
ExLi: An Inline-Test Generation Tool for Java

Yu Liu★, Aditya Thimmaiah★, Owolabi Legunsen†, Milos Gligoric★
★The University of Texas at Austin; †Cornell University

★Austin, †Ithaca, USA
yuki.liu@utexas.edu,auditt@utexas.edu,legunsen@cornell.edu,gligoric@utexas.edu

ABSTRACT

We present ExLi, a tool for automatically generating inline tests,

which were recently proposed for statement-level code validation.

ExLi is the first tool to support retrofitting inline tests to exist-

ing codebases, towards increasing adoption of this type of tests.

ExLi first extracts inline tests from unit tests that validate methods

that enclose the target statement under test. Then, ExLi uses a

coverage-then-mutants based approach to minimize the set of ini-

tially generated inline tests, while preserving their fault-detection

capability. ExLi works for Java, and we use it to generate inline

tests for 645 target statements in 31 open-source projects. ExLi

reduces the initially generated 27,415 inline tests to 873. ExLi im-

proves the fault-detection capability of unit test suites from which

inline tests are generated: the final set of inline tests kills up to

24.4% more mutants on target statements than developer written

and automatically generated unit tests. ExLi is open sourced at

https://github.com/EngineeringSoftware/exli and a video demo is

available at https://youtu.be/qaEB4qDeds4.

CCS CONCEPTS

· Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Inline tests, unit tests, automatic test generation, test carving

ACM Reference Format:

Yu Liu★, Aditya Thimmaiah★, Owolabi Legunsen†, Milos Gligoric★. 2024.

ExLi: An Inline-Test Generation Tool for Java. In Companion Proceedings

of the 32nd ACM International Conference on the Foundations of Software

Engineering (FSE Companion ’24), July 15ś19, 2024, Porto de Galinhas, Brazil.

ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3663529.3663817

1 INTRODUCTION

Inline tests were recently proposed for statement-level code (i.e.,

target statements) validation [13]. Inline tests complement tradi-

tional levels of test granularity, such as unit and integration tests,

and can help find single-statement bugs [10, 20] that are often

missed by unit tests [11]. Statements with harder-to-understand or

error-prone logic, such as regular expressions [16], or those that

are buried in complicated logic [21], can particularly benefit from

inline testing. Section 2 provides a detailed example.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

FSE Companion ’24, July 15ś19, 2024, Porto de Galinhas, Brazil

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663817

Two frameworksÐiTest for Java [7] and pytest-inline for

Python [14]Ðwere proposed to provide APIs for writing and exe-

cuting inline tests. Those APIs allow developers to specify an inline

test’s inputs, expected outputs, and oracles immediately after a tar-

get statement that is being tested. Then, these frameworks run each

inline test independently in a fresh environment. A prior user study

showed that inline tests are straightforward to learn [13]. Also,

pytest-inline has been integrated into pytest, the most popular

Python testing framework [6] and has now been downloaded 6,128

times since March 2023 [18]. Despite these advances, developers

must still write inline tests manually.

ExLi [12] was proposed to automatically generate inline tests.

ExLi can help to reduce developer time for manually writing inline

tests, retrofit inline tests to existing code, grow the dataset of avail-

able inline tests for research, and increase the chance for inline test

adoption in practice.

ExLi generates inline tests by extracting them from the execution

of unit tests for methods that enclose target statements. To do so,

ExLi follows a four-step process: (1) analyze the code under test to

find target statements, (2) instrument a target statement to collect

inputs and outputs during unit-test execution, (3) execute unit

tests that cover the target statement, and (4) generate inline tests

using the collected inputs as test inputs and collected output as

expected output in a test oracle. ExLi currently supports four kinds

of target statements: regular expressions, string manipulation, bit

manipulation, and stream operations, which were identified in prior

work [13] as being likely to benefit from inline testing. More kinds

of statements can be added in the future.

The extraction-only approach described above can generate an

excessive number of inline tests if unit tests execute a target state-

ment many times with varying inputs. To mitigate this excess, ExLi

also utilizes a coverage-then-mutants based reduction process to

reduce redundancy among extracted inline tests. (One inline test

is redundant with respect to another if it does not increase the

coverage [4] and mutation score [8] on the target statement.) ExLi

tracks the number of covered instructions on the target statement

and its context during unit test executions, recording values that

cover instructions that were not previously covered. Also, ExLimu-

tates the target statement and ensures that each generated inline

test kills a unique mutant. If no mutant is generated for a target

statement, then ExLi’s reduction is based only on coverage.

