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a b s t r a c t

The Toda lattice (1967) is a Hamiltonian system given by n points on a line governed by an exponential
potential. Flaschka (1974) showed that the Toda lattice is integrable by interpreting it as a flow on the
space of symmetric tridiagonal n × n matrices, while Moser (1975) showed that it is a gradient flow
on a projective space. The symmetric Toda flow of Deift, Li, Nanda, and Tomei (1986) generalizes the
Toda lattice flow from tridiagonal to all symmetric matrices. They showed the flow is integrable, in
the classical sense of having d integrals in involution on its 2d-dimensional phase space. The system
may be viewed as integrable in other ways as well. Firstly, Symes (1980, 1982) solved it explicitly
via QR-factorization and conjugation. Secondly, Deift, Li, Nanda, and Tomei (1986) ‘tridiagonalized’ the
system into a family of tridiagonal Toda lattices which are solvable and integrable. In this paper we
derive their tridiagonalization procedure in a natural way using the fact that the symmetric Toda flow
is diffeomorphic to a twisted gradient flow on a flag variety, which may then be decomposed into
flows on a product of Grassmannians. These flows may in turn be embedded into projective spaces
via Plücker embeddings, and mapped back to tridiagonal Toda lattice flows using Moser’s construction.
In addition, we study the tridiagonalized flows projected onto a product of permutohedra, using the
twisted moment map of Bloch, Flaschka, and Ratiu (1990). These ideas are facilitated in a natural way
by the theory of total positivity, building on our previous work (2023).

© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

This paper concerns the symmetric Toda flows and their con-
ections with the classical Toda lattice, gradient flows on adjoint
rbits, and flows on moment polytopes. The (finite nonperiodic)
oda lattice [1] (cf. [2]) is a Hamiltonian system of n points on
line of unit mass governed by an exponential potential, with
amiltonian

1
2

n∑
i=1

p2i +
n−1∑
i=1

eqi−qi+1 .

ollowing Flaschka [3], we make the change of variables

i :=
1
2 e

qi−qi+1
2 for 1 ≤ i ≤ n− 1 and

bi := −
1
2
pi for 1 ≤ i ≤ n,
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which we arrange into the symmetric tridiagonal matrix

M :=

⎡⎢⎢⎢⎢⎣
b1 a1 0 · · · 0
a1 b2 a2 · · · 0
0 a2 b3 · · · 0
...

...
...

. . .
...

0 0 0 · · · bn

⎤⎥⎥⎥⎥⎦ ; we also let

πu(M) :=

⎡⎢⎢⎢⎢⎣
0 −a1 0 · · · 0
a1 0 −a2 · · · 0
0 a2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎦
e the skew-symmetric part of M . Then the Hamiltonian equa-
ions can be written in Lax form as
˙ = [M, πu(M)], (1.1)

here Ṁ denotes the derivative of M with respect to time t . Then
he eigenvalues of M are preserved along the flow, and allow one
o define n integrals in involution [4–6], showing that the Toda
attice is integrable.

Moreover, Moser [4] expressed the Toda lattice flow as a
radient flow on a projective space. Namely, let λ1 > · · · > λn
enote the eigenvalues of M (they are necessarily distinct), and
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or 1 ≤ i ≤ n, let v(i)
∈ Rn be the eigenvector of M with

eigenvalue λi such that ∥v(i)
∥ = 1 and its first entry v

(i)
1 is positive

(v(i)
1 is necessarily nonzero). Setting x := (v(1)

1 : · · · : v
(n)
1 ) ∈

Pn−1(R), we can write the Hamiltonian equations (1.1) as

ẋi = λixi for all 1 ≤ i ≤ n. (1.2)

Conversely, given x ∈ Pn−1(R) with positive entries, Moser con-
structed a unique corresponding symmetric tridiagonal matrix M
with eigenvalues λ1 > · · · > λn and positive entries immediately
above and below the diagonal, giving a diffeomorphism

x ↦→ M. (1.3)

More generally, Deift, Li, Nanda, and Tomei [7] considered
the flow (1.1) for arbitrary (not necessarily tridiagonal) n × n
symmetric matrices M , called the (full) symmetric Toda flow. They
constructed ⌊

n2
4 ⌋ integrals in involution, showing that the flow is

ntegrable.
This systemmay be seen to be integrable in other ways as well.

irstly, Symes [5,6] found an explicit solution using factorization
nd conjugation. Namely, given an n × n matrix g , let πU(g)

denote the unitary matrix obtained by applying Gram–Schmidt
orthonormalization to the columns of g; equivalently, πU(g) is
he Q -term in the QR-factorization of g . Then if M(t) denotes the
olution to (1.1) beginning at the symmetric matrix M0, we have

(t) = πU(exp(tM0))−1M0 πU(exp(tM0)) for all t ∈ R.

Secondly, Deift, Li, Nanda, and Tomei [7, Section 7] ‘tridiag-
nalized’ the symmetric Toda flow into a family of n − 1 Toda
attices which are solvable and integrable. The main goal of this
aper is to derive this tridiagonalization procedure in a natural
nd geometric way.
In order to state our results, we introduce some notation. Let

n denote the group of n× n unitary matrices, and let un denote
ts Lie algebra, consisting of all n × n skew-Hermitian matrices.
iven a symmetric (or more generally, Hermitian) n × n matrix
, we associate to it the skew-Hermitian matrix L := iM (where
=

√
−1). If M has eigenvalues λ, then L lies in the adjoint

rbit Oλ of un consisting of all skew-Hermitian matrices with
eigenvalues iλ1, . . . , iλn. Then we can write the symmetric Toda
flow as the flow

L̇ = [L, πu(−iL)] on Oλ. (1.4)

bove, the projection πu(·) onto un is defined such that N−πu(N)
s upper-triangular with real diagonal entries.

In the case that the eigenvalues λ1, . . . , λn are distinct, we
onstruct a piecewise-smooth involution ϑλ on Oλ, called the
wist map. It sends L = g(iDiag(λ) )g−1 to g−1(iDiag(λ) )g , where
or a given L the unitary matrix g ∈ Un of eigenvectors is chosen
ccording to a certain normalization condition (3.2), coming from
he Bruhat decomposition. We then use ϑλ to show that the
ymmetric Toda flow (1.4) is a gradient flow (see Theorem 4.6):

heorem 1.1. Let λ = (λ1 > · · · > λn). Then the symmetric Toda
low (1.4) on Oλ is, upon applying the twist map ϑλ, the gradient
low in the Kähler metric with respect to Diag(−iλ1, . . . ,−iλn) ∈

n.

