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ABSTRACT

This paper addresses novel applications to practical modelling
of the newly developed theory of necessary optimality con-
ditions in controlled sweeping/Moreau processes with free
time and pointwise control and state constraints. Problems
of this type appear, in particular, in dynamical models deal-
ing with unmanned surface vehicles (USVs) and nanoparticles.
We formulate optimal control problems for a general class of
such dynamical systems and show that the developed neces-
sary optimality conditions for constrained free-time controlled
sweeping processes lead us to designing efficient procedures
to solve practical models of this class. Moreover, the paper
contains numerical calculations of optimal solutions to marine
USVs and nanoparticle models in specific situations. Overall,
this study contributes to the advancement of optimal control
theory for constrained sweeping processes and its practical
applications in the fields of marine USVs and nanoparticle
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1. Introduction

Sweeping process models, initially termed ‘processus de rafle’, were pioneered by
Jean-Jacques Moreau in the 1970s as a means to elucidate the dynamics inherent
in elastoplasticity and related mechanical domains; see, e.g. [1]. Such models,
described in the form of the dissipative differential inclusions of the type

(1)

x(t) € =N (x(¢); C(t)) ae. t € [0,T],
x(0) = xo € C(0) Cc R",

via the normal cone to the convex moving sets C(t), have been expounded
upon in many publications by Moreau and other researchers. We list here just
a few of them [2-15], where the reader can find further references to theoretical
developments and various applications to aerospace, process control, robotics,
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bioengineering, chemistry, biology, economics, finance, management science,
and engineering.

Lionel Thibault, a colleague of Moreau, has made fundamental contributions
to the theory of sweeping processes in finite and infinite dimensions; see, e.g. [2,
13, 16, 17] and the references therein.

Since the Cauchy problem for sweeping processes of type (1) admits a unique
solution under natural assumptions, there is no room for optimization in the
framework of (1). More recently, some optimization problems have been formu-
lated and investigated for various controlled sweeping processes, where control
actions enter moving sets, adjacent differential equations, and/or perturbations
of the sweeping dynamics. We refer the reader to the stream of rather recent
publications [18-32] and the bibliographies therein, where necessary optimality
conditions have been established and applied to models of friction and plasticity,
robotics, traffic equilibria, ferromagnetism, hysteresis, and other fields of applied
sciences.

It should be mentioned that deriving necessary optimality conditions for con-
trolled sweeping problems is much more challenging in comparison with optimal
control of ODEs and Lipschitzian differential inclusions of the type x € F(x); see,
e.g. [33-35]. The main difficulties come from the intrinsic discontinuity of the
sweeping dynamics described by the normal cone mappings and the intrinsic
presence of pointwise state as well as irregular mixed constraints on control and
state functions.

This paper is devoted to applications of the novel theory of necessary optimal-
ity conditions developed in [36] for a new class of controlled sweeping processes
with free time and hard control-state constraints. For the first time in the litera-
ture, we address here practical optimal control models, which naturally arise in
the dynamical modelling of marine unmanned surface vehicles and nanoparti-
cles. In fact, the theoretical developments in [36] have been largely motivated by
the applications presented in this paper.

In Section 2, we formulate and discuss the free-time sweeping optimal control
problem of our study with overviewing some major results on discrete approx-
imations and necessary optimality conditions distilled from [36]. Employing
these developments, we consider in Section 3 a broad class of planar dynami-
cal models, which can be delineated via the free-time sweeping optimal control
problem investigated in Section 2. Sections 4 and 5 formulate and study in
detail optimal control problems for marine USVs and nanoparticles, respec-
tively, with calculating optimal solutions to these models by using the obtained
necessary optimality conditions for controlled sweeping constrained systems.
The concluding Section 6 summarizes the underlying features of the devel-
oped models and obtained results with discussing some directions of the future
research.
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OPTIMIZATION (&) 3