Improvements over previous prototype. This paper extends

ExLi from a prototype to a tool with a more user-friendly inter-

face, to facilitate easier adoption. New support that we add include

(1) generating inline tests in docker containers to isolate ExLi from

host’s file system and reduce flakiness, (2) allowing developers to

specify the target statement using its line number, and (3) exposing

an interface that allows users to supply their own algorithms for

target-statement identification.



FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Yu Liu, Aditya Thimmaiah, Owolabi Legunsen, and Milos Gligoric

1 class DFAssinaturaDigital{

2 void assinarDocumento(...) {

3 final PrivateKeyEntry keyEntry = getPrivateKeyEntry();

4 final String dn = ((X509Certificate) keyEntry.getCertificate()).

getSubjectX500Principal().getName();

5 this.getLogger().debug("DN: {}", dn);

6 final String cn = new LdapName(dn).getRdns().stream().filter(rdn ->

StringUtils.equalsIgnoreCase(rdn.getType(), "CN")).map(val ->

String.valueOf(val.getValue())).findFirst().orElse("");

7 itest().given(dn, "1.2.840=#1612646965676f,CN=NFe,OU=TI,O=NFe,

L=Florianopolis,ST=SC,C=BR").checkEq(cn, "NFe");

8 this.getLogger().debug("CN: {}", cn);

9 ...

10 }

11 }

Figure 1: An example target statement (line 6) and an ExLi-

generated inline test (line 7).

Evaluation. We evaluate ExLi on 645 target statements in 31 open-

source projects. We generate 873 inline tests in total. The final set

of generated inline tests kills up to 24.4% more mutants on target

statements than developer written and automatically generated

unit tests combined. That is, ExLi generates inline tests that can

improve the fault-detection capability of the test suites from which

they are extracted. We make ExLi open source and it is available at

https://github.com/EngineeringSoftware/exli.

2 EXAMPLE

Figure 1 shows an example target statement (line 6) and an inline

test that ExLi generates (line 7). This example is simplified from

the open-source project, wmixvideo/nfe [24], a Brazilian electronic

invoices management system. Method assinarDocumento imple-

ments code for digitally signing XML documents. Line 6 extracts the

common name (CN) from a distinguished name (DN) in an X.509

certificate. If the distinguished name contains a CN component,

then line 6 extracts that component using Java streams. Otherwise,

line 6 assigns an empty string to the cn variable.

This target statement is worth testing because it utilizes complex

stream operations and string manipulation, which can be error-

prone or hard to understand [13]. However, writing a unit test to

check this target statement is challenging: doing so requires setting

up a certificate with a specific DN. Also, the local variable cn is not

directly accessible from outside the method, making it hard to write

assertions for unit tests. So, an inline test is useful in this case.

Inline tests have three parts. First, the łDeclarež partÐitest()Ð

marks a statement as an inline test. Second, the łAssignž partÐ

given(dn, "1.2.840=#1612646965676f, CN=NFe,OU=TI,O=NFe,

L=Florianopolis,ST=SC,C=BR")Ðassigns values to target state-

ments’ right-hand side variables. Third, the łAssertž partÐcheckEq(

cn, "NFe")Ðspecifies a test oracle, including an expected output.

The inline test on line 7 assigns values to the variable dn and checks

whether the target statement returns the expected value of cn.

3 FRAMEWORK

Figure 2 shows ExLi’s procedure for generating inline tests. The

code under test (CUT) is a required input; optional inputs are (1) unit

tests and (2) file paths and line numbers of target statements. If unit

tests are not provided, ExLi will generate them using Randoop [17]

and EvoSuite [3]. If target statements are not provided, ExLi will

automatically find them based on a default set of previously defined

APIs (step 1 ): regular expressions, string manipulation, bit ma-

nipulation, and stream operations. The final outputs are the inline

tests after coverage-then-mutants based reduction, namely ExLi-

UM. There are two intermediate outputs: ExLi-BaseÐall unique

inline tests that are collected during unit-test execution (before

reduction)Ðand ExLi-CovÐinline tests that remain after reduction

based only on code coverage, but not mutation scores.

