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1. Introduction

It has been well recognized in mathematics, especially in the area of nonlinear, con-
vex, and variational analysis, that the notion of globally monotone for single-valued
and set-valued operators, and particularly of its maximality version, plays a crucial
role in the study and applications of a variety of theoretical and numerical issues.
The contributions of Terry Rockafellar to both of these issues are monumental. We
also refer the reader to, e.g., the books [1, 7, 12, 17, 19, 21] and the extended bib-
liographies therein for various aspects of global monotonicity of operators and their
numerous applications in finite-dimensional and infinite-dimensional spaces.
In the area of variational analysis, which mainly deals with local behaviors of func-
tions and mappings, the global versions of monotonicity and its maximality are
usually superfluous. In many contexts, one would require monotonicity behavior
only within a neighborhood of some graphical point, and that is when local mono-
tonicity arises.
Similarly to global monotonicity, the local maximal monotonicity of operators plays
a central role in variational theory and applications. But in contrast to global max-
imal monotonicity, the two versions of local maximal monotonicity of set-valued
mappings/multifunctions have been introduced and exploited in the variational anal-
ysis and optimization literature. The first one goes back to the paper by Poliquin
and Rockafellar [13], where it appeared in the study of tilt stability of local min-
imizers. The second notion of local maximal monotonicity should be credited to
Pennanen [11] who employed it in developing powerful convergence results for the
proximal point and related algorithms of finite-dimensional optimization. It has
been recently proved in [4] that both versions of local maximal monotonicity of mul-
tifunctions are equivalent in reflexive Banach spaces admitting an equivalent norm
with some geometric properties. Various applications of local maximal monotonicity
to both theoretical and numerical aspects of variational analysis and optimization
can be found in, e.g., [4, 5, 6, 7, 8, 9, 14, 15, 16] and other recent publications.
Among the most important applications of local monotonicity and its maximality
version for subgradient operators, we mention variational convexity of extended-
real-valued functions, the notion introduced by Rockafellar in [15] and then largely
investigated and employed in variational analysis and optimization-related areas in
[4, 5, 8, 15, 16, 23].

Very natural questions arise on establishing relationships between local and global
monotonicity of single-valued and set-valued operators and between their maximality
versions. It is not for the first time when relationships between local and global
properties are under investigation in mathematics; in particular, for problems of
convex analysis. For instance, the famous theorem obtained independently by Tietze
[22] and Nakajima [10] in 1928 states that any closed, connected, and locally convex
subset of an Euclidean space is necessarily convex.
The goal of this paper is to establish both positive and negative results concerning
(maximal) local and global monotonicity of single-valued and set-valued operators
in finite and infinite dimensions. By closing the gap between the global and local
monotonicity properties of operators, as well as between the corresponding maximal-
ity versions, we understand clarifying whether the global (maximal) monotonicity of



P. D. Khanh et al. / Relationships between Global and Local Monotonicity ... 3

the operator in question is equivalent to its local (maximal) monotonicity property
around any point of the operator graph.
First we close the gap between the local and global monotonicity, even without
maximality, for continuous single-valued operators with convex domains in locally
convex topological spaces. Then we show that, while the above equivalence holds
for univariate set-valued mappings T : R ⇒ R with path-connected graphs, it fails for
higher-dimensional operators T : R2 ⇒ R2.
A rather surprising result is obtained for the maximal monotonicity of set-valued
operators in Hilbert spaces. Involving powerful tools of generalized differentiation
in variational analysis, we prove that the local maximal monotonicity of operators
with closed graphs agrees with the global one provided the fulfillment of the global
hypomonotonicity property.
The rest of our paper is organized as follows. Section 2 recalls the notions of global
and local monotonicity of set-valued mappings, together with their maximality ver-
sions, and discusses in more details the local maximal monotonicity of operators in
reflexive Banach spaces.
In Section 3, we establish the equivalence between local and global monotonicity
of continuous single-valued mappings defined on locally convex topological vector
spaces and present two independent proofs of the obtained equivalence.
Sections 4 and 5 are devoted to the relationships between local and global mono-
tonicity of set-valued operators defined on finite-dimensional spaces. While the main
result of Section 4 solves the equivalence between the local and global monotonicity
in the affirmative for univariate operators with path-connected graphs, Section 5
presents a counterexample for such an equivalence in the case of a multifunction
with the path-connected graph in R4.
Section 6 addresses maximal monotonicity of set-valued operators defined in Hilbert
spaces. Based on the powerful coderivative criteria for the global and local maximal
monotonicity of closed-graph mappings, we reveal the equivalence between these
notions under global hypomonotonicity, which is shown to be essential for the ob-
tained equivalence. The final Section 7 presents concluding remarks and discusses
some unsolved problems for the future research.
Throughout the paper, we often consider the n-dimensional space Rn with the usual
inner product ⟨x, y⟩ :=

∑n
i=1 xiyi for x = (x1, . . . , xn) and y = (y1, . . . , yn), and the

induced norm ∥x∥ :=
√
⟨x, x⟩. Regarding a topological vector space X and its dual

X∗, the value of a functional x∗ ∈ X∗ at x ∈ X is denoted by ⟨x∗, x⟩. Given a
set-valued mapping T : X ⇒ X∗, denote by

domT :=
{
x ∈ X

∣∣ T (x) ̸= ∅
}

and gphT :=
{
(x, x∗) ∈ X ×X∗ ∣∣ x∗ ∈ T (x)

}
its domain and graph, respectively. The mapping T is said to be proper if domT ̸= ∅,
which is always assumed in what follows.

