(1+β)f1(x)

β/(1+β)π(dx).

The integrands of both Cβ,0 and Cβ,0 are monotone in β. Hence, using C0 < ∞ and monotone convergence
theorem, we find that

lim
β→∞

Cβ =

∫
lim
β→∞

f0(x)
1/(1+β)f1(x)

β/(1+β)π(dx) =

∫
f1(x)π(dx) = ν1(Ω),

which also implies f∗β → f1/ν1(Ω) pointwise. An analogous argument using monotone convergence theorem
proves that limβ→∞ DKL(µ

∗
β , ν0) = DKL(ν1, ν0).

The next result is about the controlled SDE (2.2) with u = σ2∇ log h. It is adapted from Theorem 2.1 of Dai Pra
(1991). Our proof is provided for completeness.

Theorem B3. Suppose Assumption 1 holds. Let X = (Xt)0≤t≤T be a weak solution to (2.1) with initial
distribution µ0 and transition density p(x, t | y, s). Define

h(x, t) =

∫
g(z)p(z, T |x, t)dz, for (x, t) ∈ Rd × [0, T ),

for some measurable g ≥ 0 such that Eg(XT ) < ∞. Assume h > 0 on Rd × [0, T ). Let Xh = (Xh
t )0≤t≤T be a

weak solution with Xh
0 = X0 to the SDE

dXh
t =

[
b(Xh

t , t) + σ2∇ log h(Xh
t , t)

]
dt+ σdWt, for t ∈ [0, T ]. (B.1)

Then, we have the following results.

(i) h ∈ C2,1(Rd × [0, T )) and

∂h

∂t
+

d∑
i=1

bi
∂h

∂xi
+
σ2

2

d∑
i=1

∂2h

∂x2i
= 0, for (x, t) ∈ Rd × [0, T ).

(ii) The weak solution Xh to the SDE (B.1) exists. Indeed, we can define a probability measure Q by dQ/dP =
g(XT )/h(X0, 0) such that he law of X under Q is the same as the law of Xh under P.

(iii) The process Xh satisfies

E

[
log

g(Xh
T )

h(Xh
0 , 0)

]
= E

[∫ T

0

σ2

2
∥∇ log h(Xh

s , s)∥2ds

]
.

(iv) The transition density of Xh is given by

ph(x, t | y, s) =
p(x, t | y, s)h(x, t)

h(y, s)
, for 0 ≤ s < t ≤ T.

Hence, Xh is a Doob’s h-path process, and the density of the distribution of Xh
T is

dLaw(Xh
T )

dλ
(x) = g(x)

∫
p(x, T | y, 0)
h(y, 0)

µ0(dy).
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Proof of Theorem B3. We follow the arguments of Jamison (1975); Dai Pra (1991). Under Assumption 1, Propo-
sition 2.1 of Dai Pra (1991) (which is adapted from the result of Jamison (1975)) implies that h ∈ C2,1(Rd×[0, T ))
and Lh+ ∂h

∂t = 0 on Rd × [0, T ), where

L =
d∑

i=1

bi
∂

∂xi
+
σ2

2

d∑
i=1

∂2

∂x2i

denotes the generator of X. This proves part (i).

To prove part (ii), we first apply Itô’s lemma to get

log h(Xt, t) = log h(X0, 0) +

∫ t

0

b̃(Xs, s)ds+

∫ t

0

σ∇ log h(Xs, s)dWs,

for any t ∈ [0, T ), where

b̃(x, t) =
1

h(x, t)

(
(Lh)(x, t) + ∂h

∂t
(x, t)

)
− σ2

2
∥∇ log h(x, t)∥2 = −σ

2

2
∥∇ log h(x, t)∥2.

