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ABSTRACT 

Alzheimer's disease (AD) is a neurodegenerative disorder, 
and timely diagnosis is crucial for early interventions. AD is 
known to have disruptive local and global brain neural 
connections that may be instrumental in understanding and 
extracting specific biomarkers. Previous machine-learning 
approaches are mostly based on convolutional neural network 
(CNN) and standard vision transformer (ViT) models which 
may not sufficiently capture the multidimensional local and 
global patterns that may be indicative of AD. Therefore, in 
this paper, we propose a novel approach called PVTAD to 
classify AD and cognitively normal (CN) cases using 
pretrained pyramid vision transformer (PVT) and white 
matter (WM) of T1-weighted structural MRI (sMRI) data. 
Our approach combines the advantages of CNN and standard 
ViT to extract both local and global features indicative of AD 
from the WM coronal middle slices. We performed 
experiments on subjects with T1-weighed MPRAGE sMRI 
scans from the ADNI dataset. Our results demonstrate that 
the PVTAD achieves an average accuracy of 97.7% and F1-
score of 97.6%, outperforming the single and parallel CNN 
and standard ViT architectures based on sMRI data for AD 
vs. CN classification.  

Index Terms— Alzheimer’s Disease, structural MRI, 
White Matter, Coronal Slices, Pyramid Vision Transformer 

1. INTRODUCTION 
World Health Organization (WHO) estimates that over 55 
million people are currently living with dementia worldwide 
[1]. Alzheimer's Disease (AD) is the most common type of 
dementia, accounting for 60-70% of cases [1]. It causes 
memory loss, progressive cognitive decline, and behavioral 
changes. While there is currently no cure for the disease, early 
diagnosis and prompt treatment can improve the overall 
quality of life and may help people with AD to live for a 
longer period. The clinical AD diagnosis primarily relies on 
cognitive, functional, and behavioral tests, which leads to AD 
diagnosis after symptoms have manifested, which may be too 
late for early interventions [2]. Therefore, biomarkers 
specific to AD for early and accurate AD diagnosis before 

 
** Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As 
such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or 
writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 

behavioral symptoms are urgently needed [3], [4]. Over the 
past decades, there is increased interest in using imaging 
techniques, such as structural magnetic resonance imaging 
(sMRI) for diagnosis of various neuro-disorders [5], [6]. 
Research has demonstrated that changes in venous density 
within the brain’s white matter (WM) are indicators of 
cognitive impairment in older individuals [7]. MRI technique 
can measure these changes and illustrate the structural 
damage in the brain caused by these conditions [7]. The 
human brain is a complex and interconnected network of 
regions, and analyzing the high-dimensional WM of sMRI 
data are not possible with conventional means. Therefore, 
there is an urgent need for computer-aided diagnosis (CAD) 
systems that can assist in early, and precise AD diagnosis.  

Machine-learning (ML) algorithms are a core component 
of CAD systems, enabling identification of patterns in sMRI 
data that may not be easily detected by naked eye. In most 
previous studies, researchers employed convolutional neural 
network (CNN) and standard vision transformer (ViT) 
models to extract features from sMRI data for AD diagnosis 
[8]–[13]. The convolutional layers in a CNN extract local 
features from the specific area of the input image. In contrast, 
standard ViT can extract global features from the whole 
image using attention mechanism. However, AD is known to 
have disruptive local and global connections [14], which may 
not be well captured with CNN based models alone (better 
for local) or may not be well captured with standard ViT 
models alone (which may work well for global patterns). 
Therefore, there is an urgent need for designing and 
developing ML models that can capture both local and global 
patterns in a synergistic manner.  
The contribution of this paper are as follows:  
1. In this paper, we propose a framework called PVTAD 

for AD vs. cognitively normal (CN) classification by 
applying pretrained pyramid vision transformer (PVT) 
[15] to extract both local and global features indicative 
of AD from the WM coronal middle slices of T1-
weighted sMRI data. 