2. Global and local monotonicity of multifunctions
In this section, we recall and discuss the definitions of global and local monotonic-
ity of set-valued mappings/operators/multifunctions together with their maximality
version.
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For a proper operator T :X ⇒ X∗ defined on a topological vector space we say that:
(i) T is monotone on X if

⟨x∗ − y∗, x− y⟩ ≥ 0 whenever (x, x∗), (y, y∗) ∈ gphT. (1)

(ii) T is maximal monotone on X if (1) is fulfilled and moreover, the graph of
T cannot be properly contained in the graph of any other monotone operator, i.e.,
gphT = gphS for any monotone mapping S : X ⇒ X∗ satisfying gphT ⊂ gphS.

Upon localizing the global monotonicity notion, we restrict the fulfillment of (1)
within a neighborhood of a graph point as follows.
(iii) Given (u, u∗) ∈ gphT , T is locally monotone around (u, u∗) if there exists a
neighborhood W ⊂ X ×X∗ of (u, u∗) such that

⟨x∗ − y∗, x− y⟩ ≥ 0 for all (x, x∗), (y, y∗) ∈ gphT ∩W. (2)

Observe that the local monotonicity of set-valued mappings enjoys the following
robustness property: if T is locally monotone around a graph point (u, u∗) corre-
sponding to a neighborhood W , then the local monotonicity of T around any point
(x, x∗) in W is fulfilled. It is said in this case that T is locally monotone relative to
the neighborhood W .
Regarding local maximal monotonicity, there exist the following two versions, which
are used in the literature; see [4] for more discussions.
(iv) T is locally maximal monotone of type (A) around (u, u∗) ∈ gphT if there
exists a neighborhood W of (u, u∗) such that T is monotone with respect to W and
that gphT ∩W = gphS ∩W for any mapping S : X ⇒ X∗, which is monotone
with respect to W and satisfies the inclusion gphT ∩W ⊂ gphS ∩W .
(v) T locally maximal monotone of type (B) around (u, u∗) ∈ gphT if there exist
a maximal monotone mapping T : X ⇒ X∗ and a neighborhood W of (u, u∗) for
which

gphT ∩W = gphT ∩W.
It is not difficult to observe that if T : X ⇒ X∗ is locally maximal monotone of
type (A) around (u, u∗), then T is locally maximal monotone of type (B) around
this point. As follows from [4, Theorem 3.3], both local maximal monotonicity types
(A) and (B) agree if X is a reflexive Banach space. Indeed, each reflexive Banach
space admits an equivalent norm satisfying the requirements of [4, Theorem 3.3],
while the formulations of local maximal monotonicity properties in (iv) and (v) do
not depend on renorming.
In the rest of the paper, we use – for the general setting of locally convex topological
spaces – only the local maximal monotonicity notion of type (B), without indicating
the type of local maximal monotonicity of multifunctions.

3. Relationships between global and local monotonicity of single-valued
operators

This section deals with the monotonicity of operators T : X ⊃ domT → X∗, which
are defined on locally convex topological vector spaces while being single-valued on
their domain. The main result of this section is as follows.
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Theorem 3.1. Let X be a locally convex topological vector space. Assume that
T : domT → X∗ has a convex domain and that T is continuous relative to any
segment in domT . Then the local monotonicity of T around any graph point is
equivalent to the global monotonicity of T on X.

We present two completely independent proofs of Theorem 3.1 that are of their own
interest.
Proof. Fix p, q ∈ domT with p ̸= q and obtain [p, q] ⊂ domT , where [p, q] :=
{λp + (1 − λ)q | 0 ≤ λ ≤ 1} is the segment connecting the points p and q. On the
segment [p, q], we consider the binary relation “∼” defined by x ∼ y if and only if

⟨T (x1)− T (x2), x1 − x2⟩ ≥ 0 whenever x1, x2 ∈ [x, y].

This relation is clearly reflexive and symmetric. To check its transitivity, take dis-
tinct vectors x, y, z such that x ∼ y and y ∼ z. We may suppose without loss of
generality that

y ∈ (x, z) :=
{
λx+ (1− λ)z

∣∣ λ ∈ (0, 1)
}
.

