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Abstract

Schrodinger bridge can be viewed as a
continuous-time stochastic control problem
where the goal is to find an optimally con-
trolled diffusion process whose terminal dis-
tribution coincides with a pre-specified tar-
get distribution. We propose to generalize
this problem by allowing the terminal distri-
bution to differ from the target but penalizing
the Kullback-Leibler divergence between the
two distributions. We call this new control
problem soft-constrained Schrédinger bridge
(SSB). The main contribution of this work
is a theoretical derivation of the solution to
SSB, which shows that the terminal distri-
bution of the optimally controlled process is
a geometric mixture of the target and some
other distribution. This result is further ex-
tended to a time series setting. Omne appli-
cation is the development of robust genera-
tive diffusion models. We propose a score
matching-based algorithm for sampling from
geometric mixtures and showcase its use via
a numerical example for the MNIST data set.

1 INTRODUCTION

1.1 Schrodinger Bridge and Its Applications

Let X = (Xi)o<t<r be a diffusion process over
the finite time interval [0,7] with initial distribu-
tion pg. Schrodinger bridge seeks an optimal steer-
ing of X towards a pre-specified terminal distribu-
tion pr such that the resulting controlled process is
closest to X in terms of Kullback-Leibler (KL) diver-
gence (Schrodinger, 1931, 1932). Under certain reg-
ularity conditions, the optimally controlled process is
another diffusion with the same diffusion coefficients
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as X but an additional drift term. This result has
been obtained via different approaches and at vary-
ing levels of generality, and among the seminal works
are Fortet (1940); Beurling (1960); Jamison (1975);
Follmer (1988); Dai Pra (1991). For comprehensive
reviews detailing the historical development, we refer
readers to Léonard (2013) and Chen et al. (2021c).

The recent generative modeling literature has seen a
surge in the use of Schrodinger bridge. In these appli-
cations, ug is typically some distribution that is easy
to sample from, and pr is the unknown distribution
of a given data set. By numerically approximating the
solution to the Schrédinger bridge problem, one can
generate samples from up (i.e., synthetic data points
that resemble the original data set). One such algo-
rithm is presented by De Bortoli et al. (2021), who pro-
posed to calculate the Schrodinger bridge by using a
score matching approximation to the iterative propor-
tional fitting procedure (Deming and Stephan, 1940).
Concurrently, Wang et al. (2021) developed a two-
stage method where an auxiliary Schrédinger bridge is
run first to generate samples from a smoothed version
of pr, and the second Schrodinger bridge transports
these samples towards pr. Both approaches general-
ize the denoising diffusion model methods of Ho et al.
(2020) and Song et al. (2021). Some other recent de-
velopments in this area include Chen et al. (2021a);
Song (2022); Peluchetti (2023); Richter et al. (2023);
Winkler et al. (2023); Hamdouche et al. (2023).

Though not the focus of this work, Schrédinger bridge
sampling methods can also be used when samples from
pr are not available but pr is known up to a normaliz-
ing constant; see, e.g., Huang et al. (2021); Zhang and
Chen (2021); Vargas et al. (2022), and see Heng et al.
(2024) for a recent review. For the connections be-
tween Schrodinger bridge, optimal transport and vari-
ational inference, see, e.g., Chen et al. (2016b, 2021b);
Tzen and Raginsky (2019).

1.2 Overview of This Work

The main contribution of this paper is the theoretical
development of a generalized Schrédinger bridge prob-
lem, which we call soft-constrained Schrodinger bridge
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(SSB). We take the stochastic control approach that
was employed by Mikami (1990); Dai Pra (1991); Pra
and Pavon (1990) for studying the original Schrodinger
bridge problem (see Problem 1). In SSB, the terminal
distribution of the controlled process does not need to
precisely match pp but needs to be close to pr in terms
of KL divergence. Formally, SSB differs from the orig-
inal problem in that we replace the hard constraint
on the terminal distribution with an additional cost
term, parameterized by (3, in the objective function
to be minimized (see Problem 2). A larger § forces
the terminal distribution of the controlled process to
be closer to pur. We rigorously find the solution to
SSB and the expression for the drift term of the opti-
mally controlled process. We show that SSB general-
izes Schrodinger bridge in the sense that as § — oo,
the solution to the former coincides with the solution
to the latter. An important implication of our results
is that the terminal distribution of the controlled pro-
cess should be a geometric mixture of ur and some
other distribution; when pg is a Dirac measure, the
other distribution is Law(Xr) (i.e., the terminal dis-
tribution of the uncontrolled process). We further ex-
tend our results to a time series generalization of SSB,
where we are interested in modifying the joint distri-
bution of (Xy,,..., X¢y) for 0 <ty <--- <ty =T.

SSB can be used as a theoretical foundation for de-
veloping more flexible and robust sampling meth-
ods. First, when the KL divergence between pur and
Law(X7) is infinite, Schrédinger bridge does not ad-
mit a solution, while SSB always does. A toy example
illustrating the consequences of this result is given in
Example 1. More importantly, 8 acts as a regulariza-
tion parameter preventing the algorithm from overfit-
ting to pr, which is crucial for some generative model-
ing tasks such as fine-tuning with limited data (Moon
et al., 2022). In such applications, pr contains infor-
mation from a small or noisy data set, and one wants
to improve the sample quality by harnessing knowl-
edge from a large high-quality reference data set. To
achieve this, we can train the uncontrolled process X
in SSB using the reference data set and then tune the
value of 3. We present a simple normal mixture ex-
ample illustrating the effect of 8 (see Example 4). For
a more realistic example in generative modeling of im-
ages, we use the MNIST data set and consider the task
of generating new images of digit 8. We assume that
the training data set only has 50 noisy images of digit
8, but we can use the data set of all the other digits as
reference. As suggested by our theoretical findings, we
can train a Schrodinger bridge targeting a geometric
mixture of the distributions of the two data sets. Such
a Schrodinger bridge cannot be learned by existing
methods, and to address this, we propose a new score
matching algorithm that utilizes importance sampling.

We show that this approach yields high-quality images
of digit 8 when § is properly chosen.

The paper is structured as follows. In Section 2, we
present the stochastic control formulation of the SSB
problem, and we derive its solution when g is a Dirac
measure. The solution to SSB for general initial con-
ditions is obtained in Section 3, which involves solving
a generalized Schrodinger system. Section 4 extends
the results to the time series setting. In Section 5, we
present a new algorithm for robust generative model-
ing and demonstrate its use via the MNIST data set.
Proofs and auxiliary results are deferred to Appendix.

1.3 Related Literature

Our development of SSB builds upon the work
of Dai Pra (1991), which formulates Schrédinger
bridge as a stochastic control problem and derives
the solution using the logarithmic transformation tech-
nique pioneered by Fleming (Fleming, 1977, 2005;
Fleming and Rishel, 2012) and the result of Jamison
(1975). The time series SSB problem is a general-
ization of the work of Hamdouche et al. (2023), who
extended the original Schrodinger bridge problem to
the time series setting but only considered the special
case where pg is a Dirac measure. Pavon and Wakol-
binger (1991); Blaquiere (1992) adopted an alternative
stochastic control approach to studying Schrodinger
bridge, which was rooted in the same logarithmic
transformation and also considered in Tzen and Ra-
ginsky (2019); Berner et al. (2022). This approach can
be applied to the SSB problem as well, but it requires
the use of verification theorem.

Motivated by robust network routing, a discrete ver-
sion of the SSB problem was proposed and solved
in Chen et al. (2019), where X is a discrete-time non-
homogeneous Markov chain with finite state space.
The techniques used in this paper are very different,
and to our knowledge, the continuous-time SSB prob-
lem has not been addressed in the literature.

2 PROBLEM FORMULATION

Let 110, 7 be two probability distributions on R¢ such
that [22pg(dz) < oo and pr < A, where A denotes
the Lebesgue measure. Denote the density of pur by
fr =dur/dX. Let (Q, F,P) be a probability space, on
which we define a standard d-dimensional Brownian
motion W = (W,;);>0 and a random vector ¢ that is
independent of W and has distribution pg. We will
always use X = (Xy)o<i<7 to denote a weak solution
to the following stochastic differential equation (SDE)

Xo = ¢, and dX; = b(Xy, t)dt+odW, (2.1)
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for t € [0, T] ,where b: R?x[0,T] — R? and o € (0, 00).
Given a control u = (uy)o<i<T, define the controlled
diffusion process by X§ = & and

We say a control u is admissible if (i) u; is measur-
able with respect to o((X¥)o<s<t), (ii) the SDE (2.2)
admits a weak solution, and (iii) EfOT |ug || 2dt < oo,
where | - || denotes the L? norm. Denote the set of
all admissible controls by U. Note that the initial dis-
tributions of both X and X are always fixed to be
1o- For ease of presentation, throughout the paper we
adopt the following regularity assumption on b, which
was also used by Jamison (1975); Dai Pra (1991):

Assumption 1. For each 1 < ¢ < d, b; is bounded
and continuous in R? x [0, T'] and is Holder continuous
in 2, uniformly with respect to (z,t) € R% x [0, 7.

Under Assumption 1, X has a transition density func-
tion p(x,t |y, s); that is, forany 0 < s < ¢t < T,y € R,
and Borel set A in RY,

E[X, € A|X, =y] = /A Pl |y, )Mdz).  (2.3)

We will use dz as a shorthand for A(dz). More-
over, by Girsanov theorem, Assumption 1 implies that
the probability measures induced by (X;)o<i<r and
(By)o<i<T are equivalent, where B, = £+0W;. Hence,
for any t > s > 0, p(z,t|y,s) is strictly positive and
Law(X;) = A (i.e., two measures are equivalent). The
role of Assumption 1 in our theoretical results will be
further discussed in Remark 4.