2. We extracted all the 155 subjects that are T1-weighed 
MPRAGE sMRI scans available from the Alzheimer’s 
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Disease Neuroimaging Initiative (ADNI) database. To 
prepare data for analysis, we extracted the WM 
segmentation from each 3D sMRI data and converted 
them into a set of 2D coronal slices. We only extracted 
the 30 middle coronal slices from each subject, resulting 
in a dataset of 4,650 2D coronal slices.  

3. To showcase the power of our PVTAD model, we also 
implemented a parallel ResNet-18 and ViT-Tiny 
architecutre which can sperately extract the local and 
global features from the imaging data. While this parallel 
ResNet-18 and ViT-Tiny performed better than only 
ResNet-18 or only ViT-Tiny models, our prooposed 
PVTAD model exhibits suprior performance across all 
metrics. 

The rest of the paper is organized as follows: In section 2, we 
provide the related work. In section 3, we discuss our 
proposed approach, which includes dataset, preprocessing 
steps, and our proposed approach. In section 4, we cover the 
experimental settings and results. Finally, in section 5, we 
provide our conclusions. 
 

2. RELATED WORK 
There is an increased interest in using ML methods for early 
AD diagnosis based on sMRI data. Suk et al. [8] proposed a 
method that combines sparse regression and CNN based on 
region of interests of sMRI data and achieved an accuracy of 
91.02% for the AD vs. CN classification.  Li and Liu [9] 
proposed a classification method using multiple cluster dense 
CNNs based on patches extracted from each local region of 
sMRI data, and the AD/CN classification reached an 
accuracy of 89.5%. Ebrahimi et al.  [10] applied various 2D 
CNN architectures and 2D CNN-long short-term memory 
(LSTM) models to sagittal, coronal, and axial slices of sMRI 
data. Also, in this research, they proposed a voxel-based CNN 
method achieving an accuracy of 96.88% for AD vs. CN 
classification. Islam and Zhang [11] applied a 2D CNN to 
coronal slices of sMRI data for the AD classification problem 
and the proposed approach obtained an accuracy of 94.97%. 
Lyu et al. [12] improved the standard patch operation in 
vanilla (standard) ViT using a slice-wise convolution 
embedding method and achieved an accuracy of 96.8% for 
AD vs. CN classification task. Li et al. [13] proposed a novel 
approach integrating CNNs and transformers. While multiple 
ML models have been proposed, most of them have focused 
on either extracting local features (using CNN) or global 
features (using ViT) leading to models that may not be 
generalizable. Furthermore, most of the models are not 
available as open source which makes it difficult to evaluate 
the performance of these models.  
 

3. MATERIALS AND METHODS 
3.1. Dataset and preprocessing 
Inclusion criteria: In this paper, we used 155 subjects (70 
AD and 85 CN) who have T1-weighted magnetization 
prepared rapid gradient echo (MPRAGE) sMRI scans from 
the ADNI database (adni.loni.usc.edu) as they provide high 

spatial resolution and tissue contrast [16], making them 
ideal for studying changes in brain tissues in AD. Table 1  
summarizes demographic characteristics and clinical 
information of selected subjects. 
In this study, we used statistical parameter mapping - 
(SPM12) (fil.ion.ucl.ac.uk/spm/software/spm12) to perform 
preprocessing operations on the T1-weighted sMRI scans. 
First, we segmented the sMRI data into gray matter, WM, and 
cerebrospinal fluid. Then, we applied spatial normalization 
and smoothing to the WM images. During the segmentation 
preprocess step, we set the bias regularization to very light 
regularization and bias cut-off FWHM to 60 mm. Also, we 
used the ICBM space template for affine regularization on all 
samples. Next, we spatially normalized the WM images to the 
MNI space. After this step, the shape of the data samples was 
79 × 95 × 79. In addition, we considered the voxel size equal 
to 2 × 2 × 2 mm3. Finally, we used a Gaussian kernel of 8 mm 
FWHM to smooth the normalized WM images. 
 
