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Abstract
We present GRaM-X (General Relativistic accelerated Magnetohydrodynamics
on AMReX), a new GPU-accelerated dynamical-spacetime general relativistic
magnetohydrodynamics (GRMHD) code which extends the GRMHD cap-
ability of Einstein Toolkit to GPU-based exascale systems. GRaM-X supports
3D adaptive mesh refinement (AMR) on GPUs via a new AMR driver for
the Einstein Toolkit called CarpetX which in turn leverages AMReX, an AMR
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library developed for use by the United States DOE’s Exascale Computing
Project. We use the Z4c formalism to evolve the Einstein equations and the
Valencia formulation to evolve the equations of GRMHD. GRaM-X supports
both analytic as well as tabulated equations of state. We implement TVD and
WENO reconstruction methods as well as the HLLE Riemann solver. We test
the accuracy of the code using a range of tests on static spacetime, e.g. 1D
magnetohydrodynamics shocktubes, the 2D magnetic rotor and a cylindrical
explosion, as well as on dynamical spacetimes, i.e. the oscillations of a 3D
Tolman-Oppenheimer-Volkhof star. We find excellent agreement with ana-
lytic results and results of other codes reported in literature. We also perform
scaling tests and find that GRaM-X shows a weak scaling efficiency of ∼40%–
50% on 2304 nodes (13824 NVIDIA V100 GPUs) with respect to single-node
performance on OLCF’s supercomputer Summit.

Keywords: magnetohydrodynamics, general relativity, exascale computing,
GPUs

(Some figures may appear in colour only in the online journal)

1. Introduction

In the last decade dynamical-spacetime general-relativistic magnetohydrodynamics
(GRMHD) codes have developed into robust tools to perform production simulations of
astrophysical systems. They are routinely applied to predict gravitational waves from compact-
object mergers, the amount and composition of ejected material, and to determine the remnant
object left behind, e.g. [1–10]. The outputs from these simulations are often used to identify
the multimessenger signatures of these events in multi-stage pipelines [11, 12]. In the super-
nova context, GRMHD simulations have matured significantly over the last decade. Multiple
groups have led proof-of-concept studies demonstrating the importance of inclusion of mag-
netic fields in rapidly-rotating progenitors [13–17] and are beginning to study the impact of
magnetic fields in neutrino-driven supernova [18]. Most of these codes employ the Valencia
formulation of the ideal magnetohydrodynamics (MHD) equations [19] and solve them numer-
ically via finite-volume methods while solving Einstein’s equations via finite-differences or
spectral methods. Much work in the last decade has gone into performing high-resolution
simulations [3, 20, 21] and adding more realistic microphysics via tabulated equations of state
and better neutrino transport approximation schemes [10, 16, 18]. Many of these results have
been enabled by making these multi-physics simulations run effectively in massively-parallel
environments as found on modern high-performance computing systems.

The current challenge is to run these multi-physics simulations on modern high-
performance compute systems that often contain the majority of their compute power in graph-
ical processing units (GPUs). Standard scientific coding practices targeting employment on
central processing units (CPUs) do not work effectively on GPUs due to the drastic hard-
ware differences. Common bottlenecks that have to be taken into account are the significantly
simpler control logic of GPUs, register number and capacity, memory layout and bandwidth,
as well as transfer of data from CPU to GPU. Different strategies exist for programming for
GPUs, namely via direct CUDA implementation, OpenMP, or secondary libraries like Kokkos.
A good number of GRMHD codes that use static spacetime backgrounds have been success-
fully ported/redesigned to run effectively on GPUs [22, 23]. Dynamical spacetime GRMHD
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codes however present a bigger porting challenge due to the order-of-magnitude largermemory
footprint.

Here we present GRaM-X, a dynamical-spacetime GRMHD code developed for the Einstein
toolkit that runs efficiently on GPUs. GRaM-X follows the Valencia formulation of GRMHD
and can utilize analytic and tabulated equations of state. It is built on the Cactus computational
framework and the CarpetX mesh-refinement driver which utilizes AMReX. It currently utilizes
a spacetime solver using the Z4c formulation of the Einstein equations. GRaM-X can be run on
both CPUs and GPUs and uses AMReX GPU kernel launches via lambda functions. We have
tested GRaM-Xwith a suite of standardGRMHD test problems and demonstrate its performance
on GPU supercomputers like ORNL’s Summit on up to ∼2300 nodes.

This paper is structured as follows. In section 2 we briefly present the equations solved
in the code and the Valencia formulation of GRMHD. We describe the numerical techniques
and implementation details in section 3 and present a set of code verification and sensitivity
tests in section 4. We conclude by discussing the performance of the code in section 5 and by
summarizing and discussing future directions in section 6.

2. GRMHD/Valencia formulation and numerical methods

GRaM-X is a dynamical spacetime GRMHD code which means we evolve the equations of
General Relativity (GR) as well as the equations of MHD coupled together. We use the Z4c
formalism [24] to solve the Einstein equations and the Valencia formulation to evolve the
equations of relativistic ideal MHD. In the ideal MHD approximation, the fluid is assumed to
have infinite conductivity and there is no charge separation.

2.1. Z4c formulation of the Einstein equations

The Einstein equations are a system of ten coupled second-order partial differential equations
in the four-metric gµν . We formulate the Einstein equations in the Z4c formulation [24, 25].
This formulation is similar to the well-known BSSN formulation [26–29]. It introduces extra
dynamical fields that lead to a well-posed formulation andwhich dynamically dampens (makes
decay) the constraints of the Einstein equations. The gauge conditions associated with this
formulation are the 1+ log foliation and Γ-driver shift. We use standard gauge and con-
straint damping parameters for our calculations which include constraint damping parameters
κ1 = 0.02 and κ2 = 0.0, as well as lapse parameter µL = 2/α and shift parameters µS = 1 and
η= 2 [30].

As usual in the Einstein Toolkit, the Z4c state vector is not exposed to other thorns in Cactus.
Instead, other thorns are written in terms of the standard ADM variables: the 3-metric γij, the
extrinsic curvature Kij, lapse α, shift βi, the time derivative of the lapse A= ∂tα, and the time
derivative of the shift Bi = ∂tβ

i.

2.2. Valencia formulation

The equations of ideal GRMHD used in GRaM-X are obtained from the conservation of mass,
energy-momentum and lepton number as well as from the Maxwell’s equations:

∇µ(ρu
µ) = 0 , ∇µ(ρYeu

µ) = 0 , ∇µT
µν = 0 , ∇ν ⋆F

µν = 0 (1)

where ∇µ denotes the covariant derivative with respect to the 4-metric, ρuµ = Jµ is the mass
current, Ye is the electron fraction and ⋆Fµν is the dual of the relativistic Faraday tensor Fµν .
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In the ideal MHD approximation, electric fields vanish in the rest frame of the fluid which
leads to the condition:

Eν = uµF
µν = 0 . (2)

The equations of MHD are coupled to the Einstein equations via the stress-energy tensor
Tµν . The stress-energy tensor has both the hydrodynamic contribution TµνH and the electro-
magnetic contribution TµνEM given by:

TµνH = ρhuµuν +Pgµν = (ρ+ ρϵ+P)uµuν +Pgµν (3)

TµνEM = FµλFν
λ −

1
4
gµνFλκFλκ = b2uµuν − bµbν +

b2

2
gµν (4)

where ρ, ϵ, P, uµ, and h≡ 1+ ϵ+P/ρ are the fluid rest mass density, specific internal energy,
gas pressure, 4-velocity, and specific enthalpy, respectively, and bµ = uν ⋆Fµν is the magnetic
4-vector (the projected component of theMaxwell tensor parallel to the 4-velocity of the fluid).
The combined stress-energy tensor is given by:

Tµν =
(

ρ+ ρϵ+P+ b2
)

uµuν +

(

P+
b2

2

)

gµν − bµbν (5)

≡ ρh∗uµuν +P∗gµν − bµbν ,

where P∗ = P+ b2/2 is the fluid pressure combined with magnetic pressure, and h∗ ≡ 1+
ϵ+

(

P+ b2
)

/ρ. In GRaM-X, fluid variables are cell-centered variables stored as cell averages
while the spacetime variables and the stress-energy tensor are vertex-centered variables stored
as samples at the cell vertices. Tµν is vertex-centered because it is given as input to the space-
time solver whose discretization is vertex centered. Therefore, in order to calculate Tµν in
equation (5), we need all the variables at cell vertices. Hence, we perform a 4th-order sym-
metric 3D interpolation [31] from cell center values to calculate the fluid variables at cell
vertices.

The evolution equations of ideal relativistic MHD that we use in GRaM-X are written in a
first-order hyperbolic flux-conservative form for the conserved variables D, Si, τ , and B

i. The
conserved variables are related to the primitive variables ρ, ϵ, vi, and Bi as

D=
√
γρW , (6)

Sj =
√
γ
(

ρh∗W2vj−αb0bj
)

, (7)

τ =
√
γ
(

ρh∗W2 −P∗ − (αb0)2
)

−D , (8)

B
k =

√
γBk , (9)

where Bi = nν ⋆Fiν is the spatial magnetic field in the spacelike slice with unit normal nµ,
γ is the determinant of γij, W≡ (1− vi vi)−1/2 is the Lorentz factor and vi is the 3-velocity
defined as

vi =
ui

W
+

βi

α
. (10)

The MHD evolution equations, also known as Valencia formulation, are

∂U
∂t

+
∂F i

∂x i
= S , (11)
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with

U = [D,Sj, τ,B
k,DYe]

T ,

F i = α×













Dṽ i

Sjṽ i+
√
γP∗δ ij − bjBi/W

τ ṽ i+
√
γP∗vi−αb0Bi/W

B
kṽi−B

iṽk

DYeṽ i













, (12)

S = α
√
γ×















0,

Tµν
(

∂gνj
∂xµ −Γλ

µνgλj
)

α
(

Tµ0 ∂ lnα
∂xµ − TµνΓ0

µν

)

0⃗
0















. (13)

Here, ṽ i = v i−βi /α and Γλ
µν are the 4-Christoffel symbols.