Since g(XT ) is integrable, h(Xt, t) is a uniformly integrable martingale on [0, T ) and converges to g(XT ) both
a.s. and in L1. Letting t ↑ T , we obtain that

log g(XT ) = log h(X0, 0)−
∫ T

0

σ2

2
∥∇ log h(Xs, s)∥2ds+

∫ T

0

σ∇ log h(Xs, s)dWs. (B.2)

Write h(x, T ) = g(x), Yt = h(Xt, t) and Zt = Yt/Y0. We have shown that Yt and Zt are martingales on
[0, T ]. Since E[ZT ] = 1, we can define a probability measure Q by dQ/dP = ZT . By Girsanov theorem and the
expression for ZT given in (B.2), the law of X under Q is the same as the law of Xh under P; in other words,
dPh

X = (g(xT )/h(x0, 0))dPX , where PX (resp. Ph
X) is the probability measure induced by X (resp. Xh) on the

space of continuous functions.

For part (iii), choose tn = T ∧ τn, where τn = inf{t : |Xh
t | ≥ n}. Analogously to (B.2), we can apply Itô’s lemma

to get

log h(Xh
tn , tn) = log h(Xh

0 , 0) +

∫ tn

0

σ2

2
∥∇ log h(Xh

s , s)∥2ds+
∫ tn

0

σ∇ log h(Xh
s , s)dWs.

Since h is smooth, |∇ log h(Xh
s , s)| is bounded on [0, tn]. Taking expectations on both sides, we find that

E
[
log h(Xh

tn , tn)
]
= E

[
log h(Xh

0 , 0) +

∫ tn

0

σ2

2
∥∇ log h(Xh

s , s)∥2ds
]
.

Letting n→ ∞ and applying monotone convergence theorem, we get

lim inf
n→∞

E
[
log h(Xh

tn , tn)
]
= E

[
log h(Xh

0 , 0) +

∫ T

0

σ2

2
∥∇ log h(Xh

s , s)∥2ds

]
. (B.3)

It remains to argue that the left-hand side converges to E
[
log h(Xh

T , T )
]
. Write Y h

t = h(Xh
t , t). Using the change

of measure and h(x, T ) = g(x), we get

E
[
log Y h

t

]
= E

[
Yt
Y0

log Yt

]
.

The function f(y) = y log y is bounded below and convex. If (tn) is chosen such that tn ↑ T , we have

E
[
lim
n→∞

Ytn log Ytn | F0

]
≤ lim inf

n→∞
E [Ytn log Ytn | F0] ≤ E [YT log YT | F0] ,

where Fatou’s lemma is applied to obtain the first inequality, and the second inequality follows from the fact
that Yt log Yt is a submartingale. Since Yt converges a.s. to YT = g(XT ), we get

lim inf
n→∞

E [Ytn log Ytn | F0] = E [YT log YT | F0] .
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Taking expectations on both sides we get

lim inf
n→∞

E
[
log Y h

tn

]
= E

[
log Y h

T

]
.

Combining it with (B.3) proves part (iii).

Consider part (iv). For any bounded and measurable function f , we apply the change of measure to the
conditional expectation to get

EQ[f(Xt) | Fs] =
E[f(Xt)h(Xt, t) | Fs]

h(Xs, s)
.

The claim then follows from Fubini’s theorem.

C PROOFS FOR THE MAIN RESULTS

Recall that X denotes the solution to the SDE

dXt = b(Xt, t)dt+ σdWt

over the time interval [0, T ] with initial distribution Law(X0) = µ0, and X
u denotes the solution to the controlled

SDE

dXu
t = [b(Xu

t , t) + ut] dt+ σdWt,

with Xu
0 = X0. The transition density of the uncontrolled process X is denoted by p(x, t | y, s).

Proof of Lemma 3. Since u is admissible, it must satisfy E
∫ T

0
∥ut∥2dt < ∞. Therefore, Novikov’s condition is

satisfied, and we can apply Girsanov theorem to get

E

[
g(XT )

h(X0, 0)

]
= E

[
g(Xu

T )

h(Xu
0 , 0)

exp

{
−
∫ T

0

ut
σ
dWt −

∫ T

0

∥ut∥2

2σ2
dt

}]
≥ exp

{
E

[
log

g(Xu
T )

h(Xu
0 , 0)

−
∫ T

0

ut
σ
dWt −

∫ T

0

∥ut∥2

2σ2
dt

]}
.