Indeed, taking x ∈ (y, z) gives us [x, z] ⊂ [y, z], and hence x ∼ z. On the other
hand, it follows from z ∈ (x, y) that [x, z] ⊂ [x, y], and so x ∼ z. Picking now
x1, x2 ∈ [x, z], it suffices to proceed with the case where x1 ∈ [x, y) and x2 ∈ (y, z].
We may write y = λx1 + (1− λ)x2 for some λ ∈ (0, 1). Then

⟨T (x1)−T (x2), x1−x2⟩ =
1

1−λ
⟨T (x1)−T (y), x1−y⟩+

1

λ
⟨T (y)−T (x2), y−x2⟩ ≥ 0,

which means that x ∼ z, and “∼” is an equivalence relation on [p, q]. Furthermore,
we claim that the relation “∼” splits [p, q] into open equivalence classes. To verify
this, fix x ∈ [p, q] and let y ∈ [x], where the latter notation stands for the equivalence
class of x. It follows from the assumed local monotonicity of the operator T and the
local convexity of the space X that there exists a neighborhood U ×W ⊂ X ×X∗

of (y, T (y)) for which U is convex and

T is monotone relative to U ×W. (3)

The continuity of T relative to [p, q] allows us to shrink the convex set U if needed
to ensure the inclusion

T (U ∩ [p, q]) ⊂ W. (4)
We claim that U ∩ [p, q] ⊂ [x], which would justify the openness of the class [x] in
[p, q]. To furnish this, we take any z ∈ U ∩ [p, q] and show that z ∼ y, ensuring
therefore that z ∈ [x] by y ∼ x. Now pick arbitrary vectors x1, x2 ∈ [z, y] to
this end and observe that having z, y ∈ U ∩ [p, q] yields x1, x2 ∈ U ∩ [p, q] by the
convexity of the neighborhood U of y. Employing now (3) and (4) tells us that
⟨T (x1) − T (x2), x1 − x2⟩ ≥ 0, i.e., z ∼ y. Taking into account that y ∈ [x], we get
z ∈ [x], which verifies that [x] is open in [p, q].
If there are more than one equivalence class, then [p, q] is the union of two open
disjoint subsets [p] and

⋃
x�p[x]. This contradicts the connectedness of [p, q] and

shows that there exists only one equivalence class [p]. Therefore, p ∼ q, which
completes the first proof of the theorem.
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Alternate proof. Fix x, y∈domT , and for any λ∈ [0, 1] denote xλ :=(1−λ)x+λy.
Since domT is convex, we have xλ ∈ domT . Therefore, the set

Λ :=
{
λ ∈ [0, 1]

∣∣ ⟨T (xλ)− T (y), x− y⟩ ≥ 0
}

is well-defined. Moreover, it has the following properties.
• Since ⟨T (y)− T (y), x− y⟩ ≥ 0 and y = x1, we have that 1 ∈ Λ, and thus Λ is

nonempty.
• The set Λ is closed. Indeed, take a sequence {λk} ⊂ Λ such that λk → λ as

k → ∞. It is obvious that λ ∈ [0, 1]. Having further〈
T
(
(1− λk)x+ λky

)
− T (y), x− y

〉
≥ 0 for all k ∈ N

and (1−λk)x+λky
[x,y]−−→ (1−λ)x+λy as k → ∞, we deduce from the continuity

of T restricted to the segment [x, y] that〈
T
(
(1− λ)x+ λy

)
− T (y), x− y

〉
≥ 0,

and therefore λ ∈ Λ, which shows that Λ is closed.
Define now λ̄ := minΛ and get λ̄ ∈ Λ due to the closedness of Λ. Suppose that
λ̄ > 0, i.e., xλ̄ ̸= x with x ̸= y. Since λ̄ ∈ Λ, we obtain that〈

T (xλ̄)− T (y), x− y
〉
≥ 0.

It follows from the local monotonicity of T around
(
xλ̄, T (xλ̄)

)
that there exists a

neighborhood U ×W ⊂ X ×X∗ of
(
xλ̄, T (xλ̄)

)
for which

T is monotone relative to U ×W. (5)

By the continuity of T relative to [x, y], we can always select U so that

T (U ∩ [x, y]) ⊂ W. (6)

Representing xλ̄−ε − xλ̄ = ε(x − y) gives us the net convergence xλ̄−ε → xλ̄ in
X as ε → 0. Since U is a neighborhood of xλ̄, for small ε ∈]0, λ̄[ we have that
xλ̄−ε ∈ U ∩ [x, y] and T

(
xλ̄−ε

)
∈ W due to (6). Therefore, it follows from (5) that

⟨T (xλ̄−ε)− T (xλ̄) , xλ̄−ε − xλ̄⟩ ≥ 0,

which can be equivalently rewritten as

⟨T (xλ̄−ε)− T (xλ̄) , x− y⟩ ≥ 0

while implying in turn that ⟨T (xλ̄−ε)− T (y), x− y⟩ ≥ 0. The latter means that
λ̄ − ε ∈ Λ, which contradicts the definition of λ̄. This allows us to conclude that
λ̄ = 0, i.e., 0 ∈ Λ. Remembering that x0 = x tells us that ⟨T (x)− T (y), x− y⟩ ≥ 0,
which verifies the global monotonicity of T on X as claimed in the theorem.