2.3. Numerical methods

As described above, the Valencia formulation for GRMHD consists of a set of 8 coupled hyper-
bolic partial differential equations for the 8-element state vector U. The state vector contains
only the so-called conserved variables. The so-called primitive variables need to be calculated
from the conserved variables before the fluxes F can be calculated. The primitive variable vec-
tor is P= [ρ,vi, ϵ,Bi,Ye,T], where Ye is the electron fraction as defined in equation (1) and T
is the temperature.

Our initialization scheme proceeds as follows:

(1) Initial conditions are set up in terms of the primitive variables P (and the ADM variables
for the spacetime metric).

(2) From these, the conserved variables U are calculated. This step is straightforward.

Our evolution scheme is based on the Method of Lines, allowing us to use a common time
integration mechanism for all evolved variables, i.e. for both spacetime and hydrodynamics
quantities. In the method of lines, one needs to provide a so-called right hand side (RHS)
function that calculates ∂tU from a given U. The time integrator evaluates the RHS function
multiple times to step from a solution at time t to a solution at time t+∆t.

According to the Courant-Friedrichs-Lewy (CFL) condition [32], the timestep ∆t has an
upper limit for the stable evolution of the system, given by:∆t⩽ C∆x/uc, where C is the CFL
factor and uc is the maximum characteristic speed of the system. The characteristic speeds
for the spacetime evolution are generally larger than MHD and can usually not be bounded
ahead of time, because they depend on the gauge parameters (see for example [33] for BSSN
characteristic speeds). Hence, we do not choose the timestep based on the characteristic speeds
of the MHD equations and always assume the maximum characteristic speed to be equal to√
2 times the speed of light, and express this in our coordinate frame, which leads to the most

restrictive timestep for stable evolution.
Evaluating the RHS proceeds as follows, starting from the state vector U and ending with

its time derivative ∂tU:

(1) Find the primitive variable vector P from the conserved variable vector U. This step is
non-trivial because it requires finding the root of a multi-dimensional nonlinear equation
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for each grid cell. The cells are not coupled, so that this expensive step can be easily par-
allelized. This step also requires evaluating the EoS (equation of state—see below), which
might require interpolation in a nuclear EoS table. This is the most complex step of our
scheme, and it can fail in several ways. The scheme can fail to converge or converge to
unphysical values such as negative density, negative velocity, velocity greater than the
speed of light, or negative pressure. Moreover, even if it converges to physical values, the
obtained or intermediate values at any step can go out of bounds from tabulated values of
ρ, T, Ye or any other dependent quantity in the table.

(2) The primitive variables are now known at the cell centers. We reconstruct their values
on the cell faces using either a TVD (total variation diminishing) [34] or a WENO5 (5th
order weighted-ENO) [35] scheme. This step also requires the spacetime metric, which is
known at the cell vertices and is interpolated linearly to the face centers. It is possible to
reconstruct either primitive or conserved variables, but we choose to reconstruct primit-
ive variables because they allow us to guarantee physically valid results such as positive
pressure and velocities less than the speed of light very easily. Also, our previous experi-
ence with GRHydro suggests that the evolution is generally less stable when reconstructing
conserved variables.

(3) For a given cell face, reconstruction from left and right side lead to potentially discon-
tinuous hydrodynamic states on either side of the interface. We construct these Riemann
problems at all the interfaces and solve them using Riemann solvers. We use an HLLE
(Harten-Lax-van Leer-Einfeldt) [36–38] solver.

(4) The solutions of these Riemann problems provide us with the net flux across all the faces
of a given cell. The divergence of this flux defines the flux term of the RHS (12) together
with the source term (13). This completes the RHS evaluation.

In practice, Ye is advected along with density, which means that we do not calculate the flux
forDYe by solving the Riemann problem. Instead, we use the flux ofD and reconstructed value
of Ye to calculate the flux for DYe as follows:

FDYe = Yleft
e FD, FD > 0 (14)

= Yright
e FD, FD < 0. (15)

We have implemented TVD and WENO reconstruction methods in GRaM-X. TVD is 2nd-
order accurate in regions of smooth, monotonic flows but reduces to first order in the presence
of extrema and shocks. ForWENO,we have implemented a version which is 5th order accurate
for smooth, monotonic flows [35] and this is the reconstruction method we plan to use in our
production simulations. The reconstruction method can be set using a runtime parameter.

We employ anHLLERiemann solver in GRaM-X. This is an approximate solver which is less
expensive numerically. More complex solvers such as Roe and Marquina have been numeric-
ally very resource intensive on traditional CPU-based codes, but we plan to implement them
in the future in GRaM-X to extract the full compute capability of GPUs while attaining higher
accuracy. This is because methods which are compute intensive but not memory intensive add
little extra cost on GPUs.

Another important aspect of a GRMHD code is the EoS. We employ analytic equations
of state such as Polytropic and Ideal Gas EoS, as well as realistic nuclear equations of state
made available in the form of tables. For a Polytropic EoS, fluid pressure is given by P= Kργ ,
where K is the Polytropic constant and γ is the Polytropic index. For an ideal gas (also known
as Γ-law ) EoS, the fluid pressure is given by P= (Γ− 1)ρϵ. For nuclear tabulated equations
of state, a total of 19 fluid variables such as pressure P, specific enthalpy h, the speed of sound
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cs etc are given as a function of (ρ,T,Ye) in the form of a table, where T is the temperature and
Ye is the electron fraction [39].

To find the value of a given variable in a table, one needs to look up those values in the table
and perform any necessary interpolations. Since we have a GPU-based code, we load the table
in the unified memory which is accessible from both the CPU (host) and the GPU (device).
We use tables in the format as found on [40].

The recovery of primitive variables ρ, vi, ϵ, and Bi from the conserved variables D, Si, τ
and B

i is in principle a five-dimensional (5D) root-finding problem involving the inversion of
equations (6)–(8), given that inverting the magnetic field components is trivial because they
just differ by a factor of

√
γ. This, in turn, renders the unknown, first term of Si in equation (7)

collinear to vi, thus reducing the dimensionality of the recovery problem to 3D.
In GRaM-X, we use either of two methods to perform this conserved to primitive transform-

ation (referred to as con2prim hereafter): A 3D Newton-Raphson (3D-NR hereafter) [41, 42]
root finder and the method of Newman & Hamlin (Newman’s method hereafter) [41, 43]. In
3D-NR, the system of equations is converted to 3 equations in unknowns (W, z= ρhW2, T) and
solved for them, as described in [41]. Newman’s method is an effective 1D method in which
we iterate over the fluid pressure to find a solution. It solves a cubic polynomial of the form
f(ϵ) = ϵ3 + aϵ2 + d in variable ϵ≡ B2 + z, where a and d are determined by fluid variables.
This method requires the calculation of P from ρ and h using the EoS at every iteration step.

In practice, we use 3D NR as the primary method for con2prim. If 3D-NR does not con-
verge, we fall back to Newman’s method. The reason for choosing 3D-NR as the primary
method over Newman’s method is that the number of EoS calls is ∼20 times larger in case of
Newman’s method compared to 3D-NR [41], which makes Newman’s method more expens-
ive computationally. If Newman’s method does not converge either, then we use bisection in
temperature because it is guaranteed to converge to a solution, but is much more expensive
computationally.

In order to preserve the divergence free constraint of the magnetic field, we use a simpler
variant of the original constrained transport scheme [44–46] called ‘flux-CT’ [47–49]. While
the original constrained transport scheme uses staggered magnetic field components, the flux-
CT scheme instead uses cell centered values of the magnetic field. In this scheme, the evolution
of magnetic field components is performed by calculating electric field components, which can
in turn be expressed in terms of the magnetic field fluxes. We refer the reader to the GRHydro
code paper [49] and the original literature for further details.

3. Implementation

GRaM-X is a complete redesign of GRHydro [16] which we have used successfully in pro-
duction for many years [9, 16, 17, 50–52]. Like GRHydro, GRaM-X is based on the Cactus
computational framework [53, 54], and uses the upcoming CarpetX driver to provide mesh
refined grids, I/O and inter-node communication. The Cactus framework has been in use since
1998 [55] and has been chosen twice as a SPEC benchmark module [56] and has been used in
hundreds of scientific publications.

CarpetX and thus GRaM-X use a traditional block structured mesh refinement approach that
has been proven to be efficient for astrophysics problems targeted by GRaM-X in the past. At
the same time, GRaM-X automatically benefits from improvements in the underlying AMReX
library (see below), which provides efficient data management for GPU- and CPU-based sim-
ulations. Stencil based codes, such as GRaM-X, are usually limited by memory bandwidth and
we employ a tiling and a hybrid MPI+OpenMP based approach to improve cache locality
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Figure 1. A sample of data arrangements supported by CarpetX, displaying different
types of variables. From left to right: fully vertex centered, face centered in the y direc-
tion, and fully cell centered. Notice that there is an extra value in any vertex centered
direction compared to cell centered directions. This figure was modeled after [61].

when using CPUs and kernel coalescing on GPUs to avoid scheduling a large number of small
kernels. AMReX provides a portability layer similar to, e.g. Kokkos, that allows identical code
to run on CPUs as well as GPUs by all current vendors (NVIDIA, AMD, Intel). GRaM-X uses
this framework while it also contains optimized code for different architectures for perform-
ance critical code paths. Since AMReX and most current GPU frameworks target C++ code,
GRaM-X reimplements the tested algorithms of our current GRHydro code, which contains leg-
acy Fortran 90 routines, in C++, at the same time also removing experimental or no longer
used code from GRHydro. GRaM-X uses modern C++17 features, in particular templates and
type agnostic code, to allow for compile time optimization. OnCPUs GRaM-X uses explicit vec-
torization using CPU architecture specific vector widths and optimized operations provided by
NSIMD [57].We have found that, in particular, the Einstein Field equations are too complex and
lengthy for current compilers to optimize and vectorize well and instead require explicit vec-
torization by user code. Using C++ and the available SIMD libraries GRaM-X’s source code
remains portable between different SIMD implementations on different CPU architectures.

