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ABSTRACT

The functional structure of proteins is heavily influenced by their folding behavior. AlphaFold, a
powerful artificial intelligence (AI) program trained on information from the Protein Data Bank
(PDB), was developed to predict the 3D structure of proteins from its amino acid sequence.
Inspired by this, we aim to elucidate structural features of synthetic single-chain polymer
nanoparticles (SCNPs) based on compositional information (monomers, chain length, molecular
weight, charge, and valency) by machine learning (ML). Specifically, we demonstrate the
effectiveness of ML to improve the efficiency of SCNP design and uncover important polymer

design attributes to mimic protein-like structural features. To start, we randomly screened over



1000 synthesized SCNPs through a combination of high-throughput dynamic light scattering
(DLS) and small-angle X-ray scattering (SAXS) and compared these results to simulated protein
data from the PDB. Then, utilizing evidential neural networks (ENets), we predicted, synthesized,
and characterized 30 novel compact SCNPs. Incredibly, this data-driven approach yielded 58% of
the predicted SCNPs with Porod exponent > 3.5 as opposed to 5% of SCNPs from the random
screen. Using Shapely additive explanation (SHAP) values, we further uncovered interesting
contributions of monomer content on Porod exponent and radius of gyration. From this work, we
have shown that an ML-guided approach proves effective for the challenging, unintuitive problem

of nanoparticle design.

INTRODUCTION

Proteins are remarkably complex macromolecules with specific functionality. The ultimate
principle in protein science is that amino acid sequence impacts the structure which in turn enables
function.!” Protein structure and folding requires a combination of hydrophobic interactions,
electrostatics, and hydrogen bonding.> * ¢ 7 A key requirement is dehydration whereby
hydrophobic amino acids form a hydrophobic core surrounded by solvent-accessible amino acids.
Additional intra- and intermolecular interactions permit even greater structural control.® Further,
concentration effects exist since below a characteristic concentration, the entropic cost of chain
collapse and chain-chain repulsion is greater than the benefit of avoiding contact with water.>
This extensive theoretical knowledge about protein folding along with significant information in
the Protein Data Bank (PDB) paved the path for AlphaFold, an artificial intelligence (Al) platform

that provides protein structural predictions given only the corresponding amino acid sequence.’



While this landmark advancement has significantly closed the gap in our ability to predict how
protein sequence organization impacts its ultimate morphology, these advancements beg the
question — is it possible to bridge the gap between design features and structural attributes for
synthetic macromolecules which lack the precise organization of globular proteins?

A class of synthetic macromolecules that mimic proteins are referred to as single-chain polymer

nanoparticles (SCNPs) which can collapse into higher ordered structures.'%'® These nanoparticles
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have potential as enzyme or protein mimetics, sensing nanomaterials,”> and drug
delivery systems.?*?6 Of particular interest is the use of SCNPs as multivalent therapeutics because
of their biophysical tunability and therefore ligand presentation.?”-2® Multivalent strategies provide
avidity or accumulated binding strength from presentation of multiple ligands and can be explained
mathematically using statistical thermodynamics. Greater valency theoretically increases
permutation entropy, or number of possible ligand-receptor interaction pairs, and thus results in a
more negative or favorable binding free energy. This effect tends to be more pronounced for
weaker binding ligands (e.g. peptides) which have a faster off-rate and allow for more potential
interactions.? Providing some optimal amount of polymer scaffold flexibility can impart sufficient
conformational freedom for ligands to position towards receptors and be in position to interact and
bind. Recently, Chapman and co-workers utilized a similar strategy with end-functionalized star
polymer-peptide conjugates to mimic the chemotherapeutic protein TNF-related apoptosis-
inducing ligand (TRAIL).?? Multivalency has also been implemented to improve binding affinity
and biological activity of erythropoietin (EPO) mimetic peptides, illustrating the appeal of this
approach.?%-3*

To effectively mimic protein therapeutics, there is a requirement to further optimize SCNP

design features that affect downstream signaling such as compactness, flexibility, and valency.>*



37 While complexity in the form of orthogonal chemistry may be required,'* *® a polymer coil-to-
globule transition is largely driven by hydrophobic collapse to form a core that is shielded from
aqueous solvent. Hydrogen bonding, n-n stacking, and electrostatics can both stabilize SCNPs and
enhance solubility.® There is an obvious relationship between polymer chain flexibility and
compactness: flexible polymers undergo intra-chain cross-linking and collapse and interacting
segments tend to increase in stiffness with reduced conformational degrees of freedom.?’

Despite our fundamental understanding of polymer physics, there is no established protocol to
design polymers with a desired conformation because of the inability to experimentally probe the
entire chemical design space. Traditional polymer chemistry techniques such as reversible
addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical
polymerization (ATRP) must be conducted in inert conditions.*> *° Introduced within the last
decade were air-tolerant photoinduced electron/energy transfer-RAFT (PET-RAFT),**° enzyme-
assisted ATRP,* enzyme-assisted RAFT (Enz-RAFT), *»* and ring-opening polymerization
(ROP) through water*® which have enabled polymerizations to be carried out directly in microplate
format. To further the ability to complete combinatorial chemistry, our group previously
demonstrated the potential of a plate-based gel filtration purification,>® high-throughput structural
characterization of SCNPs,’! and the adaptation of liquid handling robotics to complete polymer
synthesis and post-polymerization functionalization.’® > Others such as Gibson and co-workers
have also utilized liquid handling robotics for preparing and testing polymer libraries.>*-%

However, utilizing only high-throughput approaches to synthesize and characterize SCNPs runs
the risk of inefficiency, false positives and negatives, and difficulty with interpreting large
datasets.”” In previous work, we conducted high-throughput screening of a large combinatorial

library (> 450 copolymers) via dynamic light scattering (DLS) and small-angle X-ray scattering



(SAXS) to identify compact nanostructures.’! Due to polymer hydrophobicity and having a
relatively small dataset, we were unable to define a model to quantitatively inform further design,
thus serving as a motivation for this study. For such complex and non-intuitive material design
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problems, machine learning (ML) is emerging as an exciting approach for informing design.

