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ABSTRACT

The Toda lattice (1967) is a Hamiltonian system given by n points on a line governed by an exponential
potential. Flaschka (1974) showed that the Toda lattice is integrable by interpreting it as a flow on the
space of symmetric tridiagonal n x n matrices, while Moser (1975) showed that it is a gradient flow
on a projective space. The symmetric Toda flow of Deift, Li, Nanda, and Tomei (1986) generalizes the
Toda lattice flow from tridiagonal to all symmetric matrices. They showed the flow is integrable, in
the classical sense of having d integrals in involution on its 2d-dimensional phase space. The system
may be viewed as integrable in other ways as well. Firstly, Symes (1980, 1982) solved it explicitly
via QR-factorization and conjugation. Secondly, Deift, Li, Nanda, and Tomei (1986) ‘tridiagonalized’ the
system into a family of tridiagonal Toda lattices which are solvable and integrable. In this paper we
derive their tridiagonalization procedure in a natural way using the fact that the symmetric Toda flow
is diffeomorphic to a twisted gradient flow on a flag variety, which may then be decomposed into
flows on a product of Grassmannians. These flows may in turn be embedded into projective spaces
via Pliicker embeddings, and mapped back to tridiagonal Toda lattice flows using Moser’s construction.
In addition, we study the tridiagonalized flows projected onto a product of permutohedra, using the
twisted moment map of Bloch, Flaschka, and Ratiu (1990). These ideas are facilitated in a natural way
by the theory of total positivity, building on our previous work (2023).

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

which we arrange into the symmetric tridiagonal matrix

b] aq 0 ne 0
This paper concerns the symmetric Toda flows and their con- a by a --- 0
nections with the classical Toda lattice, gradient flows on adjoint ~ p;.— | 0 @ b3 - 0 . we also let
orbits, and flows on moment polytopes. The (finite nonperiodic) : : :
Toda lattice [1] (cf. [2]) is a Hamiltonian system of n points on 0 0 0 b
a line of unit mass governed by an exponential potential, with "
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] n 5 n-1 T (M) . 0 a) O 0
— qi—di u =
2 Dopi+ Y e SR
i=1 i=1 : : : .o
0 0 o --- 0

Following Flaschka [3], we make the change of variables

q;—q;.
a = 1e 7% fori<i<n—1 and
1
b = —Ep,- for1<i<n,
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be the skew-symmetric part of M. Then the Hamiltonian equa-
tions can be written in Lax form as

M = [M, m(M)], (1.1)

where M denotes the derivative of M with respect to time t. Then
the eigenvalues of M are preserved along the flow, and allow one
to define n integrals in involution [4-6], showing that the Toda
lattice is integrable.

Moreover, Moser [4] expressed the Toda lattice flow as a
gradient flow on a projective space. Namely, let A; > --- > A,
denote the eigenvalues of M (they are necessarily distinct), and
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for 1 < i < n,let v € R" be the eigenvector of M with
eigenvalue A; such that [[v|| = 1 and its first entry v is positive
(v is necessarily nonzero). Setting x = (v{" o) e
P""!(R), we can write the Hamiltonian equations (1.1) as

X =MAx; foralll<i<n. (1.2)

Conversely, given x € P""!(R) with positive entries, Moser con-
structed a unique corresponding symmetric tridiagonal matrix M
with eigenvalues A1 > --- > A, and positive entries immediately
above and below the diagonal, giving a diffeomorphism

X M. (1.3)

More generally, Deift, Li, Nanda, and Tomei [7] considered
the flow (1.1) for arbitrary (not necessarily tridiagonal) n x n
symmetric matrices M, called the (full) symmetric Toda flow. They
constructed L%J integrals in involution, showing that the flow is
integrable.

This system may be seen to be integrable in other ways as well.
Firstly, Symes [5,6] found an explicit solution using factorization
and conjugation. Namely, given an n x n matrix g, let my(g)
denote the unitary matrix obtained by applying Gram-Schmidt
orthonormalization to the columns of g; equivalently, wy(g) is
the Q-term in the QR-factorization of g. Then if M(t) denotes the
solution to (1.1) beginning at the symmetric matrix My, we have

M(t) = y(exp(tMg))~ Mg my(exp(tMp))  for all t € R.

Secondly, Deift, Li, Nanda, and Tomei [7, Section 7] ‘tridiag-
onalized’ the symmetric Toda flow into a family of n — 1 Toda
lattices which are solvable and integrable. The main goal of this
paper is to derive this tridiagonalization procedure in a natural
and geometric way.

In order to state our results, we introduce some notation. Let
U, denote the group of n x n unitary matrices, and let u, denote
its Lie algebra, consisting of all n x n skew-Hermitian matrices.
Given a symmetric (or more generally, Hermitian) n x n matrix
M, we associate to it the skew-Hermitian matrix L := iM (where
i = /—1). If M has eigenvalues A, then L lies in the adjoint
orbit O, of u, consisting of all skew-Hermitian matrices with
eigenvalues iy, ..., iA,. Then we can write the symmetric Toda
flow as the flow

L =L m(—il)] on Os. (1.4)

Above, the projection m,(-) onto uy, is defined such that N — 7,,(N)
is upper-triangular with real diagonal entries.

In the case that the eigenvalues A4, ..., A, are distinct, we
construct a piecewise-smooth involution %, on O, called the
twist map. It sends L = g(iDiag(1))g ™! to g~!(i Diag(A) )g, where
for a given L the unitary matrix g € U, of eigenvectors is chosen
according to a certain normalization condition (3.2), coming from
the Bruhat decomposition. We then use ¢, to show that the
symmetric Toda flow (1.4) is a gradient flow (see Theorem 4.6):

Theorem 1.1. Let A = (A1 > --- > A;). Then the symmetric Toda
flow (1.4) on O, is, upon applying the twist map ¥,, the gradient
flow in the Kdhler metric with respect to Diag(—iAq, ..., —il,) €
Up.

Now let Fl,(C) denote the complete flag variety, consisting of
all chains of subspaces (Vq, ..., V,_1) of C" such that

Vic---CcVy,.1 and dim(Vy)=kforalll<k<n-1.