Cactus provides a flesh, which works as a connection layer between end-user provided
application code, thorns. Most of the functionalities necessary for complex multi-physics sim-
ulations are provided by the thorns. These thorns use Cactus’ domain-specific language (DSL)
to schedule subroutines, define interfaces for externally accessible subroutines, etc. All the
desired thorns are given in a thornlist at compile time, but runtime parameters select which of
these thorns are active in a given simulation.

Of preeminent importance for the performance of a simulation is the driver thorn. This
special thorn handles all data movement and memory allocations, it implements the simula-
tion workflow, and provides I/O services. Our driver is CarpetX. It implements Berger-Oliger
block-structured AMR, calling user defined functions on blocks of data for refined sections
of grid as needed. CarpetX also provides parallel I/O using the Silo [58], ADIOS2 [59], and
openPMD [60] libraries, high-order prolongation and restriction operators for variables defined
at different grid locations (see figure 1 for an illustration), inter-process exchange of ghost-
halo data using the MPI standard, intra-process parallelization using OpenMP, and collective
data reduction operators for computing norms of grid functions.

We have developed CarpetX over the course of the past 3 years. CarpetX leverages the
AMReX adaptive mesh refinement library that is developed for use by the DOE’s Exascale
Computing Project (ECP) [62]. With AMReX, our codes leverage the support of the AMReX
community to ensure that the underlying AMR driver scales to ever larger systems and new
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architectures. AMReX already implements algorithms to enable efficient use of current CPUs,
and GPUs, as well as asynchronous iterators overlapping computation with communication,
which benefit all our codes. The continued support for AMReX through the ECP co-design
approach [63], where it is currently used by seven applications funded by ECP, provides a
stable basis for CarpetX.

We have extended the inter-mesh transport operators in AMReX to support higher order
accurate operations based on generic templated stencils to support the vertex centered high
accuracy operations used for spacetime geometry quantities as well as cell centered conser-
vative operations used for fluid quantities. All of CarpetX’s basic operations are fully GPU
enabled using AMReX’s GPU facilities, thus avoiding costly data transfers from GPU to CPU
memory. This includes facilities to extract gravitational waves.

Spacetime geometry quantities are stored on vertices, ensuring high accuracy in inter-mesh
interpolation operations. In principle, both vertex-centered and cell-centered quantities can be
interpolated to the same accuracy, but it is more expensive for cell-centered variables. During
prolongation, if a fine grid point is at the same location as a coarse grid point, then interpolation
is exact. Similarly, during restriction, vertex-centered quantities are always exact whereas cell-
centered quantities might require higher-order interpolation. The fluid quantities are stored
as cell averages in cells and updated in a flux-conservative scheme ensuring conservation of
rest mass in a finite volume scheme. We pre-compute derivatives and fluxes using temporary
storage locations and improve cache utilization (on CPUs).

When executing on CPUs, we use the NSIMD library [57] to achieve efficient SIMD vector-
ization of arithmetic operations. We also use a set of classes to handle vector and tensor objects
and their interactions, such as dot products and small matrix inversions. These classes can also
be used with NSIMD. We use OpenMP and grid tiling methods to distribute CPU work among
multiple cores on a single compute node while ensuring efficient use of L2 and L3 caches. For
GPUs AMReX supports CUDA, HIP/ROC or DPC++/SYCL as applicable for accelerator access.

Inter-node parallelism is handled using MPI as provided by AMReX. Cells at inter-processes
and inter-mesh interfaces are filled via ghost zone (halo) exchange and prolongation (inter-
polation) from coarse to fine grid. At the same time, at the outer boundaries of the simulation
domain, either periodic or a user-supplied boundary condition are applied.

CarpetX uses OpenPMD and its ADIOS2 backend to output checkpoint data, which we found
to be more efficient than AMReX’s built in BoxLib output. We employ Silo for 3D grid data
output, which can be directly read by VisIt for visualization using visualization resources
available at compute centers.

Our code contains extensive facilities to enforce correctness of the data access, tracking
which parts of the grid are valid and detecting access attempts to invalid or out of date data.
These facilities can be enabled via runtime parameters and are typically enabled for develop-
ment and test simulations but disabled for production runs due to their impact on performance.

3.1. Adaptive mesh refinement

AMReX (and thus also CarpetX) provides so-called block-structured mesh refinement. This
means that there is a rectangular coarse grid, and this coarse grid is overlaid by various refined
grids, which are also rectangular, and which are organized in refinement levels. Each level has
half the spacing of the next coarser level. The refined grid must be properly nested, which
means that the grid of level L+ 1 must be wholly contained in the grids of level L.

During regridding, one needs to flag which cells of which grid need to be refined, and
which currently refined cells are not needed any more. AMReX will then combine the region of
flagged cells into new, rectangular grids, enlarging the refined region somewhat if necessary.
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This ensures that the new refined region can easily be described by a set of rectangles. One
assumes that the cost of the AMR algorithm scales not only with the total number of refined
cells, but also with the number of rectangular grids, so that having fewer (but slightly larger)
grids can be desirable.

Each refined grid is surrounded by a layer of ghost zones. These ghost zones are defined
via interpolation (prolongation) from the next coarser level. Altogether, this means that the
evolution system need only be implemented for rectangular arrays, and does not need to be
immediately aware of the shape and relation of the refined regions. It also need only handle a
single grid resolution, since sufficient ghost zones are provided by the AMR algorithm.

Finally, since the refined regions overlay coarser regions, this leads to a double covering
of the domain. It is necessary to keep these consistent. When a refined grid’s ghost zones are
filled via prolongation from the next coarser grid, the coarse grid regions that are overlaid by
the refined grid is reset to the respective fine grid values (restriction).

During time evolution, the CFL criterion states that coarser grids can take larger time steps
than finer grids. This is also called subcycling in time, since the finer grids take more time
steps than the coarser grids. For simplicity, we do not implement this yet; instead, we use the
same time step size for all refinement levels. This increases the computational cost somewhat,
but also increases parallel scalability (see section 5 below.), since all refinement levels can be
evolved simultaneously. Subcycling in time necessarily serializes evolving different refinement
levels.

AMReX’s AMR algorithm structures the refined grids as rectangular blocks of a given size
that can be chosen at runtime. A typical block size would be 8× 8× 8 cells. This means each
refined grid is always a multiple of e.g. 8 cells large in each direction.

3.2. Staggered grids

It is often convenient to stagger evolved variables with respect to each other. For example,
fluxes (section 2.2) are naturally defined on cell interfaces located halfway in between cell
centers (staggered). AMReX allows quantities to be located either at cell centers, on cell faces,
cell edges, or at the cell vertices. Its refinement scheme is based on cells. Quantities living on
faces, edges, or vertices then live on grids that are one point larger in certain directions [64].

Being able to stagger fluxes between evolved conserved quantities, or placing the magnetic
vector potential Ai at cell edges, has important advantages, in particular near mesh refinement
interfaces where coarser and finer grids meet. For example, such schemes allow quantities
to be exactly conserved during time evolution, or that the divergence of the magnetic field
remains exactly zero. ‘Exactly’ here means up to error introduced by floating point precision.
In GRaM-X, we store the spacetime quantities (e.g. gµν ,Tµν) on vertices, matter quantities
(e.g. ρ,Bk) in cells, fluxes on faces and electric fields for constrained transport scheme on
edges.

3.3. Parallelism

CarpetX provides three levels of parallelism, suitable for modern systems ranging from
laptops to high-end supercomputers: shared memory parallelism (multi-threading), acceler-
ators (aka GPUs), and distributed memory parallelism. These mechanisms are implemented
in AMReX.

3.3.1. Shared memory parallelism (Multi-Threading). CarpetX uses OpenMP [65] for multi-
threading. In this setup, a computational grid is allocated as a single entity, and is split into
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several logical tiles for processing. Each tile is handled by one thread. The tile size can be
chosen at runtime. We find that efficient tile sizes are very large in the x direction (because
each cache line contains multiple grid points that are neighbors in the x direction) and rather
small in the y and z directions (since our evolution system contains many variables that quickly
fill the cache). We find that a typical efficient tile size would be e.g. 1000× 4× 4 grid points,
where the value 1000 means that the tile is in practice as large as the grid block in the x
direction.

The routines acting on tiles are scheduled as OpenMP tasks and then execute independently.
When necessary e.g. for synchronization (ghost zone exchange) or I/O, a barrier is introduced
to ensure all scheduled tasks have finished.

3.3.2. Accelerators (GPUs). Most new high-end supercomputers require codes to make effi-
cient use of GPUs or other accelerators. Accelerators on such systems provide the majority
of the computing power. It is clearly important to be able to use GPUs efficiently on such
systems.

One commonly used approach to do so is to ensure that all data are stored on the accel-
erator’s built-in memory at all times, and are moved from and to the CPU memory only
for I/O. It is thus, unfortunately, necessary that all routines of a simulation code run on
the accelerator. Copying data to the CPU memory for even a simple task (e.g. to find the
maximum of the density) is prohibitively slow; it is more efficient to run such a task on an
accelerator.

The goal of CarpetX is thus to make it easy to write code that runs on accelerators, even
if the code would not run efficiently there. Fortunately, code that has been written to run on
accelerators will usually also run efficiently on CPUs.

The loop kernels running on an accelerator are scheduled and then execute as independent
tasks. A barrier at the end ensures the accelerator has finished processing tasks before syn-
chronization or I/O, and to ensure tasks execute in a correct order.

3.3.3. Distributed memory parallelism (Message-Passing). For distributed memory paral-
lelism, i.e. to run across several compute nodes simultaneously, AMReX offers parallelization
via MPI. The rectangular grids which make up the coarse grid and all refined grids are called
blocks in AMReX. Each grid block is surrounded by a layer of ghost zones that are filled by
copying from other MPI processes that may run on different nodes.