Schrodinger bridge aims to find a minimum-energy
modification of the dynamics of X so that its terminal
distribution coincides with a pre-specified distribution
wr, where “energy” is measured by KL divergence.
Given o-finite measures v and p such that v < u, we
use D, (v, i) = [ log(g—l’:)dy to denote the KL diver-
gence; if v & p, define Dky, (v, 1) = co. Dai Pra (1991)
considered the following stochastic control formulation
of Schrodinger bridge.

Problem 1 (Schrodinger bridge). Let Uy = {u €
U: Law(XE) = pr} where (X[)o<i<r is defined
n (2.2). Find V = inf, ¢y, J(u), where

T 2
sw e [ Lla
0

o (2.4)

and find the optimal control v* such that J(u*) = V.

Remark 1. Let Px (resp. P%) denote the probabil-
ity measure induced by X (resp. X") on the space
of continuous functions on [0,7]. For any admissi-
ble control w € U, Girsanov theorem implies that

J(u) = DKL(P%, Px)

Problem 1 has been well studied in the literature. In
the special case where pg is a Dirac measure, the so-
lution can be succinctly described, and V is just the
KL divergence between two probability distributions;
we recall this in Theorem 1 below. In this paper, V
always denotes differentiation with respect to x.

Theorem 1 (Dai Pra (1991)). Let po be the Dirac
measure such that po({zo}) = 1 for some o € RY,
and let X be a weak solution to (2.1). Assume
Dk (pr, Law(XT)) < 0o. For Problem 1, the opti-
mal control is given by uf = o>V log h(X{* ,t), where

et = [T 10

: fr(Xr)
~& s | %=

dz

Moreover, J(u*) = Dkr(pr, Law(XT)).

Remark 2. If Dk, (pur, Law(X7)) = oo, then Prob-
lem 1 does not admit a solution in the sense that no
admissible control u can yield Law(X¥) = pp.

We propose a relaxed stochastic control formulation of
the Schrédinger bridge problem by allowing the distri-
bution of X% to be different from pr.

Problem 2 (Soft-constrained Schrodinger bridge).
For 8 > 0, find V = inf, ¢y J3(u), where

Js(w)

2.5
:,BDKL(,CGUJ(X%),/JT) =+ E/O ( )

Tl

552 dt,

and find the optimal control «* such that Js(u*) = V.

Problem 2 (i.e., the SSB problem) replaces the hard
constraint Law(X}) = pr in Problem 1 with a soft
constraint parameterized by 5. When 8 = 0, it is clear
that the optimal control u* for Problem 2 is u; = 0.
As B — oo, the law of X} is forced to agree with pr,
and we will see in Theorem 2 that the optimal control
for Problem 2 converges to that for Problem 1.

Before we try to solve Problem 2 in full generality,
we make a remark on how Problem 1 can be simpli-
fied. In the literature, Problem 1 is often called the
dynamic Schrédinger bridge problem. Since the ob-
jective function (2.4) is the KL divergence between
the laws of the controlled and uncontrolled processes
(recall Remark 1), we can use an additive property of
KL divergence to reduce Problem 1 to a static ver-
sion (Léonard, 2013), where one only needs to find
a joint distribution 7 with marginals pg and pp that
minimizes Dy, (7, Law(Xo, XT)). Although this prop-
erty is not directly used in this paper, the insight from
this observation underpins our stochastic control anal-
ysis of SSB. In particular, when g is a Dirac measure,
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the solution to Problem 2 can be obtained by a sim-
ple argument which reduces the problem to optimizing
over the distribution of X instead of over the distri-
bution of the whole process (X{)o<t<r.

Theorem 2. Let uy be as given in Theorem 1. For

Problem 2, the optimal control is given by uf =
o2V log h(X¥" ,t), where
h(z,t) = h(z,t; 5)
fr(z) B/(1+8)
=C~ / 2, T |z,t) ( ) dz,
(2, T | 0, 0)
and C = [ fr(x)/FB)p(z, T'| 20, 0)/+F)dx. More-
over, Jg(u*) = —(1+ ) log C € [0,00), and
. fr(2)
lim h(z,t;8) = T|x,t)—————"—=dz.
Jim hati5) = [ ol Tl sa

Proof. If Law(X¥) & pr, then u cannot be optimal
since Jg(u) = oo. Now fix an arbitrary w € U such
that Law(X¥) = p < pp. Letting J(u) be as given
n (2.4), we have

Jp(u) = B Dkr(p, pr
> 3Dk (p, pr
= Js(n)

where the inequality follows from Theorem 1. Since
pr has density fr and Law(Xr) has density
p(z,T|x0,0), we can apply Lemma B2 in Appendix
to get inf, Js(1) = —(1 4 B)log C € [0, 00), where the
infimum is taken over all probability measures on R?
and is attained at p* such that

)+ J(w)
) + Dk (p, Law (X))

W ) =

o ()P OB p(&, T | g, 0)1/ 05,

The convergence of h(z,t;3) as § — oo also follows
from Lemma B2.

It only remains to prove that Jz(u*) =
Observe that we can rewrite h as
dp*/dA
p /NG

h(z,t) = /p(Z’T|x’t)]§(z T'|20,0)

Hence, Theorem 1 implies that u* is also the solution
to Problem 1 where the terminal constraint is given by

(. So Theorem 1 yields that Js(u*) = Jg(p*), which
proves the claim. O

—(1+p)logC.

Remark 3. When b is constant, the transition den-
sity p(x,t|xzo,0) is easy to evaluate. If fr is known
up to a normalizing constant, one can then use the
Monte Carlo sampling scheme proposed by (Huang
et al., 2021) to approximate the drift b+02V log h(x,t)
and simulate the controlled diffusion process (2.2). We

describe this method and generalize it using impor-
tance sampling techniques in Appendix A. More so-
phisticated score-based sampling schemes can also be
applied (Heng et al., 2024).

One difference between Theorem 1 and Theorem 2 is
that the condition Dkr,(ur, Law(XT)) < 0o is not re-
quired for solving Problem 2. We give a toy example
illustrating the importance of this difference.

Example 1. Consider b = 0, T = 1, zg = 0 and
pr being the Cauchy distribution. Then, Law(X7T) is
just the normal distribution with mean zero and co-
variance 021, and we have Dkr,(ur, Law(XT)) = oo.
Problem 1 does not admit a solution in this case, but
Problem 2 has a solution for any 8 € [0,00) and the
associated optimal control has finite energy cost. In
Appendix A.2, we simulate the solution to Problem 2
with pp being the Cauchy distribution. We find that
when 8 = oo, the numerical scheme is unstable and
fails to capture the heavy tails of the Cauchy distribu-
tion. In contrast, using a finite value of g significantly
stabilizes the algorithm.

3 SOLUTION TO SSB

When g is not a Dirac measure, the solution to the
Schrédinger bridge problem is more difficult to de-
scribe and is characterized by the so-called Schrédinger
system (Léonard, 2013, Theorem 2.8). In this section,
we prove that the solution to Problem 2 can be ob-
tained in a similar way, but the Schrodinger system
for Problem 2 now depends on f.

The main idea behind our approach is to first show
that the optimal control must belong to a small class
parameterized by a function g and then use an argu-
ment similar to the proof of Theorem 2 to determine
the choice of g. To introduce this class of controls,
for each measurable function g: R? — [0,00), let Tg
denote the function on R? x [0,T) given by

(Tg)(x,t) = UzVIOg h(‘rat)a

where
h(z,t) = (3.1)

Let Uy = {u € U: v, = (Tg)(X{,t) for some g > 0}
denote the set of all controls that are constructed by
this logarithmic transformation. We present in The-
orem B3 in Appendix some well-known results about
the controlled SDE (2.2) with u € U;; in particular,
part (iv) of the theorem shows that such a process is
a Doob’s h-path process (Doob, 1959). Theorem B3 is
largely adapted from Theorem 2.1 of Dai Pra (1991),
and similar results are extensively documented in the
literature (Jamison, 1975; Fleming and Sheu, 1985;

Elg(X7) [ X¢ = 2].
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Follmer, 1988; Doob, 1984; Fleming, 2005). We can
now prove a key lemma.

Lemma 3. Let u be an admissible control. Let h be
as given in (3.1) for some measurable g > 0 such that
Eg(X7) < o0 and h >0 on RY x [0,T). We have

Jp(u) > B Dkr(Law(XT), pr)+
Ellog g(X2)] - / log h(z, 0)o(dz),

where Jg is defined in (2.5). The equality holds when
u = (Tg)(X{',1).

Proof. See Appendix C. O

Remark 4. Assumption 1 guarantees that the
SDE (2.1) admits a unique (in law) weak solution.
More importantly, in the proof of Theorem B3 (which
is used to derive Lemma 3), Assumption 1 is used to
ensure that SDE (2.1) has a transition density function
such that the function h defined in (3.1) is sufficiently
smooth and satisfies % + Lh = 0, where £ denotes
the generator of X (see Theorem B3). This condition
can be relaxed; see Friedman (1975) and Karatzas and
Shreve (2012, Chap. 5.7) for details.

Observe that in the bound given in Lemma 3, the term
[ log h(x,0)uo(dz) is independent of the control u, and
the other terms depend on w only through the distri-
bution of X#. This implies that among all the admis-
sible controls that result in the same distribution of
X7, the cost Jg is minimized by some u € U;. We
can now prove the main theoretical result of this work
in Theorem 4. The existence of the solution will be
considered later in Theorem 5.