By part (ii) of Theorem B3, the left-hand side of the above inequality is equal to 1. Hence,

0 ≥ E

[
log

g(Xu
T )

h(Xu
0 , 0)

−
∫ T

0

ut
σ
dWt −

∫ T

0

∥ut∥2

2σ2
dt

]
= E

[
log

g(Xu
T )

h(Xu
0 , 0)

−
∫ T

0

∥ut∥2

2σ2
dt

]
,

where we have used E
∫ T

0
∥ut∥2dt <∞ again to obtain E[

∫ T

0
utdWt] = 0. By the definition of Jβ , we have

Jβ(u) = βDKL(Law(Xu
T ), µT ) + E

[∫ T

0

∥ut∥2

2σ2
dt

]

≥ βDKL(Law(Xu
T ), µT ) + E

[
log

g(Xu
T )

h(Xu
0 , 0)

]
.

Since Law(Xu
0 ) = µ0, we have E[log h(Xu

0 , 0)] =
∫
log h(x, 0)µ0(dx). By part (iii) of Theorem B3, the equality

is attained when ut = (T g)(Xu
t , t).

Proof of Theorem 4. First, we find using (3.2) that

EρT (XT ) =

∫
dµ0

dν0
dµ0,
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which is finite by assumption. Since p(z, T |x, t) > 0 whenever t < T , we have h > 0 on Rd × [0, T ). Hence,
Theorem B3 and Lemma 3 can be applied with g = ρT . In addition to setting ρT = dνT /dλ and fT = dµT /dλ,
we define

kT (x) =

∫
p(x, T | y, 0)ν0(dy), quT (x) =

dLaw(Xu
T )

dλ
(x).

There is no loss of generality in assuming quT exists, since µT ≪ λ andDKL(Law(Xu
T ), µT ) = ∞ if Law(Xu

T ) ̸≪ µT .
For later use, we note that by (3.2) and (3.3),

h(y, 0) =
dµ0

dν0
(y), (C.1)

ρT (x) =

(
fT (x)

kT (x)

)β/(1+β)

. (C.2)

Let η be the σ-finite measure on Rd with density f
β/(1+β)
T k

1/(1+β)
T . By Lemma 3, for any admissible control u,

Jβ(u) ≥ βDKL(Law(Xu
T ), µT ) + E [log ρT (X

u
T )]−

∫
log h(x, 0)µ0(dx)

= βDKL(Law(Xu
T ), µT ) + E [log ρT (X

u
T )]−DKL(µ0, ν0)

= E

[
β log

quT (X
u
T )

fT (Xu
T )

+
β

1 + β
log

fT (X
u
T )

kT (Xu
T )

]
−DKL(µ0, ν0)

= βDKL(Law(Xu
T ), η)−DKL(µ0, ν0),

where the second line follows from (C.1) and the third from (C.2). The measures µ0, ν0, η do not depend on u.
By Lemma B1,

DKL(Law(Xu
T ), η) ≥ − logC, where C =

∫
fT (x)

β/(1+β)kT (x)
1/(1+β)dx.

We will later prove that C = 1. Combining the above two displayed inequalities, we get

Jβ(u) ≥ βDKL(Law(Xu
T ), η)−DKL(µ0, ν0) (C.3)

≥ − logC −DKL(µ0, ν0). (C.4)

For u∗t = σ2∇ log h(Xu∗

t , t), we know by Lemma 3 that the equality in (C.3) is attained. Hence, it is optimal if
we can show that the equality in (C.4) is also attained. By Lemma B1, this is equivalent to showing that

q∗T (x) = C−1fT (x)
β/(1+β)kT (x)

1/(1+β), (C.5)

where we write q∗T = qu
∗

T . By part (iv) of Theorem B3, we have

q∗T (x) = ρT (x)

∫
p(x, T | y, 0)
h(y, 0)

µ0(dy)

(i)
= ρT (x)

∫
p(x, T | y, 0)ν0(dy)

= ρT (x)kT (x)

(ii)
= fT (x)

β/(1+β)kT (x)
1/(1+β),

where step (i) follows from (C.1) and step (ii) follows from (C.2). So u∗ is optimal, and the normalizing constant
C in (C.5) equals 1, from which it follows that Jβ(u

∗) = −DKL(µ0, ν0). Finally, one can apply Jensen’s inequality
and the assumption

∫
(dµ0/dν0)dµ0 <∞ to show that |DKL(µ0, ν0)| <∞, which concludes the proof.