Overall, ghost zones are either filled via communication from another process or via pro-
longation from a coarser grid. This synchronization needs to be explicitly scheduled by the
application code. Grids are automatically restricted (see above) at the same time they are
synchronized.

In our implementation of a flux-conservative hydrodynamics scheme, the state vector con-
sists of conserved quantities that are stored at cell centers. From these, we calculate the fluxes
between the cells. These fluxes live on the faces between the cells. The fluxes are synchron-
ized in a conservative manner, ensuring that the fluxes are consistent between all grid blocks,
and also between coarse and fine grids. The fine grid fluxes are restricted to coarser grids.
This restriction averages the fluxes, so that the integrated fluxes are the same on all refinement
levels.

As we are using a global time step, so-called refluxing is not necessary. (Refluxing would
keep fluxes between time steps with different step sizes consistent by integrating fluxes in
time.)
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From the difference of the fluxes, the new state vector is calculated, which is then is also
synchronized.

4. Tests

To verify the correctness of the code we perform a number of tests to ensure that the numer-
ical methods implemented are correct and robust. We perform a number of standard tests
with a variety of initial conditions and compare the results with analytical solutions as well
as results from other codes reported in literature. In this section we describe various tests
in gradually increasing level of complexity, ranging from one-dimensional shocktube tests
in static Minkowski spacetimes to a three-dimensional magnetized Tolman-Oppenheimer-
Volkhof (TOV) star in dynamical spacetime.

4.1. 1D MHD shocktube

Planar MHD shocktube tests serve as the primary tests for magnetohydrodynamic codes
because they are simple to implement yet provide an excellent testbed for the ability of the
code to capture shocks and MHD-wave structures. We perform five different shocktube tests
using the initial conditions proposed by Balsara [66], namely ‘Balsara 1’, ‘Balsara 2’, ‘Balsara
3’, ‘Balsara 4’ and ‘Balsara 5’. Balsara 1 is the relativistic generalisation of the shocktube test
problem originally proposed by Brio and Wu [67, 68]. Balsara 2 and 3 are blast wave test
problems, with the difference being their initial pressure difference. Balasara 2 has a moderate
initial pressure difference (Pleft/Pright = 30) while Balsara 3 has a very strong initial pressure
difference (Pleft/Pright = 104). Balsara 4 constitutes a strongly relativistic test problem where
two streams with high Lorentz factor (W ≈ 22.37) collide with each other.

We perform the tests along x, y and z directions independently, however we show the results
only for the x-direction. y- and z-directions give the same result. For the x-direction, we divide
the domain in ‘left’ and ‘right’ states, with ‘left’ state being the region x< 0 and ‘right’ state
being the region x> 0. This means x= 0 serves as the plane of discontinuity for the Riemann
problem. For each test, we have used the Γ-law (ideal gas) EOS given by P= (Γ− 1)ρϵ, with
Γ = 2 for Balsara 1 and Γ = 5/3 for others. We divide the domain between −0.5 and 0.5
in 1600 points which gives a resolution of ∆x= 1/1600. We perform all the tests without
AMR and without constrained transport (see [49] for a detailed explanation of why this setup
maintains the divergence-free constraint). We use fourth-order Runge-Kutta (RK4) for time
integration with a high CFL factor of 0.8 (i.e. ∆t/∆x= 0.8). We use Neumann boundary
conditions i.e. we set the flux at the boundary points to be zero and ‘copy’ the data from
the nearest point in the interior to the points at the boundary. We perform reconstruction of
primitive variables using the TVD reconstruction with the minmod limiter and use the HLLE
Riemann solver. We have used a static Minkowski spacetime. We set the left and right states
using the values tabulated in table 1 and evolve the system until t= tref = 0.55 for Balsara 5
and t= tref = 0.4 for others. We then compare the results obtained at time tref with the exact
solution. We have obtained the exact solution from [69]. This test took 29 s to evolve the
1600× 8× 8 grid for 800 iterations on an NVIDIA RTX A6000 GPU.

We show the results for Balsara 1 and Balsara 4 in the left and the right panel of figure 2
respectively. We find that the results are in very good agreement with the analytical solution
(limited only by numerical errors) and also agree well with other results reported in literat-
ure [19, 48, 66, 69–73]. In the left panel of figure 2 we plot the density, pressure, x-velocity,
y-velocity, Lorentz factor and y-component of the magnetic field for Balsara 1. We find that
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Table 1. Parameters used for the 1D MHD shocktube tests. We perform the tests in x-
direction such that ‘Left’ state means the state at x< 0 and ‘Right’ state means the state
at x> 0.Γ is the adiabatic index for the ideal gas equation of state, tref is the time at which
we report the results, ρ is the density, ϵ is the specific internal energy, v⃗= (vx,vy,vz) is
the velocity of the fluid and (Bx,By,Bz) are the x, y and z components of the magnetic
field respectively.

Test name Bx Γ tref State ρ ϵ v⃗ (By,Bz)

Balsara 1 0.5 2 0.4 Left 1.0 1.0 0⃗ (1.0, 0)
Right 0.125 0.8 0⃗ (−1.0, 0)

Balsara 2 5.0 5/3 0.4 Left 1.0 45.0 0⃗ (6.0, 6.0)
Right 1.0 1.5 0⃗ (0.7, 0.7)

Balsara 3 10.0 5/3 0.4 Left 1.0 1500.0 0⃗ (7.0, 7.0)
Right 1.0 0.15 0⃗ (0.7, 0.7)

Balsara 4 10.0 5/3 0.4 Left 1.0 0.15 (0.999, 0, 0) (7.0, 7.0)
Right 1.0 0.15 (−0.999, 0, 0) (−7.0, −7.0)

Balsara 5 2.0 5/3 0.55 Left 1.08 1.3194 (0.4, 0.3, 0.2) (0.3, 0.3)
Right 1.0 1.5 (−0.45, −0.2, 0.2) (−0.7, 0.5)

Figure 2. Results for the evolution of 1D MHD shocktube tests Balsara 1 and Balsara
4 in the left and the right panel respectively. We plot the density ρ, pressure P, nor-
mal velocity vx, tangential velocity vy, Lorentz factor W and tangential component of
the magnetic field By at time tref = 0.4 for both tests. We choose the initial conditions
as listed in table 1 on a single-level grid between [−0.5,0.5] with a spatial resolution
∆x= 1/1600 and evolve with a time resolution∆t= 5× 10−4. We find that our results
agree well with the analytical solution [69] (limited by numerical errors) and any minor
deviations are consistent with those reported by other codes [48, 49, 66]. This test took
29 s to evolve on an NVIDIA RTX A6000 GPU.

a reasonably relativistic flow with a Lorentz factor of ∼1.458 has developed from the initial
discontinuity and the code has captured all the elementary waves which include a left-going
fast rarefaction wave, a left-going compound wave, a contact discontinuity, a right-going slow
shock and a right-going fast rarefaction wave. This is also in good agreement with the exact
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Figure 3. Same as figure 2 but for Balsara 2, Balsara 3 and Balsara 5. We plot the results
at time tref = 0.4 for Balsara 2 and 3, and at time tref = 0.55 for Balsara 5. We find
excellent agreement with the analytical results [69] for Balsara 2 and Balsara 5. Balsara
3 is the most demanding of all Balsara tests and we find that there is a considerable
undershoot near the right moving fast shock for ρ, vy and By. However, using WENO
reconstruction instead of TVD reconstruction at the same resolution resolves this issue
to a large extent and makes the deviations comparable to those observed by [49, 66].

solution. In the right panel of figure 2 we plot the same quantities for the MHD collision prob-
lem Balsara 4. The flow develops two very strong fast shocks and two slow shocks, each going
to the right and left respectively. We find deviations from the exact result at the center but they
are on the same level as [48, 49, 66].

We also show the results for Balsara 2, Balsara 3 and Balsara 5 in figure 3. For more details
about the physics that these tests are testing please see [49]. For Balsara 2 and Balsara 5, we
reproduce the analytic results very well. Balsara 3 is the most challenging of all the Balsara
tests and we find that the result shows a considerable undershoot near the right moving shock at
the current resolution of ∆x= 1/1600. This however gets resolved to a large extent when we
use WENO instead of TVD reconstruction, as shown in the left panel of figure 4. That makes
the deviations comparable to those reported by [49, 66]. We also perform other Balsara tests
(1, 2, 4, 5) with WENO instead of TVD reconstruction and find that the evolution is correct
and stable in each case, though Balsara 2 and Balsara 4 develop minor oscillations near shocks
with WENO at this resolution. However, we do note that we have not fine tuned the WENO
parameters for each individual case which may altogether get rid of these minor oscillations.

We test the correctness of our AMR implementation using the Balsara 3 shocktube test.
Balsara 3, with TVD reconstruction and resolution∆x= 1/1600, shows the highest disagree-
ment with the analytic results for ρ, vy and By at the right moving shock. Use ofWENO instead
of TVD rectifies this to a large extent ( left panel of figure 4). Another solution is to increase
the resolution near the right moving shock. This can be achieved by either increasing the res-
olution uniformly over the entire simulation domain or increasing the resolution only near
the right moving shock using AMR. We therefore set up Balsara 3 shocktube test with TVD
reconstruction for two different grid setups:

• gridA—a grid with one refinement level with extent [−0.5,0.5] and resolution ∆x=
1/6400.

• gridB—a grid with 3 refinement levels: extent [−0.5,0.5] and resolution ∆x= 1/1600 for
level 0, and 2 more levels with lengths 0.18 (∆x= 1/3200) and 0.12 (∆x= 1/6400) that
are centered at the right moving shock and move along with it.
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Figure 4. Comparison of different numerical methods using Balsara 3 shocktube test.
We plot ρ, vy and By between 0.2⩽ x⩽ 0.45 at time tref = 0.4 to zoom-in on the right
moving shock, because these quantities showed the highest discrepancy from the ana-
lytic solution near the right moving shock in figure 3. In the left panel, we show a com-
parison of TVD and WENO reconstruction. We find that WENO reconstruction consid-
erably improves the accuracy at the same resolution (∆x= 1/1600). In the right panel,
we test the AMR implementation of GRaM-X. We first perform the test using a uniform
high resolution grid with ∆x= 1/6400 (6400 cells total). We then repeat the test using
AMR with 3 refinement levels (2944 cells total), with the finest level of length 0.12
and∆x= 1/6400 centered around the right moving shock. We find that AMR provides
accuracy comparable to that of uniform high resolution grid.