Now let Fln(C) denote the complete flag variety, consisting of
ll chains of subspaces (V1, . . . , Vn−1) of Cn such that

1 ⊂ · · · ⊂ Vn−1 and dim(Vk) = k for all 1 ≤ k ≤ n− 1.

iven L ∈ Oλ, let Vk (for 1 ≤ k ≤ n − 1) denote the subspace of
n spanned by the eigenvectors corresponding to the eigenvalues

λ1, . . . , iλk. It is well-known (and one can verify) that the map
∼=
−→ Fl (C), L ↦→ (V , . . . , V ) (1.5)
λ n 1 n−1

2

s an isomorphism. Also, Fln(C) has the structure of a projective
ariety, given by the Plücker embedding

Fln(C) ↪→

n−1∏
k=1

P((nk)−1)(C) (1.6)

see (2.3)). Then by Theorem 1.1, we can embed the symmetric
oda flow (1.4) onOλ as a gradient flow on a product of projective
paces. The gradient flow on each projective space can be written
n the form (1.2), which by Moser’s map (1.3) is equivalent to a
oda lattice flow; in general, for the kth projective space, the as-
ociated tridiagonal matrix has size

(n
k

)
×
(n
k

)
. We may summarize

his as follows (see Theorem 6.13 for a precise statement):

heorem 1.2. The tridiagonalization procedure of Deift, Li, Nanda,
and Tomei [7, Section 7] of the symmetric Toda flow (1.1) on n× n
symmetric matrices M is given as follows. By multiplying by i and
applying the maps ϑλ, (1.5), and (1.6), we can embed the symmetric
Toda flow as a gradient flow on the product of projective spaces
n−1∏
k=1

P((nk)−1)(R).

For (p1, . . . , pn−1) ∈
∏n−1

k=1 P((nk)−1)(R), we disregard the zero
coordinates of every pi (for 1 ≤ i ≤ n − 1) and replace each
nonzero coordinate of pi with its absolute value. Then applying
Moser’s map (1.3) embeds the symmetric Toda flow into a family
of n− 1 tridiagonal Toda lattice flows.

As an application, we apply a construction of Bloch, Flaschka,
and Ratiu [8] which maps the tridiagonal Toda lattice flows home-
omorphically onto the associated moment polytope (a permutohe-
dron). Theorem 1.2 allows us to embed the symmetric Toda flow
as a flow on a product of n−1 permutohedra (see Proposition 7.3).
We also consider a closely related construction, which maps the
symmetric Toda flow to a flow on a product of n−1 hypersimplices
(moment polytopes for Grassmannians). We pose the problem of
whether this map is an embedding (see Problem 7.6).

We mention that one of our motivations for studying the
symmetric Toda flow is its relationship with the theory of total
positivity for flag varieties, introduced by Lusztig [9]. While total
positivity is not part of the statements of our main results, it was
key to our preceding work [10] and provided the impetus for this
work. For example, Theorem 1.1 is inspired by [10, Theorem 8.6].
We refer to [10] for further details on total positivity, as well as
for references to related works in the literature.

Outline

In Section 2 we recall some background. In Section 3 we intro-
duce the twist map ϑλ. In Section 4 we show that the symmetric
Toda flow is a twisted gradient flow. In Section 5 we discuss the
tridiagonal Toda lattice and Moser’s map (1.3). In Section 6 we
recall the tridiagonalization construction of [7], and give our new
interpretation of it. In Section 7 we apply this construction to
study Toda flows on moment polytopes.

We remark that the Toda flows are traditionally studied over
the real numbers, and our statement of Theorem 1.2 follows this
tradition. However, all of our arguments and results hold over the
complex numbers, so we work over C (for example, Theorem 1.2
follows by specializing Theorem 6.13 over R). This is for the
sake both of generality, and for consistency with our Lie-algebraic
setup. On the other hand, none of our arguments require working
over C (rather than R).
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. Background

We recall some important background on flag varieties, ad-
oint orbits, and total positivity. Our notation throughout this
aper is consistent with our previous work [10], to which we refer
or further details and examples.

Throughout the paper, we fix a strictly decreasing vector λ =

λ1, . . . , λn) ∈ Rn. We point out that in [10], we more generally
onsider λ which are weakly decreasing; we will not need to do
o here.
Let N := {0, 1, 2, . . . , }, and for n ∈ N, define [n] :=

1, 2, . . . , n}. For k ∈ N, we let
(
[n]
k

)
denote the set of k-element

ubsets of [n]. We let e1, . . . , en denote the unit vectors of Cn.
iven an m × n matrix A and subsets I ⊆ [m] and J ⊆ [n], we
et AI,J denote the submatrix of A using rows I and columns J .
f |I| = |J|, we let ∆I,J (A) denote det(AI,J ), called a minor of A. If
= [k], where k = |I|, we call ∆I,[k](A) a left-justified minor of A,
hich we denote by ∆I (A).
We let Pn−1(C) denote the projective space of all nonzero

ectors (x1 : · · · : xn) modulo rescaling. We let gln(C) denote the
ie algebra of n× n matrices over C, with Lie bracket

L,M] := LM −ML for all L,M ∈ gln(C).

e let adL := [L, ·] denote the adjoint operator of L ∈ gln(C).
e let diag(L) ∈ Cn denote the vector of diagonal entries of
∈ gln(C). Finally, we let Diag(c1, . . . , cn) ∈ gln(C) denote the
× n diagonal matrix with diagonal entries c1, . . . , cn.
We recall the Cauchy–Binet identity (see e.g. [11, I.(14)]): if A

s an m× n matrix, B is an n× p matrix, and 1 ≤ k ≤ m, p, then

I,J (AB) =
∑

K∈([n]k )

∆I,K (A)∆K ,J (B) for all I ∈
(
[m]

k

)
and J ∈

(
[p]
k

)
.

(2.1)

.1. Flag varieties and adjoint orbits

We introduce Grassmannians and complete flag varieties,
hich will play an important role in the paper.

efinition 2.1. Let 0 ≤ k ≤ n. We define the Grassmannian
rk,n(C) as the set of all k-dimensional linear subspaces of Cn.
iven V ∈ Grk,n(C), we say that an n× k matrix A represents V if
ts columns form a basis of V . We have the Plücker embedding

Grk,n(C) ↪→ P((nk)−1)(C), V ↦→
(
∆I (A) : I ∈

(
[n]
k

))
, (2.2)

hich does not depend on the choice of A. We call the projective
oordinates ∆I (·) on Grk,n(C) Plücker coordinates.

efinition 2.2. Let GLn(C) denote the general linear group of all
× n invertible matrices over C, and let Bn(C) denote the Borel
ubgroup of GLn(C) of all upper-triangular matrices. We define
he complete flag variety as the quotient

ln(C) := GLn(C)/ Bn(C),

hich we may identify with the variety of complete flags of linear
ubspaces of Cn

V = (V1, . . . , Vn−1) : 0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Cn and
dim(Vk) = k for 1 ≤ k ≤ n− 1}.