Proof of Theorem 6. Recall that ν0, νN are defined by

dµ0

dν0
(y) =

∫
pN (xN | y)νN (dxN ), (C.6)

dµN

dλ
(xN ) = ρN (xN )

1+β
β

∫
pN (xN | y)ν0(dy). (C.7)
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The proof is essentially the same as that of Theorem 6. First, we need to derive a result analogous to Lemma 3,
which we give in Lemma C4 below. We will apply Lemma C4 with g = ρN . Recall that hj is defined by

hj(x, t;xj) = E
[
ρN (xj , Xtj+1 , . . . , XtN )

∣∣∣Xt = x
]
, for (x, t) ∈ Rd × [tj , tj+1).

Note that the conditions EρN (XN ) < ∞ and hj > 0 can be verified by the same argument as that used in the
proof of Theorem 4. By (C.6), we have

h0(y, 0) = E[ρN (XN ) |X0 = y] =
dµ0

dν0
(y). (C.8)

Define

fN (xN ) =
dµN

dλ
(xN ), kN (xN ) =

∫
pN (xN | y)ν0(dy), quN (xN ) =

dLaw(Xu
N )

dλ
(xN ).

We can rewrite (C.7) as ρN = (fN/kN )β/(1+β).

By Lemma C4 and Lemma B1, for any admissible control u,

JN
β (u) ≥ − logC −DKL(µ0, ν0), where C =

∫
fN (xN )β/(1+β)kN (xN )1/(1+β)dxN .

To prove that the equality is attained by the control u∗t = (TNρN )(Xu∗

t , t,Xu∗

N ), it remains to show that

q∗N (xN ) = C−1fN (xN )β/(1+β)kN (xN )1/(1+β).

where q∗N = qu
∗

N . To find q∗N , we can mimic the proof of Theorem B3. It is not difficult to verify that the law of
X∗ under P is the same as the law of X under Q, where Q is defined by

dQ

dP
=

E[ρN (XN ) | FT ]

E[ρN (XN ) | F0]
=

ρN (XN )

h0(X0, 0)
.

So for any bounded and measurable function ℓ, we have

EQ[ℓ(XN )] = E

[
ℓ(XN )

ρN (XN )

h0(X0, 0)

]
=

∫
ℓ(xN )ρN (xN )

{∫
pN (xN | y)
h0(y, 0)

µ0(dy)

}
dxN .

It thus follows from (C.8) that

q∗N (x) = ρN (xN )

∫
pN (xN | y)
h0(y, 0)

µ0(dy) = fN (xN )β/(1+β)kN (xN )1/(1+β).

The rest of the proof is identical to that of Theorem 4.

Lemma C4. Let u be an admissible control and g : Rd×N → [0,∞) be a measurable function such that
E[g(XN )] <∞. Let hj be as given in (4.2), and assume hj > 0 for each j. For the cost JN

β defined in (4.1), we
have

JN
β (u) ≥ βDKL(Law(Xu

N ), µN ) + E[log g(Xu
N )]−

∫
log h0(x, 0)µ0(dx).

The equality is attained when ut = (TNg)(Xu
t , t,X

u
N ).

Proof of Lemma C4. The SDE (2.2) with control u∗t = (TNg)(Xu∗

t , t,Xu∗

N ) can be expressed as

X∗
0 = X0,

dX∗
t =

[
b(X∗

t , t) + σ2∇ log hj(X
∗
t , t;X

∗
j )
]
dt+ σdWt, for t ∈ [tj , tj+1),

(C.9)

where we write X∗ = Xu∗
and hj is as given in (4.2). By the tower property, we have

hj(x, t;xj) = E
[
hj+1(Xtj+1

, tj+1;xj , Xtj+1
) |Xt = x

]
,
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where hN is defined by hN (x, tN ;xN−1, x) = g(xN−1, x), and X is the solution to the uncontrolled process (2.1).
The assumption E[g(XN )] < ∞ implies that E[hj(Xtj , tj ;xj−1, Xtj )] < ∞ for almost every xj−1. Hence, for
each j and xj ∈ Rd, Theorem B3 implies that there exists a weak solution to the SDE (C.9) on [tj , tj+1] with
X∗

tj = xj . Moreover,

E

[
log

hj+1(X
∗
tj+1

, tj+1;X
∗
j+1)

hj(X∗
tj , tj ;X

∗
j )

]
= E

[∫ tj+1

tj

σ2

2
∥∇ log hj(X

∗
s , t;X

∗
j )∥2ds

]
.