Theorem 4. Suppose there exist o-finite measures
vy, v such that vg = ug, vy =~ ur and

d

Loy) = [ w11, 0w (do) (32)
Vo

dpr 148

@) = (@) [Ty 0w, (33)

where pr = dvrp/d\ and the transition density p
is defined in (2.3). Assume [(dpo/dvo)dpe < oo.
Then uj = 0?Vlog h(X} ,t) solves Problem 2, where
h(z,t) = Elpr(X7)| X, = z]. Moreover, Jz(u*) =
—DxL (o, 0) € [0,00).

Proof. See Appendix C. O

Remark 5. As we derive in the proof, the terminal
distribution of the optimally controlled process is still
a geometric mixture of two distributions. Explicitly,
its density is proportional to

1/(148)

el (ot imomian)

where we recall fr is the density of pr.

Remark 6. The assumption [(duo/drg)dpy < oo
guarantees that we can use Lemma 3 and Theorem B3
and that Jg(u*) < oo; it is also used in Dai Pra (1991).
Observe that u} = 02V log h(X}*,t) is invariant to the
scaling of the function pr and thus also the scaling
of vy and vp. This suggests that the system defined
by (3.2) and (3.3) can be generalized as follows. Let
a > 0 and o-finite measures vy = vy(a), vr = vr(a) be
the solution to the following system

%(y) — /p(z,T|y,O)I/T(dx), (3'4)

dVO
d 148
dur / p(@, Ty, 0)vo(dy), (3.5)

2L (1) = (apr ()5

where pr = dvr/d\. We can use essentially the
same argument to show that the choice h(z,t) =
Elpr(X7) | X: = ] is optimal, but now we have

Jp(u”) = =(1+ B)loga — Dxr(ko, vo(a)).

This is the same as that given in Theorem 4. Indeed,
if (1§, V) is a solution to (3.2) and (3.3), then the so-
lution to (3.4) and (3.5) is given by dig(a) = a'*Pdig
and dvr(a) = a= A dws.

Example 2. Theorem 2 can be obtained from Theo-
rem 4 as a special case. If ug is a Dirac measure with
to({zo}) = 1, one can check that the solution to (3.2)
and (3.3) is given by vy = po and

Tt
pr(z) = (p@ﬂwao,m

Example 3. Suppose b = 0, and let ¢, denote the
density function of the normal distribution with mean
0 and covariance matrix o2I. We have p(x,T|y,0) =
b, y7(® —y). Assume pg < A has density fy, and
suppose that fy, fr satisfy

)5/(1+B)

o) = < [ 6, uple =) frie)

where ¢ = [ fr(z)?/(+9dz is the normalizing con-
stant assumed to be finite. A routine calculation us-
ing [ ¢, 7(x —y)dy = 1 can verify that the solution
to (3.2) and (3.3) is given by

% = ¢ (148, pr(z) = CBfT(m)B/(lJrﬂ).
According to Remark 6, by choosing a = ¢ in (3.5), we
can also replace vy, v by vo(a), vr(a), where v(a) co-
incides with A and vr(a) is a probability distribution
with density ¢~* féz/ (+8) For the original Schrodinger
bridge problem (i.e., 8 = o0), this solution has been
used in developing efficient generative sampling meth-
ods (Wang et al., 2021; Berner et al., 2022).



Soft-constrained Schrodinger Bridge: a Stochastic Control Approach

Chen et al. (2019) studied a matrix optimal transport
problem which can be seen as the discrete analogue
to Problem 2, and they proved the solution to the
corresponding Schrodinger system admits a unique so-
lution. The main idea is to show that the solution
can be characterized as the fixed point of some opera-
tor with respect to the Hilbert metric (Bushell, 1973),
a technique that has been widely used in the liter-
ature on Schrodinger system (Fortet, 1940; Georgiou
and Pavon, 2015; Chen et al., 2016a; Essid and Pavon,
2019; Deligiannidis et al., 2024). For the Schrédinger
system defined by (3.2) and (3.3), an argument based
on the Hilbert metric can also be applied to prove the
existence and uniqueness of the solution when pug, pur
are absolutely continuous and have compact support.

Theorem 5. Let K (resp. Kr) denote the support of
o (resp. pr). Assume that (i) Ko, K C RY are com-
pact, (i1) fo = duo/dN, fr = dug/dX exist, where X is
the Lebesgue measure, and (iii) (y, x) — p(x, T |y,0) is
continuous and strictly positive on Ko x Kp. For any
B € (0,00), there exists a unique pair of non-negative,
integrable functions (po, pr) such that

foly) = Po(y)/

Kr

Jo(@) = pr(a)1+P/8 /K p(, T |,0)po(y)dy.

p(l‘7 T ‘ Y, O)pT(.T)d$,

Proof. See Appendix D. O

Remark 7. The proof of Theorem 5 is adapted from
that for Proposition 1 in Chen et al. (2016a). Ob-
serve that the Schrodinger system naturally yields an
iterative algorithm for computing pg, pr. Given an es-
timate for pg, denoted by pg, we can estimate pp by

B/(148)
prle) = fr(@)
fKO p(x,T|y,0),60(y)dy ’

which then can be used to update py by

Jo(y)
p(z,T|y,0)pr

~Nnew

Po ( ) fK (x)dx
Chen et al. (2016a) considered the original Schrédinger
bridge problem (i.e., § = co) and showed that this up-
dating scheme yields a strict contraction with respect
to the Hilbert metric. We note that when 8 < oo,
this argument can be potentially made easier, since the
mapping ) — /(48 for a suitable function v can
be easily shown to be a strict contraction, and thus one
only needs to verify the other steps in the updating are
contractions (not necessarily strict); see Lemma D5 in
Appendix. The full scope of consequences of this ob-
servation and the existence proof for the general case
are left to future study.

4 EXTENSION TO TIME SERIES

Recently a time series version of Problem 1 was stud-
ied in Hamdouche et al. (2023), where the goal is to
generate time series samples from a joint probability
distribution on R? x --- x R?. We can generalize our
Problem 2 to time series data analogously.

Problem 3. Consider N fixed time points 0 < t; <

- <ty =T. Let uy be a probability distribution
on RN such that uy < A. For 8 > 0, find V =
inf, ey Jév(u), where

J5 (u) = BDxL(Law((Xy,)1<i<n), 1in)
E T 1t||201
+ . 20 5 t,

and find the optimal control «* such that Jév (u*)=V.

(4.1)

Recall that in Section 3, we started by considering
functions h such that h(X,t) = E[g(Xr) | F] for some
function g, where 7, = o((Xs)o<s<t). It turns out
that this technique can be used to solve Problem 3 as
well, but now we need to consider conditional expec-
tations of the form E[g(Xy,,..., Xey) | Fe). To sim-
plify the notation, we will write &; = (z1,...,;),
X = (Xty,..., Xy;), and X} = (Xfl,...,Xt“j); when
J=0,z;, X;, X} all denote the empty vector.

Given a measurable function g: RN — [0, 00), the

Markovian property of X enables us to express the
conditional expectation g(Xy) by

N-1
Elg(Xn) [ Fi = D o (1) - by (Xes t; X)),
7=0

where we set ¢y = 0, and the function h; is defined by
hj(x,t;x;)

=E [g(a:j,Xt (42)

GHL

XWszﬂ,

for (z,t) € R x [t;,t;41). Let T g denote the function
on R? x [0,T) x ]RdXN given by

(Tng)(z,t, zN)
N—1

= Z ]l[tjvtj+1)(t)
§=0

We prove in Lemma C4 in Appendix that it suffices to
consider controls in the set

4.3
-0?Vloghj(z,t; ;). (43)

Uy ={uel: u = (Tng) (X, t, Xx) for some g > 0}.

This result is a generalization of Lemma 3 and ob-
tained by applying Theorem B3 to each time inter-
val [t;,t;4+1) separately. Note although we express
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u € Uy as a function of X%, by (4.3), u; is mea-
surable with respect to o((X¥)o<s<¢). To formulate
the Schrodinger system for the time series SSB prob-
lem, let py(xn | y) denote the transition density from
Xo =y to Xy = xn, which is given by

N-1

0) TT plajsr, tisalz).tj).
j=1

py (TN [y) = plo1, |y,

Theorem 6. Consider Problem 3. Suppose there exist
o-finite measures vy on R and vy on RN such that
Vo & [0, VN A N and

Loty = [ty lpw(den).

L an) = pwlew) T [ pxlan lplay).

where py = dvn/dX. Assume [(dpo/dvo)dpe < oco.
Then uf = (Tnpn)(XE ,t, X%) solves Problem 3,
where Tn is defined by (4.3). Moreover, J} (u*) =
—Dxur(po, o) € [0,00).

Proof. See Appendix C. O

Comparing the Schrodinger system in Theorem 4 and
that in Theorem 6, we see that the solution to Prob-
lem 3 has essentially the same structure as that to
Problem 2. The only difference is that in Theorem 4
the Schrédinger system is constructed by using the
joint distribution of (Xg, X7), while in Theorem 6 it
is replaced by the joint distribution of (Xo, Xn). We
also note that Hamdouche et al. (2023) only consid-
ered the time series Schrodinger bridge problem with
tto being a Dirac measure, and by letting § — oo,
Theorem 6 gives the solution to their problem in the
general case.

5 EXPERIMENTS

5.1 Problem Setup

We consider an application of SSB to robust generative
modeling in the following scenario. Let D,er denote a
large collection of high-quality samples with distribu-
tion prer, and let Dyp; be a small set of noisy samples
with distribution popj. Our objective is to generate
realistic samples resembling those in Dgy;, but due to
the limited availability of training samples, we want to
leverage information from D, to enhance the sample
quality.