Thus, gridA has effectively 6400 cells along x-direction, while gridB has effectively
1600+576+768 = 2944 cells along x-direction. We clearly see in the right panel of figure 4
that the agreement with analytical results gets much better, and gridB leads to similar accur-
acy as gridA despite having a lower number of cells. This demonstrates the correctness of
our AMR implementation as well as an efficiency gain of ∼50% for similar accuracy in this
particular case.

4.2. Circularly polarized (CP) Alfvén wave

In order to study the convergence properties of GRaM-X, we test the propagation of a CPAlfvén
wave along a uniform background magnetic field, first proposed by [70]. CP Alfvén waves are
exact solutions of the equations of MHD and are smooth, making them suitable for conver-
gence testing. Our setup is same as [49] where the initial velocities are given by

vx = 0; vy =−vAA0 cos(kx); v
z =−vAA0 sin(kx) , (16)

and initial magnetic fields are given by

Bx = 1.0; By = A0B
x cos(kx); Bz = A0B

x sin(kx) . (17)
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The density is uniform with ρ= 1.0 and wave amplitude is chosen to be A0 = 1.0. The Alfvén
speed vA is given by

v2A =
2(Bx)2

ρh+(Bx)2(1+A2
0)



1+

√

1−
(

2A0(Bx)2

ρh+(Bx)2(1+A2
0)

)2




−1

, (18)

where k= 2π/Lx is the wavevector, Lx being the length of the domain along x direction. We
perform the test in the domain −0.5⩽ x⩽ 0.5 such that Lx = 1 and k= 2π. We choose a
uniform pressure P= 0.5 which leads to the convenient value vA = 0.5. We evolve the sys-
tem with TVD reconstruction (mc2 limiter), HLLE Riemann solver, 2nd order (RK2) time
integrator and periodic boundary condition, as well as constrained transport to maintain the
divergence free character of the magnetic field. We use the Γ-law EOS with Γ = 5/3 and CFL
factor of 0.2.

In the ideal case, the wave propagates across the grid and exactly reproduces the initial
condition after every time period T= Lx/vA = 2. We can test the accuracy of our code by
measuring the differences between magnetic fields or velocities at t= 0 and t= nT, where n is
an integer. We choose to test it for n= 5 i.e. when the wave has travelled 5 wavelengths across
the grid. We perform the test with N= 16, 32, 64 and 128 cells along the x direction. For each
N, we define the error ||δB||2 as the L2-norm of the difference between the magnetic fields at
t= 0 and t= 10. We plot the error as a function of N in figure 5 and find good agreement with
the expected 2nd order error convergence rate. The results for error convergence rates also
agree well with those reported in literature for similar setup of CP Alf v́en wave test [49, 70,
74]. Our error magnitudes agree well with that of [49] who have also shown the result after 5
grid crossings.

4.3. 2D cylindrical explosion

We next perform a two dimensional test which involves a strong cylindrical explosion to test
the ability of our code to capture an expanding blast wave in multiple dimensions. This test
is known to push the limits of an MHD scheme and spot well-hidden bugs because of the
simplicity of the setup. Unlike the Balsara tests we do not have an exact solution for this test,
hence we compare our results with results of other codes available in literature. We use the test
setup described in [49] which is originally based on test setup of [75] for the relatively weak
magnetic field case (Bx = 0.1).

We perform the test in the x-y plane with the density profile given by

ρ(r) =











ρin ; r⩽ rin ,

exp
[

(rout−R) lnρout+(r−rin) lnρin

rout−rin

]

; rin < r< rout ,

ρout ; r⩾ rout ,

(19)

where r=
√

x2 + y2 is the radial distance from the origin and (rin, rout) are radial parameters.
The pressure gradient has an equivalent form where ρin and ρout are replaced by Pin and Pout

respectively.We set the initial fluid velocity to zero in all directions and use a uniformmagnetic
field along x-direction. The values of the parameters are as follows:

rin = 0.8, rout = 1.0; ρin = 10−2, ρout = 10−4; Pin = 1.0, Pout = 3× 10−5; Bi = (0.1,0,0). (20)

Thus there is a large pressure jump of∼105 going from rout to rin. We use a 200× 200× 8 grid
with x- and y-directions spanning the coordinate range [−6,6]. This results in a resolution of
∆x=∆y= 0.06. We use the Γ-law EOS with Γ = 4/3 and use constrained transport for the
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Figure 5. Figure shows the L2-norm of the difference between the initial and final mag-
netic fields ||δB||2 as a function of the number of cells along the x-directionN, for the 1D
circularly polarized Alf v́en wave test. The green dashed line shows the expected error
convergence rate for 2nd order convergence. We perform the test for N = 16, 32, 64
and 128 cells between [−0.5,0.5] along x-direction and calculate the error ||δB||2 after
5 wave cycles in each case. We find that the error convergence rate shows good agree-
ment with the expected ∼2nd order convergence and similar results have been reported
in the literature for the numerical methods used [49, 70, 74]. The error magnitudes agree
well with that of [49] who also measure the errors after 5 wave cycles.

magnetic field evolution to conserve the divergence-free constraint of the magnetic field. We
use Neumann boundary conditions as described in section 4.1 and do not use mesh refinement.
We use TVD reconstruction with the minmod limiter, the HLLE Riemann solver and RK4 for
time integration with the CFL factor of 0.25. With this numerical setup, we run the simulation
until t= 4 and compare the two-dimensional and one-dimensional profiles of different physical
quantities with previous results. This test took 15 s to evolve the 200× 200× 8 grid for 267
iterations on an NVIDIA RTX A6000 GPU.

We show the two-dimensional profiles for gas pressure P, Lorentz factor W as well as the
magnetic field in the x− y-plane at time t= 4 in the left panel of figure 6. We also show the
numerically determined magnetic field lines as arrows on top of the Lorentz factor plot. The
plot for P is in logarithmic scale. We find that our two-dimensional results show very good
agreement with figure 5 of [49] and figure 10 of [75]. Next, we plot the one-dimensional
profiles by taking slices along y= 0 and x= 0 for rest-mass density, gas pressure, magnetic
pressure and Lorentz factor at time t= 4. Gas pressure andmagnetic pressure are shown in log-
arithmic scale.We show these 1D profiles in the right panel of figure 6.We find good agreement
with figure 6 of [49]. Slight deviations from the 1D profiles of [49] are present because our
code uses cell-centering for hydrodynamic variables and vertex-centering for spacetime vari-
ables while [49] uses the same centering for both hydrodynamic and spacetime variables. This
leads to slightly different numerical values (limited to numerical precision) for initial dens-
ity and pressure profiles on the discrete grid due to their coordinate dependence. This small
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Figure 6. Left panel: The evolved state of the 2D cylindrical explosion test at time t= 4.
We plot the logarithm of pressure, the Lorentz factor as well as the x and y compon-
ents of the magnetic field. We also overlay arrows representing the magnetic field lines
on top of the Lorentz factor plot. We perform the test on a single level grid between
−6< x,y< 6 with a spatial resolution of ∆x=∆y= 0.06 and evolve with a temporal
resolution of ∆t= 0.015. We find that our results agree well with the results reported
by [49, 75] for the same test setup. Right panel: 1D profile along x= 0 and y= 0, for
density ρ, pressure P, magnetic pressure b2/2 and Lorentz factor W. We find overall
good agreement but minor deviations with figure 6 of [49] for density and magnetic
pressure. These deviations occur because [49] uses vertex-centering while GRaM-X uses
cell-centering for hydrodynamic variables. The deviations go away when we perform
the test with same coordinate discretization as [49]. This test took 15 s to evolve on an
NVIDIA RTX A6000 GPU.

discrepancy is resolved (not shown here) when we use the same coordinate discretization for
hydrodynamic variables in [49] and our code.

4.4. 2D magnetic rotor

Next we perform the magnetic rotor test which has high initial Lorentz factors and a strong
initial discontinuity. This test was generalized to the relativistic MHD case in [73]. Like the
cylindrical explosion test, we do not have an analytical solution for this test and hence we
compare our results with the results of other codes. The test consists of a cylindrical column
of radius rin = 0.1 with its axis along z-direction rotating with an angular velocity ofΩ= 9.95.
Thus the fluid 3-velocity at the outer edge of the cylinder reaches the value vmax = 0.995 which
corresponds to a high Lorentz factor of ∼10.012. The density inside the cylinder is uniform
with the value ρin = 10while the medium surrounding the cylinder has a lower uniform density
ρout = 1. We do not apply any smoothing to the density profile, thus a strong initial discontinu-
ity is present at the edge of the cylinder. The pressure is the same both inside and outside the
cylinder with the value Pin = Pout = 1. A uniform magnetic field along x-direction is present
both in the interior and exterior of the cylinder with the value Bx = 1.0.

We use a 400× 400× 8 grid with x and y directions spanning the coordinate range
[−0.5,0.5]. This gives us a resolution of ∆x=∆y= 0.0025. We perform the test on a flat
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spacetime and without mesh refinement. We use Neumann boundary condition as described
in section 4.1 and use constrained transport to evolve the magnetic field. We use a Γ-law EoS
with an adiabatic index Γ = 5/3. We use TVD reconstruction with the minmod limiter and the
HLLERiemann solver.We perform time integration using RK4with a CFL factor of 0.25.With
this numerical setup we evolve the system until t= 0.4 and again compare the two-dimensional
and one-dimensional profiles of different physical quantities with previous results. This test
took 97 s to evolve the 400× 400× 8 grid for 640 iterations on an NVIDIA RTXA6000 GPU.