Remark 3.2. When domT ⊂ X is convex (or more generally, path-connected as
defined in Section 4), the continuity of T relative to its domain immediately yields
the path-connectedness (arc-connectedness if X is Hausdorff) of gphT .
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The reverse implication, although being true when X = R (see [18, Example 4, Sec-
tion 22]), is false in multidimensional spaces by the counterexample of T :R2 → R2

given by

T (x, y) :=


(0, 0) if x < 0,

(x, 0) if x ≥ 0, y ≥ 0,

(−x, 0) if x ≥ 0, y < 0.

The following example of two parts shows that both assumptions in Theorem 3.1
are essential for the fulfillment of the equivalence result.
Example 3.3.
1. The convexity assumption on the domain is not superfluous in Theorem 3.1.

Indeed, define the mapping T : R \ {0} ⇒ R by T (x) := {0} when x < 0,
and T (x) := {−1} when x > 0. It is clearly continuous relative to its domain
and is locally monotone around any graph point. Nevertheless, the global
monotonicity of T obviously fails.

2. The imposed continuity of the operator in Theorem 3.1 is essential. For
instance, the function T : R → R defined by T (x) := 0 when x ≤ 0 and
T (x) := −1 when x > 0 clearly serves as a counterexample.

4. Monotonicity of univariate set-valued operators

The main goal of this section is to investigate relationships between global and
local monotonicity of univariate set-valued operators T : R ⇒ R. Recall first that a
subset S of a topological space X is path-connected (resp. arc-connected) if any two
points x ̸= y of S can be joined by a path (resp. an arc) within S, i.e., there exists
φ : [0, 1] → S such that φ(0) = x, φ(1) = y, and φ : [0, 1] → φ([0, 1]) is continuous
(resp. homeomorphic). Note that when X is Hausdorff (in particular, X = Rn), the
notions of path-connectedness and arc-connectedness coincide.
In the next propositions, we discuss monotonicity and extremality properties of
real-valued components of paths in R2, i.e., continuous mappings from [0, 1] to R2.

Proposition 4.1. Let φ = (φ1, φ2) : [0, 1] → R2 be an injective continuous map-
ping. Assume that for all t ∈ [0, 1], we have the inclusion

φ(s) ∈
(
φ(t)− R2

+

)
∪
(
φ(t) + R2

+

)
whenever s, t ∈ [0, 1] are near t. (7)

Then the following assertions are satisfied:
(i) If φ1(0) < φ1(1), then φ1(0) = minφ1([0, 1]), φ1(1) = maxφ1([0, 1]), and

φ(t) ∈ φ(0) + R2
+ for all t ∈]0, 1] near 0,

φ(t) ∈ φ(1)− R2
+ for all t ∈ [0, 1[ near 1.

(ii) If φ1(0) = φ1(1), then φ1 is constant on [0, 1].

Proof. To verify (i), define the numbers
z1 := minφ1([0, 1]), z∗1 := min{z∗∈R | (z1, z∗)∈φ([0, 1])}, t1 := φ−1(z1, z

∗
1). (8)
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If t1 = 1, then φ(t1) = φ(1), i.e., (z1, z∗1) =
(
φ1(1), φ2(1)

)
. On the other hand, it

follows from φ1(0) < φ1(1) that z1 = minφ1([0, 1]) < φ1(1), which contradicts the
previous assertion. Thus t1 ∈ [0, 1). Now we are going to show that t1 = 0. Suppose
on the contrary that t1 > 0, and select by (7) such 0 < ε < min{t1, 1 − t1} that
[t1 − ε, t1 + ε] ⊂ (0, 1) and that

φ(s) ∈
(
φ(t)− R2

+

)
∪
(
φ(t) + R2

+

)
whenever s, t ∈ [t1 − ε, t1 + ε]. (9)

In particular, (9) implies that φ(t1 − ε) ∈
(
φ(t1 + ε)− R2

+

)
∪
(
φ(t1 + ε) + R2

+

)
. In

what follows, we consider the case where

φ(t1 − ε) ∈ φ(t1 + ε)− R2
+, i.e., φ(t1 + ε) ∈ φ(t1 − ε) + R2

+, (10)

while observing that the case φ(t1 − ε) ∈ φ(t1 + ε) + R2
+ can be treated similarly.