Given L € O, let V} (for 1 < k < n — 1) denote the subspace of
C" spanned by the eigenvectors corresponding to the eigenvalues
iA1, ..., iAg. It is well-known (and one can verify) that the map

b

Oy — Fly(C), L (Vi,...,Vn1) (1.5)
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is an isomorphism. Also, Fl,(C) has the structure of a projective
variety, given by the Pliicker embedding

n—1
Fln(C) = [ [P®=D(c) (1.6)

k=1

(see (2.3)). Then by Theorem 1.1, we can embed the symmetric
Toda flow (1.4) on O;, as a gradient flow on a product of projective
spaces. The gradient flow on each projective space can be written
in the form (1.2), which by Moser’s map (1.3) is equivalent to a
Toda lattice flow; in general, for the kth projective space, the as-
sociated tridiagonal matrix has size (}) x (}). We may summarize
this as follows (see Theorem 6.13 for a precise statement):

Theorem 1.2. The tridiagonalization procedure of Deift, Li, Nanda,
and Tomei [7, Section 7] of the symmetric Toda flow (1.1) onn x n
symmetric matrices M is given as follows. By multiplying by i and
applying the maps v;, (1.5), and (1.6), we can embed the symmetric
Toda flow as a gradient flow on the product of projective spaces

n—1

H]}D((ﬁ)”)(]}g),

k=1

For (p1,..-.pn1) € [l P((-D(R), we disregard the zero
coordinates of every p; (for 1 < i < n — 1) and replace each
nonzero coordinate of p; with its absolute value. Then applying
Moser’s map (1.3) embeds the symmetric Toda flow into a family
of n — 1 tridiagonal Toda lattice flows.

As an application, we apply a construction of Bloch, Flaschka,
and Ratiu [8] which maps the tridiagonal Toda lattice flows home-
omorphically onto the associated moment polytope (a permutohe-
dron). Theorem 1.2 allows us to embed the symmetric Toda flow
as a flow on a product of n—1 permutohedra (see Proposition 7.3).
We also consider a closely related construction, which maps the
symmetric Toda flow to a flow on a product of n—1 hypersimplices
(moment polytopes for Grassmannians). We pose the problem of
whether this map is an embedding (see Problem 7.6).

We mention that one of our motivations for studying the
symmetric Toda flow is its relationship with the theory of total
positivity for flag varieties, introduced by Lusztig [9]. While total
positivity is not part of the statements of our main results, it was
key to our preceding work [10] and provided the impetus for this
work. For example, Theorem 1.1 is inspired by [10, Theorem 8.6].
We refer to [10] for further details on total positivity, as well as
for references to related works in the literature.

Outline

In Section 2 we recall some background. In Section 3 we intro-
duce the twist map ;. In Section 4 we show that the symmetric
Toda flow is a twisted gradient flow. In Section 5 we discuss the
tridiagonal Toda lattice and Moser’s map (1.3). In Section 6 we
recall the tridiagonalization construction of [7], and give our new
interpretation of it. In Section 7 we apply this construction to
study Toda flows on moment polytopes.

We remark that the Toda flows are traditionally studied over
the real numbers, and our statement of Theorem 1.2 follows this
tradition. However, all of our arguments and results hold over the
complex numbers, so we work over C (for example, Theorem 1.2
follows by specializing Theorem 6.13 over R). This is for the
sake both of generality, and for consistency with our Lie-algebraic
setup. On the other hand, none of our arguments require working
over C (rather than R).
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2. Background

We recall some important background on flag varieties, ad-
joint orbits, and total positivity. Our notation throughout this
paper is consistent with our previous work [ 10], to which we refer
for further details and examples.

Throughout the paper, we fix a strictly decreasing vector A =
(A, ..., An) € R". We point out that in [10], we more generally
consider A which are weakly decreasing; we will not need to do
so here.

Let N = {0,1,2,...,}, and for n € N, define [n] =
{1,2,...,n}). For k € N, we let ([Z]) denote the set of k-element
subsets of [n]. We let ey, ..., e, denote the unit vectors of C".
Given an m x n matrix A and subsets I C [m] and J C [n], we
let A;; denote the submatrix of A using rows I and columns J.
If [I| = |J|, we let A;;(A) denote det(A,;), called a minor of A. If
J = [k], where k = |I|, we call A y(A) a left-justified minor of A,
which we denote by A;(A).

We let P"~!(C) denote the projective space of all nonzero
vectors (X7 : --- : X,) modulo rescaling. We let gl,,(C) denote the
Lie algebra of n x n matrices over C, with Lie bracket

[L,M]:=LM — ML forall L, M € gl,(C).

We let ad; = [L, -] denote the adjoint operator of L € gl,(C).
We let diag(L) € C" denote the vector of diagonal entries of
L € gl,(C). Finally, we let Diag(cy, ..., c,) € gl,(C) denote the
n x n diagonal matrix with diagonal entries cq, ..., C,.

We recall the Cauchy-Binet identity (see e.g. [11, L(14)]): if A
is an m x n matrix, B is an n x p matrix, and 1 < k < m, p, then

Aij(AB)= " Aix(A)Axy(B) forallle (")) and] e (7).
ke('¥)

(2.1)
2.1. Flag varieties and adjoint orbits

We introduce Grassmannians and complete flag varieties,
which will play an important role in the paper.

Definition 2.1. Let 0 < k < n. We define the Grassmannian
Gry »(C) as the set of all k-dimensional linear subspaces of C".
Given V € Gry »(C), we say that an n x k matrix A represents V if
its columns form a basis of V. We have the Pliicker embedding

Grn(C) > PO-D(C), V> (AA):1 e (), (2.2)

which does not depend on the choice of A. We call the projective
coordinates A;(-) on Gry (C) Pliicker coordinates.

Definition 2.2. Let GL,;(C) denote the general linear group of all
n x n invertible matrices over C, and let B,(C) denote the Borel
subgroup of GL,(C) of all upper-triangular matrices. We define
the complete flag variety as the quotient

Fln(C) == GLy(C)/ By(C),

which we may identify with the variety of complete flags of linear
subspaces of C"

(V=(,...,Vopq1):0CcViC---CVpq CC"and
dim(Vy)=kfor 1 <k <n-—1}.