61-63 and is being introduced for synthetic

ML has seen success in small-molecule organic synthesis
polymers® % to accelerate discovery of new materials with desired structural or functional
properties.®® %4  In particular, ML can be exploited to classify large datasets, uncover hidden
patterns, and reduce the number of variables for a multivariate dataset.®’” By accomplishing these
tasks, a data-driven approach can make predictions about material features of interest and further
our understanding of how these features can be designed in future experiments.®®7

In this study, we combined high-throughput polymer synthesis and characterization with ML to
aid the design of novel SCNPs that are compact and exhibit similar flexibility to ordered proteins.
We hypothesized that an ML-guided approach can be leveraged in an SCNP synthetic workflow
to identify difficult-to-design compact and rigid nanoparticles. First, we synthesized over 1000
amphiphilic random heteropolymer backbones containing varied composition (neutral, cationic,
and hydrophobic monomers), degree of polymerization (DP) (200, 300, and 400), functionalization
(2 kDa PEG, TRAIL mimetic peptide, or EPO mimetic peptide), and valency (2, 5, and 10 mol%).
Synthesized copolymers were characterized by SAXS and DLS to provide compactness and
flexibility information that was then compared against a parallel dataset of over 300 protein
structures extracted from the PDB with analogous theoretical compactness and flexibility. The
dataset of over 1000 synthesized copolymers were leveraged to train evidential neural networks

(ENets) to provide novel predictions for compact SCNPs.”"* 7 This approach successfully

identified novel SCNP structures that demonstrated remarkable compactness. Further, we



performed post hoc analysis of our data to understand how copolymer features influence SCNP

compactness and flexibility (Figure 1).
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Figure 1. Schematic of ML-guided approach for designing SCNPs. Proteins undergo a complex folding
process and possess a high level of structural order. Using synthetic materials, a ML approach is utilized to
model important design (DP, polymer composition, valency, and concentration) and structural features (Rp,

R,, compactness as Ry/Ry, and Porod exponent) to provide predictions for synthesizing novel copolymers

with desired properties.



RESULTS AND DISCUSSION
Random Screen of Copolymer Backbones and Polymer Conjugates

We began by investigating our initial library of copolymer backbones, copolymer-PEG
conjugates, and copolymer-peptide conjugates that we will refer to as a random screen. To explore
a broad compositional space, we employed N,N-dimethylacrylamide (DMA) as a neutral
monomer, [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAEMA) as a cationic
monomer, and methyl methacrylate (MMA) and butyl methacrylate (BMA) as hydrophobic
monomers. All representative monomer, copolymer, and copolymer conjugate structures are
provided (Figures S1-S4). Additionally, we varied DP (200, 300, and 400) and valency of
SPAAC-functionalized PEG or peptide (2, 5, and 10 mol%). For polymer-peptide conjugates, we
focused on two peptides that have been previously validated and characterized for binding with an
objective of enabling nanoparticle design.?% 30-** 73 All characterization data of PDB simulated
proteins (simulation details provided in Materials and Methods), copolymer backbones, PEG-
SCNPs, EPO-SCNPs, and WDCL-SCNPs are provided in Tables S3-S7.

After synthesis and characterization of copolymer backbones and copolymers conjugated with
PEG, EPO, and WDCL, various approaches were taken to visualize attributes of the large dataset.
Compactness (R¢/Rn) and flexibility (Porod exponent) are two parameters of interest in the realm
of SCNP design. Figure 2 illustrates kernel density estimation (KDE) and principal component
analysis (PCA) that were completed for the dataset to observe differences in flexibility between
subgroups. Compared to copolymer backbones, the conjugation of the EPO peptide on average
seemed to shift behavior towards that of proteins. These EPO-SCNPs tended towards increased
Porod exponent compared to that of copolymer backbones, showing greater similarity to the

behavior of the PDB proteins. The other subgroups of synthesized SCNPs (PEG and WDCL)



displayed more of a disparity with PDB proteins compared to EPO-SCNPs (Figure 2A). Ry/Rn
seems to have greater complexity as the two groups of polymer-peptide conjugates, the EPO-
SCNPs and WDCL-SCNPs, have greater overlap with compactness of PDB proteins than
copolymer backbones and PEG-SCNPs (Figure 2B). This is also reflected in the shift in median
R¢/Rn and Porod exponent, respectively, between the groups: Backbone (1.13, 1.8), PEG-SCNPs
(0.98, 1.8), WDCL SCNPs (0.91, 2.1), EPO-SCNPs (0.88, 2.8), and PDB proteins (0.85, 3.6).
Individual physical characterization data including values obtained from SAXS and DLS along
with feature information (molecular weight, charge, and hydrophobicity) are also provided (Tables
S3-S7).