A natural idea is to use SSB as a regularization method
to mitigate overfitting to the noisy samples in Dgp;j.
This can be implemented in two steps. For simplicity,
we assume in this section that the uncontrolled process

X is given by X; = oW;; that is, we assume Xy =
0 and b = 0 in (2.1). Then X7 has density ¢, 7
(recall this is the density of the normal distribution
with mean 0 and covariance matrix (02T)I). Let frer
denote the density of u.r with respect to the Lebesgue
measure. Let X™f = (XF°f)o<,<7 be the Schrédinger
bridge targeting p,et evolving by

ngef _ bref(XtrEf,t)dt + O'th, (51)
for t € [0,T], where
brefX = 2 loo E fref( ‘X .
(t7> UvOg |:¢ngT ‘o

Theorem 1 implies that X;f’f has distribution fiyes-
Next, we solve Problem 2 using X**f as the reference
process and fon; as the target distribution. This yields
the process X°P with dynamics given by

dX PP = pePI (X2 E)dt 4+ od Wy, (5.2)
for t € [0,T7], where
bobj (X,?bj,t) — brCf(bej7t)—|—
yrefyy B/(148)
0'2V].OgE fObJ(XTf> ’X{ef =zl .
fref(X’?a)

By Theorem 2, the distribution of X" will be close to
Hobj if B is relatively large. It turns out that there is no
need to train X' and X°PI separately. The following
lemma shows that we can directly train a Schrédinger
bridge targeting a geometric mixture of pirer and fiob;.
Lemma 7. Let X; = oW, and X" and X°P be as

given in (5.1) and (5.2). Fquivalently, we can express
the drift of X°b by

B, 1)

Fret (X)) T fopj (X7) 757
&, (Xr)

=02VlogE

Xt$‘|.

Proof. See Appendix E. O

Remark 8. Lemma 7 follows from a change-of-
measure argument. It still holds if X is not a Brownian
motion but X solves the SDE (2.1) with Xy = zy € R?
almost surely (see Appendix E).

The assumption that pg (the initial distribution of X)
is a Dirac measure greatly simplifies the calculations
and enables us to directly target the unnormalized
density function frle/f (1+5) fﬁ /0FF) " We will propose
in the next subsection a score matching algorithm for
learning this geometric mixture distribution. For ap-
plications where a general initial distribution is desir-
able, one may need to build iterative algorithms by
borrowing ideas from the iterative proportional fitting
procedure (De Bortoli et al., 2021).
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Example 4. For an illustrative toy example, let piyer
be a mixture of four bivariate normal distributions
with means (1,1),(1,-1),(-1,1), (=1,—1) respec-
tively and the same covariance matrix 0.05%1. Let Hob;
be a mixture of two normal distributions with means
(1.2,0.8), (—1.5,—0.5) respectively and the same co-
variance matrix 0.521. So Hobj essentially contains
two components of pief but with small bias and much
larger noise. Since the density functions are known,
we can directly simulate a Schrédinger bridge process
targeting frle/f(HB ) ffb/j(Hﬁ ) using the method described
in Remark 3. We provide the results in Appendix A.3,
which show that by targeting a geometric mixture with
a moderate value of 8, we can effectively compel the
terminal distribution of the controlled process to ac-
quire a covariance structure similar to fiyer.

5.2 A Score Matching Algorithm for
Learning Geometric Mixtures

Let p* denote a probability distribution with den-
sity function f*(z) = C71 frer ()Y HP) fop; () P/ AFH)
where C'is the normalizing constant. To generate sam-
ples from p*, one can use existing score-based diffusion
model methods, but, as we will see shortly, one major
challenge is how to train the score functions without
samples from the distribution p*.

Let p’ be the probability distribution with density

fi(x) = / (@) (@ — y)dy,

which can be thought of as a smoothed version of f*,
and suppose that we can generate samples from the
distribution p%. Solving the Schrédinger bridge prob-
lem with initial distribution p} and terminal distri-
bution p*, we obtain the controlled process X* with
Law(X§) = pk and dynamics given by

AX7 = b (X7, t)dt + odW,

5.3

where b*(z,t) = 0>V log foyr=2(2)- (5:3)
The process X* satisfies Law(X5) = p* (note that
this result is a special case of Example 3 with 8 = c0).

We now describe how to simulate the dynamics given
in (5.3) and generate samples from p. First, to learn
the drift function in (5.3), we propose to combine the
score matching technique with importance sampling.
Let sg(x, &) denote our approximation to V log fZ(z),
where & € [0,0v/T] and the unknown parameter 6 typ-
ically denotes a neural network. According to the well-
known score matching technique (Hyvérinen, 2005;
Vincent, 2011), we can estimate 6 for a given & by min-

imizing the objective function E;~ - [L(z, §;5)], where
L(z,0;0)
= Eanteoon [l50(3,5) — Vs log f3(7 | 2)|)’]

i

Unfortunately, the existing score matching methods
estimate E;.,«[L(x,0;5)] by using samples from p*,
which are not applicable to our problem since we only
have access to samples from ji,of and fiop; but not from
w*. We propose to use importance sampling to tackle
this issue. Let ji denote an auxiliary distribution with
density ¢ = djz/d\, and assume that we can generate
samples from fi (e.g. we can let i = pier, ftobj OF the
smoothed versions of them). By a change of measure,
we can express Eg~ - [L(z,0;0)] as

Lo 0io) (f;e(fia)c) ) (f;(i)ﬂf))} .

The density ratios frer/q and fonj/q can be learned
by using samples from piret, tobj, it and minimizing the
logistic regression loss as in Wang et al. (2021). We do
not need to know C' since it does not affect the drift
term in (5.3). In particular, when fi = pyer, we get

r—x
6-2

59(5%75') +

= Bz N(2,521) [

C~ ' Eymp

Evnps [L(2,6;5)]

B
Lat0) (2)
Jret (2)

where the ratio fob;/ fref can be learned by using sam-
ples from Dopj, Drer. A similar expression can be
easily derived for fi = piopj. This importance sam-
pling method enables us to estimate the expectation
Ez~p- [L(zx,0;6)] by using samples from Dypj, Drer. By
averaging over ¢ randomly drawn from the interval
[0,0/T], we obtain an estimated loss for the parame-
ter 6. Minimizing this loss we get the estimate é, and
we can approximate V log fz(z) using s;(z, 7).

_ -1
=C EmN/Lref

Simulating the SDE (5.3) requires us to generate sam-
ples from p%. There are a few possible approaches.
First, if o is chosen to be sufficiently large, one may
argue that we can simply approximate f; using the
normal density ¢, and thus we only need to draw X
from the normal distribution. This is the approach
taken in the score-based generative models based on
backward SDEs (Song and Ermon, 2019). Second, one
can run an additional Schrodinger bridge process with
terminal distribution p, as proposed in the two-stage
Schrodinger bridge algorithm of Wang et al. (2021).
The dynamics they considered is simply the solution
to Problem 1 given in Theorem 1, where the uncon-
trolled process is a Brownian motion started at 0. The
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drift term is approximated by a Monte Carlo scheme
(see Remark 3 and Appendix A.1), which also requires
an estimate of the density ratio fZ/¢, and the score
of fr. Third, one can also run the Langevin diffu-
sion dX; = 02V log 7 (X,)dt + odW; for a sufficiently
long duration, which has stationary distribution pu.
We found in our experiments that this approach yields
more robust results, probably because it does not re-
quire Monte Carlo sampling which may yield drift es-
timates with large variances.

5.3 An Example Using MNIST

We present a numerical example using the MNIST
data set (Deng, 2012), which consists of images of
handwritten digits from 0 to 9. All images have size
28 x 28 and pixels are rescaled to [0, 1]. To construct
Dopj, we randomly select 50 images labeled as eight
and reduce their quality by adding Gaussian noise with
mean 0 and variance 0.4; see Fig. F4 in Appendix F.
The reference data set Dys includes all images that
are not labeled as eight, a total of 54,149 samples.

We first run the algorithm of Wang et al. (2021) us-
ing only D,pj, and the generated samples are noisy as
expected; see Fig. F5 in Appendix F. Next, we run
our algorithm described in Section 5.2 with different
choices of 5. The density ratio and scores are trained
by using one GPU (RTX 6000). Generated samples are
shown in Fig. 1, and we report in Table 1 the Fréchet
Inception Distance score (Heusel et al., 2017) assessing
the disparity between our generated images (sample
size = 40K) and the collection of clean digit 8 images
from the MNIST dataset (sample size ~ 6K). When
[ is too small, the generated images do not resemble
those in D,p,; and we frequently observe the influence
of other digits; if 8 = 0, the images are essentially
generated from per. When [ is too large, the influ-
ence from the reference data set becomes negligible,
but the algorithm tends to overfit to the noisy data in
Dopj. For moderate values of 8, we observe a blend of
characteristics from both data sets, and when 5 = 1.5,
FID is minimized (among all tried values) and we get
high-quality images of digit 8. This experiment illus-
trates that the information from D,p; can help cap-
ture the structural features associated with the digit
8, while the samples from D¢ can guide the algo-
rithm towards effective noise removal. In Appendix F,
we further analyze the generated images using t-SNE
plots and inception scores (Salimans et al., 2016).

Table 1: FID Scores for MNIST Experiment

B 0 025 0.7 1.5 4 100
FID 674 664 61.0 56.3 110.9 1824

S % By R o

Gy WY Ya Wy o

8
g
8
3

Figure 1: SSB Samples for MNIST Experiment

6 CONCLUDING REMARKS

We propose the soft-constrained Schrédinger bridge
(SSB) problem and find its solution. Our theory en-
compasses the existing stochastic control results for
Schrodinger bridge in Dai Pra (1991) and Hamdouche
et al. (2023) as special cases. The paper focuses on
the theory of SSB, and the numerical examples are
designed to be uncomplicated but illustrative. More
advanced algorithms for solving Problems 2 and 3 in
full generality need to be developed. It will also be
interesting to study the applications of SSB to other
generative modeling tasks, such as conditional genera-
tion, style transfer (Shi et al., 2022; Shi and Wu, 2023,;
Su et al., 2022) and time series data generation (Ham-
douche et al., 2023). Some further generalization of
the objective function may be considered as well; for
example, one can add a time-dependent cost as in Pra
and Pavon (1990) or consider a more general form of
the terminal cost.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a)

A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes, the mathematical setting is described
in Section 2 and algorithms are described in
Section 5.2 and Appendix A.1.