his identification sends g ∈ GLn(C)/ Bn(C) to the tuple (V1, . . . ,

n−1), where each Vk is the span of the first k columns of g .
e will freely alternate between regarding complete flags as

lements g ∈ GL (C)/ B (C) or as tuples (V , . . . , V ).
n n 1 n−1

3

We have the Plücker embedding

Fln(C) ↪→

n−1∏
k=1

P((nk)−1)(C), g ↦→
(
∆I (g) : I ∈

(
[n]
k

))
1≤k≤n−1,

(2.3)

hich is given by the embedding

Fln(C) ↪→

n−1∏
k=1

Grk,n(C), (V1, . . . , Vn−1) ↦→ (V1, . . . , Vn−1), (2.4)

nd then applying the Plücker embedding (2.2) to each term
rk,n(C). We call the left-justified minors ∆I (g) appearing above
he Plücker coordinates of g ∈ Fln(C) (also known as flag minors).

xample 2.3. We can write a generic element of the complete
lag variety Fl3(C) as

:=

[1 0 0
a 1 0
b c 1

]
∈ GL3(C)/ B3(C), where a, b, c ∈ C.

he Plücker embedding (2.3) takes g to

(∆1(g) : ∆2(g) : ∆3(g)), (∆12(g) : ∆13(g) : ∆23(g))
)

=
(
(1 : a : b), (1 : c : ac − b)

)
∈ P3(C)× P3(C). ♢

We recall that Oλ denotes the adjoint orbit of un consisting of
ll skew-Hermitian matrices with eigenvalues iλ1, . . . , iλn:

λ = {g(iDiag(λ) )g−1
: g ∈ Un}.

e observe that we can write the isomorphism Oλ

∼=
−→ Fln(C)

rom (1.5) equivalently as

λ

∼=
−→ Fln(C), g(iDiag(λ) )g−1

↦→ g.

emark 2.4. The embedding (2.4) has a natural interpretation
n Oλ. Namely, given (V1, . . . , Vn−1) ∈ Fln(C), let iM ∈ Oλ be the
orresponding element under the isomorphism (1.5). Then

=

(n−1∑
k=1

(λk − λk+1)Pk

)
+ λnIn, (2.5)

here Pk ∈ gln(C) is orthogonal projection onto Vk [10, Lemma
.16].

.2. Total positivity

We recall the notion of total positivity for Fln(C).

efinition 2.5 ([9,12]). Let 0 ≤ k ≤ n. We say that an element
f Fln(C) is totally positive (respectively, totally nonnegative) if
ll its Plücker coordinates are real and positive (respectively,
onnegative), up to rescaling. This defines the totally positive
art Fl>0

n and the totally nonnegative part Fl≥0
n . (This definition

s different from, but equivalent to, the original definition of
usztig [9,12]; see [13, Section 1.4] for references and a history
f this equivalence.)
We define the totally positive part O>0

λ to be the inverse image
f Fl>0

n under the isomorphism (1.5). We similarly define the
otally nonnegative part O≥0

λ .

xample 2.6. The element g ∈ Fl3(C) from Example 2.3 is totally
ositive if and only if a, b, c, ac − b > 0. ♢
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. The general twist map

In this section we construct an involution ϑ on Fln(C), which
e call the twist map. This generalizes the totally nonnegative
wist map we defined on Fl≥0

n in [10]; see Remark 3.7. We refer
o [10, Section 3.3] for further motivation and a discussion of
elated work.

We begin by recalling the Bruhat decomposition of Fln(C); for
urther details, see, e.g., [14, Section 1.2].

efinition 3.1. Given n ∈ N, let Sn denote the symmetric group
f all permutations of [n]. For w ∈ Sn, we define the (signed)

permutation matrix ẘ ∈ GLn(C) by

ẘi,j :=

{
±1, if i = w(j);
0, otherwise,

for 1 ≤ i, j ≤ n,

where the signs are chosen so that all left-justified minors of ẘ

are nonnegative. Note that

˚(w−1) = δn(ẘ)−1δn, where δn := Diag(1,−1, 1, . . . , (−1)n−1) .
(3.1)

e also regard ẘ as an element of Fln(C), and define the Schubert
cell

X̊w
:= Bn(C) · ẘ ⊆ Fln(C),

which consists of all V ∈ Fln(C) such that for all 1 ≤ k ≤ n − 1,
he lexicographically maximal I ∈

(
[n]
k

)
such that ∆I (V ) ̸= 0 is

= w([k]). We have the Bruhat decomposition

ln(C) =
⨆

w∈Sn

X̊w.

We now define the general twist map.

Definition 3.2. Given n ∈ N, define the involution ι : GLn(C) →
Ln(C) (called the positive inverse) by

(g) := δng−1δn.

n other words, ι(g)i,j = (−1)i+j(g−1)i,j for 1 ≤ i, j ≤ n.
Given V ∈ Fln(C), we define a canonical representative g ∈ Un

of V as follows: if V ∈ X̊w (where w ∈ Sn), then

∆w[k](g) ∈ R>0 and ∆I (g) = 0 for all

I ∈
(
[n]
k

)
with I >lex w([k]) (3.2)

for all 1 ≤ k ≤ n. We let ϑ(V ) ∈ Fln(C) denote the complete
flag represented by ι(g). This defines the (Iwasawa) twist map
ϑ : Fln(C) → Fln(C).

Remark 3.3. The name twist map is motivated by the twist
maps defined by Berenstein, Fomin, and Zelevinsky on Nn(C) and
GLn(C) [15,16]. The key difference is that our map ϑ is based
on the Iwasawa (or QR-) decomposition of GLn(C), rather than
the Bruhat decomposition. A different twist map was defined on
Fln(C) in the latter sense by Galashin and Lam [17].

Example 3.4. Let

g :=
1
2

⎡⎣√2 −1 1
√
2 1 −1
0

√
2

√
2

⎤⎦ ∈ U3, whence

ι(g) = δ3g−1δ3 =
1
2

⎡⎣√2 −
√
2 0

1 1 −
√
2

1 1
√
2

⎤⎦ .
4

We can verify that g satisfies (3.2) with w := 231 ∈ S3. Therefore
: Fl3(C) → Fl3(C) takes the complete flag represented by
to the complete flag represented by ι(g). Note that ι(g) sat-

sfies (3.2) for the permutation w−1
= 312, in agreement with

roposition 3.5. ♢

roposition 3.5. The twist map ϑ on Fln(C) is an involution. For
ach w ∈ Sn, it restricts to a diffeomorphism X̊w

→ X̊w−1
.

roof. Let w ∈ Sn. The twist map restricted to X̊w is smooth, so
t suffices to show that given V ∈ X̊w , we have ϑ(V ) ∈ X̊w−1

and
hat ϑ(ϑ(V )) = V .