While KDE plots in Figure 2A-C quantitatively show the influence of composition on structure,
2D PCA in Figure 2D-F seems to reflect that there are three distinct groups within the dataset
(Figure 2C) when we featurize the data using all known values (Rg, Rn, R¢/Rn, molecular weight,
total charge, total positive charge, total negative charge, log P, and HLB) (representation of
explained variance is provided in Figure S12). We also observe that when the data is featurized
by only polymer design features (DP, mol% DMA, mol% TMAEMA, mol% MMA, mol% BMA,
mol% NHS methacrylic acid, mol% DBCO, mol% PEG, mol% EPO, mol% WDCL, and molecular
weight) and colored by Porod exponent and R (Figure 2D,E), there does not seem to be a clear
gradient or dependency. These illustrations reveal that SCNP structural design contains non-linear
complexities that cannot be explained by simple feature correlations alone. Additional two-
dimensional KDE plots are provided for only chemical descriptors and experimentally derived

features (Figures S13 and S14).
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Figure 2. KDE and PCA of copolymers, copolymer conjugates, and proteins. KDE and PCA were used

to determine differences between the subgroups: proteins simulated from the PDB, copolymer backbones

(Backbone), PEG-SCNPs (PEG), EPO-SCNPs (EPO), and WDCL-SCNPs (WDCL). (A) The probability

densities associated with Porod exponents of PDB proteins, copolymer backbones, and EPO-SCNPs along

with PDB proteins, PEG-SCNPs, and WDCL-SCNPs are shown. (B) The probability densities associated

with Re/Ry of PDB proteins, copolymer backbones, and EPO-SCNPs along with PDB proteins, PEG-

SCNPs, and WDCL-SCNPs are provided. (C) PCA was completed for all groups using all features (Rg, Rh,

Porod exponent, Porod volume, Ry/Ry, molecular weight, total charge, total positive charge, total negative

charge, log P, and HLB) with explained variance of 0.608. PCA was also done using only polymer design

features (DP, % DMA, % TMAEMA, % MMA, % BMA, % NHS methacrylic acid, % DBCO, % PEG, %

EPO, % WDCL, and molecular weight), colored by (D) Porod exponent and (E) R,.
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Comparisons of the random experimental screen of copolymer backbones and copolymer
conjugates with the PDB protein dataset is important, however, some limitations should be noted.
While our PDB dataset would ideally contain a large percentage of both disordered and globular
proteins, intrinsically disordered proteins (IDPs) that lack secondary or tertiary structure only
comprise about 30% of the eukaryotic proteome.”* Also a large fraction of the structural
information in the PDB are for globular proteins with almost 90% of structures from
crystallography while the other 10% are from solution NMR and electron microscopy.” Although
we attempted to diversify our PDB dataset, it still included approximately 64% of structures from
X-ray crystallography. CRYSOL is a powerful program in the ATSAS package that enables
computation of theoretical SAXS curves given a PDB structure file as an input.’”® ”” While other
groups have also implemented this program to obtain information about IDPs,’* 783 CRYSOL is
limited by size or Dmax due to its use of spherical harmonics which can make the program
challenging for generating SAXS profiles of extended proteins.®® Especially for IDPs, the
maximum number of harmonics (50) should be selected, but there remains the possibility to
provide experimental scattering data to CRYSOL to improve fitting.

Additionally, KDE allows us to visualize the chemical space of our dataset in terms of total
charge, HLB, and log P compared to the simulated PDB proteins (Figures S18-S20). While
copolymer backbones are somewhat similar in total charge to a large portion of the PDB protein
population, there are differences between the two subgroups in HLB and log P. EPO-SCNPs and
WDCL-SCNPs appear to shift copolymer HLB closer to that of proteins, and these plots represent
that a combination of descriptors are likely required for the complex task of SCNP design. For
analysis and interpretation of SAXS and DLS data, we focused on two parameters of interest in

the realm of therapeutic receptor binding: compactness (R¢/Rn) and flexibility (Porod exponent).
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From the KDE plots, there seems to be three distinct groups based on distributions of PDB proteins
(narrow compact range with Porod exponent > 3.0), copolymer backbones and PEG-SCNPs (with
extended conformation and Porod exponent < 2.0), and EPO-SCNPs and WDCL-SCNPs (favor
compactness with a broad range of flexibility and intermediate Porod exponent from 2.0-3.0). The
data also indicates that peptidic side chains seem to shift copolymer behavior closer to that of
proteins in terms of both Ry/Ry and Porod exponent (Figure 2A,B).

We supplemented the PCA analysis displayed in Figure 2 by separating each subgroup and
labeling by features of interest (Porod exponent or R). In contrast to PDB proteins which displayed
greater Porod exponent throughout, the copolymer backbones and conjugates contained distinct
pockets of lower flexibility regions indicative of higher order that even differed between each
synthetic subgroup (Figure S15). This implies that it would be nearly impossible to logically
formulate a de movo framework for designing similarly structured compact copolymers.
Conversely, R, seems to have relatively more consistency between these regions of compact
structures (Figure S16). Simply focusing the PCA on SCNPs allowed us to expand our feature set
to include more polymer specific characteristics, resulting in greater spread within the EPO and
WDCL groups and demonstrating the utility of including relevant polymer descriptors in data
visualization and interpretation (Figure S17). While PCA and KDE are powerful tools for
dimensionality reduction or drawing conclusions about the overall dataset, they cannot provide us

feature importance or predictive capability which is why we must turn to other methods.®!