An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
No. The focus of the paper is theory, and
the algorithm we propose in Section 5.2 is a
modification of existing diffusion model algo-
rithms.

(Optional) Anonymized source code, with
specification of all dependencies, including
external libraries.

Yes, the code is publicly available on GitHub.

2. For any theoretical claim, check if you include:

(a)

Statements of the full set of assumptions of
all theoretical results.

Yes, Assumption 1 is stated at the beginning
of Section 2.

Complete proofs of all theoretical results.
Yes.

Clear explanations of any assumptions.

Yes, Assumption 1 is discussed in Section 2
and Remark 4. Other assumptions used in
the theorems are either standard or explained
in the remarks.

3. For all figures and tables that present empirical
results, check if you include:

()

The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL).

Yes.

All the training details (e.g., data splits, hy-
perparameters, how they were chosen).

Yes, the data splitting is explained in Sec-
tion 5.3, and the detailed algorithm setting
(e.g. choice of hyperparamaters) is provided
in the configuration file on GitHub.

A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times).

Not applicable.

A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider).

Yes, it is mentioned in Section 5.3. The
provider is acknowledged in the Acknowl-
edgements.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a)

(b)

Citations of the creator if your work uses ex-
isting assets.

Yes.

The license information of the assets, if ap-
plicable.

Not applicable.

New assets either in the supplemental mate-
rial or as a URL, if applicable.

Yes, the code is available on GitHub.
Information about
providers/curators.
Not applicable.

consent from data

Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content.
Not applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

()

(b)

The full text of instructions given to partici-
pants and screenshots.

Not applicable.

Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable.

Not applicable.

The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation.

Not applicable.
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Soft-constrained Schrodinger Bridge: a Stochastic Control Approach

Appendix for “Soft-constrained Schrodinger Bridge: a Stochastic
Control Approach”

The code for all experiments (Cauchy simulation in Appendix A.2, normal mixture simulation in Ap-
pendix A.3 and MNIST example in Section 5.3) is at the GitHub repository https://github.com/gargjhanvi/
Soft-constrained-Schrodinger-Bridge-a-Stochastic-Control-Approach.

A SIMULATION WITH KNOWN DENSITY FUNCTIONS

A.1 Monte Carlo Simulation with Densities Known up to a Normalization Constant

Let the uncontrolled process X be the Brownian motion with b6 =0 and Xy = 0, and set 7' = 1. Let ¢, denote
the density of normal distribution with mean zero and covariance matrix o2I. Given a target distribution with
density fr (which we simply denote by f in this section), the solution to SSB is given by

dX; = uidt + odW, (A.1)

where the drift u* is determined by u*(z,t) = Vlog h(z,t) and

h(z,t) (1 _t)‘d/Q/qba (%) : (gi(é)))ﬁ/(lw) dz.

Note that to determine u*, we only need to know f up to a normalization constant. Since Vlogh = h~'Vh, we

can rewrite u* as
E.uo, [r(z 4+ V1 —1t2)Viogr(z+ /1 —tz)]
E.vg, [r(z + V1 —t2)]

r(z) = <¢Z:(E?)>ﬁ/(l+ﬁ).

We can then approximate the numerator and denominator in (A.2) separately using Monte Carlo samples.

u(x,t) = (A.2)

where we set

For some target distributions, this approach can be made more efficient by using importance sampling. When
f has a heavy tail (e.g. Cauchy distribution), r(x) may grow super-exponentially with z, and Monte Carlo
estimates for the numerator and denominator in (A.2) with z drawn from the normal distribution may have
large variances. Observe that the numerator can be written as

E.ug, [r(z +V1—1t2)Viogr(z+ V1 —tz)] = /d)g(z)r(x + V1 = t2)? 4PV log r(z + V1 — tz)dz.

The term V log r(x++/1 — tz) is often polynomial in z (that is, it does not grow too fast). Hence, intuitively, the
integral is likely to be well approximated by a Monte Carlo estimate with z drawn from a density proportional
to ¢y (2)r(x + /1 —t2)?/0+8) | Such a density may not be easily accessible, but if one knows the tail decay rate
of f, one can try to find a proposal distribution for z with tails not lighter than ¢4 (2)r(z + /1 — t2)#/(+5) In
the experiment given below, we propose z from some distribution with tail decay rate same as f?/ (Hﬁ)qb(l,/ (1+68)
Letting w denote our proposal density, we express the numerator in (A.2) as

Oo(2)r(z+ V1 —tz)

Eomo, [r(@ + V1 —t2)Viogr(z + V1 —t2)] = Eoun Viogr(z +V1—t2)|, (A.3)

and estimate the right-hand side using a Monte Carlo average.
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Similarly, the denominator can be expressed by

do(2)r(x+ 1 —tz) (A)

E.vg, [r(z+V1—1t2)] = E,ow

and estimated by a Monte Carlo average.

A.2 Simulating the Cauchy Distribution

Fixb=0,0 =1, Xg =0and T = 1. Let f be the density of the standard Cauchy distribution i.e., f(z) =
7711 + 2?)7!. Theorem 2 shows that the solution to SSB is a Schrédinger bridge such that the terminal
distribution has density

fi= C§1¢(x)1/(1+5)f(:v)ﬁ/(l""’g)7 (A.5)

where Cj is the normalization constant and ¢ is the density of the standard normal distribution. We plot f3
and log f5 in Figure A1l for 8 = 00,100, 50,20. For z close to zero, the density of f3(x) remains approximately
the same for the four choices of 5. When 8 = oo, fj is the Cauchy distribution which has a heavy tail. But for
any 8 < oo, the tail decay rate of f5 is dominated by the Gaussian component.

density

log density

Figure Al: Densities of Geometric Mixtures of Normal Cauchy Distributions.

We simulate the solution to SSB given in (A.1) over the time interval [0, 1] using the Euler-Maruyama method
with 200 time steps. The drift is approximated by the importance sampling scheme. When 8 = oo (i.e., the
terminal distribution is Cauchy), we let the proposal distribution w in (A.3) and (A.4) be the t-distribution
with 2 degrees of freedom (we have also tried directly proposing z from the standard Cauchy distribution and
obtained very similar results). When 8 < oo, we let w be the normal distribution with mean 0 and variance
1+ 5. We simulate the SSB process 10,000 times, and in Table A1 we report the number of failed runs; these
failures happen because Monte Carlo estimates for the numerator and denominator in (A.2) become unstable
when |z| is large, resulting in numerical overflow. When 5 = oo, we observe that numerical overflow is still
common even if we use 1,000 Monte Carlo samples for each estimate. In contrast, when we use 8 < 100 and
only 200 Monte Carlo samples, the algorithm becomes very stable. In Figure A2, we compare the distribution of
generated samples (i.e., the distribution of X}, with T' = 1) with their corresponding target distributions. The
first panel compares the distribution of the samples generated with 5 = co (failed runs ignored) with the Cauchy
distribution, and the second compares the distribution the samples generated with 5 = 100 with the geometric
mixture given in (A.5). It is clear that simulating the Schrodinger bridge process (i.e, using 8 = oo) cannot
recover the heavy tails of the Cauchy distribution, but the numerical simulation of SSB with 8 = 100 accurately
yields samples from the geometric mixture distribution. Recall that the KL divergence between standard Cauchy
and normal distributions is infinite, which, by Theorem 1, means that there is no control with finite energy cost
that can steer a standard Brownian motion towards the Cauchy distribution at time T = 1. Our experiment
partially illustrates the practical consequences of this fact in numerically simulating the Schrodinger bridge, and
it also suggests that SSB may be a numerically more robust alternative.
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Table Al: Number of Failed Attempts in 10,000 Trials. Ny, denotes the number of Monte Carlo samples used
to approximate the expectations defined in (A.3) and (A.4).

Ninc 20 50 100 200 500 1000
B=o00 | 1149 933 714 610 444 308
8 =100 | 495 29 6 1 0 0
B=50 | 124 18 6 0 0 0
B8 =20 48 4 2 0 1 0

b B =100

Cauchy distribution
?
Geometric mixture
?

l

>
P
N
?

I2 I T T T T I2 T T T I T
-10°-10 -1 0 1 10 10 -10 -1 0 1 10

SB samples SSB samples

Figure A2: Q-Q plots for the SSB Samples with Ny, = 1,000.

A.3 Simulating Mixtures of Normal Distributions

In Example 4, we let p.of be a mixture of four bivariate normal distributions,
et = 0.1N((1,1), 0.05%1) + 0.2 N ((—1,1), 0.05*T) + 0.3 N'((1, —1), 0.05*T) + 0.4 N'((—1,—1), 0.05%I),

where the weights and the mean vector of the four component distributions are different. Let pon; be a mixture
of two equally weighted bivariate normal distributions

tobj = 0.5 N((1.2,0.8), 0.5°T) + 0.5 N((—1.5, —0.5), 0.521).

The first component of pop; has mean close to (1,1) (which is the mean vector of the first component of pef), and
the second component of ih; has mean close to (—1, —1) (which is the mean vector of the last component of fiyer).
Hence, we can interpret pi,of as a distribution of high-quality samples from four different classes, and interpret
Hobj as a distribution of noisy samples from two of the four classes. Let fg = Cglfref(fl}')l/(l"’_ﬂ)fobj (x)ﬁ/(l-h@) be
the density of our target distribution.