Note that the inclusion in (9) ensures that

φ(t1) ∈
(
φ(t1 − ε)− R2

+

)
∪
(
φ(t1 − ε) + R2

+

)
, (11)

and recall that φ1(t1) = minφ1([0, 1]) ≤ φ1(t1 − ε). If φ1(t1) < φ1(t1 − ε), then
it follows from (11) that φ2(t1) ≤ φ2(t1 − ε), and thus φ(t1) ∈ φ(t1 − ε) − R2

+. If
z1 = φ1(t1) = φ1(t1− ε), then φ2(t1) ≤ φ2(t1− ε) by the definition of z∗1 in (8). This
yields

φ(t1) ∈ φ(t1 − ε)− R2
+. (12)

Observe that the set
(
φ(t1 − ε) − R2

+

)
∪
(
φ(t1 − ε) + R2

+

)
is connected while the

set
(
φ(t1 − ε) − R2

+

)
∪
(
φ(t1 − ε) + R2

+

)
\ {φ(t1 − ε)} is not. Combining (10) and

(12) with the continuity of φ, we find t̃ ∈ [t1, t1 + ε] such that φ(t̃) = φ(t1 − ε). This
contradicts the injectivity of φ and show that t1 = 0, and therefore φ1(0) = φ1(t1) =
minφ1([0, 1]). Then the first assertion in (8) is a direct consequence of (7) and the
definition of φ(0) = (z1, z

∗
1). The other assertions in (i) involving φ(1) are deduced

directly from those for φ(0) by replacing (φ1, φ2) by (−φ1,−φ2).
Now we verify (ii). Arguing by contradiction, suppose that there exists t0 ∈]0, 1[ such
that φ1(t0) ̸= φ1(0). For definiteness, we assume that φ1(t0) < φ1(0) while observing
that the other case where φ1(t0) > φ1(0) can be treated similarly. Using again
definitions (8) and taking into account that φ1(t1) = z1 ≤ φ1(t0) < φ1(0) = φ1(1)
give us t1 ∈]0, 1[, and so we proceed as in the proof of (i) arriving in this way to
a contradiction with the injectivity of φ. Therefore, φ1 is constant on [0, 1], which
concludes the proof of the proposition.

It turns out that the technical assumption in (7) is equivalent to the local mono-
tonicity of the set φ([0, 1]) as in the following proposition.

Proposition 4.2. In the setting of Proposition 4.1, condition (7) holds for a fixed
number t ∈ [0, 1] if and only if the set φ([0, 1]) is locally monotone around φ(t) in
the sense that there exists a neighborhood W of φ(t) such that

(x1 − x2)(y1 − y2) ≥ 0 for all (x1, y1), (x2, y2) ∈ W ∩ φ([0, 1]).

Proof. The “if” part is a direct consequence of the continuity of the mapping φ. To
verify the converse implication, suppose on the contrary that φ([0, 1]) is not locally
monotone around φ(t). Then for every k ∈ N, the set φ([0, 1]) ∩ B

(
φ(t), 1

k

)
, where
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B
(
φ(t), 1

k

)
stands for the open ball centered at φ(t) with radius 1

k
, is not monotone.

The latter means that there exist numbers sk, tk ∈ [0, 1] such that for all k ∈ N we
have

φ(sk), φ(tk) ∈ B
(
φ(t),

1

k

)
, (13)

φ(sk) /∈
(
φ(tk)− R2

+

)
∪
(
φ(tk) + R2

+

)
. (14)

It follows from (7) that there exists ε > 0 such that φ(s) ∈
(
φ(t)− R2

+

)
∪
(
φ(t) + R2

+

)
for all s, t ∈ [0, 1]∩

(
t− ε, t+ ε

)
. Then relation (14) implies that either

∣∣sk − t
∣∣ ≥ ε,

or
∣∣tk − t

∣∣ ≥ ε, or both conditions hold. Without loss of generality, assume that∣∣sk − t
∣∣ ≥ ε and that the sequence {sk} is convergent. Denoting s := lim sk, we

clearly get that
∣∣s− t

∣∣ ≥ ε, and so s ̸= t. On the other hand, it follows from (13)
and the continuity of φ that φ (s) = φ

(
t
)
. This contradicts the injectivity of φ and

thus completes the proof of the proposition.
The final proposition shows that in the setting of Proposition 4.1, the functions φ1

and φ2 are globally monotone on [0, 1].

Proposition 4.3. Let φ1, φ2 be taken from Proposition 4.1 under the assumptions
imposed therein. Then both φ1 and φ2 are monotone on [0, 1].

Proof. We only verify the monotonicity of φ1 while observing that the proof for φ2

is similar by replacing φ with (φ2, φ1). In the case where φ1(0) = φ1(1), it follows
from Proposition 4.1(ii) that the function φ1 is constant on [0, 1] and hence it is
monotone. Consider now the case where φ1(0) ̸= φ1(1) and assume for definiteness
that φ1(0) < φ1(1) and show that φ1 is nondecreasing. Suppose the contrary and
then find t1, t2 ∈ [0, 1] such that 0 ≤ t1 < t2 and that φ1(t1) > φ1(t2). Since
φ1(0) < φ1(1), Proposition 4.1 implies that φ1(0) = minφ1([0, 1]), and thus we
get φ1(0) ≤ φ1(t2) < φ1(t1). Employing again Proposition 4.1 with φ replaced by
η := (η1, η2) : [0, 1] → R2 with η(t) := φ(t2t), we deduce that

max η1([0, 1]) = max{η1(0), η1(1)} = max{φ1(0), φ1(t2)} < φ1(t1) = η1

(
t1
t2

)
,

which is nonsense. Thus φ1 is nondecreasing as claimed. If φ1(0) > φ1(1), then
replacing φ with the mapping ψ : [0, 1] → R2 defined by ψ(t) := φ(1 − t) tells us
that φ1 is nonincreasing on [0, 1], which completes the proof of the proposition.