This identification sends g € GL,(C)/ B,(C) to the tuple (V1, ...,

Va_1), where each Vj is the span of the first k columns of g.

We will freely alternate between regarding complete flags as
elements g € GL,(C)/B,(C) or as tuples (V1, ..., Vh_1).

Physica D 450 (2023) 133766

We have the Pliicker embedding

n—1
FL(C) = [ [P, g (ale): 1€ (V) ocrs

k=1
(2.3)
which is given by the embedding
n—1
FIn(C) = [[Grien(©),  (Va, .o Vaca) > (Ve Vaa), (24)
k=1

and then applying the Pliicker embedding (2.2) to each term
Gry n(C). We call the left-justified minors A;(g) appearing above
the Pliicker coordinates of g € Fl,(C) (also known as flag minors).

Example 2.3. We can write a generic element of the complete
flag variety Fl3(C) as

1 0 0
g = |:a 1 O:| € GL3(C)/B3(C), wherea,b,ceC.
b ¢ 1

The Pliicker embedding (2.3) takes g to

((A1(8) : A2(g) : A3(8)), (A12(g) : A13(8) = Axs(g)))
=((1:a:b),(1:c:ac—Db)) e P*(C) x P*(C). ¢

We recall that O; denotes the adjoint orbit of u,, consisting of
all skew-Hermitian matrices with eigenvalues iAq, ..., iA,:

0, = {g(iDiag(A))g™" : g € Uy}

We observe that we can write the isomorphism O;, 3 Fl,(C)
from (1.5) equivalently as

0, 5 F,(C), g(iDiag(x))g™' — g.

Remark 2.4. The embedding (2.4) has a natural interpretation
in O;. Namely, given (V1, ..., V,_1) € Fl;(C), let iM € O, be the
corresponding element under the isomorphism (1.5). Then

n—1
M = (Z(Ak - Am)m) + Anln,

k=1

(2.5)

where Py € gl,(C) is orthogonal projection onto Vj [10, Lemma
4.16].

2.2. Total positivity

We recall the notion of total positivity for Fl,(C).

Definition 2.5 ([9,12]). Let 0 < k < n. We say that an element
of Fl,(C) is totally positive (respectively, totally nonnegative) if
all its Pliicker coordinates are real and positive (respectively,
nonnegative), up to rescaling. This defines the totally positive
part FI7° and the totally nonnegative part FI>°. (This definition
is different from, but equivalent to, the original definition of
Lusztig [9,12]; see [13, Section 1.4] for references and a history
of this equivalence.)

We define the totally positive part O; 0 to be the inverse image
of Fl;0 under the isomorphism (1.5). We similarly define the
totally nonnegative part Ofo.

Example 2.6. The element g € Fl3(C) from Example 2.3 is totally
positive if and only if a, b,c,ac — b > 0. ¢
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3. The general twist map

In this section we construct an involution 9 on Fl,(C), which
we call the twist map. This generalizes the totally nonnegative
twist map we defined on FlfO in [10]; see Remark 3.7. We refer
to [10, Section 3.3] for further motivation and a discussion of
related work.

We begin by recalling the Bruhat decomposition of Fl,(C); for
further details, see, e.g., [ 14, Section 1.2].

Definition 3.1. Given n € N, let G, denote the symmetric group
of all permutations of [n]. For w € &,, we define the (signed)
permutation matrix w € GL,(C) by

. +1, ifi=w(); ..
e for1<i,j<n,
Wij {0, otherwise, ori=ti=n

where the signs are chosen so that all left-justified minors of w
are nonnegative. Note that

(=1,
(3.1)

(w=1) = 8,(w)"'8,, where 8, := Diag(1, —1,1,...

We also regard w as an element of Fl,(C), and define the Schubert
cell

X" = Bu(C) - C Fl(C),
which consists of all V € FI,(C) such that forall 1 <k <n-—1,
the lexicographically maximal I € ('}) such that A;(V) # 0 is

k
I = w([k]). We have the Bruhat decomposition

Fll(C) = | | X

webp

We now define the general twist map.

Definition 3.2. Given n € N, define the involution ¢ : GL,(C) —
GL,(C) (called the positive inverse) by

Ug) = 8ng 0.

In other words, «(g);; = (—1)"(g=1);; for 1 <i,j <n.
Given V € Fly(C), we define a canonical representative g € Uy
of V as follows: if V € X" (where w € &,), then

Ayig(8) € Rop  and  Ay(g) = 0 for all
Ie () with I > w([k]) (3.2)

k

forall 1 < k < n. We let 9(V) € Fl,(C) denote the complete
flag represented by «(g). This defines the (Iwasawa) twist map
¥ : Fl,(C) — Fl,(C).

Remark 3.3. The name twist map is motivated by the twist
maps defined by Berenstein, Fomin, and Zelevinsky on N,(C) and
GL,(C) [15,16]. The key difference is that our map ¢ is based
on the Iwasawa (or QR-) decomposition of GL,(C), rather than
the Bruhat decomposition. A different twist map was defined on
Fl,(C) in the latter sense by Galashin and Lam [17].

Example 34. Let

’ V2o-1 o1
gi= V2 1 —1]|e€Us;, whence
0 V2 V2
V2 V2 o0
(g)=08:8""83=2| 1 1 V2.
1 1 V2
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We can verify that g satisfies (3.2) with w := 231 € &3. Therefore
¥ : FI3(C) — FI3(C) takes the complete flag represented by
g to the complete flag represented by ((g). Note that «(g) sat-
isfies (3.2) for the permutation w~! = 312, in agreement with
Proposition 3.5. ¢

Proposition 3.5. The twist map ¥ on Fl,(C) is an involution. For
each w € G, it restricts to a diffeomorphism X* — X%V .

Proof. Let w € &,,. The twist map restricted to X is smooth, so
it suffices to show that given V € X*, we have (V) € X" and
that 9(#(V)) = V.