2. Sweeping optimal control with free time

First we formulate a general free-time optimal control problem for the sweep-
ing dynamics and highlight (with additional discussions and comments) some
pivotal findings from [36] that are essential for the subsequent applications
to practical modelling. By (P), we label the sweeping optimal control problem
described as follows:

minimize J[x, u, T] := ¢ (x(T), T)

over measurable controls u(-) and absolutely continuous sweeping trajectories
x(-) defined on the variable time interval [0, T] and satisfying the dynamic,
control, and endpoint constraints

x(t) € =N (x(t); C(t)) + g (x(t), u(t)) a.e. t € [0, T], x(0)
= Xg € C(O) C Rn,
u(t) e U C R ae. t € [0, T,
x(T), T) € Qy x Qr C R" x (0, € ft);

(2)

where Q, and Q7 are subsets of R” and [0, € fty), respectively, and where C(t) is
a convex polyhedron given by

C(t) = () C/(¢) with C(#) := {x e R" | (X(1),x) < Cj(t)}, o
=1

IOl =1, j=1,...,s t €[0,€ fiy)
Recall that the normal cone to the convex set in (2) is defined by

N(x;C):z{ve]R"I(v,y—x)gO,yeC} ifxe C and
N C):=0@ifx ¢ C.

The latter tells us that problem (P) automatically contains the pointwise state
constraints

x(t) € C(t), ie. (xi (t),x(t)) < ¢j(t) forallt e [0,T] (with different T)
and j=1,...,s.

In fact, the sweeping dynamics intrinsically induce irregular mixed constraints on
controls and trajectories that are the most challenging and largely underinvesti-
gated even in classical control theory for smooth ODEs.

All the triples (x(-), u(-), T) € Wb2([0, T]; R") x L*([0, T); RY) x Ry satisfy-
ing (2) are called feasible solutions to (P). We identify the trajectory x : [0, T] —
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R" with its extension to the interval((0, € fy) given by
Xe(t) ;== x(T) forallt> T,
and for x(-) € W'2([0, T], R") define the norm

lxll w2 == 1l (0) I + 1%xellL, -

Let us now specify what we mean by a W"2 x L? x R -local minimizer for (P)
and its relaxation; cf. [26] when the duration of the process is fixed.

Definition 2.1: A feasible solution (x(-),(-), T) to problem (P) qualifies as a
W2 x 12 x R -local minimizer for this problem if there exists € > 0 such that

J[x,u, T] < J[x,u, T]holds for all feasible solutions (x(-), u(-), T) to (P) satisfying
the localization condition

e ([0 = 501 + w00 = a)1P) de + @=1)° e

The relaxed version (R) of problem (P) is constructed as follows:

o~

minimize J[x, u, T] := ¢ (x(T), T)
over absolutely continuous trajectories of the convexified differential inclusion

x(t) € =N (x(t); C(t)) + co g (x(?), U)
ae. te[0,T], x(0) =xyp € C(t) c R", (4)

where ‘co’ represents the convex hull of the set.

Definition 2.2: Let (x(-), i(-), T) be a feasible solutions for problem (P). We say
that it is a RELAXED W2 x L2 x R, -LOCAL MINIMIZER for (P) if the following
condition holds: there exists € > 0 such that

4 (k(')’ﬂ < ¢ (x(:),T) whenever
€4 (“ke“) =g (0)]” + llu(t) - ﬁ(t)llz) dt+(T-T)% <e,

where u(t) € co U a.e. on [0, T] with u(-) representing a measurable control, and
x(-) denotes a relaxed trajectory of the convexified inclusion (4), which can be
uniformly approximated in W'2([0, T]; R"), by feasible trajectories to (P) gen-
erated by piecewise constant controls uk(-) on [0, T], the convex combinations of
which converge strongly to u(-) in the norm topology L?([0, T]; R%).