In the left panel of figure 7 we show the 2D profiles of density, fluid pressure, magnetic
pressure and Lorentz factor at t= 0.4. Arrows representing the magnetic field lines are shown
on top of the Lorentz factor plot. As expected, we find that magnetic braking slows down the
fluid and this causes the maximum Lorentz factor to drop to ∼1.85 from the initial value of
∼10. Magnetic field lines are also dragged by the rotation of the fluid which causes the field
lines to rotate by almost 90 degrees in the central region while the field lines remain unchanged
at large radii. Material has been swept away from the central region causing the central density
to decrease from the initial maximum value of 10 to the minimum value of ∼0.4. Our results
show very good agreement with figure 5 of [73], figure 7 of [49] and figure 8 of [76]. In the
right panel of figure 7 we show the 1D profiles taken along y= 0 and x= 0 for density, fluid
pressure, magnetic pressure and Lorentz factor at t= 0.4. Our results show excellent agreement
with figure 8 of [49] and figure 9 of [76]. Again, we find minor deviations from the results
of [49] but these again are due to the difference in centering of variables between [49] and our
code. In fact, these deviations become irrelevant when we take into account the differences in
results from the same code at different resolutions, for example figure 9 of [76].

4.5. 3D TOV star

As the final test we simulate a stationary and spherically symmetric neutron star with poloidal
magnetic field in three dimensions. This test is more challenging than previous tests because
(1) we perform it in three dimensions and (2) this test probes both GR and MHD. This is our
first dynamical spacetime test and we use the Z4c formalism to evolve the spacetime variables.
We obtain the neutron star model via the solution of TOV equation [77] and set up a poloidal
magnetic field on top of this fluid configuration. We choose the test parameters, as described
in the next paragraph, such that the maximum strength of magnetic field is Bmax = 8.5× 10−6

and the maximum pressure is Pmax ≈ 1.6× 10−4 in code units. The ratio of fluid pressure to
magnetic pressure is β = Pmax

B2
max/2

≈ 107, hence the magnetic field is dynamically unimportant
and only will insignificantly impact the stationary configuration on the timescales we perform
this test. Hence this test helps us to investigate the ability of our code to maintain this stationary
configuration during evolution in a dynamical spacetime setup.

The test involves setting up self-consistent initial data for fluid and spacetime variables, and
then evolving the hydrodynamic variables with GRaM-X and the spacetime variables using the
Z4c formalism with Z4c. In order to calculate the initial data, we solve the TOV equation in
1D using a polytropic EoS with polytropic constant K= 100, adiabatic index Γ = 2 and initial
central density of 1.28× 10−3M−2

⊙ . These parameters form a TOV star with massM= 1.4M⊙

and radius R= 8.125M⊙. We obtain the initial data for poloidal magnetic field using the vector
potential Aφ = Abϖ2(1− ρ0/ρ

max
0 )np max(P−Pcut,0) with ϖ ≡

√

(x− x⋆)2 + y2, where Ab
determines the strength of the initial magnetic field, np shifts the location of maximum initial
magnetic field, Pcut is the cut-off pressure belowwhich we set magnetic field to zero and (x⋆,0)
is the location of center of the star. For the test we choose Ab = 1.0, np = 0 and Pcut = 10−6.
We use an artificial atmosphere outside the star where we set the density to 10−10M⊙ and
velocity to zero. We then calculate the pressure and specific energy density in the atmospheric
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Figure 7. Left panel: The evolved state of the 2D magnetic rotor test at time t= 0.4.
We plot the density, pressure, magnetic pressure and Lorentz factor, and also overlay
arrows representing themagnetic field lines on top of the Lorentz factor plot.We perform
the test on a single-level grid between −0.5< x,y< 0.5 with a spatial resolution of
∆x=∆y= 1/400 and evolve with a temporal resolution of ∆t= 6.25× 10−4. These
2D results show very good agreement with [49, 73, 76]. Right panel: 1D profiles along
x= 0 and y= 0 for density ρ, pressure P, magnetic pressure b2/2 and Lorentz factor
W. Again, we find excellent agreement overall but some minor deviations with figure 6
of [49] and figure 9 of [76] due to different centering of variables. In fact, these deviations
becomes irrelevant when we compare the results of other codes at different resolutions
(see figure 9 of [76] for example). This test took 97 s to evolve on an NVIDIA RTX
A6000 GPU.

region using a polytropic EoS with K≃ 100 and γ= 2. We interpolate the one-dimensional
TOV initial data to the three dimensional grid and use it as initial data for the test.

We set up four simulations on multiple AMR levels with fine grid resolutions of 1M⊙(r0),
0.5M⊙(r1), 0.25M⊙(r2) and 0.125M⊙(r3). The corresponding coarse grid resolutions are
8M⊙(r0), 8M⊙(r1), 8M⊙(r2) and 4M⊙(r3) respectively. The extent of the outermost cube is
640M⊙ for all simulations while the extent of the innermost cube is 96M⊙(r0), 48M⊙(r1),
24M⊙(r2) and 22M⊙(r3) respectively. We perform the simulations in the entire domain
without the use of any symmetry. We evolve the system with a Γ-law EOS and Γ = 2.0, the
HLLE Riemann solver, 5th order WENO reconstruction and an RK4 time integrator. We use
the CFL factor (∆t/∆x) of 0.25 where ∆x is the resolution of the finest grid. We use con-
strained transport for the magnetic field. For the spacetime evolution using Z4c, we use the
values for constraint damping parameters κ1 = 0.02 and κ2 = 0.0, and dissipation coefficient
of 0.32 [78]. The finite numerical resolution acts as a perturbation to the equilibrium config-
uration of the star which leads to oscillations. The frequencies of these oscillations can be
measured by taking a Fourier transform of the time variation of the central density of the star
and then compared with the frequencies calculated using linear perturbation theory [79, 80].
These frequencies are different for static vs dynamical spacetime evolution and modes of grav-
ity can only be obtained when the test is run with dynamical spacetime.
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Figure 8. Left Panel: Normalized central density as a function of time for resolutions
r0(1M⊙), r1(0.5M⊙), r2(0.25M⊙) and r3(0.125M⊙) until t= 8ms, where ∆xfine rep-
resents the resolution of the finest grid. Boundaries are present at ±320M⊙. We find
that the solution converges to the analytic solution (constant density) as we increase the
resolution. To quantify this we show the time variation of absolute difference ε between
{r0,r1}, {r1,r2} and {r2,r3} at the bottom. This gives us a convergence order of ∼2.
Right Panel: Power spectral density (PSD) of the oscillations of the central density of
the star for different resolutions. We also show the frequencies of oscillations calcu-
lated using perturbation theory for comparison. For our highest resolution run with
∆xfine = 0.125, we find good agreement with the fundamental frequency (F) and the
first two harmonics (H1,H2). The third harmonic (H3) appears slightly shifted from the
correct value at this resolution. We expect that correct H3 and even higher modes can
be obtained by increasing the resolution further.

We show the results for time variation of the normalized central density ρc in the left panel
of figure 8. We find that the central density gets progressively closer to the ideal solution
going from resolution r0 to r3. We also show this using the plot of absolute difference between
{r0,r1}, {r1,r2} and {r2,r3} as a function of time.We get a convergence order of 2 going from
low to high resolution. The amplitude of oscillations is larger in this case when compared to the
results of GRHydro with the BSSN formalism. This happens because the centering is different
for hydrodynamic and spacetime variables in GRaM-X. The stress-energy tensor Tµν acts as the
coupling term between hydrodynamic and spacetime variables. Tµν itself is vertex-centered
just as spacetime variables, but hydrodynamic variables are cell-centered. Tµν depends on
both hydrodynamic and spacetime variables and hence we have to interpolate the values of
hydrodynamic variables from cell centers to vertex centers, which means that Tµν is only an
approximate value in GRaM-X and not an exact value as in [49]. This leads to higher numerical
errors thus causing larger amplitude of oscillations. We have used 4th order 3D interpolation
of fluid variables in the calculation of Tµν because we found that 2nd order interpolation (i.e
averaging) leads to an even larger, unacceptable amplitude of oscillations.

In the right panel of figure 8 we show the power spectral density (PSD) of the oscillations
of the central density for runs at 3 different resolutions: r1, r2 and r3. We obtain the PSD in a
manner similar to [81]. We also plot the frequencies obtained using perturbation theory against
the PSD. We find that we only get the fundamental mode F at the resolution ∆xfine = 0.5.
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We obtain the F mode as well as the first harmonic H1 when we increase the resolution to
∆xfine = 0.25. For our highest resolution run with ∆xfine = 0.125, we find clear agreement
between the F, H1 and H2 modes. The third harmonic (H3) appears to be shifted slightly
at this resolution. This trend suggests that at higher resolutions we should obtain the higher
modes too, although at a substantially higher computational cost.

5. Performance and scalability

We test the performance of GRaM-X mainly on OLCF’s supercomputer Summit. Each compute
node on Summit consists of 6 NVIDIA Tesla V100 GPUs with 16 GB of High Bandwidth
Memory per GPU. The amount of memory per GPU determines the maximum limit on the
number of cells per GPU that can be used during a simulation. The computation/communic-
ation ratio should be kept high to use the GPUs efficiently and reduce the effect of memory
transfers on the performance of the code.

In all the benchmarks that we report hereafter, we have used a periodic boundary condition,
5th order WENO reconstruction, and 3 ghost zones. We do not write any output files during
runtime and do not include the time required to set up the initial condition in the benchmarks.
We report the performance results for unigrid setups (i.e. without AMR) as well as for a 4-level
AMR grid setup.

