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ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder,
and timely diagnosis is crucial for early interventions. AD is
known to have disruptive local and global brain neural
connections that may be instrumental in understanding and
extracting specific biomarkers. Previous machine-learning
approaches are mostly based on convolutional neural network
(CNN) and standard vision transformer (ViT) models which
may not sufficiently capture the multidimensional local and
global patterns that may be indicative of AD. Therefore, in
this paper, we propose a novel approach called PVTAD to
classify AD and cognitively normal (CN) cases using
pretrained pyramid vision transformer (PVT) and white
matter (WM) of T1l-weighted structural MRI (sMRI) data.
Our approach combines the advantages of CNN and standard
ViT to extract both local and global features indicative of AD
from the WM coronal middle slices. We performed
experiments on subjects with T1-weighed MPRAGE sMRI
scans from the ADNI dataset. Our results demonstrate that
the PVTAD achieves an average accuracy of 97.7% and F1-
score of 97.6%, outperforming the single and parallel CNN
and standard ViT architectures based on sMRI data for AD
vs. CN classification.

Index Terms— Alzheimer’s Disease, structural MRI,
White Matter, Coronal Slices, Pyramid Vision Transformer

1. INTRODUCTION
World Health Organization (WHO) estimates that over 55
million people are currently living with dementia worldwide
[1]. Alzheimer's Disease (AD) is the most common type of
dementia, accounting for 60-70% of cases [1]. It causes
memory loss, progressive cognitive decline, and behavioral
changes. While there is currently no cure for the disease, early
diagnosis and prompt treatment can improve the overall
quality of life and may help people with AD to live for a
longer period. The clinical AD diagnosis primarily relies on
cognitive, functional, and behavioral tests, which leads to AD
diagnosis after symptoms have manifested, which may be too
late for early interventions [2]. Therefore, biomarkers
specific to AD for early and accurate AD diagnosis before

behavioral symptoms are urgently needed [3], [4]. Over the

past decades, there is increased interest in using imaging

techniques, such as structural magnetic resonance imaging

(sMRI) for diagnosis of various neuro-disorders [5], [6].

Research has demonstrated that changes in venous density

within the brain’s white matter (WM) are indicators of

cognitive impairment in older individuals [7]. MRI technique
can measure these changes and illustrate the structural
damage in the brain caused by these conditions [7]. The
human brain is a complex and interconnected network of
regions, and analyzing the high-dimensional WM of sMRI
data are not possible with conventional means. Therefore,
there is an urgent need for computer-aided diagnosis (CAD)
systems that can assist in early, and precise AD diagnosis.
Machine-learning (ML) algorithms are a core component
of CAD systems, enabling identification of patterns in sMRI
data that may not be easily detected by naked eye. In most
previous studies, researchers employed convolutional neural
network (CNN) and standard vision transformer (ViT)
models to extract features from sMRI data for AD diagnosis
[8]-[13]. The convolutional layers in a CNN extract local
features from the specific area of the input image. In contrast,
standard ViT can extract global features from the whole
image using attention mechanism. However, AD is known to
have disruptive local and global connections [14], which may
not be well captured with CNN based models alone (better
for local) or may not be well captured with standard ViT
models alone (which may work well for global patterns).

Therefore, there is an urgent need for designing and

developing ML models that can capture both local and global

patterns in a synergistic manner.

The contribution of this paper are as follows:

1. In this paper, we propose a framework called PVTAD
for AD vs. cognitively normal (CN) classification by
applying pretrained pyramid vision transformer (PVT)
[15] to extract both local and global features indicative
of AD from the WM coronal middle slices of T1-
weighted sSMRI data.

2. We extracted all the 155 subjects that are T1-weighed
MPRAGE sMRI scans available from the Alzheimer’s

** Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As
such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or
writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/ADNI_Acknowledgement List.pdf
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Disease Neuroimaging Initiative (ADNI) database. To
prepare data for analysis, we extracted the WM
segmentation from each 3D sMRI data and converted
them into a set of 2D coronal slices. We only extracted
the 30 middle coronal slices from each subject, resulting
in a dataset of 4,650 2D coronal slices.