3.2. sMRI data decomposition from 3D to 2D 
The 3D sMRI data can be composed of three slice 
orientations, including sagittal, coronal, and axial. Typically, 
coronal view provides a more comprehensive and clear view 
of the brain’s structures compared to the other two directions. 
Additionally, coronal slices can encompass three crucial 
tissues associated with AD, namely the cerebral cortex, the 
ventricle, and the hippocampus [17]. Therefore, we chose the 
coronal view for the selection of key slices in this study. We 
decomposed each 3D preprocessed sMRI data into 95 2D 
coronal slices using a data converter tool [18]. We extracted 
only the 30 middle coronal WM slices from each of the 155 
subjects rather than all 95 coronal slices because 30 middle 
slices give a clearer view than other slices. This produced a 
4,650 2D WM slices (155 subjects × 30 slices corresponding 
to each subject) in portable network graphic (PNG) format, 
including 2,550 CN slices (85 subjects × 30 slices) and 2,100 
AD slices (70 subjects × 30 slices). 
 
3.3. PVTAD framework 
In this paper, we utilized the PVT model [15] to analyze WM 
coronal middle slices. PVT is an extension of ViT [19] 
architecture with a hierarchical (pyramid) feature extractor. It 
uses multiple levels of transformers [20] at different scales to 
capture both local and global features of WM coronal middle 
slices in a unified architecture. In other words, the model 
processes sMRI coronal middle slices as a sequence of 

Table 1. Demographic and clinical information from 
the ADNI dataset 

Data Group N Age Gender 
[M/F] 

MMSE 

 
sMRI 
 

CN 85 72.13±8.4 50/35 28.4±1.24 
AD 70 74±9.25 45/25 23.5±2.15 

N: Number; M: Male; F: Female; MMSE: Mini-mental state 
examination; The value following ‘±’ is standard deviation. 
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variable-size patches, which are linearly embedded. The PVT 
consists of multiple stages, each extracting features at 
different resolution levels [15]. The Fig. 1 shows the overall 
PVT architecture applied to the coronal mid-slices of WM of 
T1-weighted sMRI data. Fig. 1 illustrates the four-stage 
process of PVT that produces feature maps of coronal slices 
at different scales. Each stage has an architecture consisting 
of a patch embedding layer and 𝐿𝑖 transformer encoder layers. 
First, the model takes a sMRI coronal slice with dimensions 
𝐻 ×𝑊 × 3 and divides it into 𝐻𝑊

42
 patches of size 4 × 4 ×3. 

Each patch is then flattened and projected linearly to create 
embedded patches of size 𝐻𝑊

42
× 𝐶1. These embedded patches 

and position embedding are passed through a transformer 
encoder with 𝐿1 layers to produce a feature map 𝐹1 of size  
𝐻

4
×

𝑤

4
× 𝐶1. Using 𝐹1 as input, this process is repeated to 

obtain 𝐹2, 𝐹3, and 𝐹4 feature maps of coronal slices. 8, 16, and 
32 are the stride of each subsequent feature maps [15].  

PVT employs a progressive shrinking strategy through 
patch embedding layers to regulate the scales of feature maps 
[15]. This involves equally dividing the input feature map 
𝐹𝑖−1 ∈ ℝ𝐻𝑖−1×𝑊𝑖−1×𝐶𝑖−1 into 𝐻𝑖−1𝑊𝑖−1

𝑃𝑖
2   patches, where the 

patch size is denoted by 𝑃𝑖  [15]. Afterward, each patch is 
flattened and projected into a  𝐶𝑖-dimensional embedding. 
The embedded patches form a shape of 𝐻𝑖−1