Let g € U, be the canonical representative of V as in (3.2), and

write
g =bwb’, where b, b’ € B,(C).

By the Cauchy-Binet identity (2.1) and since b’ is upper-
triangular, we have

Awi)(@) = Y Auqrya(b) A1 (1) A)(b)
(%)

= Auw(in.uw(ia(b)Ap(b) (3.3)
for all 0 < k < n. Then by (3.2), we obtain
A
bu.wioby x = Au)(@) >0 foralll<k<n. (3.4)
T Aue—1)(8)

By (3.1), we have
U(g) = 818 80 = (8,018, ) w1 )(Sab™180),

so 9(V) € X*'. Also, for all 1 < k < n, applying (3.3) to
A1y (U8)) gives

Ay 10(U8)) = A1y (b~ 8n) Apky(8nb™"81)

k

—_— / P _1

- H(bw_l(i),w_l(i)b“) > 09
i=1

using (3.4). Hence «(g) is the canonical representative of ¥(V) as
in (3.2), and since ¢ is an involution, we obtain #(¢#(V))=V. O

Remark 3.6. We could just as well have defined the twist map
¥ using the decomposition of Fl,,(C) into opposite Schubert cells

Xy =B, (C)-w C Flo(C) forw € G,

rather than Schubert cells. The resulting twist map would be
different from the one in Definition 3.2; the relationship between
the two maps can be derived from the fact that B, (C) is equal
to B,(C) conjugated by wy, where wg .= (i > n+1—1i) € &,.
These conventions are ultimately not important for our purposes,
because we take absolute values in Definition 6.8.

Remark 3.7. In Definition 3.2, we have defined the twist map ¢
on Fl;(C) in a piecewise manner, based on the Bruhat decompo-
sition. While 9 defines a smooth map on each Schubert cell Xv C
Fl,(C), in general ¥ is not continuous when passing between
cells. However, ¢ displays remarkable positivity properties, as we
explored in [10]; in particular, it restricts to an involution on the
totally nonnegative part Fl,?o, which extends to a smooth map
in an open neighborhood inside Fl,(R) [10, Definition 3.21]. We
emphasize, however, that such a smooth extension differs from
the general twist map ¥ outside of Fl,?o, since ¥ is not necessarily
continuous on the boundary of Flfo. For example, let g(t) € FI5(C)
be represented by the matrix g from Example 3.4, with the (3, 1)-
entry replaced by t € R. Then g(0) € FI5°, and g(t) ¢ FI5° for all
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t < 0. We have lim,_,( g(t) = g(0), but we can verify that

] V2 V2 0
. l(l)rrtl 019‘(g(t)) =3 -1 —1 /2| #%(g(0)) € Fl3(C).
—0,t< 1 1 «/i

~

Finally, we observe that ¥ defines an involution on O
Fl,(C) under the isomorphism (1.5).

Definition 3.8. We define 9, : ©;, — O, as the involution on
0, induced by the involution ¢ on Fl,(C), via the isomorphism
(1.5). Explicitly,
9,(g(iDiag(%))g~") := u(g)(i Diag(1) ((u(g)) ™"

= Sng_l(i Diag(1))gén
forall g € U, satisfying (3.2) (for some w € G, and all 1 < k < n).

4. The symmetric Toda flow as a twisted gradient flow

In this section we use the twist map %, to show that the
symmetric Toda flow is a twisted gradient flow on O, in the
Kéhler metric (see Theorem 4.6). This generalizes [10, Theorem
8.6(ii)], where we proved the same result restricted to the totally
nonnegative part Ofo; we refer to [10, Section 8] for further
discussion and context.

4.1. Background on the Kéhler metric and gradient flows

We begin by recalling background on the Kdhler metric on O,
and gradient flows, following [10, Section 5].

Definition 4.1. Let v denote the Killing form on gl,,(C), given by

v(L, M) = 2ntr(LM) — 2 tr(L)tr(M) for all L, M € gl,(C).

Then —v(-, -) defines a [-, -]-invariant pairing (i.e. v(ad, (M), N) =
—v(M, ad;(N))) which is positive semidefinite on .

Now let L € 0;. For X € u,, we define X' and X; by the
(unique) decomposition

X =X'4+X;, where X! eim(ad,)and X; € ker(ad,).

The normal metric on O, is given at L € O; by

(IL, X1, [L, YDnormar := —v(X", Y1)

for all tangent vectors [L, X] and [L, Y] at L. Then the Kdhler metric
on O, is given at L € O, by

([La X]v [L’ Y])Kéhler = <\/ —adf([L, X]), [L’ Y])normah

where ,/—adf denote the positive square root of the positive
semidefinite operator —ad?.

Definition 4.2. Given N € u,, we define the gradient flow on O;,

with respect to N (in a particular Riemannian metric) as the flow

given by

I(t) = grad(H)(L(t)),
We have the following explicit description of gradient flows

on O, in the Kihler metric:

where H(M) := v(M, N) for all M € 0O;.

Proposition 4.3 ([18, Section 3]; [19, Appendix]). Let L(t) evolve
according to the gradient flow on O;, beginning at Ly with respect to
N € u, in the Kéhler metric, and let V(t) € Fl,(C) be the correspond-
ing complete flag under the isomorphism (1.5), with V, = V(0).
Then

V(t) = exp(tiN)Vy forallt € R. (4.1)
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Letting g(t) € U, be any representative of V(t), we have L(t) =
g(t)(iDiag(1))g(t)~". Explicitly, we can take gy € U, representing
Vo, and then take

g(t) = my(exp(tiN)gy) forallt € R. (4.2)

We observe that (as will be useful later) in the case that
N is a diagonal matrix, we can explicitly describe the Pliicker
coordinates of the element V(t) in (4.1) in terms of those of Vj.

Lemma 44. Let N := —iDiag(cy, ...
V(t) evolves according to (4.1). Then

AlV(D) = eZiet S AL(Vg)  forall I € [n].