ML Investigation of SCNPs

While many copolymer conjugates were investigated in our initial study, only a small fraction

of SCNPs demonstrated significant compactness and flexibility. This is not surprising as designing
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self-folding behavior in synthetic macromolecules remains challenging. To facilitate further
control over these higher order behaviors, we utilized ML techniques to identify samples that
demonstrate compactness and protein-like flexibility. To do so, we began by training multiple
ENets to make predictions on SCNP parameters of interest (Rg, Rn, R¢/Rn, Porod exponent) directly
from chemical representations of polymer conjugate chemistry and chosen molecular descriptors
(see Materials and Methods). Predictions of Ry and Ry/Rn demonstrated low accuracy on held-out
validation data during training (Figure S5) and prediction accuracy of R, and Porod exponent was
significantly greater, leading us to utilize these models in our future design. The tuning of the ENet
regularization parameter is illustrated in Figure S6. To generate compactness and flexibility
predictions of copolymer conjugates similar to our synthesized samples, respective ENet models
were used to predict expected mean and variance of R, and Porod exponent for ~700,000
copolymer conjugate chemistries in silico. Comparable to our observations of compactness and
flexibility in our measured data of SCNPs, predictions of PEG, WDCL, and EPO suggested EPO-
SCNPs generally exhibited high Porod exponent and PEG-SCNPs were anticipated to demonstrate
the lowest R, (Figure S7).

As we were particularly interested in designing compact samples with protein-like features, 30
EPO-SCNPs were proposed for synthesis and characterization with low predicted Ry and high
predicted Porod exponent (see Materials and Methods). Since many of these samples demonstrated
limited solubility, likely due to large hydrophobic monomer fractions (Table S8), DLS and SAXS
characterization were completed on 12 of 30 samples. Remarkably, Figure 3A demonstrates that
ML-informed design appropriately identified numerous EPO-SCNPs exhibiting more similar
physical measurements to the PDB sampled proteins than prior EPO-SCNPs measured during our

random screen. While only 5% of SCNPs in the random screen demonstrated Porod exponent >
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3.5, ~58% of EPO-SCNPs proposed by the ENets demonstrated Porod exponents above this
threshold. Further, these differences are readily observed in the distinction in median Rg and Porod
exponent between initial EPO-SCNPs (8.4 nm and 2.7) and ENet proposed EPO-SCNPs (5.7 nm
and 3.5). As R; and Porod exponent shifted towards more protein-like values, R, remained large
for EPO-SCNPs (Figure S9). The Rg¢/Rn of an ideal sphere is 0.775, however, some of the
characterized SCNPs exhibited Ry/Rn < 0.775. This phenomenon was even more prevalent in the
ML predicted EPO-SCNPs. A few potential reasons for this include adoption of a core-shell
structure or molten globule with tight packing of the hydrophobic alkyl side chain surrounded by

a more dispersed shell.3% 83
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Because ENet models were generally successful in predicting more compact EPO-SCNPs, we
sought to understand the underlying chemical designs that led to compactness within our study.
For this, we computed Shapely additive explanations (SHAP) values to quantify the impact of
model features (monomers, peptide, DP) on prediction of both R, and Porod exponent.®* 3 In these
interpretations, positive SHAP values indicate a positive contribution to predicted Ry or Porod
exponent, and negative values indicate a negative contribution. Further, mean absolute SHAP
values for individual features are used as a metric for overall feature importance. Figure 3B
demonstrates that different EPO-SCNP features play primary roles in the predictions of Rg or
Porod exponent. For example, while BMA is measured to be the most impactful parameter for
predicting R;, DMA demonstrates the largest absolute SHAP value for predictions of Porod
exponent. To further investigate these differences, we compare all SHAP values for predictions of
R; and Porod exponent (Figure 3C). As our objective in this study was to identify highly compact
SCNPs, we anticipated that EPO-SCNPs hydrophobicity would be important to induce single chain
folding through induction of a hydrophobic core. Interestingly, BMA, a highly hydrophobic
monomer, not only demonstrates the largest feature importance for Ry but also demonstrates a
large negative SHAP for R, at high levels of incorporation, in line with our design objective of
minimizing R, (Figure 3D). Additionally, despite not being as impactful to the ENet model for
Porod exponent, BMA demonstrates a positive SHAP contribution to Porod exponent at high
monomer incorporation. This suggests that high incorporation of BMA is ultimately synergistic to
both design objectives. In contrast to this synergistic behavior for BMA, DMA, the chemical
feature with highest absolute SHAP value for predicted Porod exponent, demonstrated competing
behavior in predicting high Porod exponent and small Rg. Highly correlated SHAP values for DMA

between Porod exponent and Rg demonstrate that high DMA incorporation leads to positive SHAP
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values for Porod exponent (in line with our objective), yet high DMA also leads to positive SHAP

values for Ry, a parameter we aimed to minimize.

Structural Characterization of Predicted SCNPs

Once ML guided design was completed, individual copolymer backbones and copolymer
conjugates were further inspected for interesting structural characteristics. Table 1 contains a
summary of BSA, EPO-SCNPs from the random screen, and a ML predicted EPO-SCNP with
design features (DP, valence, molecular weight, and HLB). Other quantities included were those
obtained by a combination of SAXS and DLS (Rg, Rn, Re/Rn, and Porod exponent). BSA, widely
used as a model compact and ordered protein, is presented alongside other copolymer conjugates
that displayed evidence of compactness from the random screen (EPO119, EPO163, EPO166, and
EPO172). We have also included the ML predicted compact EPO-SCNP (ML EPO24).
Conversely, the extended and water-soluble polymer PEG 35 kDa is presented alongside other
EPO SCNPs that exhibited extendedness (EPO18, EPO59, EPO229, and EPO308). In terms of the
copolymer design features provided in Table 1 (monomer composition, DP, valence, molecular
weight, and HLB), there is no clear distinction in the physicochemical characteristics between
these two groups, although extended copolymers and copolymer conjugates tended to exhibit
greater hydrophilicity with a higher weighted HLB. This is further evidence that the problem of
SCNP design does not contain a simple solution with a single parameter. We can, however,
visualize a clear gap between these two groups of samples in terms of measured Ry/Ri and Porod
exponent as compact macromolecules tended towards Rg/Rn ~ 0.775 and Porod exponent from 3.0-
4.0, while extended ones tended towards Rg/Rn > 1.00 and Porod exponent < 2.0. The gap suggests

that incorporation of experimental data may be useful in defining a framework for SCNP structural
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design. Also, SEC-MALS was completed to quantify molecular weight and P for copolymer

backbones (Table S1 and Figure S10) while UV-vis spectroscopy was conducted to determine

DBCO incorporation which has implications for valency (Table S2).