𝑃𝑖
×

𝑊𝑖−1

𝑃𝑖
× 𝐶𝑖, 

where the height and width are 𝑃𝑖  times smaller than the 
original input size [15]. To handle high-resolution feature 
maps, a spatial-reduction attention (SRA) layer is replaced by 
multi-head attention (MHA) layer [20] in stage 𝑖 of the 
transformer encoder. The SRA layer takes in a query, a key, 
and a value (denoted as Q, K, and V, respectively) and 
produces a refined feature as output. The formula for SRA is 
expressed as equations (1) and (2) [15]: 
SRA(𝑄, 𝐾, 𝑉) = Concat(head0, … , head𝑁𝑖)𝑊

𝑂,                    (1) 
head𝑗 = Attention(𝑄𝑊𝑗

𝑄 , 𝑆𝑅(𝐾)𝑊𝑗
𝐾 , 𝑆𝑅(𝑉)𝑊𝑗

𝑉),             (2) 
where 𝑊𝑂 ∈ ℝ𝐶𝑖×𝐶𝑖, 𝑊𝑗

𝑄 ∈ ℝ𝐶𝑖×𝑑head, 𝑊𝑗
𝐾 ∈ ℝ𝐶𝑖×𝑑head, 

𝑊𝑗
𝑉 ∈ ℝ𝐶𝑖×𝑑head, and 𝑁𝑖 denotes the head number of the 

attention layer. The dimensions of each head (𝑑head) is 
𝐶𝑖

𝑁𝑖
. 𝑆𝑅(. ).  SR(𝑥) is formulated as equation (3) [15]: 

SR(𝑥) = Norm(Reshape(𝑥, 𝑅𝑖)𝑊
𝑠).                              (3) 

where  𝑥 ∈ ℝ(𝐻𝑖𝑊𝑖)×𝐶𝑖  and 𝑅𝑖 represent an input sequence and 
the reduction ratio of the attention layers, respectively. 
Operation of Reshape(𝑥, 𝑅𝑖) reshapes 𝑥 to 𝐻𝑖𝑊𝑖

𝑅𝑖
2 × (𝑅𝑖

2 × 𝐶𝑖). 

𝑊𝑠 ∈ ℝ(𝑅𝑖
2𝐶𝑖)×𝐶𝑖  and Norm(. ) are linear projection and layer 

normalization, respectively. 
 

4. EXPERIMENTS AND EVALUATIONS 
4.1. Experimental settings 
We shuffled the 3D preprocessed WM of T1-weighted sMRI 
data and created five training datasets, including 70% of 
subjects, five validation datasets, including 10% of subjects, 
and five test datasets, including 20% of subjects for AD and 
CN groups at the subject level. This ensured no overlap 
among the samples in training, validation, and test datasets. 
Then, as we mentioned in section 3.2, we converted each 3D 
WM of T1-weighted sMRI data to a set of 2D coronal slices 
using a data converter tool [18], and we extracted only the 30 
middle coronal WM slices from each of the 155 subjects. This 
dataset contained 4,650 2D coronal slices (2,100 AD and 
2,550 CN slices).  

In this study, we used PVT-Tiny model pretrained on 
ImageNet [21] at a resolution of 224×224 [22]. Moreover, we 
added a fully connected classification layer to PVT 
architecture for our binary classification task (AD vs. CN). 
To fine-tune the pretrained PVT-Tiny model, we considered 
freezing all the weights except for those in the final 
classification layer. During the fine-tuning process, we 
adjusted the model for 20 epochs and initialized for adaptive 
moment estimation (Adam) optimizer [23] with a learning 
rate of 0.001. We implemented the code using Keras [24] and 
TensorFlow Image Models (tfimm) library [25]. In addition, 
we conducted our experiments on a machine with an Intel(R) 
Xeon(R) Gold 6152 CPU @ 2.10GHz with 125GB RAM. 
The GPU used is NVIDIA TITAN Xp. 
 