We perform the benchmark for 3 different physics setups:

(1) SetupA: static spacetime+ ideal gas EoS+ 2nd order Runge-Kutta (RK2) time integrator
(2) SetupB: static spacetime+ tabulated EoS+ 4th order Runge-Kutta (RK4) time integrator
(3) SetupC: dynamic spacetime + tabulated EoS + 4th order Runge-Kutta time integrator

We use setupA mainly to compare our performance with other codes while setupB and
setupC are our production simulation setups in a static and a dynamic spacetime, respect-
ively. Physically, these setups represent the evolution of a 25M⊙ presupernova star. We map
the 1D profile from a pre-collapse star obtained with MESA [82, 83] onto our 3D computa-
tional grid and evolve this system for a few iterations in static spacetime and dynamic space-
time for setupB and setupC respectively. The tabulated EoS that we use is the K0 = 220
MeV variant of [84]. We report the results in terms of zone-cycles/s which we calculate using
(niter × ncells)/t, and zone-cycles/s/GPU which we calculate using (niter × ncells)/(t× nGPU),
where t is the total time in seconds taken to finish niter iterations on a grid with ncells cells run-
ning on nGPU GPUs. Thus a single zone-cycle in the calculation above includes all intermediate
steps for RK2/RK4 time integrators. Zone-cycles/s measures how efficient the simulation is
performing overall (wall-time efficiency), whereas zone-cycles/s/GPUmeasures how efficient
the simulation is performing on each GPU (cost efficiency).

5.1. Single GPU benchmarks

We first present the results for single GPU benchmarks (i.e. without communication) for the
different physics setups. For setupA on a single Summit V100 GPU, we get 0.44× 108 and
0.47× 108 zone-cycles/s running with 1523 cells/GPU and 2403 cells/GPU respectively. This
is comparable with the single summit V100 GPU performance of H-AMR [85] which obtains
∼0.85× 108 zone-cycles/s for a similar physics setup. For setupB, the performance drops
to 0.24× 108 and 0.26× 108 zone-cycles/s running with 1523 cells/GPU and 2403 cells/GPU
respectively. This drop of ∼1.8 times in speed occurs because we use tabulated EoS and RK4
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integrator which has 4 (twice as many) intermediate steps per zone-cycle. Table lookups/in-
terpolations are also more expensive computationally.

For setupC, we get 0.062× 108 zone-cycles/s on a single GPU running with 1683 cell-
s/GPU. We cannot use more than 1683 cells/GPU in this case because of the increased GPU
memory consumption by the additional spacetime variables. The performance drops by a factor
of∼4 compared to the static spacetime case due to additional computations for spacetime evol-
ution, but also partly due to the fact that our spacetime solver is not fully optimized for GPUs
yet. (For example, there are a few instances of register spills for which work is being done
to resize the kernels.) We expect the single GPU benchmark for this case to be ∼0.1× 108

zone-cycles/s after optimization.
We also perform benchmarks on a single NVIDIA RTX A6000 GPU. For setupA we get

0.090× 108 zone-cycles/s running on both 1523 and 2403 cells/GPU which indicates that the
compute load gets saturated already at 1523 cells/GPU. The performance is ∼5 times slower
than that of a V100 GPU. For setupB we obtain 0.045× 108 zone-cycles/s at 1523 cells/GPU
which is∼5.5 times slower than the performance on V100 GPU. setupC gives us 0.020× 108

zone-cycles/s at 1683 cells/GPU which is ∼3 times slower than the V100 GPU performance
for this test. Thus overall we find that the performance of GRaM-X on RTX A6000 GPU is 3-6
times slower than that of V100 GPU, depending on the test setup used. The reason for this
difference is that the peak double precision performance (FP64) of NVIDIA V100 GPU is
7.8 TeraFlop/s while that of NVIDIA RTX A6000 GPU is only 1.25 TeraFlop/s which makes
A6000∼6 times slower than V100 theoretically. The corresponding costs are today∼$10,500
for a V100 while ∼$4500 for an RTX A6000, which makes a V100 GPU also more cost-
efficient compared to an A6000 GPU.

We have also performed detailed profiling of our code for setupC where both the MHD
solver (GRaM-X) and the spacetime solver (Z4c) run together. We find that the dominant kernel
for MHD solver is the flux calculation routine (GRaMX_Fluxes) which accounts for ∼22%
of total runtime. We do however note that the flux calculation routine in GRaM-X also per-
forms reconstruction in the same kernel before the flux calculation step, which makes this
kernel the most expensive. The most expensive routines in the spacetime solver are the ker-
nels Z4c_ADM2, Z4c_RHS and Z4c_Constraints which combined account for∼67% of total
runtime. Z4c_ADM2 calculates the first time derivative of extrinsic curvature and second time
derivative of gauge variables, Z4c_RHS calculates the RHSs for evolution of Z4c variables, and
Z4c_Constraints calculates the constraints of Z4c variables. Thus, these 4 kernels account
for ∼90% of the total runtime of the code which makes them the focus of our future optimiz-
ation efforts, especially the spacetime kernels.

5.2. Weak scaling

Weak scaling is defined as how the performance of the code changes when the number of GPUs
is increased, keeping the problem size per GPU fixed. This means that we increase the number
of GPUs, and proportionately, increase the overall problem size to test how the time to solve
the problem changes. In the ideal scenario, the time to solution should remain the same when
we increase the number of GPUs, but in reality the time to solution generally increases on
scaling up due to the communication overhead. We perform the weak scaling tests for setupB
and setupC because they represent the setups that we will run for production simulations.

We first report the weak scaling performance for unigrid setups and discuss the perform-
ance with AMR at the end of this subsection since AMR requires different considerations. We
perform the weak scaling test starting at 1 Summit node (6 V100 GPUs) going up to 2304
nodes (13 824 V100 GPUs) with 2403 cells/GPU for setupB and 1683 cells/GPU for setupC.
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Table 2. Weak scaling grid setup and performance results for setupB and setupC for unigrid.

Nodes GPUs

setupB (2403cells/GPU) setupC (1683cells/GPU)

Grid

zone-cycles/

s/GPU Efficiency Grid

zone-cycles/

s/GPU Efficiency

1 6 720× 480× 240 0.154× 108 1.00 504× 336× 168 0.0412× 108 1.00

36 216 1440× 1440× 1440 0.066× 108 0.43 1008× 1008× 1008 0.0205× 108 0.50

288 1728 2880× 2880× 2880 0.064× 108 0.42 2016× 2016× 2016 0.0207× 108 0.50

972 5832 4320× 4320× 4320 0.060× 108 0.39 3024× 3024× 3024 0.0204× 108 0.50

2304 13 824 5760× 5760× 5760 0.063× 108 0.40 4032× 4032× 4032 0.0203× 108 0.49

Figure 9. GRaM-X shows a weak scaling efficiency of ∼40%–50% on 2304 nodes
(13824 NVIDIA V100 GPUs) with respect to single node performance on OLCF’s
supercomputer Summit. The weak scaling efficiency shows a steep drop going from
1 node to 36 nodes but remains almost constant going from 36 nodes up until 2304
nodes. We perform weak scaling test for setupB (static spacetime + Tabulated EoS +
RK4) at 2403 and 1523 cells per GPU, and for setupC (dynamic spacetime+ Tabulated
EoS + RK4) at 1683 cells per GPU. setupB shows better performance and scaling at
2403 cells/GPU compared to 1523 cells/GPU. setupC is the slowest due to extra com-
putations for spacetime evolution but it shows the best scaling due to higher work load
per GPU than other cases. We also perform weak scaling test for an AMR grid with 4
refinement levels, having 4× 1003 cells/GPU. The weak scaling shows a steep decline
in this case even beyond 36 nodes, and the efficiency drops to ∼15% on 2304 nodes.
The reason for ∼3 times less efficient performance compared to unigrid is due to the
prolongation/restriction operations needed for AMR which require both more computa-
tions and more communication. Due to the current CarpetX infrastructure, there is also
a serial component in evolving boxes on different levels that belong to the same GPU
which further decreases the weak scaling efficiency.

Table 2 shows the grid setup used in each case for different number of nodes as well as the cor-
responding zone-cycles/s/GPU. We plot the results in figure 9. We find that the weak scaling
efficiency shows a steep drop going from 1 node to 36 nodes but remains almost constant after
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Table 3. Weak scaling grid setup and performance results for setupC with AMR.

setupC (4× 1003cells/GPU)

Grid zone-cycles/s/GPU Efficiency

1 6 4 levels, each (182× 182× 182) 0.0136× 108 1.00
36 216 4 levels, each (600× 600× 600) 0.0048× 108 0.35
288 1728 4 levels, each (1200× 1200× 1200) 0.0024× 108 0.18
972 5832 4 levels, each (1800× 1800× 1800) 0.0020× 108 0.15
2304 13 824 4 levels, each (2400× 2400× 2400) 0.0020× 108 0.15

that up until 2304 nodes. It should be noted that there is no inter-node communication when
using 1 node and this might be the reason that this case is much faster. We get a weak scaling
efficiency of ∼40% for setupB and ∼50% for setupC at 2304 nodes when compared with
the respective single node benchmarks. We also find that the weak scaling efficiency depends
on the way we choose the grid, with more asymmetric grid choice providing better scaling
efficiency. In the extreme case where we choose the grid as 1399680× 240× 240 on 972
nodes, we get a weak scaling efficiency of ∼98% with respect to single node performance.
This happens because when the boxes are stacked in a cubical shape, the amount of ghost cell
communication increases as ∼ n3boxes while when the boxed are stacked next to one another in
an elongated shape, the amount of ghost cell communication increases only as∼ nboxes, where
nboxes is the number of boxes in the domain. Therefore in the general case of an asymmetric
grid, the number of ghost cells decreases thus leading to less communication overhead and
better scaling.