Table 1. Physical characterization data of highlighted random screen and ML predicted EPO-SCNPs

along with BSA and PEG.
ID Polymer Composition DP Valence MWqgeoretica HLB R, Ry R,/Ry, Porod
(kDa) (nm) (nm) Exponent

BSA - - -- 66.5 3.07 4.00 0.775 39
ML EPO24 DMA 47.5% / TMAEMA 12.5% / BMA 35% 275 2.5% 53.5 7.31 12.10  0.604 4.0
EPOI119 DMA 85% / TMAEMA 5% / MMA 5% 200 5% 48.6 14.0 8.38 10.90 0.769 32
EPO163 DMA 88% / MMA 10% 200 2% 33.1 12.7 7.81 9.70  0.805 3.6
EPO166 DMA 93% / BMA 5% 200 2% 31.3 10.5 8.16 10.39  0.785 3.7
EPO172 DMA 93% / MMA 5% 300 2% 46.4 11.9 9.17 11.76 ~ 0.780 3.8
PEG PEG 100% 794 0% 35.0 10.9 5.10 4.50 1.13 1.5
EPO18 DMA 45% / TMAEMA 25% / MMA 17% / BMA 3% 300 10% 1214 17.4 11.35 6.54 1.74 2.2
EPO59 DMA 45% / TMAEMA 25% / MMA 12% / BMA 13% 400 5% 108.2 14.6 9.37 7.26 1.29 1.5
EPO229 DMA 73% / TMAEMA 15% / BMA 10% 200 2% 35.0 12.6 6.75 3.60 1.88 2.3
EPO308 DMA 50% / TMAEMA 25% / BMA 20% 400 5% 109.3 14.6 9.89 9.40 1.05 2.1

Further, SAXS data are illustrated for the same compact and extended EPO-SCNPs from the
random screen and ML-guided design alongside controls BSA and PEG 35 kDa (Figure 4). This
includes the SAXS intensity profiles, normalized Kratky plot, and Porod plot of the compact
copolymer conjugates (ML EPO24, EPO119, EPO163, EPO166, and EPO172) and BSA (Figure
4A-C). The same was included for extended copolymer conjugates (EPO18, EPO59, EPO229, and
EPO308) and PEG 35 kDa (Figure 4D-F). There was reasonable overlap in SAXS intensity
profiles of the synthesized copolymers and copolymer conjugates with the controls. Further,
characteristic behavior of macromolecular compactness and flexibility were exhibited through
respective intensity, Kratky, and normalized plots (Figures S21-S23). Compact and extended
SCNPs displayed SAXS features similar to highly ordered protein BSA and the extended polymer
PEG, respectively. While the SAXS intensity profiles show agreement between synthesized

SCNPs and their respective compact and extended controls, normalized Kratky plots qualitatively
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confirm that the degree of order is also in reasonable agreement. Interestingly, the ML EPO24
SCNP exhibits order more similar to that of BSA when compared against other SCNPs from the
random screen (Figure 4B). These normalized Kratky plots can be useful in the case of
combinatorial libraries that may contain various measured concentrations and thus differences in
scattering intensity at zero angle, referred to as 1(0). Therefore, deviations from BSA in terms of
peak broadness and intensity in the normalized Kratky plot reflect on the varying degrees of order.
This work also illustrates that we can synthesize a wide range of SCNPs using ML-predicted
compositions to obtain the desired compactness and flexibility utilizing PET-RAFT and click

chemistry (Figures 2 and 4).

18



-— ESA

—,\ — e 0.0175/ s 0.00005 - ;n;;;gz‘-
10", — ::g-?: 0.0150 = Eng‘ﬁ — ::g::i
Erom S Erogs 0.00004/ Ergies
= W T 0.00003
= -
o
- 0.00002
.
107" "
‘ NG 0.00001
¢
107" 107" S 000000555
g(A™h g* (A~*x 107%)
D F
101 a— PEG ; | — PEG
o 0.000020 — in
\ -— EPO229
5 EPOS59
o = 0.03 EPU;;E EPO308
= =3 0.000015
G _O'\_’u | —_
— G Y. 5
CA = 002 T =
o P <. 0.000010]
< i~
g S0t f
10 (W ; 0.000005
/
10° 10" %20 05 10 0.000000
A-1 0 2 4 6
il ARg q* (A4 x 10~5)

Figure 4. SAXS summary of compact and extended EPO-SCNPs from the random screen and ML
prediction. (A) SAXS intensity plot of compact protein BSA, ML predicted compact EPO-SCNP (ML
EPO24), and randomly screened compact EPO-SCNPs (EPO166, EPO119, EPO163, and EPO172).
Compact behavior is revealed with characteristic (B) normalized Kratky and (C) Porod plots. (D) SAXS
intensity plot of extended PEG 35 kDa and randomly screened extended EPO-SCNPs (EPO18, EPO229,
EPO59, and EPO308). Extendedness is illustrated through characteristic (E) normalized Kratky and (F)