Let g ∈ Un be the canonical representative of V as in (3.2), and
rite

= bẘb′, where b, b′ ∈ Bn(C).

y the Cauchy–Binet identity (2.1) and since b′ is upper-
riangular, we have

w([k])(g) =
∑

I,J∈([n]k )

∆w([k]),I (b)∆I,J (ẘ)∆J (b′)

= ∆w([k]),w([k])(b)∆[k](b′) (3.3)

or all 0 ≤ k ≤ n. Then by (3.2), we obtain

w(k),w(k)b′k,k =
∆w([k])(g)

∆w([k−1])(g)
> 0 for all 1 ≤ k ≤ n. (3.4)

By (3.1), we have

(g) = δng−1δn = (δnb′−1δn) ˚(w−1)(δnb−1δn),

o ϑ(V ) ∈ X̊w−1
. Also, for all 1 ≤ k ≤ n, applying (3.3) to

w−1([k])(ι(g)) gives

∆w−1([k])(ι(g)) = ∆w−1([k]),w−1([k])(δnb
′−1δn)∆[k](δnb−1δn)

=

k∏
i=1

(b′
w−1(i),w−1(i)bi,i)

−1 > 0,

using (3.4). Hence ι(g) is the canonical representative of ϑ(V ) as
in (3.2), and since ι is an involution, we obtain ϑ(ϑ(V )) = V . □

Remark 3.6. We could just as well have defined the twist map
ϑ using the decomposition of Fln(C) into opposite Schubert cells

X̊w := B−n (C) · ẘ ⊆ Fln(C) for w ∈ Sn,

rather than Schubert cells. The resulting twist map would be
different from the one in Definition 3.2; the relationship between
the two maps can be derived from the fact that B−n (C) is equal
to Bn(C) conjugated by ẘ0, where w0 := (i ↦→ n + 1 − i) ∈ Sn.
These conventions are ultimately not important for our purposes,
because we take absolute values in Definition 6.8.

Remark 3.7. In Definition 3.2, we have defined the twist map ϑ

on Fln(C) in a piecewise manner, based on the Bruhat decompo-
sition. While ϑ defines a smooth map on each Schubert cell X̊w

⊆

Fln(C), in general ϑ is not continuous when passing between
cells. However, ϑ displays remarkable positivity properties, as we
explored in [10]; in particular, it restricts to an involution on the
totally nonnegative part Fl≥0

n , which extends to a smooth map
in an open neighborhood inside Fln(R) [10, Definition 3.21]. We
emphasize, however, that such a smooth extension differs from
the general twist map ϑ outside of Fl≥0

n , since ϑ is not necessarily
continuous on the boundary of Fl≥0

n . For example, let g(t) ∈ Fl3(C)
be represented by the matrix g from Example 3.4, with the (3, 1)-
entry replaced by t ∈ R. Then g(0) ∈ Fl≥0, and g(t) /∈ Fl≥0 for all
3 3
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(
r
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< 0. We have limt→0 g(t) = g(0), but we can verify that

lim
t→0, t<0

ϑ(g(t)) =
1
2

⎡⎣−√
2

√
2 0

−1 −1
√
2

1 1
√
2

⎤⎦ ̸= ϑ(g(0)) ∈ Fl3(C).

Finally, we observe that ϑ defines an involution on Oλ
∼=

Fln(C) under the isomorphism (1.5).

Definition 3.8. We define ϑλ : Oλ → Oλ as the involution on
Oλ induced by the involution ϑ on Fln(C), via the isomorphism
(1.5). Explicitly,

ϑλ(g(iDiag(λ) )g−1) := ι(g)(iDiag(λ) )(ι(g))−1

= δng−1(iDiag(λ) )gδn

or all g ∈ Un satisfying (3.2) (for some w ∈ Sn and all 1 ≤ k ≤ n).

. The symmetric Toda flow as a twisted gradient flow

In this section we use the twist map ϑλ to show that the
ymmetric Toda flow is a twisted gradient flow on Oλ in the
ähler metric (see Theorem 4.6). This generalizes [10, Theorem
.6(ii)], where we proved the same result restricted to the totally
onnegative part O≥0

λ ; we refer to [10, Section 8] for further
iscussion and context.

.1. Background on the Kähler metric and gradient flows

We begin by recalling background on the Kähler metric on Oλ

nd gradient flows, following [10, Section 5].

efinition 4.1. Let ν denote the Killing form on gln(C), given by

(L,M) := 2n tr(LM)− 2 tr(L) tr(M) for all L,M ∈ gln(C).

hen −ν(·, ·) defines a [·, ·]-invariant pairing (i.e. ν(adL(M),N) =
ν(M, adL(N))) which is positive semidefinite on un.
Now let L ∈ Oλ. For X ∈ un, we define X L and XL by the

unique) decomposition

= X L
+ XL, where X L

∈ im(adL) and XL ∈ ker(adL).

he normal metric on Oλ is given at L ∈ Oλ by

[L, X], [L, Y ]⟩normal := −ν(X L, Y L)

or all tangent vectors [L, X] and [L, Y ] at L. Then the Kähler metric
n Oλ is given at L ∈ Oλ by

[L, X], [L, Y ]⟩Kähler := ⟨

√
−ad2

L ([L, X]), [L, Y ]⟩normal,

here
√
−ad2

L denote the positive square root of the positive
emidefinite operator −ad2

L .

Definition 4.2. Given N ∈ un, we define the gradient flow on Oλ

with respect to N (in a particular Riemannian metric) as the flow
given by

L̇(t) = grad(H)(L(t)), where H(M) := ν(M,N) for all M ∈ Oλ.

We have the following explicit description of gradient flows
on Oλ in the Kähler metric:

Proposition 4.3 ([18, Section 3]; [19, Appendix]). Let L(t) evolve
ccording to the gradient flow on Oλ beginning at L0 with respect to
∈ un in the Kähler metric, and let V (t) ∈ Fln(C) be the correspond-

ng complete flag under the isomorphism (1.5), with V0 := V (0).
hen

(t) = exp(tiN)V for all t ∈ R. (4.1)
0 d

5

Letting g(t) ∈ Un be any representative of V (t), we have L(t) =

g(t)(iDiag(λ) )g(t)−1. Explicitly, we can take g0 ∈ Un representing
V0, and then take

g(t) = πU(exp(tiN)g0) for all t ∈ R. (4.2)

We observe that (as will be useful later) in the case that
is a diagonal matrix, we can explicitly describe the Plücker

oordinates of the element V (t) in (4.1) in terms of those of V0.

emma 4.4. Let N := −iDiag(c1, . . . , cn) ∈ un, and suppose that
V (t) evolves according to (4.1). Then

∆I (V (t)) = e(
∑

i∈I ci)t∆I (V0) for all I ⊆ [n].

roof. This follows by a direct calculation, since exp(tiN) =

Diag(ec1t , . . . , ecnt ) . □

emark 4.5. We mention that in addition to (4.2), there is
nother way to obtain an explicit solution to L(t). Namely, let
(t) = (V1(t), . . . , Vn−1(t)) be as in Proposition 4.3. Then as in
2.5), we write

− iL(t) =
(n−1∑

k=1

(λk − λk+1)Pk(t)
)
+ λnIn, (4.3)

here Pk(t) ∈ gln(C) is orthogonal projection onto Vk(t). Regard-
ng elements of Grk,n(C) as n × k matrices (as in Definition 2.1),
e have the formula

k(t) = Vk(t)(Vk(t)∗Vk(t))−1Vk(t)∗

= exp(tiN)(V0)k((V0)∗k exp(2tiN)(V0)k)−1(V0)∗k exp(tiN).

his leads (via (4.3)) to an explicit expression for L(t) which does
ot require computing a QR-decomposition, as in (4.2).