Hence our weak scaling efficiency is limited to ∼40%–50% due to the communication
required to fill ghost cells which, in turn, is limited by communication bandwidth (not latency).
The solution to this problem is to either decrease the bandwidth requirements of our algorithms,
increase available communication bandwidth, or possibly increase the overlap of computation
and communication. The first can be achieved by using for example, Discontinuous Galerkin
methods [86], which reduce the number of ghost zones needed thus reducing bandwidth
requirements. We have not yet attempted to implement such methods. The second depends
on the hardware on which we run the code and we cannot change it. The latter depends on
our code infrastructure and there is room for improvement in this case. In the current imple-
mentation of CarpetX, the next GPU kernel is only launched once all the ghost zones from
the previous kernel have been filled. However, if the next kernel does not need the values from
the previous kernel, it can be launched already while ghost zones are getting filled. Another
strategy would be to start the computations of those cells of the next kernel which do not need
ghost cells while ghost cells from previous kernel are getting filled, and then compute the
remaining cells thereafter. This would lead to more overlap of computation and communic-
ation, and could dramatically improve the scaling efficiency of the code. CarpetX is still in
active development, and work is being carried out to increase the computation-communication
overlap.

We also perform the weak scaling test with AMR on up to 2304 Summit nodes for setupC.
We perform the test on a grid with 4 refinement levels, with each level containing ∼1003

cells/GPU. This makes the effective number of cells per GPU to be 4× 1003 ≈ 1603 which
nearly saturates the GPU memory. Table 3 shows the grid setup and performance results for
different number of nodes. We also plot the results in figure 9. We find that the perform-
ance drop is steeper for AMR grids compared to unigrid setups. We also find that unlike the
unigrid case, the performance keeps dropping beyond 36 nodes and reaches an efficiency of
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∼15% on 2304 nodes, which is ∼3 times lower than unigrid setups. The absolute number of
zone-cycles/s/GPU is also lower for AMR grids compared to unigrid setups, despite having
similar cells/GPU. The reasons for these are two-fold (1) prolongation and restriction opera-
tions need to be performed for AMR grids to interpolate to fine grids and coarse grids respect-
ively, which lead to extra computations compared to unigrid setups thus leading to lesser zone-
cycles/s/GPU (2) communication from coarse grid to fine grid is required during prolongation
to fill the ghost zones of boxes on all the finer levels and communication is also required to
write restricted values to coarse grids, which means overall more communication is needed
for a 4-level grid compared to a single-level grid. This leads to less efficient weak scaling even
when the number of cells/GPU is same. This also means that increasing the number of levels
further will make the weak scaling efficiency worse.

The suggestions for improving weak scaling efficiency for unigrid setups also apply to
AMR grids, with a few additional points. Improving the performance of prolongation/restric-
tion operations will lead to higher overall performance with AMR and may also lead to better
scaling. Another solution is related to the way CarpetX currently handles the boxes in an AMR
simulation. Currently, each GPU handles one or more boxes from each refinement level, which
means that the calculations for boxes that a GPU owns happen in a serial manner since each
level contributes at least one box to each GPU. A more efficient strategy would be that each
GPU handle one (or more) box(es) from any one level, which will remove this serialization
thus improving the weak scaling considerably.

5.3. Strong scaling

Strong scaling is defined as how the time to solution changes when number of GPUs is
increased keeping the problem size fixed. In order to use GPUs efficiently, it is important
to maximize the compute load per GPU which reduces the effect of communication over-
head. Thus, strong scaling is not suited for GPUs because keeping the problem size fixed and
increasing the number of GPUs decreases the work load per GPUwhich reduces the efficiency.
However, it is also true that running the code at the most cost efficient setup is generally not
the fastest. It is, therefore, important in case of an actual production simulation to identify
the optimal compute load per GPU. Hence we perform a strong scaling test by varying the
compute load per GPU from 483 cells/GPU to 2403 cells/GPU.

We perform the strong scaling test for setupB with a grid size of 1440× 960× 480 which
is equal to a total of ∼8723 cells. We need to run this on a minimum of 8 Summit nodes (48
V100 GPUs) due to GPU memory constraints which corresponds to a compute load of 2403

cells/GPU. We then increase the number of nodes keeping the grid size fixed, going up to
1000 nodes (6000 V100 GPUs) which corresponds to a compute load of 483 cells/GPU. Using
the benchmarks, we calculate the total time (in hours) it will take to run this simulation till
105 iterations and how much it will cost in total (in GPU-hours) for each case. We tabulate the
results in table 4 and show the plot in figure 10.We find that running this simulation on 8 nodes
will take ∼46 hours but cost only ∼2200 GPU-hours. On the other hand, running the same
simulation on 1000 nodeswill take only∼2 hours but have amuch larger cost of∼12000GPU-
hours. The value of zone-cycle/s/GPU drops below 50% at compute load of 1203 cells/GPU
compared to 2403 cells/GPU which happens because we are increasing the communication
overhead and decreasing the compute load per GPU both of which bring down the efficiency.
So running on anything below a compute load of ∼1203 cells/GPU will be very inefficient.
Running with ∼1603 cells/GPU is a good compute load for reasonable total runtime and cost
efficiency on unigrid for setupB. This value will be different when we consider problems
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Table 4. Strong scaling test for setupB with a fixed problem size of 1440× 960× 480 varying number
of nodes from 8 to 1000.

Time for 105 iterations Cost for 105 iterations

Nodes GPUs cells/GPU zone-cycles/s zone-cycles/s/GPU Efficiency (hours) (GPU-hours)

8 48 2403/GPU 4.02×108 0.084× 108 1.00 45.8 2200

27 162 1603/GPU 7.72×108 0.048× 108 0.57 23.9 3870

64 384 1203/GPU 14.07×108 0.037× 108 0.44 13.1 5031

125 750 963/GPU 22.03×108 0.029× 108 0.35 8.4 6276

1000 6000 483/GPU 93.46×108 0.016× 108 0.19 2.0 11 833

Figure 10. We perform the strong scaling test on setupB (static spacetime+ Tabulated
EoS + RK4) by varying the number of nodes from 8 to 1000 for a fixed problem size
of 1440× 960× 480. This increase in the number of nodes for the fixed problem size
progressively reduces the compute load per GPU from 2403 cells/GPU (8 nodes) to 483

cells/GPU (1000 nodes). Lowering the compute load until 1203 cells/GPU (64 nodes)
gives us a strong scaling efficiency of ∼% which is mainly because our weak scaling
efficiency also drops up until∼36 nodes. However, we find that strong scaling efficiency
drops further to ∼19% going from 64 to 1000 nodes even though our weak scaling
efficiency did not show any drop in this region. This is because going below ∼1203–
1603 cells/GPU (>27–64 nodes), the compute load per GPU is not enough to keep all
GPU threads occupied resulting in inefficient GPU utilization.

involving AMR or a different physics setup but similar reasoning can be applied there to arrive
at a reasonable value of cells/GPU.

6. Summary

We present a new GPU-accelerated dynamical-spacetime GRMHD code GRaM-X (General
Relativistic accelerated Magnetohydrodynamics on AMReX) which runs efficiently and
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scales well across thousands of GPUs. GRaM-X is built upon the new AMR driver for Einstein
Toolkit CarpetX and extends the capability of the Einstein Toolkit to simulate relativistic astro-
physical systems such as core-collapse supernovae (CCSN) and binary neutron-star mergers
(BNS) to GPU-based exascale supercomputers.

GRaM-X features 3D adaptive-mesh refinement (AMR) and support for both analytic as well
as tabulated equations of state. The AMR and GPU functionality of GRaM-X is enabled by the
new AMR driver CarpetX which, in turn, leverages AMReX, an AMR library developed as part
of the Block-StructuredAMRCo-Design Center in the USDOE’s Exascale Computing Project
(ECP).We evolve the equations of general relativity using the Z4c formalism and the equations
of idealMHDusing the Valencia formulation. GRaM-X includes 2nd-order accurate TVD (Total
VariationDiminishing) and 5th-order accurateWENO (Weighted Essentially Non-Oscillatory)
reconstruction methods. The Riemann solver GRaM-X employs is the HLLE (Harten-Lax-van
Leer-Einfeldt) solver which is an approximate solver that uses a two-wave approximation to
compute the update terms across the discontinuity at the cell interface. We use 3D-NR as
the primary method for conserved-to-primitive transformation and fall back to the method of
Newman & Hamlin (an effective 1D method) in cases when the 3D-NR does not converge or
converges to unphysical values.

We have written GRaM-X from scratch in C++ with the core routines such as reconstruc-
tion methods and Riemann solver adapted from the already well-established code GRHydro. In
order to test the validity and accuracy of the code, we perform a series of tests on static space-
time which include 1D MHD shocktubes, 2D magnetic rotor, and a 2D cylindrical explosion.
We also test the code in dynamical spacetime using the linear oscillations of a 3D TOV star and
extract the modes of gravity including the fundamental mode (F) and the first two overtones
(H1, H2). In all the tests, we find very good agreement with the analytic results (wherever
available) as well as the results reported by other codes in literature for similar test setups. We
also perform single GPU benchmarks and scaling tests on OLCF’s Summit to test the perform-
ance of GRaM-X. We find that the weak scaling efficiency of GRaM-X is ∼40%–50% on up to
2304 Summit nodes (13824 V100 GPUs) with respect to single node performance. We also
find that higher compute load per GPU leads to more efficient performance, with a compute
load of 2403 and 1683 cells/GPU leading to the most efficient performance for our production
simulations with static and dynamical spacetime respectively on summit V100 GPUs.

GRaM-X, for the first time, enables us to perform dynamical-spacetime general-relativistic
astrophysics simulations such as core-collapse supernovae and neutron-star mergers at a speed
10 times faster and computational cost 30 times lesser compared to traditional CPU-based
codes. Adjusting for the typical allocations awarded for CPU vs GPU supercomputers, one
can perform ∼5 times more simulations with GPU-based codes such as GRaM-X compared
to traditional CPU-based codes at a fraction of total runtime. This number will be higher if
one maximizes the compute load per GPU which will lead to longer runtimes but even more
cost efficiency. This makes GPU-computing both cost-effective as well as more environment-
ally friendly. We are currently testing and implementing a moment-based neutrino transport
(M1) scheme [87] to be used with GRaM-X for future production simulations. We also plan to
include more compute intensive routines such as more accurate Riemann solvers Roe [88] and
Marquina [89, 90]. We expect the performance to be more efficient and the scaling to be the
same or even better with the addition of these more compute intensive routines.
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