Porod plots.
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CONCLUSION

While AlphaFold supplies protein structural information from specific amino acid sequences, a
design-structure gap exists for synthetic macromolecules. As high-throughput polymer chemistry
provides new opportunity for data-driven design, we aimed to bridge the gap between synthetic
SCNP design features and structural characteristics (compactness and flexibility) where sequence-
level control is not yet possible. It is clear from this large dataset of copolymers and copolymer
conjugates that the synthesis and design of SCNPs is a multi-objective problem with high
complexity as there are design features and measured characteristics that are interrelated.®® SCNPs
contain nearly an infinite chemical space with the potential to select features such as DP, monomer
composition, architecture, and valency, but the question remains of how to select an initial polymer
library. In this work, we intuitively selected copolymers based on theoretical log P and attempted
to prescreen these combinations using DLS. Employing our own logic can result in inefficiencies
and may require a more iterative process which can be difficult to implement experimentally
especially with a technique such as SAXS.®® 87 Another challenge with complex copolymer
conjugates involves deconvoluting physical contributions between polymer and peptide which
would require other techniques such as NMR or small-angle neutron scattering (SANS).% In
addition to all of these factors, it is likely difficult to synthesize structures with the same level of
order and folding as proteins mainly because of the lack of sequence-level control.® '8 67-87. 89,90
Until advances are made to achieve this level of control with synthetic ease, polymer chemists may

91-93

need to rely on quantifying reactivity ratios, illustrating compositional drift,’* and potentially

designing for molecular weight distribution.”> Others are even making efforts to increase

97, 98

complexity with polymer design,?* ¢ biologically inspired monomers, and multi-orthogonal
Y g
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approaches.” * Combining informative approaches such as ML, simulations, and structural
characterization can only strengthen the SCNP design paradigm.

In summary, our objective was to demonstrate the utility of a data-driven design approach for
identifying compact SCNPs that are challenging to design de novo. We first completed a random
screen of over 1000 SCNP random heteropolymers and copolymer conjugates with varied DP,
composition, valence, and functionality. In this random screen, we characterized SCNPs by DLS
and SAXS to quantify macromolecular compactness and flexibility. Data visualization approaches
(KDE and PCA) demonstrated that this is a complex multi-objective problem that cannot be
understood by simple chemical design principles alone and seemed to indicate that polymer-
peptide conjugates served as an intermediate between disordered copolymers and folded proteins.
We proceeded to employ ENets to predict compact EPO-SCNPs with R, < 7 nm and Porod
exponent from 3.7-4.0 and randomly sampled 30 EPO-SCNPs which were synthesized and
characterized to validate the model. While the initial random screen only resulted in 5% of SCNPs
with Porod exponent > 3.5, about 58% of the ENets predicted SCNPs exhibited a Porod exponent
> 3.5. Not only did this ML-guided approach improve SCNP design efficiency, SHAP analysis
uncovered interesting design features such as the importance of DM A and BMA monomer content
on Porod exponent and Ry. In conclusion, our work has illustrated that data-driven design provides
a much-needed solution to the often-unintuitive problem of nanoparticle design and provides an

potential framework for understanding synthetic macromolecule design-structure relationships.
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MATERIALS AND METHODS
Materials

The monomers DMA (Sigma-Aldrich), MMA (Alfa Aesar), BMA (Alfa Aesar), and TMAEMA
(Fisher Scientific) were sourced from a variety of vendors. The chain transfer agent 4-cyano-
4[(dodecylsulfanylthiocarbonyl)sulfanyl] pentanoic acid and initiator zinc tetraphenylporphyrin
(ZnTPP) were purchased from Sigma-Aldrich and Fisher Scientific, respectively.
Dibenzocyclooctyne-amine (DBCO-NH2) which was used for click chemistry was purchased from
Click Chemistry Tools while 4-dimethylaminopyridine (DMAP) was purchased from Sigma-
Aldrich. Traditional Fmoc amino acids (CEM Corporation), Fmoc-L-lysine-N3 (Lys-N3) (Chem-
Impex International), and the spacer Fmoc-N-amido-PEG:-acid (PEG;) (BroadPharm) were
utilized for solid-phase peptide synthesis. Methoxypolyethylene glycol azide with M, = 2000 Da

(PEG-N3) (Sigma-Aldrich) was the other molecule conjugated onto the synthesized copolymers.

Automated PET-RAFT

Automated PET-RAFT was completed using oxygen-tolerant PET-RAFT chemistry*!: 44

coupled with adaptation of the Hamilton Microlab STARIet liquid handling robot to complete this
chemistry.’> The DMA, MMA, BMA, and TMAEMA monomers were prepared at a 2 M
concentration in DMSO and deinhibited by passing solutions through columns containing inhibitor
remover beads (Sigma-Aldrich), glass wool (Fisher Scientific), and aluminum oxide (Sigma-
Aldrich). Meanwhile, the methacrylic acid NHS monomer was prepared in anhydrous DMSO at
0.4 M with 1 mol equivalent acetic acid/NHS. The degree of polymerization (DP) of the polymer

was varied between 200, 300, and 400 by shifting the final monomer:CTA molar ratios (200:1,
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300:1, and 400:1) and fixing the final CTA:ZnTPP molar ratio (50:1). All reagents were loaded
into 1.5 mL centrifuge tubes, dispensed by the liquid handling robot into a 96-well polypropylene
plate, and photoinitiated by a 560 nm LED light for 16 h. Representative monomer, copolymer,

and copolymer conjugate structures were also included (Figures S1-S4).