Fig. 1. Overall architecture of PVT architecture applied to WM of T1-weighted coronal middle slices of sMRI data. 
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4.2. Experimental results  
Fig. 2 (a) and Fig. 2 (b) show training and validation accuracy 
and loss for PVTAD framework on WM coronal mid-slices, 
respectively. In addition, to demonstrate the effectiveness of 
the PVTAD framework, we implemented a parallel ResNet-
18 [26], a CNN-based model, and ViT-Tiny [19], a standard 
ViT-based model, as a basis for comparison. Fig. 2 (c) 
displays the receiver operating characteristic (ROC) curve of 
the PVTAD model and the single and parallel ResNet-18 and 
ViT-Tiny architectures. This figure shows PVTAD model 
achieves an area under the curve (AUC) of 98%, 
outperforming the single and parallel ResNet-18 and ViT-
Tiny architectures. Table 2 presents the experimental results 
of this paper based on WM coronal mid-slices. According to 
this table, the PVTAD framework achieves an average 
accuracy of 97.7%, sensitivity of 97.15%, specificity of 
98.16%, precision of 98.02, and F1-score of 97.6%,  
outperforming previous studies [10], [12]. Moreover, while 
parallel ResNet-18 and ViT-Tiny performed better than only 
ResNet or only ViT models, our proposed PVTAD model 
exhibits superior performance across all metrics.  
 

5. CONCLUSIONS 
AD is a progressive brain disorder, and timely diagnosis helps 
clinician develop patient-specific treatment plans that can 
address the symptoms of the disease and delay cognitive 
decline. AD has complex disruptions in local and global 
neural connections in the brain which may not be fully 
captured by conventional ML models such as CNN and ViT. 
In this paper, to better capture these complex patterns in AD 

and improve diagnosis performance, we designed and 
developed a framework called PVTAD using pretrained PVT 
model. Our proposed framework can capture both local and 
global patterns indicative of AD from WM coronal middle 
slices of T1-weighted sMRI data. Our experiments 
demonstrate that the proposed architecture leads to improve 
performance in AD vs. CN classification task. Moreover, this 
contrasts with parallel CNN and standard ViT model which 
can extract local and global features separately, but fail to 
integrate them effectively, resulting in suboptimal feature 
representation. To evaluate the model, we performed 
experiments on 155 subjects who have T1-weighted 
MPRAGE sMRI from the ADNI dataset. PVTAD framework 
achieves an average accuracy of 97.7%, sensitivity of 
97.15%, specificity of 98.16%, precision of 98.02%, and F1-
score of 97.6%, outperforming the single and parallel CNN 
and standard ViT architectures.  
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Table 2. Experimental results for PVTAD framework in comparison with single and parallel ResNet-18 and ViT-Tiny models for AD 
vs. CN classification on ADNI dataset based on five-fold cross validation. 

Study Modality Model ACC SEN SPE PRE F1 AUC  
[10]  sMRI (Coronal View)  ResNet-18 81.25 - - - - -  

[12]  sMRI (Coronal View) ResNet-18  88.5 100 - 75.9 86.3 -  
ViT-Tiny 95.3 94.4 - 90 93.2 -  

 
This paper  

 
sMRI (WM Coronal View) 

ResNet-18 71.06 62.91 78.7 73.7 67.61 72  
ViT-Tiny 96.23 95.91 96.53 96.3 96.1 95  
Parallel ResNet-18 and ViT-Tiny  96.87 96.62 97.19 96.92 96.76 96  
PVTAD model 97.7 97.15 98.16 98.02 97.6 98  

ACC: Accuracy; SEN: Sensitivity; SPE: Specificity; PRE: Precision; F1: F1-score; AUC: Area under the curve. 
 

 
epoch 

(a) 

 
epoch 

(b)  
     (c) 

       Fig 2 (a). Training and validation accuracy for PVTAD model; (b) Training and validation Loss for PVTAD model; (c) ROC Curve 
for PVTAD and single and parallel ResNet-18 & ViT-Tiny models 
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