,Cn) € uy, and suppose that

Proof. This follows by a direct calculation, since exp(tiN) =
Diag(e‘1t, ..., e, O

Remark 4.5. We mention that in addition to (4.2), there is
another way to obtain an explicit solution to L(t). Namely, let
V(t) = (Vi(t), ..., V,_1(t)) be as in Proposition 4.3. Then as in
(2.5), we write

n—1
—iL(t) = (Z(xk - xk+1)Pk(r)) + Anln, (43)
k=1
where Py(t) € gl,,(C) is orthogonal projection onto Vi(t). Regard-
ing elements of Gry ,(C) as n x k matrices (as in Definition 2.1),
we have the formula

Pu(t) = Vi(£)(Vi(£)*Vi(£)) " Vi(E)*
= exp(tiN)(Vok((Vo)i exp(2tiN)(Vo)k) ™' (Vo )i exp(tiN).

This leads (via (4.3)) to an explicit expression for L(t) which does
not require computing a QR-decomposition, as in (4.2).

4.2. The symmetric Toda flow

We now show that the symmetric Toda flow (1.4) on O, is
a twisted gradient flow. This generalizes [10, Theorem 8.6(ii)],
where we proved the same result restricted to the totally non-
negative part Ofo; essentially the same proof applies, using the
general twist map @, defined in Section 3.

Theorem 4.6. Set N := —iDiag(A) € u,. The symmetric Toda flow
(1.4) restricted to O;, is the twisted gradient flow with respect to N in
the Kdhler metric. That is, if L(t) evolves according to (1.4) beginning
at Ly € O,, then 9,(L(t)) is the gradient flow with respect to N in
the Kdhler metric beginning at ©,(Lo) € O, (cf. Definition 4.2 and
Proposition 4.3). In the notation of Proposition 4.3, we have

V(t) = 9(Diag(e™, ..., M) . 9(Vp)) forallt € R. (4.4)
Proof. The proof is the same as in [10, Proof of Theorem 8.6].
We only need to observe that if gy € U, satisfies (3.2) for some
w € &, and all 1 < k < n, then so does wy(exp(tiN)gp). O

Remark 4.7. We note that Bloch [20, Section 6] showed that
the tridiagonal Toda lattice flow (1.4) (with L tridiagonal) can be
written as

L=I[L[L N]l, whereN :=—iDiag(n—1,...,1,0) € uy,

In particular, by [21,22], the tridiagonal Toda flow restricted to
0, is the gradient flow with respect to N in the normal metric.
(However, this result does not directly extend to the full symmet-
ric Toda flow; cf. [23].) It is curious that the Toda lattice flow can
be written as a gradient flow in two different metrics in rather
different ways.
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5. Tridiagonal matrices and the Moser map

In this section, we explicitly describe Moser’s map (1.3) and
its connection to the tridiagonal Toda lattice flow. We closely
follow [10, Section 4.4]. In order to use the framework of adjoint
orbits, we work with skew-Hermitian matrices iM rather than
symmetric (or Hermitian) matrices M.

Definition 5.1. We define 7° (respectively, 7,°) to be the
set of elements iM of O, such that M is a real tridiagonal ma-
trix with positive (respectively, nonnegative) entries immedi-
ately above and below the diagonal. Equivalently, Jfo (respec-
tively, Jfo) is the set of tridiagonal matrices in ©;° (respec-
tively, ©;°) [10, Proposition 4.18]. The space 7;° is known as
an isospectral manifold of Jacobi matrices.

Definition 5.2. Let P"' (respectively, IP”ZBI) denote the subset

of P"1(C) where all coordinates are real and positive (respec-
tively, nonnegative), up to rescaling. Given x € ]P’Z])], we define

the Vandermonde flag Vand(A, x) € Fl,(C) as the complete flag
(Vq,...,Vy_1), where

Vi := span(x, Diag(A)x, ..., Diag\)¥"'x) for1<k<n-—1.

Equivalently, Vand(A, x) is represented by the rescaled Vander-
monde matrix ()\’flx,-)lg,-,jsn € GLy(C). We let Mosy(x) € 0Oy
denote element corresponding to Vand(A,x) € Fl,(C) under
the isomorphism (1.5). We call Mos; the Moser map, since it
essentially appeared (with a different, but equivalent, definition)

in [4].

Theorem 5.3 (Moser [4, Section 3]; Bloch and Karp [10, Corollary
4.24]). The Moser map Mos;, : ]P’”Bl > Jfo is a diffeomorphism.

>

Example 54. Let A := (1,0, —1). Then the Moser map Mos;
sends (1 : X, : x3) € P2 to

2 2 [0232 1 23242 1 32,2
x5 —x5 )(1)(2-0—4x]x3+x2x3 0

2143242 21,2 1,2
X{+HX5+X3 X{+HX5+X3

2,2 2.2 1 42,2 2 2v 4 2.2 2132 1,2
i /x]x2+4x1x3+x2x3 (xl—x3)(x2—4x1x3) 2X1X2X3 X{Hx5+x3
2,2 2,2 | 2.2
X7X5+AX{X3+X5X3

X% +X% +X% (X% +x% +x§ )(x%x% +4x€x§ +X%X§)

[ 20,2 .2
0 2X1XX3,/X]+X5+X3 x%(ngx%)

2,2 2.2 1 42,2 2,2 2,2 1 2,2
X{X5+4X1X3+X5X3 X7X5+AX{X3+X5X3

eg" o

We now discuss the topology of the compact isospectral man-
ifold 7,°°.

Definition 5.5. Let Perm(1) C R" denote the polytope whose
vertices are all n! permutations of A = (Aq,...,A,). We call
Perm()) a permutohedron. We also define the moment map

uiu, > R", M +— diag(M).

Example 5.6. Let A := (1,0, —1). Then Perm(}) is a hexagon
in R3, contained in the hyperplane where all coordinates sum to
zero:

(1,0,-1)

(1,-1,0) (0,1,-1)

(0,-1,1) (-1,1,0)

(-1,0,1)
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Tomei [24, Section 4] showed that jfo is homeomorphic to
Perm(}) (in fact, they are isomorphic as regular CW complexes).
We will need the following explicit version of this result due to
Bloch, Flashcka, and Ratiu [8]. It may be regarded as an analogue
of the Schur-Horn theorem [25,26], which states that « maps O;
surjectively onto Perm(\).