Solid-Phase Peptide Synthesis

The WDCL (WDCLDNRIGRRQCV-{Lys-N3}-L-amide) (Cyc 3, 13) (99% purity) and EPO
(GGTYSCHFGPLTWVCKPQ-{PEG2}-SS-{Lys-N3}-amide) (Cyc 6, 15) (99% purity) peptides
were synthesized by solid-phase peptide synthesis. HPLC chromatograms demonstrating peptide
purity are provided (Figure S11). This was completed using a Liberty Blue automated microwave
peptide synthesizer (CEM Corporation) on Rink Amide ProTide Resin with 0.16 mmol/g loading
(CEM Corporation). 1 M Oxyma and 1 M DIC were used as the base and activator along with 20%
(v/v) piperazine in DMF as the deprotection solution. Both cysteine-containing peptides were
cleaved off the resin by bubbling for 4 h in a 95% (v/v) trifluoroacetic acid (TFA), 2.5% (v/v)
triisopropylsilane (TIS) (Fisher Scientific), and 2.5% (v/v) ultrapure H20 with 2.5% (w/v)
dithiothreitol (DTT) (Sigma-Aldrich). The solution was collected, the resin was washed three
times with DCM, and the solution was rotary evaporated to remove TFA. Peptide was precipitated
in cold diethyl ether and centrifuged at 3000 g for 10 min with a total of three wash steps. Overnight

vacuum desiccation left solid pellets of peptide.
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Peptide Purification and Cyclization

The peptide pellets were dissolved in water/0.1% (v/v) TFA (at a concentration of about 5
mg/mL) and purified using the CombiFlash RF200 Flash Chromatography instrument (Teledyne
Isco) equipped with a 50 g RediSep Rf Gold Reversed-Phase C18 column. 5 mL of peptide solution
was loaded for each round of purification. At a 40 mL/min flow rate with H>O/0.1% TFA (solvent
A) and acetonitrile (solvent B), the gradient used was: 0% solvent B from 0-3 min, ramped up to
100% solvent B at 9 min, ramped down to 0% solvent B at 11 min, and held at 0% solvent B until
15 min. Collected sample fractions were rotary evaporated to remove acetonitrile and trace
amounts of TFA before lyophilizing. For cyclization, lyophilized peptides were reconstituted in a
10 mM borate buffer (pH 8.5) and stirred for 24 h. These peptides were then purified and

lyophilized a second time.

Automated Post-Polymerization Modification

DBCO-NH: addition was completed in an automated fashion using the Hamilton Microlab
STARIet liquid handling robot.> Both DBCO-NH> and DMAP were prepared at 0.1 M in DMSO.
Inputting custom user-defined reagent addition scripts allowed for addition of DBCO-NH> and
DMAP directly into the 96-well plates based on methacrylic acid NHS content (molar ratio of
DBCO-NH2:DMAP:NHS of 1:1:1). This reaction was left overnight to completion in sealed 96-

well plates.
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Purification, Peptide Addition, and Sample Preparation

After DBCO-NH2 and DMAP addition, all copolymers were purified using 96-well Zeba filter
plates (Thermo Fisher Scientific) manually packed with Sephadex G-25 superfine, following a
previously published protocol.>® Incorporated DBCO concentration was quantified by measuring
absorbance at the characteristic wavelength of 310 nm and comparing to a DBCO-NH: standard
curve. Addition of WDCL and EPO peptides to conjugate onto copolymers by strain-promoted
azide-alkyne cycloaddition (SPAAC) was performed using the same automated reagent addition
scripts as the DBCO-NH> and DMAP addition step and left overnight for reaction completion.
Polymer-peptide conjugates were then diluted 3x in DMSO and 10x in ultrapure H>O before being
dialyzed into H,O using Spectra/Por 6 RC 18 mm dialysis tubing (Repligen). Dialysis was
completed with three H>O changes over a period of two days. The remaining solutions were then

lyophilized.

Size-Exclusion Chromatography-Multi-Angle Light Scattering (SEC-MALS)

SEC-MALS was completed on two separate systems (organic and aqueous) to quantify polymer
backbone molecular weight and dispersity (D) depending on solubility. A 1200 series Agilent GPC
was used to run all SEC-MALS. An organic system running on DMF with 50 mM LiBr mobile
phase and an aqueous system running on 0.5x PBS (BioShop) with 0.02% (w/v) sodium azide
were utilized depending on polymer solubility. The organic system separated copolymers by
passing through two Agilent PLgel 5 um columns in series (10° and 10* A, 300 x 7.5 mm). The
aqueous system utilized a Superose 12 10/300 GL 11 pm column (300 x 10 mm). Both systems

contained a pre-column stainless steel filter with a 2 pm pore size (VWR). Following the columns
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are an Agilent UV detector, Wyatt Technology miniDAWN TREOS MALS detector, and Agilent
1260 Series differential refractive index (RI) detector. SEC calibration and MALS detector
normalization was carried out with polyethylene oxide standards (Agilent). All copolymers were
prepared at approximately 2 mg/mL and filtered with a 0.45 um PTFE filter for organic SEC-

MALS and a 0.45 pum nylon filter for aqueous SEC-MALS.

High-Throughput Dynamic Light Scattering (DLS)

Initial DLS screening of copolymers was conducted in 384-well plates using the DynaPro DLS
Plate Reader III (Wyatt Technology) which uses a wavelength of 830 nm and scattering detector
angle of 173°. For this, copolymers were diluted directly from the reaction volume into HBS-EP+
buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.05% P20 at pH 7.6) (VWR) such that
solutions contained 1% (v/v) DMSO. Hydrodynamic radius (Rn) and diffusion interaction
parameter (kp) of copolymers was quantified by cumulants analysis by using auto-attenuation with
20 acquisitions, 5 s/acquisition, and four concentrations depending on the molecular weight of the
copolymer. This screening enabled selection of copolymers, polymer-PEG conjugates, and
polymer-peptide conjugates for later SAXS characterization. For this, copolymers and copolymer
conjugates had to be lyophilized to allow for proper SAXS buffer matching. DLS data was
collected for lyophilized samples in 384-well plates using the same acquisition settings for
concentrations of 1, 2, 5, and 10 mg/mL for polymer backbones and 1, 2, and 5 mg/mL for
copolymer conjugates. All samples were centrifuged at 10,000 g for 10 min before loading the
supernatant into 384-well plates for data collection. A data filter was applied to all data to assess
data quality, following the Wyatt Technology default parameters (minimum amplitude = 0,

maximum amplitude = 1, and baseline limit =1 + 0.01).
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High-Throughput Small-Angle X-ray Scattering (SAXS)