.2. The symmetric Toda flow

We now show that the symmetric Toda flow (1.4) on Oλ is
twisted gradient flow. This generalizes [10, Theorem 8.6(ii)],
here we proved the same result restricted to the totally non-
egative part O≥0

λ ; essentially the same proof applies, using the
eneral twist map ϑλ defined in Section 3.

heorem 4.6. Set N := −iDiag(λ) ∈ un. The symmetric Toda flow
1.4) restricted to Oλ is the twisted gradient flow with respect to N in
he Kähler metric. That is, if L(t) evolves according to (1.4) beginning
t L0 ∈ Oλ, then ϑλ(L(t)) is the gradient flow with respect to N in
he Kähler metric beginning at ϑλ(L0) ∈ Oλ (cf. Definition 4.2 and
roposition 4.3). In the notation of Proposition 4.3, we have

(t) = ϑ(Diag(eλ1t , . . . , eλnt ) · ϑ(V0)) for all t ∈ R. (4.4)

roof. The proof is the same as in [10, Proof of Theorem 8.6].
e only need to observe that if g0 ∈ Un satisfies (3.2) for some
∈ Sn and all 1 ≤ k ≤ n, then so does πU(exp(tiN)g0). □

emark 4.7. We note that Bloch [20, Section 6] showed that
he tridiagonal Toda lattice flow (1.4) (with L tridiagonal) can be
ritten as

˙ = [L, [L,N]], where N := −iDiag(n− 1, . . . , 1, 0) ∈ un,

n particular, by [21,22], the tridiagonal Toda flow restricted to
λ is the gradient flow with respect to N in the normal metric.
However, this result does not directly extend to the full symmet-
ic Toda flow; cf. [23].) It is curious that the Toda lattice flow can
e written as a gradient flow in two different metrics in rather

ifferent ways.
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. Tridiagonal matrices and the Moser map

In this section, we explicitly describe Moser’s map (1.3) and
its connection to the tridiagonal Toda lattice flow. We closely
follow [10, Section 4.4]. In order to use the framework of adjoint
orbits, we work with skew-Hermitian matrices iM rather than
symmetric (or Hermitian) matrices M .

Definition 5.1. We define J>0
λ (respectively, J≥0

λ ) to be the
et of elements iM of Oλ such that M is a real tridiagonal ma-
rix with positive (respectively, nonnegative) entries immedi-
tely above and below the diagonal. Equivalently, J>0

λ (respec-
ively, J≥0

λ ) is the set of tridiagonal matrices in O>0
λ (respec-

ively, O≥0
λ ) [10, Proposition 4.18]. The space J>0

λ is known as
n isospectral manifold of Jacobi matrices.

efinition 5.2. Let Pn−1
>0 (respectively, Pn−1

≥0 ) denote the subset
f Pn−1(C) where all coordinates are real and positive (respec-
ively, nonnegative), up to rescaling. Given x ∈ Pn−1

>0 , we define
he Vandermonde flag Vand(λ, x) ∈ Fln(C) as the complete flag
V1, . . . , Vn−1), where

k := span(x, Diag(λ)x, . . . , Diag(λ)k−1x) for 1 ≤ k ≤ n− 1.

quivalently, Vand(λ, x) is represented by the rescaled Vander-
onde matrix (λj−1

i xi)1≤i,j≤n ∈ GLn(C). We let Mosλ(x) ∈ Oλ

enote element corresponding to Vand(λ, x) ∈ Fln(C) under
he isomorphism (1.5). We call Mosλ the Moser map, since it
ssentially appeared (with a different, but equivalent, definition)
n [4].

heorem 5.3 (Moser [4, Section 3]; Bloch and Karp [10, Corollary
.24]). The Moser map Mosλ : Pn−1

>0
∼=
−→ J>0

λ is a diffeomorphism.

xample 5.4. Let λ := (1, 0,−1). Then the Moser map Mosλ

ends (x1 : x2 : x3) ∈ P2
>0 to⎡⎢⎢⎢⎢⎢⎢⎣

x21−x23
x21+x22+x23

√
x21x

2
2+4x21x

2
3+x22x

2
3

x21+x22+x23
0√

x21x
2
2+4x21x

2
3+x22x

2
3

x21+x22+x23

(x21−x23)(x
4
2−4x21x

2
3)

(x21+x22+x23)(x
2
1x

2
2+4x21x

2
3+x22x

2
3)

2x1x2x3
√
x21+x22+x23

x21x
2
2+4x21x

2
3+x22x

2
3

0
2x1x2x3

√
x21+x22+x23

x21x
2
2+4x21x

2
3+x22x

2
3

x22(x
2
3−x21)

x21x
2
2+4x21x

2
3+x22x

2
3

⎤⎥⎥⎥⎥⎥⎥⎦
∈ J>0

λ . ♢

We now discuss the topology of the compact isospectral man-
ifold J≥0

λ .

Definition 5.5. Let Perm(λ) ⊆ Rn denote the polytope whose
vertices are all n! permutations of λ = (λ1, . . . , λn). We call
Perm(λ) a permutohedron. We also define the moment map

µ : un → Rn, iM ↦→ diag(M).

Example 5.6. Let λ := (1, 0,−1). Then Perm(λ) is a hexagon
in R3, contained in the hyperplane where all coordinates sum to
zero:

(−1, 0, 1)

(−1, 1, 0)

(0, 1,−1)

(1, 0,−1)

(1,−1, 0)

(0,−1, 1)

. ♢
6

Tomei [24, Section 4] showed that J≥0
λ is homeomorphic to

Perm(λ) (in fact, they are isomorphic as regular CW complexes).
We will need the following explicit version of this result due to
Bloch, Flashcka, and Ratiu [8]. It may be regarded as an analogue
of the Schur–Horn theorem [25,26], which states that µ maps Oλ

surjectively onto Perm(λ).

Theorem 5.7 (Bloch, Flaschka, and Ratiu [8, Theorem p. 60]; cf. [10,
Remark 8.8]). The map

J≥0
λ → Perm(λ), L ↦→ µ(ϑλ(L))

is a homeomorphism which restricts to a diffeomorphism from J>0
λ

to the interior of Perm(λ).

We emphasize that in general, the map

J≥0
λ → Perm(λ), L ↦→ µ(L)

(not involving the twist map) is neither injective nor surjective.