We generate 1,000 samples from fj by simulating the SDE (A.1) over the time interval [0,1] with f = f3
and 0 = 1. We use 200 time steps for discretization and generate 200 Monte Carlo samples at each step for
estimating the drift. The trajectories of the simulated processes are shown in Figure A3 for 5 = 0,2, 10, oo,
and the samples we generate correspond to t = 1. It can be seen that when 8 = 2 or 10, the majority of the
generated samples form two clusters, one with mean close to (1,1) and the other with mean close to (-1, —1).
Further, the two clusters both exhibit very small within-cluster variation, which indicates that the noise from
Hobj has been effectively reduced.
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Figure A3: SSB Trajectories for Normal Mixture Targets.

B AUXILIARY RESULTS

We first present two lemmas about the minimization of Kullback-Leibler divergence.

Lemma B1. Let (Q,F, ) be a o-finite measure space, and let v < 7 be a measure with density f = dv/dn such
that C = v(Q2) € (0,00). Let P, denote the set of all probability measures absolutely continuous with respect to
w. Then,

inf D = —logC.
Jnf KL (14, V) og

The infimum is attained by the probability measure p* such that du*/dr = C~1 f(z).

Proof of Lemma B1. Since Dkr,(u,v) = oo if u &« v, it suffices to consider p € P, such that p < v. It is
straightforward to show that Dk, (i, v) = Dxr(p, u*) —log C. Since [dp* =C~! [ fdr=C~! [dv=1,p* isa
probability measure. The claim then follows from the fact that the KL divergence between any two probability
measures is non-negative. U

Lemma B2. Let (O, F,7) and P, be as given in Lemma B1. For i = 0,1, let v; be a finite measure (i.e.,
v;(Q) < 00) with density f; = dv;/dr. Assume that vy < vy. For 8> 0,

uieng Dy (p, v0) + BDxL(p, v1) = —(1 + ) log Cg,
where Cg = [ fo(z)/ AP f(2)P/ AP (dz) € (0,00). The infimum is attained by the probability measure W
such that L

* K -

dm
When vy, v1 € Pr, we have Cg € (0,1]. Further,

lim Cg = 11(Q), ﬁan;o Dkwr(ms, vo) = DxL(vi, 10)-

B—00
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Proof of Lemma B2. Since v < vy, we have C' > 0. By Holder’s inequality,

1/(1+8) B/(1+8)
Cp < (/ f0d7r> </ fldﬂ'> = VO(Q)l/(lJrﬁ)Vl(Q)B/(lJrﬁ) < 0.

Clearly, if vy, v, € Py, the above inequality implies C' < 1. Observe that

Dxr (i, vo) + fDxr(p, v1) = (1 + B)Dkr(p, v)

where v is the measure with density dv/dr = fé/(1+’8)f16/(1+6) =

Cpfj. Hence, we can apply Lemma Bl to
prove that pj is the minimizer.

To prove the convergence as § — oo, let A = {z: fo(z) > fi(z)} and write Cg = Cz, + Cp,1, where
Coo = / Fo@) OB £ @)/ D n(de), Oy = / Fola) /OB £, ()P 40) 1 (dg).
A Q\A

The integrands of both Cgo and Cg o are monotone in 5. Hence, using Cj < oo and monotone convergence
theorem, we find that

g&%=/ggmmeMmW“%mm=/mwmw=mm7

which also implies f3z — fi /v1(92) pointwise. An analogous argument using monotone convergence theorem
proves that limg_, DKL(MZ, vg) = Dk (v1, o). O

The next result is about the controlled SDE (2.2) with u = 02V log h. It is adapted from Theorem 2.1 of Dai Pra
(1991). Our proof is provided for completeness.

Theorem B3. Suppose Assumption 1 holds. Let X = (Xi)o<i<r be a weak solution to (2.1) with initial
distribution po and transition density p(z,t|y,s). Define

fMﬁ:/MWW$mw®,ﬁMmKRWm$%

for some measurable g > 0 such that Eg(Xrt) < oo. Assume h > 0 on R? x [0,T). Let X" = (X])o<i<T be a
weak solution with X} = X, to the SDE

dX}" = [b(X]",t) + 0?Viog h(X[", t)] dt + odW;, fort € [0,T). (B.1)

Then, we have the following results.

(i) h e C2Y(R? x [0,T)) and

Oh <~ Oh o2 K 9h
an ; N R 7).
o +;b 90 2 ;(%? 0, for (z,t) € RY x [0,T)

(ii) The weak solution X" to the SDE (B.1) exists. Indeed, we can define a probability measure Q by dQ/dP =
9(X7)/h(X0,0) such that he law of X under Q is the same as the law of X" under P.

(iii) The process X" satisfies

g(Xh) /T02 -
Ellog 7oy = F —||Vlog h(X d
[Ogh(X(’)%O) 0 2 IViog h(Xy, 5)lI°ds

(iv) The transition density of X" is given by

p(x,t|y, s)h(z,t)
h(y, s) ’

Hence, X" is a Doob’s h-path process, and the density of the distribution of X% 1

dLaw(Xh) p(z,T'[y,0)
B ) = ata) [ B e

pu(z,t]y,s) = for0<s<t<T.
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Proof of Theorem B3. We follow the arguments of Jamison (1975); Dai Pra (1991). Under Assumption 1, Propo-
sition 2.1 of Dai Pra (1991) (which is adapted from the result of Jamison (1975)) implies that h € C**(R?x [0, T'))
and Lh+ 22 =0 on R? x [0,T), where

d d
0 o2 02
L= bi— + — —
Z 'O, + 2 Z Ox?
i=1 i=1 g
denotes the generator of X. This proves part (i).
To prove part (ii), we first apply Itd’s lemma to get

t t
log h(X;,t) = log h(Xy,0) —|—/ b(Xs, s)ds +/ oVlog h(Xs, s)dWs,
0 0

for any t € [0,T"), where

b, 1) = h(; 0

2 2
(<ch><x,t> + g';@,a) — SV log bz, D]I? = =5V log h(a, )]

Since g(Xr) is integrable, h(Xy,t) is a uniformly integrable martingale on [0,7") and converges to g(Xr) both
a.s. and in L'. Letting ¢ 1 T, we obtain that

T 2 T
log g(X7) = log h(Xo,0) — / 2 IV log h(X,, 5) s + / oV log h( X, 5)dWV.. (B.2)
0 0

Write h(z,T) = g(x), Y3 = h(X;,t) and Z; = Y;/Yy. We have shown that Y; and Z; are martingales on
[0,T]. Since E[Z7] = 1, we can define a probability measure Q by dQ/dP = Zr. By Girsanov theorem and the
expression for Zr given in (B.2), the law of X under Q is the same as the law of X" under P; in other words,
dP% = (g(zr)/h(x0,0))dPx, where Px (resp. P%) is the probability measure induced by X (resp. X") on the
space of continuous functions.

For part (iii), choose t, = T' A7, where 7, = inf{t: | X| > n}. Analogously to (B.2), we can apply Itd’s lemma
to get

t

tn 2 n
log h(X]" ,t,) = log h(X{,0) + / %Hv log h(X", s)||?ds + / oV log h(X", s)dw,.
0 0

Since h is smooth, |V log h(X", s)| is bounded on [0,,]. Taking expectations on both sides, we find that
tn 2
€ log (X, t)] = € [log (4,00 + [ G I ogh(x2 9]
0

Letting n — oo and applying monotone convergence theorem, we get

n—oo

T 2
liminf E [log h(X}" ,t,)] = E [logh(Xéb,O) +/ %HVlog h(Xf,s)Hst] . (B.3)
0

It remains to argue that the left-hand side converges to E [log h(X%, T)]. Write Y = h(X}*,t). Using the change
of measure and h(z,T) = g(x), we get

Y;
E[logY"] =E [t logY}} :
Yo
The function f(y) = ylogy is bounded below and convex. If (¢,) is chosen such that ¢, T T, we have
E [ lim Y;, log i, |f0} <liminfE[¥;, log ¥y, | Fo] < E[Yz log Yr| Fo],

where Fatou’s lemma is applied to obtain the first inequality, and the second inequality follows from the fact
that Y;logY; is a submartingale. Since Y; converges a.s. to Yr = g(Xr), we get

liminf E[Y;, logYy, | Fo] = E[YrlogYr | Fol.
n—0o0
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Taking expectations on both sides we get

liminf E [log Yh] =E [log YT’}]

n—oo
Combining it with (B.3) proves part (iii).