SAXS experiments were conducted at beamline 16-ID of the National Synchrotron Light Source
IT (NSLS-II) at Brookhaven National Laboratory (Upton, NY) which is for Life Science X-ray
Scattering (LiX). Copolymers and copolymer conjugates were lyophilized and prepared at
different concentration ranges (1-10 mg/mL and 1-5 mg/mL, respectively). All samples were
centrifuged at 10,000 g for 10 min. Copolymers and copolymer conjugates were transferred from
PCR plates to PCR tubes manually on-site using multichannel pipettes. In this format, samples and
buffer blanks were loaded into custom sample holders where a robotic arm can handle a sequence
of sample holders (1 buffer for every 3 samples). This beamline contains three Pilatus 1M detectors
which have a g range 0f 0.005-3.13 A! (q=0.005-0.25 A"! was taken as the small-angle region).!%"-
102 A1l background subtracted data were analyzed using BioXTAS RAW 2.1 with ATSAS 2.8.4 to
perform Guinier analysis and indirect Fourier transform (IFT) in the same manner as previously
done.>!: 76 103. 104 Porod analysis was also utilized to quantify the flexibility of each copolymer
chain in BIOSIS ScAtter 4.0.19 1% Once the hyperbolic Porod region was identified, the linear

region of the ¢* I(q) vs ¢* Porod-Debye plot was selected to determine the Porod exponent.!97-110

Simulated PDB Dataset

Because proteins are well-characterized and this work takes inspiration from protein design, we
compiled a set of 304 PDB files of single protein species. These PDB files were used as an input
to obtain simulated SAXS I(q) vs ¢g. The simulated data was generated in CRYSOL, a program in
the ATSAS software suite.”® 7’ For a ¢ range of 0-0.25 A™!, default parameters were used except
for the number of points in the g range which was increased to 200 points. With the simulated

SAXS data, the same analysis was completed as was done for experimental data of copolymers
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and copolymer conjugates to compute Rg, Dmax, Porod exponent, and Porod volume. These
structure files were also input into HullRad which can calculate hydrodynamic size with a convex
hull model.''! The FASTA files associated with each PDB entry selected were then used to
calculate chemical parameters such as molecular weight, total charge, total positive charge, total

negative charge, log P, and HLB.

ML Models

Data obtained from random screening SAXS and DLS experiments were utilized to train

evidential regression networks (ENets);’!: 7>

a type of deep neural network for prediction of Ry, Rn,
Rg/Rn, and Porod Exponent. In this approach, a neural network is trained to predict the
hyperparameters (y, v, @, ) of a normal-inverse gamma (NIG) distribution representative of
labeled data. This enables efficient prediction of complex data, while also learning uncertainty
within data. To train the networks, relative incorporation of monomers, peptides, and degree of
polymerization of SCNPs were represented as one-hot encoding vectors and normalized using Sci-
Kit Learn’s RobustScaler transform. ENets were trained to predict the normalized values of Ry,
Rn, Ry/Ry, and Porod exponent after RobustScaler transformation. To determine effective ENet
hyperparameters, we performed 10-Kfold cross-validation utilizing the Python KerasTuner
package to minimize a combined loss function of negative log-likelihood (NLL) loss, a
regularization coefficient, and mean squared error (MSE) as described elsewhere.!'> Optimal
hyperparameters that were identified on nine of ten folds were then utilized to make predictions
on target Ry, Rn, R¢/Rn, and Porod Exponent values from the remaining fold. This process was

repeated for each fold until predictions on all held-out folds were made. These 10 sets of held-out

predictions were then utilized to validate model performance and determine a final set of
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hyperparameters for forward predictions of EPO-SCNPs (Figure S5). To determine an appropriate
value for our loss function regularization coefficient (L?), values from le-5:1 were evaluated by
observing model confidence on held-out data predictions. An LR of 0.1 was selected for further
hyperparameter optimization as it demonstrated effective calibration of uncertainty on held out

data (Figure S6).

Prediction and Selection of Compact SCNPs

To propose candidate SCNPs for synthesis and characterization, ENets trained on Porod
exponent and R, respectively were utilized to predict NIG distributions for ~750,000 SCNP
candidates representative of similar chemical constraints during our random screen. As we
observed that predictions for EPO-SCNPs demonstrated an overall greater Porod Exponent than
WDCL-SCNPs and PEG-SCNPs (Figure S7), we limited our selection to EPO-SCNPs for
synthesis. From the remaining predictions, candidates were filtered to require predicted Ry <7 nm,
Porod exponent of 3.7 - 4.0, and exist in the lowest quartile of predicted variance for Porod
exponent predictions. These criteria filtered possible candidates to 336 SCNP chemistries, from
which 30 were randomly sampled for final synthesis and characterization. Additionally, to ensure
that proposed EPO-SCNPs were not highly similar to previously synthesized SCNPs in our random
screen, three-dimensional PCA analysis was performed on ENet proposed EPO-SCNPs in
comparison to EPO-SCNPs evaluated during random screen (Figure S8). Distinct differences

between model proposed EPO-SCNPs and random screened samples are observed.
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