Summing over all the N time intervals, we get

E

[
log

g(X∗
N )

h0(X∗
0 , 0)

]
= E

N−1∑
j=0

log
hj+1(X

∗
tj+1

, tj+1;X
∗
j+1)

hj(X∗
tj , tj ;X

∗
j )

 = E

[∫ T

0

∥u∗t ∥2

2σ2
ds

]
.

Now consider an arbitrary admissible control u. As in the proof of Lemma 3, by Girsanov theorem, we have

1 = E

[
g(XN )

h0(X0, 0)

]
= E

[
g(Xu

N )

h0(Xu
0 , 0)

exp

{
−
∫ T

0

ut
σ
dWt −

∫ T

0

∥ut∥2

2σ2
dt

}]
≥ exp

{
E

[
log

g(Xu
N )

h0(Xu
0 , 0)

−
∫ T

0

ut
σ
dWt −

∫ T

0

∥ut∥2

2σ2
dt

]}
,

which yields that

E

[∫ T

0

∥ut∥2

2σ2
dt

]
≥ E

[
log

g(Xu
N )

h0(Xu
0 , 0)

]
= E[log g(Xu

N )]−
∫

log h0(x, 0)µ0(dx).

The asserted result thus follows.

D PROOF OF THE EXISTENCE OF SOLUTION TO SSB

We first recall the definition of the Hilbert metric (Chen et al., 2016a). For K ⊂ Rd and 1 ≤ p ≤ ∞, let Lp(K)
denote the Lp space of functions defined on K. Define

Lp
+(K) = {f ∈ Lp(K) : inf

x∈K
f(x) > 0}, Lp

0(K) = {f ∈ Lp(K) : inf
x∈K

f(x) ≥ 0}.

Since Lp
0(K) is a closed solid cone in the Banach space Lp(K), we can define a Hilbert metric on it. For any

x, y ∈ Lp
0(K) \ {0} (where 0 denotes the constant function equal to 0), define

M(x, y) = inf{c : x ⪯ cy}, m(x, y) = sup{c : cy ⪯ x}, (D.1)

where x ⪯ y means y − x ∈ Lp
0(K) and we use the convention inf ∅ = ∞. The Hilbert metric dH on K \ {0} is

defined by

dH(x, y) = log
M(x, y)

m(x, y)
.

Note that dH is only a pseudometric on K \ {0}, but it is a metric on the space of rays of K \ {0}.

Proof of Theorem 5. The proof is adapted from Chen et al. (2016a, Proposition 1). We will show the existence
of strictly positive and integrable functions ρ0, ρT such that

f0(y) = ρ0(y)

∫
KT

p(x, T | y, 0)ρT (x)dx, (D.2)

fT (x) = ρT (x)
(1+β)/β

∫
K0

p(x, T | y, 0)ρ0(y)dy. (D.3)

Let ψ̂0 ∈ L∞
+ (K0) be our guess for f0/ρ0. We can update ψ̂0 as follows.
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1. Set ρ̂0(y) = f0(y)/ψ̂0(y).

2. Set ψ̂T (x) =
(∫

K0
p(x, T | y, 0)ρ̂0(y)dy

)β/(1+β)

, which is an estimate for f
β/(1+β)
T /ρT by (D.3).

3. Set ρ̂T (x) = f
β/(1+β)
T /ψ̂T (x).

4. By (D.2), update the estimate for ψ0 by ψ̂new
0 (y) =

∫
KT

p(x, T | y, 0)ρ̂T (x)dx.