Consider part (iv). For any bounded and measurable function f, we apply the change of measure to the
conditional expectation to get

Elf(X)h(Xe, 1) | Fs]

Eqlf(X:) | Fs] = h(Xs, s)

The claim then follows from Fubini’s theorem. O

C PROOFS FOR THE MAIN RESULTS

Recall that X denotes the solution to the SDE
dXt = b(Xt, t)dt + Uth
over the time interval [0, T'] with initial distribution Law(Xo) = po, and X* denotes the solution to the controlled

SDE

with X{§ = Xy. The transition density of the uncontrolled process X is denoted by p(x,t |y, s)

Proof of Lemma 3. Since u is admissible, it must satisfy E fOT |lu¢||?dt < oo. Therefore, Novikov’s condition is
satisfied, and we can apply Girsanov theorem to get

c[i5em] =l - aw [
> exp{E{log}% —/ —Law, — / “;;!2 }}
By part (ii) of Theorem B3, the left-hand side of the above inequality is equal to 1. Hence,
ey [ o [ ] -ty 150
where we have used E fOT |lu¢||?dt < oo again to obtain E[fOT u;dW;] = 0. By the definition of Jg, we have

T 2
[
o 20

Jp(u) = B Dxr(Law(XF), pr) + E

9(X7)
> B8 Dkr(Law(X E |1 .
ﬁ KL( a’w( T) IU’T) + |:Og h(XéL,O)
Since Law(XY) = po, we have E[log h(X{,0)] = [logh(z,0)uo(dz). By part (iii) of Theorem B3, the equality
is attained when u; = (Tg)(X}, t). O

Proof of Theorem /. First, we find using (3.2) that

d
Epr(Xr) = d5§ dpio,
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which is finite by assumption. Since p(z,T |x,t) > 0 whenever ¢t < T, we have h > 0 on R? x [0,T). Hence,
Theorem B3 and Lemma 3 can be applied with g = pr. In addition to setting pr = dvr/dX and fr = dug/dA,

we define ALaw (X2
ko) = [ oo Tl Owldy), @) = LU ),

There is no loss of generality in assuming g% exists, since pr < A and Dk, (Law(XF), pr) = oo if Law(XF) £ pr.
For later use, we note that by (3.2) and (3.3),

.0) = L2y, (1)
z B/(1+8)
pr(x) = (Z%) - (C.2)

Let n be the o-finite measure on R? with density fﬁ/ (1+5 )k}/ (1+8), By Lemma 3, for any admissible control w,

Ts(u) 2 6 Drr (Law(X§). o) + E flog pr (X)) ~ | log h(z, Ol
= BDkr(Law(XT), pr) + E[log pr(X7)] — Dk (to, vo)
=E ﬁlog qT( %) B 1 fT(X%):| _DKL(MO7VO)

Fr(Xy) TTH B B k(X

= BDky(Law(XT),n) — Dkr(po; 1),

where the second line follows from (C.1) and the third from (C.2). The measures pg, v9,n do not depend on wu.
By Lemma B1,

DkL(Law(Xt),n) > —logC, where C = /fT(x)ﬂ/(H’B)kT(x)l/(Hﬁ)dx.

We will later prove that C' = 1. Combining the above two displayed inequalities, we get

Js(u) =2 BDkL(Law(X7),n) — DkL(ko, o) (C.3)
> —log C — Dkr (o, 1) (C.4)

For u} = 6>V log h(X}* ,t), we know by Lemma 3 that the equality in (C.3) is attained. Hence, it is optimal if
we can show that the equality in (C.4) is also attained. By Lemma B1, this is equivalent to showing that

g7(2) = CH fr(2)? O kp () O+, (C.5)

where we write ¢} = q%*. By part (iv) of Theorem B3, we have

ﬁ@ﬁwﬂm/”2?$mmmw
(%)

= pT(x)/p(w,le,O)Vo(dy)
= pr(z)kr(v)
(i9) F (@) B/ B o () 1/ (14B)

where step (i) follows from (C.1) and step (ii) follows from (C.2). So u* is optimal, and the normalizing constant
C in (C.5) equals 1, from which it follows that Jz(u*) = —Dkw (o, o). Finally, one can apply Jensen’s inequality
and the assumption [(dpuo/drg)dug < oo to show that [Dkr,(po, vo)| < 0o, which concludes the proof. O

Proof of Theorem 6. Recall that vy, vy are defined by

%%@:/m@mwmmm, (C.6)
N () = o (@n) [ o [9)vo(dy). (1)

dA
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The proof is essentially the same as that of Theorem 6. First, we need to derive a result analogous to Lemma 3,
which we give in Lemma C4 below. We will apply Lemma C4 with g = pn. Recall that h; is defined by

hj(z,t;x;) =E [pN(a:j,XtHl,...,XtN) ’Xt = x] , for (z,t) € R? x [tj,t541)-

Note that the conditions Epn(Xn) < 00 and h; > 0 can be verified by the same argument as that used in the
proof of Theorem 4. By (C.6), we have

ho(y:0) = Elpx (Xo) | Xo = 4] = 2(0). (©3)
Define d Ao X
fGew) = L), len) = [owtey i), dex) = I @),

We can rewrite (C.7) as pny = (fn/kn)?/ (5.

By Lemma C4 and Lemma B1, for any admissible control u,
J§ (u) > —log C — Dky(po, vo), where C = /fN(wN)ﬁ/(H_B)kN(wN)l/(H_B)dwN-

To prove that the equality is attained by the control uf = (Txpn) (X ,t, XI‘{,), it remains to show that
Oy (@n) = C_lfN(:cN)ﬁ/(Hﬂ)kN(:cN)l/(Hﬁ).

where ¢y = q}(,*. To find ¢}, we can mimic the proof of Theorem B3. It is not difficult to verify that the law of
X* under P is the same as the law of X under Q, where Q is defined by

dQ _ E[pn(Xn)[Fr] _ pn(XN)
dP  E[pn(Xn)[Fo]  ho(Xo,0)’

So for any bounded and measurable function ¢, we have

Eolf(Xx)] = E [e(x@,%} = [t { / Wuo(dy)} dn.

It thus follows from (C.8) that

dn(z) = pn(2N) / Wuo(dy) = fn(@n)? TP oy () 0P,

The rest of the proof is identical to that of Theorem 4. O

Lemma C4. Let u be an admissible control and g: RN — [0,00) be a measurable function such that
E[g(Xn)] < co. Let hj be as given in (4.2), and assume h; > 0 for each j. For the cost Jé\' defined in (4.1), we
have

T3 (@) = B Dcw(Larw(X3). ) + Ellosg(X3)) ~ [ logho(z, Opofcl).
The equality is attained when w, = (Tng) (X, t, XN).

Proof of Lemma C4. The SDE (2.2) with control u} = (Tng)(X® ,t, X1 ) can be expressed as

X = Xo,
dX; = [b(X[,t) +0*Viog hj (X}, t; X7)] dt + odWy, for t € [t;,t11),

where we write X* = X% and h;j is as given in (4.2). By the tower property, we have

hj(I,t;GCj) = E [hj+1(th+1,tj+1;mj7th+1) ‘Xt = I] s
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where hy is defined by hy(z,ty;xNn-_1,2) = g(xy_1,2), and X is the solution to the uncontrolled process (2.1).
The assumption E[g(X )] < oo implies that E[h;(X,,t;;2;-1,X¢;)] < oo for almost every x;_ ;. Hence, for
each j and x; € R? Theorem B3 implies that there exists a weak solution to the SDE (C.9) on [t;,t;41] with
Xt*j = x;. Moreover,

£l R (X7t X ) _E
h](X;;,t],XJ*)

tita 02 * *\ (|2
| IV ok (X2 X s

J

Summing over all the N time intervals, we get

g(X3%) hja (X7 ot X5 q) /T [luy]?
E|l =E log b =E ———ds| .
{Og ho(X¢,0) Z hy (X715 X7 , 202
Now consider an arbitrary admissible control u. As in the proof of Lemma 3, by Girsanov theorem, we have

12% g?ﬂ

el [t
utz
ool [ 2 [ 28]

T u
E l/o ||;‘;! dt] >E {log hog((?((é\j)o)] = Ellog g(X¥)] — /logho(I,O)uo(dx).

which yields that

The asserted result thus follows. O

D PROOF OF THE EXISTENCE OF SOLUTION TO SSB

We first recall the definition of the Hilbert metric (Chen et al., 2016a). For K C R? and 1 < p < o0, let LP(K)
denote the LP space of functions defined on K. Define

LK) = {f € £2(K)s inf fl@) >0}, L§(K) = {f € £7(K): inf f(x) = O},

Since L5(K) is a closed solid cone in the Banach space £P(K), we can define a Hilbert metric on it. For any
z,y € LF(K) \ {0} (where 0 denotes the constant function equal to 0), define

M(z,y) =inf{c: z < cy}, m(x,y) =sup{c: cy <z}, (D.1)
where < y means y — x € L5(K) and we use the convention inf ) = co. The Hilbert metric dg on K\ {0} is

defined by
M(z,y)

m(z,y)’
Note that dj is only a pseudometric on I\ {0}, but it is a metric on the space of rays of K\ {0}.

dp(x,y) = log

Proof of Theorem 5. The proof is adapted from Chen et al. (2016a, Proposition 1). We will show the existence
of strictly positive and integrable functions pg, pr such that

mw=m@/IM¢mmwwm, (D2)

Kr

fﬂmzwwmﬂ“/memmW@@. (D.3)
Ko

Let 1[)0 € L°(Ko) be our guess for fy/po. We can update 1[)0 as follows.
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1. Set po(y) = fo(y)/Po(y).

B/(1+8)
) , which is an estimate for fﬁ/(Hﬂ)/pT by (D.3).

2. Set Gr(x) = ( [, p(@, Ty, 0)po(y)dy

3. Set pr(z) = fﬁ/(Hﬁ)/l&T(m)-

4. By (D.2), update the estimate for 1 by {ge¥ (y) = fKT p(z, T |y,0)pr(x)de.

Denote this updating scheme by {3 = O(1). Note that for any ¢ € (0,00) and ¢ € LY (Ky),
O(cy) = D O(y). (D.4)

In Lemma D5 below, we prove that O is a strict contraction mapping from £ (Ky) to L3°(Ky) with respect to
the Hilbert metric. To prove the existence of pg, pr, it is sufficient to show that O has a fixed point 19 € L (K)),
since we can set

~ foly) 1) = Ir(@) h
W) = gotyy PO = (fKop(w,leﬂ)Po(y)dy) 7

which must satisfy (D.2) and (D.3) and py € L§(Ko), pr € LE(K7) (see the proof of Lemma D5 for why po, pr
are integrable). But note that we cannot apply Banach fixed-point theorem to O.