Theorem 5.7 (Bloch, Flaschka, and Ratiu [8, Theorem p. 60]; cf. [10,
Remark 8.8]). The map
TZ% = Perm(X), L u(d4(L))

is a homeomorphism which restricts to a diffeomorphism from jfo
to the interior of Perm(\).

We emphasize that in general, the map
‘7)\30 — Perm(X), L u(L)

(not involving the twist map) is neither injective nor surjective.

6. Tridiagonalization of the symmetric Toda flow
6.1. The construction of Deift, Li, Nanda, and Tomei

We recall the tridiagonalization of the symmetric Toda flow
constructed by Deift, Li, Nanda, and Tomei [7, Section 7]. While
we maintain the notation of [7] where possible, we give an expo-
sition tailored to our perspective. One key notational difference is
that we reverse the order of the ground set [n] from its use in [7]
(e.g. in Definition 6.2, we use e rather than e,); our convention
is consistent with the rest of this paper and with [4,10].

Definition 6.1.
subspace

Let A € gl,(C) and x € C". We define the cyclic

cyc(A; x) := span(A'x : j € N) € C™.

Equivalently, cyc(A; x) is the minimal A-invariant subspace of C"
containing x.

Definition 6.2. Let M be an n x n Hermitian matrix. Let
m := dim(cyc(M; eq)), and let A be the n x m matrix with
orthonormal columns obtained by applying the Gram-Schmidt
orthonormalization process to the matrix

\ \ \
|:€1 MFl Mm_1€1:|

(so in particular, A*A = I,,). We define the m x m Hermitian
matrix My = A*MA, which represents the endomorphism M
restricted to cyc(M; eq). In light of Proposition 6.3(i), we call Mr
the tridiagonalization of M.

Proposition 6.3. Let M be an n x n Hermitian matrix, and write
M = gDiag(v)g~', where v; > --- > v, and g € Uy,

(i) The matrix My is tridiagonal with positive real entries imme-
diately above and below the diagonal.
(ii) The eigenvalues of My are distinct, and its set of eigenvalues is

{fvi:1<i<nandg;#0}.

(iii) Let v; (Where 1 <i < n) be a simple eigenvalue of M which is
also an eigenvalue of Mr. Then the corresponding normalized
eigenvectors of M and Mr have the same first entry. That is, if
x € C™ has norm 1 such that Myx = vix, then |x1] = |g1.i|.
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Proof. (i) Let m and A be as in Definition 6.2. We show, equiva-
lently, that the m x m matrix

\ \ [
|:€1 MT‘€1 (Mr)m]€1:|

is upper-triangular with positive diagonal entries. To this end, let
1 <j < m. By the definition of A, we can write

i
M le; = E cile;,
i—1

Recall that Mr represents the endomorphism M restricted to
cyc(M; eq1); similarly, (M;y~' = A*M/~'A represents M/~ re-
stricted to cyc(M; e;). We obtain

where ¢y, ...,¢geCand¢ > 0.

j j
(MrY~le; = A*MiI~1Ae; = A*MI~le; = ZciA*Aei = Zciei.
i=1 i=1
(ii) The matrix My represents the endomorphism M restricted
to cyc(M; eq), which in turn (conjugating by g~ ') is similar to the
endomorphism Diag(v) restricted to cyc(Diag(v); g~ 'e1). Given
1 <i < n, consider the vector y € C" defined by

(g7 ler)j =21y, ifvyj=;

for1<j<n.
0, otherwise =1=

Yi=
Then by Vandermonde’s identity, the distinct nonzero y’s form a
basis for cyc(Diag(v); g~ 'e;).

(iii) Since v; is a simple eigenvalue of both M and Mr, the
corresponding eigenvector ge; of M lies in cyc(M; eq). Therefore
ge; = Ax for some x € C™, and ||x|| = |le;|| = 1 because g and A
both have orthonormal columns. We have

Mrx = A*MAx = A*Mge; = v;A*ge; = ViA"AX = vix,
and |x;| = [(A*gei)1| = I(gei)1] = Ig1il. O

Example 6.4. Let

-2 3v2 3V2
M:=-|3/2 -1 —1 | =gDiag(1,0,—2)g~"!, where
W2 -1 -1
V20 V2
g==-|1 =2 -1]|€U;.
1 V2 -1
Since M?e; = 2e; — Me,, the cyclic subspace cyc(M;eq) is
2-dimensional. Taking the matrix
1
I =
\ [ _ 3
|:€1 Mel:l =0 272
o 0 3
2V2
and applying the Gram-Schmidt orthonormalization process gives
1 0
A=|0 % . Then
o -L
V2
T B ) T —1
Mp = A*MA = 2 [ 3 _1} = hDiag(1, —2)h
1 {1 -1
whereh.=ﬁ|:] 1 :| eU,.

We can verify that the properties of M in Proposition 6.3 hold in
this case. ¢

We now consider actions of GL,(C) and gl,,(C) on the exterior
power Af(C™).
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Definition 6.5. For 0 < k < n, let /\k((C”) denote the kth exterior
power of C", which we identify with c@ by fixing the basis

{€i1/\'-~/\€;k11§i1<'~~<ik§1’l} (6.1)

ordered lexicographically. Given g € GL,(C), we let gk ¢
GL(/\k((C")) = GL(E)((C) denote the map induced by g, i.e.,

gR0 A AR) =g A for all x4, ..., x, € C".

Given M € gl,,(C), we let M, € g[(/\k((C”)) = gl(1)(C) denote the
vector field induced by M, ie,

-3

,XkE(C .

A Xk

My(x1 A - A Xg) CAXim1 AMX; AXipg A AXg

for all x4, ...

Equivalently, M, exp(tM)®),

= i’
delt=0
Deift, Li, Nanda, and Tomei [7] observe that the operations

M +— My and M + M) are both compatible with the symmetric

Toda flow (the proofs in [7] are over R, but easily extend over C).

In the statements below, given a Hermitian matrix N, we let N(t)

denote the symmetric Toda flow (1.1) beginning at N.