Using the above propositions, we are ready to obtain the main result of this section.

Theorem 4.4. Consider a multifunction T : R ⇒ R whose graph is path-connected.
If T is locally monotone around every point of its graph, then T is globally monotone
on R.

Proof. Given pairs (x, x∗), (y, y∗) ∈ gphT with x < y, consider a continuous func-
tion φ = (φ1, φ2) : [0, 1] → gphT with φ(0) = (x, x∗) and φ(1) = (y, y∗). Such
a function φ can be selected injective, since pathwise connectedness and arcwise
connectedness are equivalent for subsets of Euclidean spaces; see, e.g., [3, Corol-
lary 31.6]. We intend to show that x∗ ≤ y∗ via arguing by contradiction, i.e.,
assuming that x∗ > y∗.
Recall from Proposition 4.2 that the local monotonicity of T around every point of
its graph yields the fulfillment of (7) for any t ∈ [0, 1].
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Applying Proposition 4.1(i) to φ = (φ1, φ2) : [0, 1] → gphT with φ1(0) = x < y =
φ1(1) gives us

φ(t) /∈ φ(1) + R2
+ for all t ∈ [0, 1[ near t̄ = 1. (15)

On the other hand, we have for the function ψ = (ψ1, ψ2) := (−φ2,−φ1) that
ψ1(0) = −x∗ < −y∗ = ψ1(1). Thus it follows from Proposition 4.1(i) that ψ(t) /∈
ψ(1) + R2

+ for all t ∈ [0, 1) near t̄ = 1, i.e., we get

φ(t) /∈ φ(1)− R2
+ whenever t ∈ [0, 1) near t̄ = 1. (16)

Since φ : [0, 1] → gphT is continuous, the conditions in (15) and (16) contradict
the local monotonicity of T around φ(1) ∈ gphT , which verifies the claim of the
theorem.

Remark 4.5. Recall from classical real analysis (see, e.g., [20, Section 3.6]) that
for a real-valued function f : R → R, f is nondecreasing on R if and only if it is
nondecreasing around every point x0 ∈ R, i.e., for every x0 ∈ R there exists δ > 0
such that f(x) ≤ f(x0) ≤ f(y) whenever x ∈ (x0 − δ, x0) and y ∈]x0, x0 + δ[.
In the case of univariate single-valued mappings T : R → R, the imposed path-
connectedness of gphT in Theorem 4.4 is equivalent to the continuity of T itself;
see, e.g., [18, Example 4, Section 22]. Under continuity, the local monotonicity of
T around (x0, T (x0)) automatically implies its nondecreasing property around x0,
and thus our results in Theorem 3.1 and Theorem 4.4 are weaker than the classical
one when restricting ourselves to single-valued function from R to R. On the other
hand, Theorem 3.1 and Theorem 4.4 hold in the framework of topological vector
spaces and set-valued mappings, respectively.

Remark 4.6. Observe that Theorem 4.4 fails if the path-connectedness of gphT is
replaced by the convexity of domT , which is strictly weaker in the univariate setting
under consideration. Indeed, consider the operator T : R ⇒ R defined by

T (x) :=

{
{0} if x ≤ 0,

{−1} if x > 0
(17)

whose graph is depicted as follows:

In this case, domT = (−∞,∞[ is convex and T is locally monotone around any
point in its graph. Nevertheless, T is not globally monotone.

5. Local monotonicity is not global on the plane

In this section, we show that the result of Theorem 4.4 cannot be extended to multi-
dimensional settings by constructing a set-valued operator with the path-connected
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graph in R4, which is locally monotone around any point of its graph while not being
globally monotone on R2.

Example 5.1. There is an operator T : R2 ⇒ R2 such that gphT is path-connected,
T is locally monotone around any point on its graph, but T is not globally monotone
on R2.
Proof. Consider the set-valued mapping T : R2 ⇒ R2 defined by

T (x, y) :=


{(

0,max{3x− 1, 0}
)}

if x ≥ 0, y = 0,

{(−y, 0)} if x = 0, y ≥ 0,

∅ otherwise.
(18)

The graph of T is split into two parts of the space R4, which is the collection of
quadruples (x, y, z, t). The first part of gphT is represented by

T (x, 0) =
{(

0,max{3x− 1, 0}
)}
, x ≥ 0,

and lies within the xt-plane as shown below:

The second part of the graph is given by T (0, y) = {(−y, 0)}, y ≥ 0 staying inside
the yz-plane as follows:

It is clear to see that the set gphT is path-connected. Let us show that T is locally
monotone around any point of its graph. This is furnished in the following three
steps:
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Step 1. First we check that T is monotone relative to the open set
W1 :=]0,∞[×R× R× R.