3.1 Generating Inline Tests

ExLi’s inline test generation phase consists of steps 1 , 2 , 3 ,

4 , 5 and 7 in Figure 2. In step 1 , TargetStmtFinder parses

the abstract syntax tree (AST) of the CUT and identifies target state-

ments. Users can extend TargetStmtFinder by overriding method

isTargetStmt to define their own rules for what target statements

to find. Then, in step 2 , VariablesFinder identifies the variables

used in each target statement, which will be the input or output

variables in the generated inline tests. After that, the Instrumenter

in step 3 adds code before each target statement to collect the val-

ues of input variables and after each target statement to collect the

values of output variables. Then, the Executor (step 4 ) runs unit

tests on the instrumented code, and the Collector stores (in mem-

ory) the unique sets of values observed during unit testing (step 5 ).

Using the collected sets of values, InlineTestConstructor (step

7 ) constructs inline tests. If an input or output value is primitive

or String typed, then it is used directly in an inline test. Otherwise,

the value is serialized using XStream [15] and the location of the

serialized object is used. A generated inline tests that is too long

(e.g., it is unreadable or it surpasses Java’s 65,536-character limit) is

not saved. The default maximum length for each inline test is 500

characters, and the maximum number of inline tests generated for

each target statement is 300, but users can adjust these parameters.

3.2 Reducing Inline Tests

ExLi’s reduction phase consists of steps 6 and 8 in Figure 2.

While executing unit tests, CovReducer (step 6 ) processes each

collected set of values and instruction-level coverage information.

Only sets of values that increase target coverage or context cov-

erage of a corresponding target statement are kept and sent to

InlineTestConstructor. The intuition is that if an inline test can

increase the instruction coverage of a target statement or state-

ments that follow it, that inline test is more likely to be able to

find bugs in the target statement. Target coverage is the instruc-

tion coverage of the target statement alone. Context coverage is the

instruction coverage of the context of the target statement. The

context of a target statement is defined as code between the target

statement and the end of its enclosing basic block. For example, the

context of the target statement in Figure 1 (line 6) is lines 8 to 10.

To collect target coverage and context coverage, Instrumenter

(step 3 ) first wraps the target statement in a try-catch block to en-

sure that the code coverage is collected, even if the target statement

or its context throws an exception. Then, Instrumenter modifies

the source code to collect coverage at three points. See collectCov

calls in Figure 3: (1) instruction-level coverage just before the tar-

get statement (line 6, cov1); (2) instruction-level coverage right



ExLi: An Inline-Test Generation Tool for Java FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

CUT

unit testsUnitTests

Generator

TargetStmt

Finder

1

target
stmts

Variables

Finder

2

Instrumenter

3

Executor

4

Collector

5

Cov

Reducer
6

InlineTest

Constructor

7
ExLi-Base
inline tests

ExLi-Cov
inline tests

Mut

Reducer

8

ExLi-UM
inline tests

Figure 2: An overview of ExLi and its components.

1 void assinarDocumento(...) {

2 final PrivateKeyEntry keyEntry = getPrivateKeyEntry();

3 final String dn = ((X509Certificate) keyEntry.getCertificate()).

getSubjectX500Principal().getName();

4 this.getLogger().debug("DN: {}", dn);

5 try {

6 collectCov(); // cov1

7 collectInputs(dn);

8 final String cn = new LdapName(dn).getRdns().stream()

9 .filter(rdn -> StringUtils.equalsIgnoreCase(rdn.getType(),

"CN"))

10 .map(val -> String.valueOf(val.getValue()))

11 .findFirst()

12 .orElse(""); // target statement

13 collectOutputs(cn);

14 collectCov(); // cov2

15 ... // source code after target statement

16 } finally {

17 collectCov(); }} // cov3

Figure 3: Example: how ExLi instruments code in Figure 1.

after the target statement (line 14, cov2); and (3) instruction-level

coverage inside the newly added finally block (line 17, cov3).

Step 6 can efficiently reduce the number of inline tests. How-

ever, it is possible that it misses some inline tests that could find

bugs because it only considers one level of context. For example,

CovReducer only considers, as context, instructions after a tar-

get statement that is in a loop, but that are within the loop body.