3. To showcase the power of our PVTAD model, we also
implemented a parallel ResNet-18 and ViT-Tiny
architecutre which can sperately extract the local and
global features from the imaging data. While this parallel
ResNet-18 and ViT-Tiny performed better than only
ResNet-18 or only ViT-Tiny models, our prooposed
PVTAD model exhibits suprior performance across all
metrics.

The rest of the paper is organized as follows: In section 2, we
provide the related work. In section 3, we discuss our
proposed approach, which includes dataset, preprocessing
steps, and our proposed approach. In section 4, we cover the
experimental settings and results. Finally, in section 5, we
provide our conclusions.

2. RELATED WORK

There is an increased interest in using ML methods for early
AD diagnosis based on sMRI data. Suk et al. [8] proposed a
method that combines sparse regression and CNN based on
region of interests of SMRI data and achieved an accuracy of
91.02% for the AD vs. CN classification. Li and Liu [9]
proposed a classification method using multiple cluster dense
CNNs based on patches extracted from each local region of
sMRI data, and the AD/CN classification reached an
accuracy of 89.5%. Ebrahimi et al. [10] applied various 2D
CNN architectures and 2D CNN-long short-term memory
(LSTM) models to sagittal, coronal, and axial slices of sMRI
data. Also, in this research, they proposed a voxel-based CNN
method achieving an accuracy of 96.88% for AD vs. CN
classification. Islam and Zhang [11] applied a 2D CNN to
coronal slices of SsMRI data for the AD classification problem
and the proposed approach obtained an accuracy of 94.97%.
Lyu et al. [12] improved the standard patch operation in
vanilla (standard) ViT using a slice-wise convolution
embedding method and achieved an accuracy of 96.8% for
AD vs. CN classification task. Li et al. [13] proposed a novel
approach integrating CNNs and transformers. While multiple
ML models have been proposed, most of them have focused
on either extracting local features (using CNN) or global
features (using ViT) leading to models that may not be
generalizable. Furthermore, most of the models are not
available as open source which makes it difficult to evaluate
the performance of these models.

3. MATERIALS AND METHODS
3.1. Dataset and preprocessing
Inclusion criteria: In this paper, we used 155 subjects (70
AD and 85 CN) who have Tl-weighted magnetization
prepared rapid gradient echo (MPRAGE) sMRI scans from
the ADNI database (adni.loni.usc.edu) as they provide high

Table 1. Demographic and clinical information from
the ADNI dataset

Data  Group N Age Gender MMSE
[M/F]
CN 85 72.1348.4 5035  28.4+1.24
sMRI “Ap 70 744925 4525  23.5+2.15

N: Number; M: Male; F: Female; MMSE: Mini-mental state
examination; The value following ‘+’ is standard deviation.

spatial resolution and tissue contrast [16], making them
ideal for studying changes in brain tissues in AD. Table 1
summarizes demographic characteristics and clinical
information of selected subjects.

In this study, we used statistical parameter mapping -
(SPM12) (fil.ion.ucl.ac.uk/spm/software/spm12) to perform
preprocessing operations on the T1-weighted sMRI scans.
First, we segmented the sMRI data into gray matter, WM, and
cerebrospinal fluid. Then, we applied spatial normalization
and smoothing to the WM images. During the segmentation
preprocess step, we set the bias regularization to very light
regularization and bias cut-off FWHM to 60 mm. Also, we
used the ICBM space template for affine regularization on all
samples. Next, we spatially normalized the WM images to the
MNI space. After this step, the shape of the data samples was
79 x 95 x 79. In addition, we considered the voxel size equal
to 2 x 2 x 2 mm?. Finally, we used a Gaussian kernel of 8 mm
FWHM to smooth the normalized WM images.

3.2. sMRI data decomposition from 3D to 2D

The 3D sMRI data can be composed of three slice
orientations, including sagittal, coronal, and axial. Typically,
coronal view provides a more comprehensive and clear view
of the brain’s structures compared to the other two directions.
Additionally, coronal slices can encompass three crucial
tissues associated with AD, namely the cerebral cortex, the
ventricle, and the hippocampus [17]. Therefore, we chose the
coronal view for the selection of key slices in this study. We
decomposed each 3D preprocessed sMRI data into 95 2D
coronal slices using a data converter tool [18]. We extracted
only the 30 middle coronal WM slices from each of the 155
subjects rather than all 95 coronal slices because 30 middle
slices give a clearer view than other slices. This produced a
4,650 2D WM slices (155 subjects x 30 slices corresponding
to each subject) in portable network graphic (PNG) format,
including 2,550 CN slices (85 subjects x 30 slices) and 2,100
AD slices (70 subjects x 30 slices).