Denote this updating scheme by ψ̂new
0 = O(ψ̂0). Note that for any c ∈ (0,∞) and ψ ∈ L∞

+ (K0),

O(cψ) = cβ/(1+β)O(ψ). (D.4)

In Lemma D5 below, we prove that O is a strict contraction mapping from L∞
+ (K0) to L∞

+ (K0) with respect to
the Hilbert metric. To prove the existence of ρ0, ρT , it is sufficient to show that O has a fixed point ψ0 ∈ L∞

+ (K0),
since we can set

ρ0(y) =
f0(y)

ψ0(y)
, ρT (x) =

(
fT (x)∫

K0
p(x, T | y, 0)ρ0(y) dy

) β
1+β

,

which must satisfy (D.2) and (D.3) and ρ0 ∈ L1
0(K0), ρT ∈ L1

0(KT ) (see the proof of Lemma D5 for why ρ0, ρT
are integrable). But note that we cannot apply Banach fixed-point theorem to O.

To find the fixed point of O, we first consider its normalized version Õ, defined by Õ(ψ) = O(ψ)/∥O(ψ)∥2. Let

E = {g ∈ L∞
+ (K0) : ∥g∥2 = 1},

denote the domain and range of Õ. Since O is a strict contraction mapping on L∞
+ (K0) with respect to the

Hilbert metric (which is invariant under scaling), Õ is also a strict contraction mapping and thus continuous

(with respect to the Hilbert metric) on E. If g ∈ L∞
+ (K0) is a fixed point of Õ, then ∥O(g)∥1+β

2 g ∈ L∞
+ (K0) is a

fixed point of O, since

O
(
∥O(g)∥1+β

2 g
)
= ∥O(g)∥β2O(g) = ∥O(g)∥1+β

2 Õ(g) = ∥O(g)∥1+β
2 g,

where the first equality follows from (D.4). Moreover, since dH is a metric on the rays, any other fixed point of

O must have the form cg for some constant c > 0. But the same argument shows that c must equal ∥O(g)∥1+β
2 ,

and thus the fixed point of O is unique. This further yields the uniqueness of (ρ0, ρT ).

So it only remains to prove that Õ has a fixed point in L∞
+ (K0). The proof for this claim is essentially the same

as that in Chen et al. (2016a). Pick arbitrarily ψ(0) ∈ L∞
+ (K0) and let g0 = ψ(0)/∥ψ(0)∥2. For k = 1, 2, . . . ,

define

gk :=
Ok(ψ(0))∥∥Ok(ψ(0))

∥∥
2

= Õ(gk−1),

where the second equality follows from (D.4). Each gk is in E and well-defined as Ok(ψ(0)) ∈ L∞
+ (K0) ⊂ L2(K0).

Since Õ is a strict contraction mapping with respect to dH , {gk}k≥0 is a Cauchy sequence with respect to dH .
Using the inequality ∥gk − gl∥2 ≤ edH(gk,gl) − 1 (see Chen et al. (2016a)), we find that {gk}k≥0 is also Cauchy
with respect to the L2-norm, and thus there exists g ∈ L2

0(K0) such that limk→∞ ∥gk − g∥2 = 0 and ∥g∥2 = 1.
Next, we argue that {gk}k≥0 is uniformly bounded from below and above and also uniformly equicontinuous. To
show the uniform boundedness, we first observe that ∥gk∥2 = 1 implies

sup
x
gk(x) ≥

1√
λ(K0)

≥ inf
x
gk(x). (D.5)

Further, since p(x, T | y, 0) is bounded in (x, y) and recalling the last step in the construction of O, we have

supx(Oψ)(x)
infx(Oψ)(x)

≤ ϵ−1 (D.6)
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for any ψ ∈ L∞
+ (K0), where ϵ ∈ (0, 1] is some constant independent of ψ. Combining (D.5) and (D.6), we get

ϵ√
λ(K0)

⩽ inf
x
gk(x) ⩽ sup

x
gk(x) ⩽

1

ϵ
√
λ(K0)

.

Note that the uniform boundedness of {gk} also implies g ∈ L∞
+ (K0). The uniform equicontinuity of {gk} can be

proved by using the uniform continuity of the transition density p. Finally, by Arzelà–Ascoli Theorem, there is
a subsequence {gkn} such that gkn converges to g uniformly with respect to the L2-norm and g is also uniformly
continuous. This implies dH(gkn

, g) → 0 and thus dH(gk, g) → 0. By the continuity (with respect to dH) of Õ,
we can interchange the limit operation with Õ, thereby establishing g as the fixed point of Õ.