Indeed, consider
(
(xi, yi), (zi, ti)

)
∈ gphT ∩W1, i = 1, 2, and deduce from the

definition of T that

(xi, yi, zi, ti) = (xi, 0, 0, ti), i = 1, 2,

with xi > 0. This tells us therefore that

⟨(x1, y1)− (x2, y2), (z1, t1)− (z2, t2)⟩ =
〈
(x1 − x2, 0), (0, t1 − t2)

〉
= 0.

The given calculations ensure the monotonicity of T relative to W1 and also
the local monotonicity of T around any point in gphT with the positive x-
coordinate.

Step 2. Here we show that T is monotone relative to the open set
W2 := R×]0,+∞[×R× R.

To proceed, consider the pairs
(
(xi, yi), (zi, ti)

)
∈ gphT ∩W2, i = 1, 2, and

deduce from the definition of T that

(xi, yi, zi, ti) = (0, yi, zi, 0), i = 1, 2,

with yi > 0. Thus we arrive at the equalities

⟨(x1, y1)− (x2, y2), (z1, t1)− (z2, t2)⟩ =
〈
(0, y1 − y2), (z1 − z2, 0)

〉
= 0.

The obtained calculations tell us that the operator T is locally monotone
around any point (x, y, z, t) ∈ gphT with y > 0.

Step 3. Let us check next that T is monotone relative to the (open) neighborhood
W3 := B1/3(0)×R×R×R of (0, 0, 0, 0). For i = 1, 2 we now consider the pairs(
(xi, yi), (zi, ti)

)
∈ gphT ∩W3 and obtain that x1, x2 ≥ 0 and t1 = t2 = 0. If

x1 = x2, then〈
(x1, y1)− (x2, y2), (z1, t1)− (z2, t2)⟩ = ⟨(0, y1 − y2), (z1 − z2, 0)

〉
= 0.

Otherwise, it remains to consider the case where x1 > x2 ≥ 0. If x2 > 0, then
it reduces to Step 1. For x1 > 0 and x2 = 0, we get

(x1, y1, z1, t1) = (x1, 0, 0, 0), and (x2, y2, z2, t2) = (0, y2,−y2, 0), y2 ≥ 0.

Therefore, we arrive at the condition

⟨(x1, y1)− (x2, y2), (z1, t1)− (z2, t2)⟩ = ⟨(x1,−y2), (y2, 0)⟩ = x1y2 ≥ 0.

This guarantees the monotonicity of T relative to W3, and thus the local
monotonicity of T around (0, 0, 0, 0).

However, T is not globally monotone. This is easily seen via the computation

⟨(1, 0)− (0, 1), T (1, 0)− T (0, 1)⟩ = ⟨(1, 0)− (0, 1), (0, 2)− (−1, 0)⟩
= ⟨(1,−1), (1, 2)⟩ = 1− 2 = −1 < 0,

which completes our consideration in this example.
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6. Relationships between local and global maximal monotonicity
in Hilbert spaces

This section addresses the maximality aspects of global and local monotonicity of
set-valued operators in Hilbert spaces. The approach developed here is completely
different from our derivations in the previous sections. We are now based on the
machinery of variational analysis and generalized differentiation of set-valued map-
pings and employ the powerful coderivative criteria for global and local maximal
monotonicity.
First we recall some tools of variational analysis used in what follows; see, e.g., the
books [7, 8, 17] for more details and references in finite and infinite dimensions.
Given a nonempty set Ω of a Hilbert space X, the regular normal cone to Ω at x∈Ω is

N̂(x; Ω) :=
{
x∗ ∈ X

∣∣∣ lim sup
u

Ω→x

⟨x∗, u− x⟩
∥u− x∥

≤ 0
}
.

The regular coderivative of a set-valued mapping F : X ⇒ X at (x̄, ȳ) ∈ gphF is
defined as

D̂∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X

∣∣ (x∗,−y∗) ∈ N̂((x̄, ȳ); gphF )
}
, y∗ ∈ X. (19)

A multifunction T : X ⇒ X is called (globally) hypomonotone if there exists a
constant r > 0 such that the mapping T + rI is monotone on X, i.e.,

⟨y1 − y2, x1 − x2⟩ ≥ −r∥x1 − x2∥2 for all (x1, y1), (x2, y2) ∈ gphT. (20)

Being strictly weaker than hypomonotonicity, the local hypomonotonicity property
of T : X ⇒ X around (x, y) ∈ gphT refers to the fulfillment of (20) within some
neighborhood of (x, y).