Proposition 6.6 (Deift, Li, Nanda, and Tomei [7, Propositions 7.2 and

7.3]). Let M be an n x n Hermitian matrix, let 0 < k < n, and let
t € R. Then the following two diagrams commute:

M | Toda M(t)

My Toda My (t) =

M Toda M(t)

“(k) l (k)
Toda
My —————— M(t) = M(t)w)

Deift, Li, Nanda, and Tomei [7] then apply Proposition 6.6 to
embed the symmetric Toda flow into a product of tridiagonal
Toda flows:

Theorem 6.7 (Deift, Li, Nanda, and Tomei [7, Theorem p. 230]). Let

M be an n x n Hermitian matrix such that forall 1 < k < n—1, the
(Z) sums of k distinct eigenvalues of M are pairwise distinct. Then

for all t € R, the following diagram commutes:

o Toda M(t)
(T3 1)y chen1-
((Mw)r), ez Toda ((M)r(©)), zpy = (MO, ez
(6.2)

Moreover, the map
> ((M(k))T(t))lskS"_l = ((M(t)(k))T)lfksn_] fort eR

is injective. That is, a generic trajectory of the symmetric Toda flow
embeds into a product of trajectories of tridiagonal Toda flows.

(6.3)
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6.2. Tridiagonalization via the twist map, Pliicker embedding, and
Moser map

We now rephrase Theorem 6.7 (and give a new proof) using
three maps we introduced earlier: the twist map ¢, the Pliicker
embedding A, and the Moser map Mos;. For convenience, we
extend the domain of Mos; from P! to P"~!(C):

Definition 6.8. Recall the Moser map Mos;, : IP";? — O, defined
in Definition 5.2. We define the extended Moser map

Mos, : P"~1(C) — UO,,

as follows, where the union above is over all nonempty subse-
quences v of A. Given x € P"~1(C), we set | := {i € [n] : x; # 0},
and define

y::(|x,~|:iel)ePZ'O_1 and v:=(;:iel).

Then we define h?l?sx(x) = Mos, ().
Example 6.9. We have MES(M‘)‘Z,)G)(—] 0 3i+4) =
Mosg, 35)(1:5). O

We can write the tridiagonal Toda lattice flow in terms of the
Moser map, as follows.

Proposition 6.10 (Moser [4, (1.4)]). Let L € 7.°°, and let L(t) denote
the symmetric Toda flow (1.4) beginning at L. Take x € ]P’Zgl as in
Theorem 5.3 such that Mos; (x) = L. Then

L(t) = Mos;(eMxq @ - eMlx,)  forall t € R.
Proof. This is a restatement of (1.2). Alternatively, we can apply

Theorem 4.6 and (4.1). O

We recall that we are working with both Hermitian and skew-
Hermitian matrices; if M is an nxn Hermitian matrix with distinct
eigenvalues A, then we have a corresponding skew-Hermitian
matrix L = iM € O;.

Proposition 6.11. Let M be an n x n Hermitian matrix with distinct
eigenvalues A, and write M = g Diag(A)g~!, where g € U,.. Then

Mos,(gi1: -+ : g1.a) = IMr.

Proof. This follows from Proposition 6.3 and Theorem 5.3. O

We now generalize Proposition 6.11 to give an interpretation
of (M)r. For 0 < k < n, we define

A0 = (Z rile ([Z])> e R,
iel
Moreover, we reorder the elements of ([’,:]) (from the lexico-

graphic order) so that the entries of A} are weakly decreasing.
Importantly, in both orders, the first element of ([’,:]) is [k].

Corollary 6.12. Let M be an n x n Hermitian matrix with distinct
eigenvalues A, and let V € Fl,(C) denote the complete flag corre-
sponding to iM under the isomorphism (1.5). Let 0 < k < n be such
that the entries of A are distinct. Then

Mos, i (A1 (V) 1 € (1)) = i(Muo)r.

Proof. Let g € U, be the canonical representative of V as in (3.2),

so that M = g Diag(A)g~". Then the eigenvalues of M are Aﬁk) for
Ie ([Z]), with corresponding eigenvectors /\, ge;. The first entry
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of A\, gei is the coefficient of e; A - - - A e, namely, Ay (g). We
have

[Apk.1(8)l = 1A:1((gN] = [A(FV))I,
so the result follows from Proposition 6.11. O

We now state our main result:

Theorem 6.13. Let M be a Hermitian matrix with distinct eigenval-
ues A such that for all 1 < k < n— 1, the entries of A’ are distinct.
Let V € Fl,,(C) denote the complete flag corresponding to iM under
the isomorphism (1.5). Then under the Toda flow, we have

(Ma)r(t) = (M(E)go)r = —iNos, o (€4 A (9(V)) : 1 € (M)
(6.4)

forallt e Rand 1 < k < n— 1, which we see explicitly is a twisted
gradient flow. In particular, the diagram (6.2) commutes, and we can
write the embedding (6.3) as

—_—~ (k)
t— (—iMOS)L(k) (A (V): 1€ ([”]))) fort € R.
1<k<n-1

(6.5)

This embeds a generic trajectory of the symmetric Toda flow into a
product of trajectories of tridiagonal Toda flows.

Proof. The fact that (My)r(t) equals the right-hand side of (6.4)
follows from Corollary 6.12 and Proposition 6.10. The fact that
(M(t)x)r equals the right-hand side of (6.4) follows similarly,
where instead of Proposition 6.10, we use (4.4) and Lemma 4.4.
The fact that (6.5) is an embedding follows from Theorem 5.3. O

Remark 6.14. Suppose A is such that for all 1 < k < n — 1, the
entries of AX) are distinct. While (6.3) (equivalently, (6.5)) is an
embedding, the map

M — ((M(k))T)lgkgnfl
= (—il\ﬁ\o/sk(k) (A(@(V):1e ([Z]))>

(where V € Fl,,(C) denotes the complete flag corresponding to iM
under the isomorphism (1.5)) is not injective on the set of n x n
Hermitian matrices M with eigenvalues A. Indeed, we can see
from the expression on the right-hand side above that for each
1 <k <n— 1, we only recover the vector (|A,(#(V))| : I € (')
of absolute values of the Pliicker coordinates of ©*(V),, and not
necessarily the complex argument of each Pliicker coordinate. If
in addition we record the complex argument of each A;(¥(V))
(which, up to a change in notation, is the element 7;(M) of [7,
Section 7]), then we obtain an injection. For example, the map
(6.6) gives an embedding when restricted to iM € (’);0, since in
this case every Pliicker coordinate A;(9(V)) is positive.