6. Tridiagonalization of the symmetric Toda flow

6.1. The construction of Deift, Li, Nanda, and Tomei

We recall the tridiagonalization of the symmetric Toda flow
constructed by Deift, Li, Nanda, and Tomei [7, Section 7]. While
we maintain the notation of [7] where possible, we give an expo-
sition tailored to our perspective. One key notational difference is
that we reverse the order of the ground set [n] from its use in [7]
(e.g. in Definition 6.2, we use e1 rather than en); our convention
is consistent with the rest of this paper and with [4,10].

Definition 6.1. Let A ∈ gln(C) and x ∈ Cn. We define the cyclic
subspace

cyc(A; x) := span(Ajx : j ∈ N) ⊆ Cn.

Equivalently, cyc(A; x) is the minimal A-invariant subspace of Cn

containing x.

Definition 6.2. Let M be an n × n Hermitian matrix. Let
m := dim(cyc(M; e1)), and let A be the n × m matrix with
orthonormal columns obtained by applying the Gram–Schmidt
orthonormalization process to the matrix[
e1 Me1 · · · Mm−1e1

]
(so in particular, A∗A = Im). We define the m × m Hermitian
atrix MT := A∗MA, which represents the endomorphism M

estricted to cyc(M; e1). In light of Proposition 6.3(i), we call MT
he tridiagonalization of M .

roposition 6.3. Let M be an n × n Hermitian matrix, and write
= g Diag(ν)g−1, where ν1 ≥ · · · ≥ νn and g ∈ Un.

(i) The matrix MT is tridiagonal with positive real entries imme-
diately above and below the diagonal.

(ii) The eigenvalues of MT are distinct, and its set of eigenvalues is

{νi : 1 ≤ i ≤ n and g1,i ̸= 0}.

(iii) Let νi (where 1 ≤ i ≤ n) be a simple eigenvalue of M which is
also an eigenvalue of MT . Then the corresponding normalized
eigenvectors of M and MT have the same first entry. That is, if
x ∈ Cm has norm 1 such that M x = ν x, then |x | = |g |.
T i 1 1,i
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roof. (i) Let m and A be as in Definition 6.2. We show, equiva-
lently, that the m×m matrix

e1 MT e1 · · · (MT )m−1e1

]
is upper-triangular with positive diagonal entries. To this end, let
1 ≤ j ≤ m. By the definition of A, we can write

M j−1e1 =
j∑

i=1

ciAei, where c1, . . . , cj ∈ C and cj > 0.

ecall that MT represents the endomorphism M restricted to
yc(M; e1); similarly, (MT )j−1

= A∗M j−1A represents M j−1 re-
stricted to cyc(M; e1). We obtain

(MT )j−1e1 = A∗M j−1Ae1 = A∗M j−1e1 =
j∑

i=1

ciA∗Aei =
j∑

i=1

ciei.

(ii) The matrix MT represents the endomorphism M restricted
to cyc(M; e1), which in turn (conjugating by g−1) is similar to the
endomorphism Diag(ν) restricted to cyc(Diag(ν); g−1e1). Given
1 ≤ i ≤ n, consider the vector y ∈ Cn defined by

yj :=
{
(g−1e1)j = g1,j, if νj = νi;

0, otherwise
for 1 ≤ j ≤ n.

hen by Vandermonde’s identity, the distinct nonzero y’s form a
asis for cyc(Diag(ν); g−1e1).
(iii) Since νi is a simple eigenvalue of both M and MT , the

orresponding eigenvector gei of M lies in cyc(M; e1). Therefore
ei = Ax for some x ∈ Cm, and ∥x∥ = ∥ei∥ = 1 because g and A
oth have orthonormal columns. We have

T x = A∗MAx = A∗Mgei = νiA∗gei = νiA∗Ax = νix,

nd |x1| = |(A∗gei)1| = |(gei)1| = |g1,i|. □

xample 6.4. Let

:=
1
4

⎡⎣ −2 3
√
2 3

√
2

3
√
2 −1 −1

3
√
2 −1 −1

⎤⎦ = g Diag(1, 0,−2)g−1, where

g :=
1
2

⎡⎣√2 0
√
2

1 −
√
2 −1

1
√
2 −1

⎤⎦ ∈ U3 .

ince M2e1 = 2e1 − Me1, the cyclic subspace cyc(M; e1) is
-dimensional. Taking the matrix

e1 Me1

]
=

⎡⎢⎢⎣
1 −

1
2

0 3
2
√
2

0 3
2
√
2

⎤⎥⎥⎦
nd applying the Gram–Schmidt orthonormalization process gives

:=

⎡⎣1 0
0 1

√
2

0 1
√
2

⎤⎦. Then

T = A∗MA =
1
2

[
−1 3
3 −1

]
= hDiag(1,−2)h−1,

where h :=
1
√
2

[
1 −1
1 1

]
∈ U2 .

We can verify that the properties of MT in Proposition 6.3 hold in
this case. ♢

We now consider actions of GLn(C) and gln(C) on the exterior
power

⋀k(Cn).
7

Definition 6.5. For 0 ≤ k ≤ n, let
⋀k(Cn) denote the kth exterior

ower of Cn, which we identify with C(nk) by fixing the basis

ei1 ∧ · · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ n} (6.1)

rdered lexicographically. Given g ∈ GLn(C), we let g (k)
∈

GL(
⋀k(Cn)) ∼= GL(nk)(C) denote the map induced by g , i.e.,

(k)(x1 ∧ · · · ∧ xk) := gx1 ∧ · · · ∧ gxk for all x1, . . . , xk ∈ Cn.

iven M ∈ gln(C), we let M(k) ∈ gl(
⋀k(Cn)) ∼= gl(nk)

(C) denote the
ector field induced by M , i.e.,

(k)(x1 ∧ · · · ∧ xk) :=
k∑

i=1

x1 ∧ · · · ∧ xi−1 ∧Mxi ∧ xi+1 ∧ · · · ∧ xk

for all x1, . . . , xk ∈ Cn.

quivalently, M(k) =
d
dt

⏐⏐
t=0 exp(tM)(k).

Deift, Li, Nanda, and Tomei [7] observe that the operations
M ↦→ MT and M ↦→ M(k) are both compatible with the symmetric
Toda flow (the proofs in [7] are over R, but easily extend over C).
In the statements below, given a Hermitian matrix N , we let N(t)
denote the symmetric Toda flow (1.1) beginning at N .

roposition 6.6 (Deift, Li, Nanda, and Tomei [7, Propositions 7.2 and
.3]). Let M be an n × n Hermitian matrix, let 0 ≤ k ≤ n, and let
∈ R. Then the following two diagrams commute:

M M(t)

MT MT (t) = M(t)T

Toda

·T ·T

Toda

and

M M(t)

M(k) M(k)(t) = M(t)(k)

Toda

·(k) ·(k)

Toda

.