However, the loop condition could affect code outside the loop. To

address this limitation, MutReducer (step 8 ) adds back inline tests

collected before reduction if the mutants are not killed by inline

tests that remain after CovReducer. Subsequently, MutReducer ap-

plies an algorithm to further reduce the number of inline tests, based

on mutation scores; it first runs mutation analysis on the CUT and

maps killed mutants to each inline test. Here, ExLi supports gen-

erating mutants with universalmutator [5] or Major [23] because

they are source code level mutators, which can be easily applied to

target statements. Then, MutReducer uses one of the four test-suite

reduction algorithms [25] implemented by an existing script [22]

(the default is Greedy). If a target statement has no mutant, then

MutReducer skips it and keeps all inline tests that remained for

that statement after applying CovReducer. Finally, ExLi outputs

inline tests after coverage-then-mutants based reduction.

4 INSTALLATION AND USAGE

Installation. We provide an ExLi docker image, which can be

installed and run using the following commands:

~/ exli$ docker build -t exli .

~/ exli$ docker run -it exli /bin/bash

We suggest using Conda [2] to manage packages for ExLi’s

Python scripts. In the docker container, users can install the Python

dependencies by running the following commands:

~$ cd exli/python && bash prepare -conda -env.sh

~/exli/python$ conda activate exli

Usage. To run ExLi for test generation, a user needs to provide the

following parameters: (1) the project name (format: {org}_{repo}),

(2) the commit SHA, (3) whether to run Randoop generated tests,

(4) the time limit (in seconds) per class for Randoop test generation,

(5) whether to run EvoSuite generated tests, (6) the time limit (in

seconds) per class for EvoSuite test generation, (7) the seed(s) for

Randoop and EvoSuite test generation, and (8) the path to the log

file. All parameters other than project name and commit SHA are

optional. Here’s an example command:

~/exli/python$ python -m exli.main run \

--project_name=Bernardo -MG_velocity -config -tool --sha =26226 f5

To execute generated inline tests using iTest [7], users provide

the following parameters: (1) the project name (format: {org}_{repo}),

(2) the commit SHA, (3) the path to the directory with Java files

containing inline tests, (4) the path to the directory of parsed inline

tests (in JUnit format), (5) the path to the inline tests report, (6) the

path to the cached objects, (7) the path to the file that contains

the project’s dependencies, and (8) the path to the log file. All

parameters other than project name and commit SHA are optional.

Here’s an example command:

~/exli/python$ python -m exli.main run_inline_tests \

--project_name=Bernardo -MG_velocity -config -tool --sha =26226 f5

To reduce inline tests with MutReducer, users can run the follow-

ing commands, which (1) generate mutants with universalmutator,

(2) execute the inline tests on the mutated code, (3) collect a map-

ping from inline tests to killed mutants, (4) add back inline tests that

can kill more mutants than CovReducer-reduced tests, (5) perform

inline test reduction using the Greedy algorithm, and (6) add back

inline tests whose target statements have no (killed) mutants:

~/exli/python$ python -m exli.main generate_mutants \

--project_name=Bernardo -MG_velocity -config -tool --sha =26226 f5

~/exli/python$ python -m exli.eval run_tests_with_mutants \

--project_name=Bernardo -MG_velocity -config -tool --sha =26226 f5

~/exli/python$ python -m exli.eval get_r2_tests \

--project_name=Bernardo -MG_velocity -config -tool --sha =26226 f5\

--mutator=universalmutator --algo=greedy \

--output_path=${HOME}/exli/results/r2/Bernardo -MG_velocity -

config -tool -26226 f5.txt

5 EVALUATION

We evaluate ExLi on 31 open-source projects, using the same setup

as in previous work [12]. Unlike that work, we exclude 147 target

statements that are in automatically generated code (i.e., parser

code produced by JavaCC during build time in jkuhnert/ognl [9]).





ExLi: An Inline-Test Generation Tool for Java FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

REFERENCES
[1] Yiqun T Chen, Rahul Gopinath, Anita Tadakamalla, Michael D Ernst, Reid Holmes,

Gordon Fraser, Paul Ammann, and René Just. 2020. Revisiting the relationship
between fault detection, test adequacy criteria, and test set size. In Automated
Software Engineering. 237ś249. https://doi.org/10.1145/3324884.3416667

[2] Conda 2024. Conda. https://docs.conda.io/projects/conda/en/stable.
[3] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: Automatic test suite generation

for object-oriented software. In International Symposium on the Foundations of
Software Engineering. 416ś419. https://doi.org/10.1145/2025113.2025179

[4] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin
Alipour, and Darko Marinov. 2013. Comparing non-adequate test suites using
coverage criteria. In International Symposium on Software Testing and Analysis.
302ś313. https://doi.org/10.1145/2483760.2483769

[5] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang.
2018. An extensible, regular-expression-based tool for multi-language mutant
generation. In International Conference on Software Engineering, Demonstrations.
25ś28. https://doi.org/10.1145/3183440.3183485

[6] Inline Testing Team 2023. pytest-inline on PyPi. https://pypi.org/project/pytest-
inline.