Lemma D5. For ψ ∈ L∞
+ (K0), define

(Oψ)(x) =
∫
KT

p(z, T |x, 0)

(
fT (z)∫

K0
p(z, T | y, 0)f0(y)ψ(y)−1dy

)β/(1+β)

dz.

The operator O is a strict contraction mapping from L∞
+ (K0) to L∞

+ (K0) with respect to the Hilbert metric.

Proof. We can express the operator O by O = ET ◦ P ◦ I ◦ E0 ◦ I, and define I, E0, ET ,P by

I : L∞
+ (K) −→ L∞

+ (K), (Iφ)(x) = φ(x)−1 for K = K0,KT ,

E0 : L∞
+ (K0) −→ L∞

+ (KT ), (E0φ)(x) =
∫
K0

p(x, T | y, 0)f0(y)φ(y)dy,

ET : L∞
+ (KT ) −→ L∞

+ (K0), (ETφ)(x) =
∫
KT

p(z, T |x, 0)fT (z)β/(1+β)φ(z)dz,

P : L∞
+ (KT ) −→ L∞

+ (KT ), (Pφ)(x) = φ(x)β/1+β .

It is worth explaining how the ranges of these operators are determined. First, if φ ∈ L∞
+ (K), it is clear that

Iφ ∈ L∞
+ (K) and Pφ ∈ L∞

+ (K). For E0, since we assume K0 is compact and p(x, T | y, 0) is continuous in (x, y),
for any φ ∈ L∞

+ (K0) there exists ϵ > 0 such that

ϵ = ϵ

∫
K0

f0(y)dy ≤ (E0φ)(x) ≤ ϵ−1

∫
K0

f0(y)dy = ϵ−1.

The argument for ET is similar, and note that by Hölder’s inequality,∫
KT

fT (z)
β/(1+β)dz ≤ λ(KT )

1/(1+β) <∞.

Now we prove that P is a strict contraction. Let ψ1, ψ2 ∈ L∞
+ (KT ). By the definition given in (D.1),

M (P (ψ1) ,P (ψ2)) =M (ψ1, ψ2)
β/1+β

and m (P (ϕ1) ,P (ϕ2)) = m (ϕ1, ϕ2)
β/1+β

,

which implies

dH (P (ϕ1) ,P (ϕ2)) = log

(
M (P (ϕ1) ,P (ϕ2))

m (P (ϕ1) ,P (ϕ2))

)
=

β

1 + β
dH (ϕ1, ϕ2) < dH (ϕ1, ϕ2) ,

since β < ∞. Chen et al. (2016a) showed that the operators E0, ET are strict contractions using Birkhoff’s
theorem, and that the operator I is an isometry (all with respect to the Hilbert metric). Hence, O is a strict
contraction. Note that for our problem, since P is a strict contraction, we actually only need E0, ET to be
contractions (not necessarily strict).
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E PROOF OF LEMMA 7

We consider a more general setting. Assume that Xt is given by

X0 = x0, and dXt = b(Xt, t)dt+ σdWt,

where b satisfies Assumption 1. The density function of Law(XT ) is p(x, T |x0, 0). Let Xref be given by

dXref
t = bref(Xref

t , t)dt+ σdWt,

where bref(x, t) = b(x, t) + σ2∇ log href(x, t),

href(x, t) = E

[
fref(XT )

p(XT , T |x0, 0)

∣∣∣Xt = x

]
.