Deift, Li, Nanda, and Tomei [7] then apply Proposition 6.6 to
mbed the symmetric Toda flow into a product of tridiagonal
oda flows:

heorem 6.7 (Deift, Li, Nanda, and Tomei [7, Theorem p. 230]). Let
be an n×n Hermitian matrix such that for all 1 ≤ k ≤ n−1, the

n
k

)
sums of k distinct eigenvalues of M are pairwise distinct. Then

or all t ∈ R, the following diagram commutes:

M M(t)

(
(M(k))T

)
1≤k≤n−1

(
(M(k))T (t)

)
1≤k≤n−1 =

(
(M(t)(k))T

)
1≤k≤n−1

Toda

(
(·(k))T

)
1≤k≤n−1

(
(·(k))T

)
1≤k≤n−1

Toda

.

(6.2)

Moreover, the map

t ↦→
(
(M(k))T (t)

)
1≤k≤n−1 =

(
(M(t)(k))T

)
1≤k≤n−1 for t ∈ R (6.3)

is injective. That is, a generic trajectory of the symmetric Toda flow
embeds into a product of trajectories of tridiagonal Toda flows.
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.2. Tridiagonalization via the twist map, Plücker embedding, and
oser map

We now rephrase Theorem 6.7 (and give a new proof) using
three maps we introduced earlier: the twist map ϑ , the Plücker
embedding ∆, and the Moser map Mosλ. For convenience, we
extend the domain of Mosλ from Pn−1

>0 to Pn−1(C):

Definition 6.8. Recall the Moser map Mosλ : Pn−1
>0 → Oλ defined

in Definition 5.2. We define the extended Moser map

M̃osλ : Pn−1(C) →
⋃
ν

Oν

as follows, where the union above is over all nonempty subse-
quences ν of λ. Given x ∈ Pn−1(C), we set I := {i ∈ [n] : xi ̸= 0},
and define

y := (|xi| : i ∈ I) ∈ P|I|−1
>0 and ν := (λi : i ∈ I).

Then we define M̃osλ(x) := Mosν(y).

Example 6.9. We have M̃os(λ1,λ2,λ3)(−1 : 0 : 3i + 4) =

Mos(λ1,λ3)(1 : 5). ♢

We can write the tridiagonal Toda lattice flow in terms of the
Moser map, as follows.

Proposition 6.10 (Moser [4, (1.4)]). Let L ∈ J>0
λ , and let L(t) denote

the symmetric Toda flow (1.4) beginning at L. Take x ∈ Pn−1
>0 as in

Theorem 5.3 such that Mosλ(x) = L. Then

L(t) = Mosλ(eλ1tx1 : · · · : eλntxn) for all t ∈ R.

Proof. This is a restatement of (1.2). Alternatively, we can apply
Theorem 4.6 and (4.1). □

We recall that we are working with both Hermitian and skew-
Hermitian matrices; ifM is an n×n Hermitian matrix with distinct
eigenvalues λ, then we have a corresponding skew-Hermitian
matrix L = iM ∈ Oλ.

Proposition 6.11. Let M be an n×n Hermitian matrix with distinct
eigenvalues λ, and write M = g Diag(λ)g−1, where g ∈ Un. Then

M̃osλ(g1,1 : · · · : g1,n) = iMT .

Proof. This follows from Proposition 6.3 and Theorem 5.3. □

We now generalize Proposition 6.11 to give an interpretation
of (M(k))T . For 0 ≤ k ≤ n, we define

λ(k)
:=

(∑
i∈I

λi : I ∈
(
[n]
k

))
∈ R(nk).

Moreover, we reorder the elements of
(
[n]
k

)
(from the lexico-

graphic order) so that the entries of λ(k) are weakly decreasing.
Importantly, in both orders, the first element of

(
[n]
k

)
is [k].

Corollary 6.12. Let M be an n× n Hermitian matrix with distinct
eigenvalues λ, and let V ∈ Fln(C) denote the complete flag corre-
sponding to iM under the isomorphism (1.5). Let 0 ≤ k ≤ n be such
that the entries of λ(k) are distinct. Then

M̃osλ(k)
(
∆I (ϑ(V )) : I ∈

(
[n]
k

))
= i(M(k))T .

Proof. Let g ∈ Un be the canonical representative of V as in (3.2),
so that M = g Diag(λ)g−1. Then the eigenvalues of M are λ

(k)
I for

I ∈
(
[n]), with corresponding eigenvectors

⋀
ge . The first entry
k i∈I i

8

of
⋀

i∈I gei is the coefficient of e1 ∧ · · · ∧ ek, namely, ∆[k],I (g). We
have

|∆[k],I (g)| = |∆I (ι(g))| = |∆I (ϑ(V ))|,

so the result follows from Proposition 6.11. □

We now state our main result:

Theorem 6.13. Let M be a Hermitian matrix with distinct eigenval-
ues λ such that for all 1 ≤ k ≤ n− 1, the entries of λ(k) are distinct.
Let V ∈ Fln(C) denote the complete flag corresponding to iM under
the isomorphism (1.5). Then under the Toda flow, we have

(M(k))T (t) = (M(t)(k))T = −iM̃osλ(k)
(
eλ

(k)
I t∆I (ϑ(V )) : I ∈

(
[n]
k

))
(6.4)

for all t ∈ R and 1 ≤ k ≤ n− 1, which we see explicitly is a twisted
gradient flow. In particular, the diagram (6.2) commutes, and we can
write the embedding (6.3) as

t ↦→
(
−iM̃osλ(k)

(
eλ

(k)
I t∆I (ϑ(V )) : I ∈

(
[n]
k

)))
1≤k≤n−1

for t ∈ R.

(6.5)

This embeds a generic trajectory of the symmetric Toda flow into a
product of trajectories of tridiagonal Toda flows.

Proof. The fact that (M(k))T (t) equals the right-hand side of (6.4)
follows from Corollary 6.12 and Proposition 6.10. The fact that
(M(t)(k))T equals the right-hand side of (6.4) follows similarly,
where instead of Proposition 6.10, we use (4.4) and Lemma 4.4.
The fact that (6.5) is an embedding follows from Theorem 5.3. □

Remark 6.14. Suppose λ is such that for all 1 ≤ k ≤ n− 1, the
entries of λ(k) are distinct. While (6.3) (equivalently, (6.5)) is an
embedding, the map

M ↦→
(
(M(k))T

)
1≤k≤n−1

=

(
−iM̃osλ(k)

(
∆I (ϑ(V )) : I ∈

(
[n]
k

)))
1≤k≤n−1

(6.6)

(where V ∈ Fln(C) denotes the complete flag corresponding to iM
under the isomorphism (1.5)) is not injective on the set of n× n
Hermitian matrices M with eigenvalues λ. Indeed, we can see
from the expression on the right-hand side above that for each
1 ≤ k ≤ n− 1, we only recover the vector

(
|∆I (ϑ(V ))| : I ∈

(
[n]
k

))
of absolute values of the Plücker coordinates of ϑ(V )k, and not
necessarily the complex argument of each Plücker coordinate. If
in addition we record the complex argument of each ∆I (ϑ(V ))
(which, up to a change in notation, is the element τI (M) of [7,
Section 7]), then we obtain an injection. For example, the map
(6.6) gives an embedding when restricted to iM ∈ O>0

λ , since in
this case every Plücker coordinate ∆I (ϑ(V )) is positive.