To find the fixed point of O, we first consider its normalized version O, defined by O(1)) = O())/||O(¥)||2. Let
E={ge LT (Ko): |lgll2 =1},

denote the domain and range of @. Since O is a strict contraction mapping on LT (Ko) with respect to the
Hilbert metric (which is invariant under scaling), O is also a strict contraction mapping and thus continuous
(with respect to the Hilbert metric) on E. If g € £3(Ky) is a fixed point of O, then 10(9)157g € LY (Kp) is a
fixed point of O, since

0 (||0(9)||§+ﬁg) = 0(9)50(9) = 10(9)ll""O(9) = [O(9) 11",

where the first equality follows from (D.4). Moreover, since dg is a metric on the rays, any other fixed point of
O must have the form cg for some constant ¢ > 0. But the same argument shows that ¢ must equal HO(g)H%Jrﬂ ,

and thus the fixed point of O is unique. This further yields the uniqueness of (pg, pr).

So it only remains to prove that O has a fixed point in LY (Kp). The proof for this claim is essentially the same
as that in Chen et al. (2016a). Pick arbitrarily v(© € £2(Kp) and let go = %O /|||, For k = 1,2,...,
define
OF ()
gk =
lO*@©),

where the second equality follows from (D.4). Each gy, is in E and well-defined as OF (V) € £3°(K) C L2(Ko).
Since O is a strict contraction mapping with respect to dg, {gx}r>0 is a Cauchy sequence with respect to dp.
Using the inequality ||gx — gi]|2 < e?#(9%:9) — 1 (see Chen et al. (2016a)), we find that {gi }x>0 is also Cauchy
with respect to the L2-norm, and thus there exists g € L3(Kp) such that limg_, ||gx — g]l2 = 0 and [|g|2 = 1.
Next, we argue that {g }x>0 is uniformly bounded from below and above and also uniformly equicontinuous. To
show the uniform boundedness, we first observe that ||gk||2 = 1 implies

= @(gk—l)a

sup g (x) > > inf g (x). (D.5)

1
A(Ko)
Further, since p(z,T |y, 0) is bounded in (z,y) and recalling the last step in the construction of O, we have

sup, (OY)(z)
inf, (Oy)(zx)

IN

et (D.6)
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for any ¢ € L (Ky), where € € (0, 1] is some constant independent of ). Combining (D.5) and (D.6), we get

——— < inf gi(z) <sup gi(2) < ——=-.
)\(KO) x x € )\(K())

Note that the uniform boundedness of {g;} also implies g € L (K(). The uniform equicontinuity of {gx} can be
proved by using the uniform continuity of the transition density p. Finally, by Arzela—Ascoli Theorem, there is
a subsequence {gy, } such that g, converges to g uniformly with respect to the L?-norm and g is also uniformly
continuous. This implies dg(gx, ,g) — 0 and thus dg(gx,g) — 0. By the continuity (with respect to dg) of O,
we can interchange the limit operation with O, thereby establishing g as the fixed point of 0. O

Lemma D5. For ) € LL(Ky), define

! ( ) B8/(1+8)
= z X T\ Z.
0@ = [ pTIx0) ( fKop(z,le,O)fo(yW(y)1dy> ‘

The operator O is a strict contraction mapping from LL(Ko) to L3 (Ky) with respect to the Hilbert metric.

Proof. We can express the operator O by O =EroPoZo&yoZ, and define Z, &y, Er, P by

T: L2(K) — LY(K), (o)) = p()™ for K = Ko, Kr,
Eo: LT (Ko) — LK),  (Eop)(x p(x, T y,0) fo(y)e(y)dy,
Er: LP(Ky) — LYK, (Ere)a / (2, 2,0) f () T p(2)dz,

P: LT (Kr) — LT (K7), (Pe)(w) = p() /17

It is worth explaining how the ranges of these operators are determined. First, if ¢ € L3°(K), it is clear that
Ty € LP(K) and Py € LT(K). For &, since we assume K is compact and p(z, T |y, 0) is continuous in (x,y),
for any ¢ € L (Ko) there exists € > 0 such that

e=e| foly)dy < (&))<t [ foly)dy =€
Ko Ko
The argument for £p is similar, and note that by Hoélder’s inequality,

fr(2)2/ A0 dz < \(Kp)Y O+ < 0
Kr

Now we prove that P is a strict contraction. Let 11,92 € LS°(K7). By the definition given in (D.1),

M (P (1),P () =M (¢1,¢2)5/1+B and m (P (é1),P (¢2)) =m(¢1, ¢2)ﬂ/1+6 ’
which implies

di (P (1), P (62)) = log (Anf((g 55?13 773 <($2>)))

since f < oo. Chen et al. (2016a) showed that the operators &y, Ep are strict contractions using Birkhoff’s
theorem, and that the operator Z is an isometry (all with respect to the Hilbert metric). Hence, O is a strict
contraction. Note that for our problem, since P is a strict contraction, we actually only need &y,Er to be
contractions (not necessarily strict). O

) — 1fﬂdH (¢1,¢2) < dH (¢17¢2)a
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E PROOF OF LEMMA 7

We consider a more general setting. Assume that X; is given by
X() = Xy, and dXt = b(Xt,t)dt + Uth,
where b satisfies Assumption 1. The density function of Law(X7) is p(x, T | z9,0). Let X™ be given by

dX;f = b (X )t + odW,
where b (z,t) = b(z,t) + 0>V log h** (z, 1),

href(z,t) = E [m ‘Xt :x} .

Theorem 1 implies that Law(X3) = jier. Let X°P be given by

AdX PP = poPI (X2 t)dt + od Wy,
where b°P (z, 1) = b™f (1) + 02V log h°P (2, 1),

' (et A0HD)
S R

which is the solution to Problem 2 with X" being the reference process and lobj being the target distribution.
We now prove that

(E.2)

1 _B_
b (z,t) = b(=,t) + 0°V log E [fref(XT) 7 foi(Xr) 77 ‘Xt = 37] '

p(XTaT | Zo, 0)

That is, X°PI is also the solution to Problem 1 with X being the reference process and p* being the target

distribution, where p* has un-normalized density frle/f(Hﬁ ) ffb/j(“rﬁ )

special case with b =0 and zo = 0.

. Once this is proved, Lemma 7 follows as a

Proof. To prove (E.2), we use part (ii) of Theorem B3. Define a martingale

Zref _ href(Xtvt) )
t href (XO’ 0)

Let Q™ be the probability measure given by dQ™f = Zi¢!dP. By part (ii) of Theorem B3, the law of X under
Q' is the same as the law of X*' under P. Applying the change of measure to (E.1) yields

. ref B/(1+B) ref
hobi(z,) = E <f°bJ(XrTQf)) % Xy =z,
frcf(XT ) Zt
(Xref B8/(1+8)
=hfef<Xt’t>_1El(m> W (e, 1) | Xi =
ref (A
1 B
_ T X )mf b'(XT)W
:hrCth 1E fef(T ob] X, = .
(Xe,) l p(X7,T | x0,0) e

Since

bPi(x,t) = b (2, 1) + 02V log h°P (x, t)
= b(x,t) + 0>V log h™ (z,t) + 0>V log h°P (z, 1),

we obtain (E.2). O
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F MNIST EXAMPLE

Figure F4 visualizes the 50 images in the data set D,pj, which are obtained by adding Gaussian noise to the
original images in MNIST. Figure F5 shows the new images generated by the two-stage Schrédinger bridge
algorithm of Wang et al. (2021) using only Dop; as the input.

Table F2 shows the inception scores (Salimans et al., 2016) for our generated images and the images of digit 8
in MNIST. The score of our samples for § = 1.5 is slightly higher than that of the digit 8 in MNIST dataset,
suggesting that our generated images of digit 8 exhibit a greater degree of variability than those in MNIST.
Additionally, when § = 100, our score aligns closely with that of Dgp; (i.e., the noisy digit 8 images from
MNIST), indicating that our method can recover the images in the target data set by using a large 8. For
small values of 3, the scores of our generated images are higher than that of digit 8 images in MNIST, primarily
because the reference dataset (consisting of the other digits) has greater variability and complexity. However, as
shown in Figure 1, when S is small, we do not necessarily get images of digit 8.

We also utilize t-SNE plots to visually characterize the distribution of our generated images. Figure F6 illustrates
that our samples come from the geometric mixture distribution interpolating between the noisy images of digit
8 and the clean images of other digits. Figure F7 demonstrates that SSB samples with 5 = 1.5 are positioned
closer to the clean images of digit 8 compared to the samples obtained with g = 100.

In our code, we use the neural network model of Song and Ermon (2019) for training the score functions and use
the neural network model of Wang et al. (2021) for training the density ratio function.

Figure F4: Samples in Dgp;. Figure F5: Samples Generated by the Algorithm of Wang
et al. (2021) Using Only Dgp;.

e Noisy samples of digit 8 e Clean images of digit 8
e Generated samples with=1.5

e Samples of other digits

e Generated samples with 8 =1.5

e Generated samples with 8 =100

30 —20 10 0 10 20 30—

Figure F6: t-SNE Plot Illustrating the Geo- Figure F7: t-SNE Plot Comparing SSB Sam-
metric Mixture Distribution with 5 = 1.5. ples with Clean Images in MNIST.
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Table F2: Inception Scores (mean + sd) for SSB Samples and the Images in MNIST.

Datasets (sample size ~ 5K) | Inception score
SSB with 8 =0 6.70 = 0.20
SSB with 8 = 0.25 6.59 £ 0.15
SSB with 8 =0.7 5.12 £ 0.11
SSB with 8 = 1.5 3.561 £ 0.08
SSB with 8 =4 3.65 + 0.04
SSB with 8 = 100 2.87 £ 0.04
Digit 8 in MNIST (clean) 3.29 + 0.04
Digit 8 in MNIST (noisy) 2.96 + 0.04
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