Theorem 1 implies that Law(Xref
T ) = µref . Let X

obj be given by

dXobj
t = bobj(Xobj

t , t)dt+ σdWt,

where bobj(x, t) = bref(x, t) + σ2∇ log hobj(x, t),

hobj(x, t) = E

[(
fobj(X

ref
T )

fref(Xref
T )

)β/(1+β) ∣∣∣Xref
t = x

]
, (E.1)

which is the solution to Problem 2 with Xref being the reference process and µobj being the target distribution.
We now prove that

bobj(x, t) = b(x, t) + σ2∇ log E

[
fref(XT )

1
1+β fobj(XT )

β
1+β

p(XT , T |x0, 0)

∣∣∣Xt = x

]
. (E.2)

That is, Xobj is also the solution to Problem 1 with X being the reference process and µ∗ being the target

distribution, where µ∗ has un-normalized density f
1/(1+β)
ref f

β/(1+β)
obj . Once this is proved, Lemma 7 follows as a

special case with b ≡ 0 and x0 = 0.

Proof. To prove (E.2), we use part (ii) of Theorem B3. Define a martingale

Zref
t =

href(Xt, t)

href(X0, 0)
.

Let Qref be the probability measure given by dQref = Zref
T dP. By part (ii) of Theorem B3, the law of X under

Qref is the same as the law of Xref under P. Applying the change of measure to (E.1) yields

hobj(x, t) = E

[(
fobj(X

ref
T )

fref(Xref
T )

)β/(1+β)
Zref
T

Zref
t

∣∣∣Xt = x

]
,

= href(Xt, t)
−1E

[(
fobj(X

ref
T )

fref(Xref
T )

)β/(1+β)

href(XT , T )
∣∣∣Xt = x

]
,

= href(Xt, t)
−1E

[
fref(XT )

1
1+β fobj(XT )

β
1+β

p(XT , T |x0, 0)

∣∣∣Xt = x

]
.

Since

bobj(x, t) = bref(x, t) + σ2∇ log hobj(x, t)

= b(x, t) + σ2∇ log href(x, t) + σ2∇ log hobj(x, t),

we obtain (E.2).
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F MNIST EXAMPLE

Figure F4 visualizes the 50 images in the data set Dobj, which are obtained by adding Gaussian noise to the
original images in MNIST. Figure F5 shows the new images generated by the two-stage Schrödinger bridge
algorithm of Wang et al. (2021) using only Dobj as the input.

Table F2 shows the inception scores (Salimans et al., 2016) for our generated images and the images of digit 8
in MNIST. The score of our samples for β = 1.5 is slightly higher than that of the digit 8 in MNIST dataset,
suggesting that our generated images of digit 8 exhibit a greater degree of variability than those in MNIST.
Additionally, when β = 100, our score aligns closely with that of Dobj (i.e., the noisy digit 8 images from
MNIST), indicating that our method can recover the images in the target data set by using a large β. For
small values of β, the scores of our generated images are higher than that of digit 8 images in MNIST, primarily
because the reference dataset (consisting of the other digits) has greater variability and complexity. However, as
shown in Figure 1, when β is small, we do not necessarily get images of digit 8.

We also utilize t-SNE plots to visually characterize the distribution of our generated images. Figure F6 illustrates
that our samples come from the geometric mixture distribution interpolating between the noisy images of digit
8 and the clean images of other digits. Figure F7 demonstrates that SSB samples with β = 1.5 are positioned
closer to the clean images of digit 8 compared to the samples obtained with β = 100.

In our code, we use the neural network model of Song and Ermon (2019) for training the score functions and use
the neural network model of Wang et al. (2021) for training the density ratio function.

Figure F4: Samples in Dobj. Figure F5: Samples Generated by the Algorithm of Wang
et al. (2021) Using Only Dobj.

Figure F6: t-SNE Plot Illustrating the Geo-
metric Mixture Distribution with β = 1.5.

Figure F7: t-SNE Plot Comparing SSB Sam-
ples with Clean Images in MNIST.
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Table F2: Inception Scores (mean ± sd) for SSB Samples and the Images in MNIST.

Datasets (sample size ≈ 5K) Inception score
SSB with β = 0 6.70 ± 0.20
SSB with β = 0.25 6.59 ± 0.15
SSB with β = 0.7 5.12 ± 0.11
SSB with β = 1.5 3.51 ± 0.08
SSB with β = 4 3.65 ± 0.04
SSB with β = 100 2.87 ± 0.04
Digit 8 in MNIST (clean) 3.29 ± 0.04
Digit 8 in MNIST (noisy) 2.96 ± 0.04
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