Now we formulate the following two coderivative characterizations of global and
local maximal monotonicity on which our equivalence result below is based. Since
the framework of this section is Hilbert spaces, there is no difference between the
local maximal monotonicity of types (A) and (B), which are referred to as “local
maximal monotonicity.”
Lemma 6.1. (see [2, Theorem 3.2]) Let T : X ⇒ X be a set-valued mapping of
closed graph. Then we have the equivalent assertions:
(i) T is maximal monotone on X.
(ii) T is globally hypomonotone on X with some modulus r > 0, and the regular

coderivative D̂∗T (u, v) is positive-semidefinite on X in the sense that
⟨z, w⟩ ≥ 0 for any z ∈ D̂∗T (u, v)(w), (u, v) ∈ gphT, and w ∈ X.

Lemma 6.2. (see [4, Theorem 6.4]) Let T : X ⇒ X be of locally closed graph
around (x̄, ȳ) ∈ gphT . Then the following assertions are equivalent:
(i) T is locally maximal monotone around (x̄, ȳ).
(ii) T is locally hypomonotone around (x̄, ȳ) with some modulus r > 0, and there ex-

ists a neighborhood W of (x̄, ȳ) such that ⟨z, w⟩ ≥ 0 whenever z ∈ D̂∗T (u, v)(w)
and (u, v) ∈ W ∩ gphT , w ∈ X.
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Utilizing these lemmas, we arrive at the equivalence between global and local max-
imal monotonicity of closed-graph operators under the global hypomonotonicity as-
sumption.
Theorem 6.3. Let T : X ⇒ X be a globally hypomonotone set-valued mapping
defined on a Hilbert space X. Assume that the graph of T is closed. Then the
following assertions are equivalent:
(i) T is maximal monotone on X.
(ii) T is locally maximal monotone around any point in its graph.

Proof. Implication (i)=⇒(ii) obviously follows from the definitions. To verify
(ii)=⇒(i), we get from Lemma 6.2 due to the local monotonicity of T around any
(x, y) ∈ gphT that

⟨z, w⟩ ≥ 0 whenever z ∈ D̂∗T (u, v)(w) and (u, v) ∈ gphT, w ∈ X. (21)

Then Lemma 6.1 implies by (21) and the assumed graph-closedness and global hypo-
monotonicity of T that the operator T is maximal monotone on X as claimed.

Let us demonstrate that all the assumptions of Theorem 6.3 are essential for the
fulfillment of the equivalence conclusion even for simple operators from R to R.

Remark 6.4. (1) The graph-closedness assumption in Theorem 6.3 cannot be
dropped. Indeed, the mapping T : R ⇒ R defined by T (x) := {0} if −1 < x < 1 and
T (x) := ∅ otherwise, is globally monotone and locally maximal monotone around
any point of its graph. However, T is not maximal monotone since gphT is properly
contained in gphS = gphT ∪ {(1, 0)}, which is monotone. This happens because
the set gphT =]− 1, 1[×{0} is not closed in R2.
(2) Implication (ii)=⇒(i) in Theorem 6.3 fails when T is not hypomonotone on X.
For instance, consider the multifunction

T (x) :=

{
R if x ∈ {0, 1},
∅ otherwise.

Although gphT = {0, 1} × R is closed and the local maximal monotonicity of T
around any graph point holds, we have that T + rI = T is not monotone for any
r > 0, and thus T is not hypomonotone. Consequently, it cannot be maximal
monotone.

Finally, we present a consequence of Theorems 6.3 and 3.1 for operators on Hilbert
spaces that are single-valued on their domains.

Corollary 6.5. Let T : domT → X be of convex domain and closed graph. Assume
in addition that T is continuous relative to any segment in domT . Then we have
the equivalent assertions:
(i) T is maximal monotone.
(ii) T is locally maximal monotone around any point in its graph.
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Proof. By the definitions given in Section 2, it suffices to verify implication (ii)=⇒(i).
Since domT is convex and T is continuous relative to any segment in its domain, the
assumed local maximal monotonicity of T around any graph point implies that T is
globally monotone on X via Theorem 3.1. In particular, T is globally hypomono-
tone. Employing then Theorem 6.3 given that gphT is closed, we immediately get
the maximal monotonicity of the mapping T .

7. Conclusions and future research

This paper contributes to the study of local monotonicity of set-valued mappings
and to establishing its relationships with global monotonicity including the max-
imality versions. In particular, we tackle the problem of closing the gap between
local and global (maximal) monotonicity. To this end, some verifiable sufficient
conditions are presented in rather nice frameworks. On the flip side, it is worth-
mentioning that Example 5.1 clearly distinguishes between local monotonicity and
global monotonicity in the framework of multidimensional Euclidean spaces. Thus
the study of local monotonicity in such cases is indispensable.
In the future research, we aim to extend our results obtained for single-valued map-
pings to general settings of multifunctions, as well as to relax the imposed continuity
assumptions on operators. In particular, it is still an open question whether one can
replace the continuity of T in Theorem 3.1 by the path-connectedness (or stronger,
arc-connectedness) of gphT .
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