(6.6)

1<k<n—-1

Remark 6.15. Deift, Li, Nanda, and Tomei [7, Theorem 3.3] also
show that the symmetric Toda flow is Liouville integrable, which
depends on finding sufficient independent integrals in involution
with respect to the appropriate Poisson bracket. As they discuss,
the explicit embedding constructed in this section gives an al-
ternative demonstration of integrability, which is independent of
Liouville integrability. It would be interesting to further study the
connection between these two approaches.

7. Toda flows on moment polytopes

We recall the discussion of the moment map p from Section 5,
and in particular Theorem 5.7, which implies that the twisted
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moment map u o ¥, gives a diffeomorphism from jfo to the
interior of Perm(A). In this section, we study variations of this
map applied not just to tridiagonal matrices JEO, but to a gen-
eral adjoint orbit ©,. One such variation will be based on the
embedding of Section 6.

We begin by studying the twisted moment map u o ¥, on
0,.. The following result is closely related to work of Kodama and
Williams [27, Section 6].

Proposition 7.1. The twisted moment map
L= u(v,(L)) (7.1)

is an embedding when restricted to a generic trajectory of the
symmetric Toda flow (1.4).

0;, — Perm(}),

Proof. Given L € O, let L(t) (t € R) denote the symmetric Toda
flow beginning at L, and let V(t) € Fl,(C) denote the complete
flag corresponding to L(t) under the isomorphism (1.5). Then by
(4.4), we have

P(V(t)) = Diag(eMt, ..., e*nt) - 9(Vp). (7.2)

Now let T,(C) denote the subset of diagonal matrices in GL,(C),
and let T, % denote its positive part, consisting of diagonal ma-
trices with positive diagonal entries. Then T,(C) acts on Fl,(C) by
left multiplication. We may regard x as a moment map on Fl,(C),
and therefore it maps a generic T, %_orbit homeomorphically onto
the interior of the moment polytope Perm(A) (see, e.g., [28, Sec-
tion 4.2]). Since Diag(et, ..., e*!) € T;? for all t € R, the result
follows. O

Remark 7.2. We note that one can write down the moment
map u explicitly in terms of Pliicker coordinates, as follows. Let
HS}., denote the convex hull in R" of all (}) vectors with k 1's and
n — k 0's, called a hypersimplex. Then we have the Grassmannian
moment map

ey, 1o |A1(V)|2>
Zle([ﬁl) |AI(V)|2 15:‘5117

whose image is HS, (cf. [29, Section 2]). One can verify that
if P e g1,(C) is orthogonal projection onto V € Gry,(C), then
diag(P) = 1tia(V).

Now let L € Oy, and let V = (V4,...,V,_1) € Fl,(C) denote
the complete flag corresponding to L under the isomorphism
(1.5). Recall from (2.5) that we may write

n—1
—iL = (Z(Ak - ka)Pk) + Jaln,

k=1

Mk,n * Grk,n((c) - R"» Vi (

where Py € gl,(C) is orthogonal projection onto V. Then

n—1
w(l) = (Z()Lk - )»/<+1)diag(P/<)> + A diag(ly)

k=1

n—1
= (Z(Ak - Ak+1)uk,n(vk)> + (1,0, 1),
k=1
We note that (7.3) provides a convenient way to calculate (7.1)
for a trajectory L(t) of the Toda flow, using the formula (7.2).
Namely, we have

n—1
(L)) = (Z(xk — Mip1)itken(Diag(eh’, ... ") - ﬁ(vk)))
k=1
+ (1, ..., 1)

We now apply the moment map w to the image of the em-
bedding used in Theorem 6.13.
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Proposition 7.3. Suppose A € R" is such that forall1 <k <n-—1,
the entries of AX) are distinct. Given L € ©;,, let V € Fl,(C) denote
the complete flag corresponding to L under the isomorphism (1.5).
Let O; denote the subset of O, of all L such that A($(V)) # 0 for
all I C [n]. Then we have the continuous map

n—1
0, — 1_[ Perm(1(X)),
k=1

L (/L(l\//rgS)L(k)(A,(ﬂ(V)) e ([Zl)))) (7.4)

1<k<n-1
Moreover, when (7.4) is restricted to any subset of O} which fixes
the complex argument of A;(9(V)) for each nonempty I C [n], then
it is a diffeomorphism onto its image. In particular, (7.4) restricted
to Ofo is a diffeomorphism onto its image.

Note that (7.4) is obtain by applying (6.6) (to L = iM, rather
than M), and then applying u to each of the n — 1 factors.

Proof. This follows from Theorem 5.7, using the discussion in
Remark 6.14. O

Remark 7.4. It is not clear how to extend Proposition 7.3 from
0;° to 07°. This is because the Moser map Mos; is only defined
on P ', not PLy".

Remark 7.5. We note that in (7.4), the codomain has dimension

much greater than that of the domain ( Z;}((Z) — 1) versus n!).

This comes from the same property of the Pliicker embedding
n

(2.3), whose image in ]_[,{;} ]P((;)”)((C) is cut out by Grassmann-
Pliicker and incidence-Pliicker relations. It may be interesting to
study the image of this subset in [];_; Perm(r()).

The formula (7.3) suggests an interpolation between the two
maps considered in Propositions 7.1 and 7.3, namely,

n—1

01 = [ [HSkn: L (kn® (Vi) ey (7.5)
k=1

(with notation as in Remark 7.2). We do not expect (7.5) to be
injective on O, for similar reasons as discussed in Remark 6.14.
However, we do not know whether it is injective when we require
all Pliicker coordinates to be nonnegative:
Problem 7.6. Is the map (7.5) injective when restricted to (’)fo?
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