3.3. PVTAD framework

In this paper, we utilized the PVT model [15] to analyze WM
coronal middle slices. PVT is an extension of ViT [19]
architecture with a hierarchical (pyramid) feature extractor. It
uses multiple levels of transformers [20] at different scales to
capture both local and global features of WM coronal middle
slices in a unified architecture. In other words, the model
processes sMRI coronal middle slices as a sequence of
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Fig. 1. Overall architecture of PVT architecture applied to WM of T1-weighted coronal middle slices of sMRI data.

variable-size patches, which are linearly embedded. The PVT
consists of multiple stages, each extracting features at
different resolution levels [15]. The Fig. 1 shows the overall
PVT architecture applied to the coronal mid-slices of WM of
T1-weighted sMRI data. Fig. 1 illustrates the four-stage
process of PVT that produces feature maps of coronal slices
at different scales. Each stage has an architecture consisting
of'a patch embedding layer and L; transformer encoder layers.
First, the model takes a sSMRI coronal slice with dimensions

H X W x 3 and divides it into Z—I;V patches of size 4 X 4 X3.
Each patch is then flattened and projected linearly to create
embedded patches of size Z—I;V X C;. These embedded patches

and position embedding are passed through a transformer
encoder with L, layers to produce a feature map F; of size
%x % X C;. Using F; as input, this process is repeated to
obtain F,, F3, and F, feature maps of coronal slices. 8, 16, and
32 are the stride of each subsequent feature maps [15].

PVT employs a progressive shrinking strategy through
patch embedding layers to regulate the scales of feature maps
[15]. This involves equally dividing the input feature map

. G e Hi_ Wi
F;_; € RHi-1*Wi-1XCi-1 jnto % patches, where the

patch size is denoted by P; [15]. Afterward, each patch is
flattened and projected into a C;-dimensional embedding.
Wi

x (i,

The embedded patches form a shape of %x -
L L

where the height and width are P; times smaller than the
original input size [15]. To handle high-resolution feature
maps, a spatial-reduction attention (SRA) layer is replaced by
multi-head attention (MHA) layer [20] in stage i of the
transformer encoder. The SRA layer takes in a query, a key,
and a value (denoted as Q, K, and V, respectively) and
produces a refined feature as output. The formula for SRA is
expressed as equations (1) and (2) [15]:

SRA(Q, K, V) = Concat(head,, ..., heady )W, (1)

head; = Attention(QW,%, SRIK)W/, SROWVYW}Y), ()
where WO € RE*Ci, W? € RE*dhead, WK € RE*head,
WY € R¢*%head, and N; denotes the head number of the

attention layer. The dimensions of each head (dpeaq) is
% .SR(.). SR(x) is formulated as equation (3) [15]:

SR(x) = Norm(Reshape(x, R;)W?). 3)
where x € RHiWDXCi and R; represent an input sequence and
the reduction ratio of the attention layers, respectively.

HW; 2
w7 % (RE X C).

Operation of Reshape(x, R;) reshapes x to

WS € RRICDXCi and Norm(.) are linear projection and layer
normalization, respectively.

4. EXPERIMENTS AND EVALUATIONS

4.1. Experimental settings

We shuffled the 3D preprocessed WM of T1-weighted sMRI
data and created five training datasets, including 70% of
subjects, five validation datasets, including 10% of subjects,
and five test datasets, including 20% of subjects for AD and
CN groups at the subject level. This ensured no overlap
among the samples in training, validation, and test datasets.
Then, as we mentioned in section 3.2, we converted each 3D
WM of T1-weighted sMRI data to a set of 2D coronal slices
using a data converter tool [ 18], and we extracted only the 30
middle coronal WM slices from each of the 155 subjects. This
dataset contained 4,650 2D coronal slices (2,100 AD and
2,550 CN slices).