[7] ITest Team. 2023. ITest. https://github.com/EngineeringSoftware/inlinetest/tree/
main/java.

[8] Dennis Jeffrey and Neelam Gupta. 2007. Improving fault detection capability
by selectively retaining test cases during test suite reduction. Transactions on
Software Engineering 33, 2 (2007), 108ś123. https://doi.org/10.1109/TSE.2007.18

[9] jkuhnert Team. 2024. Jkuhnert Ognl. https://github.com/jkuhnert/ognl.
[10] Rafael-Michael Karampatsis and Charles Sutton. 2020. How often do single-

statement bugs occur? The ManySStuBs4J dataset. In International Working
Conference on Mining Software Repositories. 573ś577. https://doi.org/10.1145/
3379597.3387491

[11] Jasmine Latendresse, Rabe Abdalkareem, Diego Elias Costa, and Emad Shihab.
2021. How effective is continuous integration in indicating single-statement
bugs?. In International Working Conference on Mining Software Repositories. 500ś
504. https://doi.org/10.1109/MSR52588.2021.00062

[12] Yu Liu, Pengyu Nie, Anna Guo, Milos Gligoric, and Owolabi Legunsen. 2023.
Extracting Inline Tests from Unit Tests. In International Symposium on Software
Testing and Analysis. 1458ś1470. https://doi.org/10.1145/3597926.3598149

[13] Yu Liu, Pengyu Nie, Owolabi Legunsen, and Milos Gligoric. 2022. Inline tests. In
Automated Software Engineering. 1ś13. https://doi.org/10.1145/3551349.3556952

[14] Yu Liu, Zachary Thurston, Alan Han, Pengyu Nie, Milos Gligoric, and Owolabi
Legunsen. 2023. pytest-inline: An inline testing tool for Python. In International
Conference on Software Engineering, Demonstrations. 161ś164. https://doi.org/10.
1109/ICSE-Companion58688.2023.00046

[15] LogstashGelf 2022. XStream developer. https://x-stream.github.io/index.html.
[16] Louis G Michael, James Donohue, James C Davis, Dongyoon Lee, and Francisco

Servant. 2019. Regexes are hard: Decision-making, difficulties, and risks in
programming regular expressions. In ASE. IEEE, 415ś426. https://doi.org/10.
1109/ASE.2019.00047

[17] Carlos Pacheco and Michael D Ernst. 2007. Randoop: Feedback-directed random
testing for Java. In International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. 815ś816. https://doi.org/10.1145/1297846.
1297902

[18] PePy Team. 2024. pytest-inline downloads. https://pepy.tech/project/pytest-
inline.

[19] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Prac-
tical mutation testing at scale: A view from Google. Transactions on Software
Engineering 48, 10 (2021), 3900ś3912. https://doi.org/10.1109/TSE.2021.3107634

[20] Cedric Richter and Heike Wehrheim. 2022. TSSB-3M: Mining single statement
bugs at massive scale. In International Working Conference on Mining Software
Repositories. 418ś422. https://doi.org/10.1145/3524842.3528505

[21] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do automatically generated unit tests find real faults?
An empirical study of effectiveness and challenges (t). In Automated Software
Engineering. 201ś211. https://doi.org/10.1109/ASE.2015.86

[22] August Shi. 2023. Collection of scripts to conduct test-suite reduction. https:
//github.com/august782/testsuite-reduction.

[23] Major Team. 2023. Major mutation framework. https://mutation-testing.org.
[24] Wmixvideo Team. 2024. Wmixvideo Nfe. https://github.com/wmixvideo/nfe.
[25] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection

and prioritization: A survey. Software Testing, Verification and Reliability 22, 2
(2012), 67ś120. https://doi.org/10.1002/stv.430

Received 2024-01-29; accepted 2024-04-15


	Abstract
	1 Introduction
	2 Example
	3 Framework
	3.1 Generating Inline Tests
	3.2 Reducing Inline Tests

	4 Installation and Usage
	5 Evaluation
	6 Conclusion
	References