Remark 6.15. Deift, Li, Nanda, and Tomei [7, Theorem 3.3] also
show that the symmetric Toda flow is Liouville integrable, which
depends on finding sufficient independent integrals in involution
with respect to the appropriate Poisson bracket. As they discuss,
the explicit embedding constructed in this section gives an al-
ternative demonstration of integrability, which is independent of
Liouville integrability. It would be interesting to further study the
connection between these two approaches.

7. Toda flows on moment polytopes

We recall the discussion of the moment map µ from Section 5,
and in particular Theorem 5.7, which implies that the twisted
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oment map µ ◦ ϑλ gives a diffeomorphism from J>0
λ to the

nterior of Perm(λ). In this section, we study variations of this
ap applied not just to tridiagonal matrices J≥0

λ , but to a gen-
ral adjoint orbit Oλ. One such variation will be based on the
mbedding of Section 6.
We begin by studying the twisted moment map µ ◦ ϑλ on

Oλ. The following result is closely related to work of Kodama and
Williams [27, Section 6].

Proposition 7.1. The twisted moment map

Oλ → Perm(λ), L ↦→ µ(ϑλ(L)) (7.1)

is an embedding when restricted to a generic trajectory of the
symmetric Toda flow (1.4).

Proof. Given L ∈ Oλ, let L(t) (t ∈ R) denote the symmetric Toda
flow beginning at L, and let V (t) ∈ Fln(C) denote the complete
flag corresponding to L(t) under the isomorphism (1.5). Then by
(4.4), we have

ϑ(V (t)) = Diag(eλ1t , . . . , eλnt ) · ϑ(V0). (7.2)

Now let Tn(C) denote the subset of diagonal matrices in GLn(C),
and let T>0

n denote its positive part, consisting of diagonal ma-
trices with positive diagonal entries. Then Tn(C) acts on Fln(C) by
left multiplication. We may regard µ as a moment map on Fln(C),
and therefore it maps a generic T>0

n -orbit homeomorphically onto
the interior of the moment polytope Perm(λ) (see, e.g., [28, Sec-
tion 4.2]). Since Diag(eλ1t , . . . , eλnt ) ∈ T>0

n for all t ∈ R, the result
follows. □

Remark 7.2. We note that one can write down the moment
map µ explicitly in terms of Plücker coordinates, as follows. Let
HSk,n denote the convex hull in Rn of all

(n
k

)
vectors with k 1’s and

n − k 0’s, called a hypersimplex. Then we have the Grassmannian
moment map

µk,n : Grk,n(C) → Rn, V ↦→

(∑
I∈([n]k ), I∋i

|∆I (V )|2∑
I∈([n]k )

|∆I (V )|2

)
1≤i≤n

,

hose image is HSk,n (cf. [29, Section 2]). One can verify that
f P ∈ gln(C) is orthogonal projection onto V ∈ Grk,n(C), then
iag(P) = µk,n(V ).
Now let L ∈ Oλ, and let V = (V1, . . . , Vn−1) ∈ Fln(C) denote

he complete flag corresponding to L under the isomorphism
1.5). Recall from (2.5) that we may write

iL =
(n−1∑

k=1

(λk − λk+1)Pk

)
+ λnIn,

here Pk ∈ gln(C) is orthogonal projection onto Vk. Then

(L) =
(n−1∑

k=1

(λk − λk+1) diag(Pk)
)
+ λn diag(In)

=

(n−1∑
k=1

(λk − λk+1)µk,n(Vk)
)
+ λn(1, . . . , 1).

(7.3)

We note that (7.3) provides a convenient way to calculate (7.1)
for a trajectory L(t) of the Toda flow, using the formula (7.2).
Namely, we have

µ(ϑλ(L(t))) =
(n−1∑

k=1

(λk − λk+1)µk,n
(
Diag(eλ1t , . . . , eλnt ) · ϑ(Vk)

))
+ λn(1, . . . , 1).

We now apply the moment map µ to the image of the em-
bedding used in Theorem 6.13.
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Proposition 7.3. Suppose λ ∈ Rn is such that for all 1 ≤ k ≤ n−1,
the entries of λ(k) are distinct. Given L ∈ Oλ, let V ∈ Fln(C) denote
the complete flag corresponding to L under the isomorphism (1.5).
Let O′

λ denote the subset of Oλ of all L such that ∆I (ϑ(V )) ̸= 0 for
all I ⊆ [n]. Then we have the continuous map

O′

λ →

n−1∏
k=1

Perm(λ(k)),

L ↦→
(
µ
(
M̃osλ(k)

(
∆I (ϑ(V )) : I ∈

(
[n]
k

))))
1≤k≤n−1

. (7.4)

Moreover, when (7.4) is restricted to any subset of O′

λ which fixes
the complex argument of ∆I (ϑ(V )) for each nonempty I ⊊ [n], then
it is a diffeomorphism onto its image. In particular, (7.4) restricted
to O>0

λ is a diffeomorphism onto its image.

Note that (7.4) is obtain by applying (6.6) (to L = iM , rather
than M), and then applying µ to each of the n− 1 factors.

Proof. This follows from Theorem 5.7, using the discussion in
Remark 6.14. □

Remark 7.4. It is not clear how to extend Proposition 7.3 from
O>0

λ to O≥0
λ . This is because the Moser map Mosλ is only defined

on Pn−1
>0 , not Pn−1

≥0 .

Remark 7.5. We note that in (7.4), the codomain has dimension
much greater than that of the domain (

∏n−1
k=1(

(n
k

)
− 1) versus n!).

This comes from the same property of the Plücker embedding
(2.3), whose image in

∏n−1
k=1 P((nk)−1)(C) is cut out by Grassmann–

Plücker and incidence-Plücker relations. It may be interesting to
study the image of this subset in

∏n−1
k=1 Perm(λ(k)).

The formula (7.3) suggests an interpolation between the two
maps considered in Propositions 7.1 and 7.3, namely,

Oλ →

n−1∏
k=1

HSk,n, L ↦→
(
µk,n(ϑ(Vk))

)
1≤k≤n−1 (7.5)

(with notation as in Remark 7.2). We do not expect (7.5) to be
injective on Oλ, for similar reasons as discussed in Remark 6.14.
However, we do not knowwhether it is injective when we require
all Plücker coordinates to be nonnegative:

Problem 7.6. Is the map (7.5) injective when restricted to O≥0
λ ?
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