In this study, we used PVT-Tiny model pretrained on
ImageNet [21] at a resolution of 224x224 [22]. Moreover, we
added a fully connected classification layer to PVT
architecture for our binary classification task (AD vs. CN).
To fine-tune the pretrained PVT-Tiny model, we considered
freezing all the weights except for those in the final
classification layer. During the fine-tuning process, we
adjusted the model for 20 epochs and initialized for adaptive
moment estimation (Adam) optimizer [23] with a learning
rate of 0.001. We implemented the code using Keras [24] and
TensorFlow Image Models (tfimm) library [25]. In addition,
we conducted our experiments on a machine with an Intel(R)
Xeon(R) Gold 6152 CPU @ 2.10GHz with 125GB RAM.

The GPU used is NVIDIA TITAN Xp.
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Fig 2 (a). Training and validation accuracy for PVTAD model; (b) Training and validation Loss for PVTAD model; (¢) ROC Curve
for PVTAD and single and parallel ResNet-18 & ViT-Tiny models

Table 2. Experimental results for PVTAD framework in comparison with single and parallel ResNet-18 and ViT-Tiny models for AD
vs. CN classification on ADNI dataset based on five-fold cross validation.

Study Modality Model ACC SEN SPE PRE F1 AUC
[10] sMRI (Coronal View) ResNet-18 81.25 - - - - -
[12] SMRI (Coronal View) ResNet-18 88.5 100 - 759 863 -
ViT-Tiny 953 944 - 90 93.2 -
ResNet-18 71.06 6291 78.7 737 67.61 72
This paper SMRI (WM Coronal View)  ViT-Tiny 96.23 9591 96.53 963  96.1 95
Parallel ResNet-18 and ViT-Tiny  96.87 96.62 97.19 96.92 96.76 96
PVTAD model 97.7 9715 98.16 98.02 97.6 98

ACC: Accuracy: SEN: Sensitivity: SPE: Specificitv: PRE: Precision: F1: Fl1-score: AUC: Area under the curve.

4.2. Experimental results

Fig. 2 (a) and Fig. 2 (b) show training and validation accuracy
and loss for PVTAD framework on WM coronal mid-slices,
respectively. In addition, to demonstrate the effectiveness of
the PVTAD framework, we implemented a parallel ResNet-
18 [26], a CNN-based model, and ViT-Tiny [19], a standard
ViT-based model, as a basis for comparison. Fig. 2 (c)
displays the receiver operating characteristic (ROC) curve of
the PVTAD model and the single and parallel ResNet-18 and
ViT-Tiny architectures. This figure shows PVTAD model
achieves an area under the curve (AUC) of 98%,
outperforming the single and parallel ResNet-18 and ViT-
Tiny architectures. Table 2 presents the experimental results
of this paper based on WM coronal mid-slices. According to
this table, the PVTAD framework achieves an average
accuracy of 97.7%, sensitivity of 97.15%, specificity of
98.16%, precision of 98.02, and Fl-score of 97.6%,
outperforming previous studies [10], [12]. Moreover, while
parallel ResNet-18 and ViT-Tiny performed better than only
ResNet or only ViT models, our proposed PVTAD model
exhibits superior performance across all metrics.

5. CONCLUSIONS
AD is a progressive brain disorder, and timely diagnosis helps
clinician develop patient-specific treatment plans that can
address the symptoms of the disease and delay cognitive
decline. AD has complex disruptions in local and global
neural connections in the brain which may not be fully
captured by conventional ML models such as CNN and ViT.
In this paper, to better capture these complex patterns in AD

and improve diagnosis performance, we designed and
developed a framework called PVTAD using pretrained PVT
model. Our proposed framework can capture both local and
global patterns indicative of AD from WM coronal middle
slices of Tl-weighted sMRI data. Our experiments
demonstrate that the proposed architecture leads to improve
performance in AD vs. CN classification task. Moreover, this
contrasts with parallel CNN and standard ViT model which
can extract local and global features separately, but fail to
integrate them effectively, resulting in suboptimal feature
representation. To evaluate the model, we performed
experiments on 155 subjects who have TI1-weighted
MPRAGE sMRI from the ADNI dataset. PVTAD framework
achieves an average accuracy of 97.7%, sensitivity of
97.15%, specificity of 98.16%, precision of 98.02%, and F1-
score of 97.6%, outperforming the single and parallel CNN
and standard ViT architectures.
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