It follows from the construction of the relaxed problem (R) that the local min-
imizers in Definitions 2.1 and 2.2 agree under the convexity assumptions on the
data of (P). Due to the nonatomicity of the Lebesgue measure, such a relaxation
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OPTIMIZATION (&) 5

stability phenomenon also holds in broad nonconvex settings; see [26, 36] for
more details.

Now we formulate the standing assumptions on the given data of the sweep-
ing control system in (2) and (3), which are all satisfied in the practical models
studied in the subsequent sections.

(H1) The control set U # @ is closed and bounded in R4,

(H2) The generating functions x, () and ¢j(+) of the moving polyhedron in (3)
are Lipschitz continuous with a common Lipschitz constant L.

(H3) The uniform Slater condition is fulfilled:

for every t € [0, T] there exists x € R" such that (xi (1), x)

< ¢j(t) wheneveri = 1,.. .,s. (5)

(H4) The perturbation mapping g: R"” x U — R" exhibits Lipschitz continuity
with respect to x uniformly on U whenever x belongs to a bounded subset
of R", and the sublinear growth condition holds: there is f > 0 with

lgCx, )| < B+ |lx]) forallue U.

(H5) The endpoint-final time constraint set Q, x Qr is closed.

Note that the uniform Slater condition (5), introduced recently in [29] always
holds under the fulfilment of the linear independence constraint qualification

(LICQ)

Z /Ijxi(t) =0, ,1]- cR | = [ljzoforalljel(t,x)], (6)
jel(tx)

where the moving active index set at (¢, x) is defined by

1(t,%) == {j e{l,...,s)| (it)x) = Cj(t)} :

On the other hand, (5) yields the positive linear independence constraint qual-
ification (PLICQ) corresponding to (6) with 1; € R replaced by 4; € R, for
j € I(t,x). It follows from [29, Theorem 2] that the assumptions imposed above
ensure that any feasible control u(-) to (P) generates the unique Lipschitz contin-
uous trajectory x(-) of the sweeping process in (2).

Our approach to the study and solving dynamic optimization problems is
based on the method of discrete approximations developed by the first author [34,
37] for Lipschitzian differential inclusions. Since the sweeping dynamics is highly
non-Lipschitzian, applications of this method to controlled sweeping processes
require significant modifications, which have been done in [21, 24, 26, 36, 38-41]
for various classes of sweeping control problems. To proceed in the setting of (2)
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and (3) of (P), for each natural number k € N := {1,2, ...} consider the time T}
approximating T and form the uniform grid on [0, T] by

th=0, th =ti+h" asi=0,1,.. k=1, =Ty i*:=k"'T. (7)

The following result, distilled from [36, Theorem 2.3], verifies a strong approxi-
mation of any feasible solution to the continuous-time sweeping control problem
(P) by a sequence of feasible solutions to perturbed discrete-time sweeping pro-
cesses. Beside being useful in deriving necessary optimality conditions for (P),
this result justifies the possibility to replace the infinite-dimensional sweeping
dynamics by its finite-dimensional counterparts in numerical calculations, which
is important for practical modelling.

Theorem 2.3: Let (x(-), it(-),T) € Wl’z([O,T];]R”) X Lz([O,T];]Rd) be an arbi-
trary feasible solution to problem (P) under the imposed standing assumptions.
Then we have the assertions:

(i) There exists a sequence of piecewise constant functions {k() | k € N} such
that u*(-) — u(-) strongly in the L>-norm topology on [0, T] as k=S fiy:

(ii) There exists a sequence of piecewise linear functions {xk(-) | k € N}, which
converges strongly to x(-) in the W“2-norm topology on [0, T] with x*(0) =
x(0) for all k € N and such that

iRt € —NQEF(EF); CF) + gGR @), uF (15)) + of B, t e [th 15 ),

fori=0,...,k—1, where rik >0, thf:_ll Tik — 0 as k > € fty, B stands
for the closed unit ball, and the perturbed polyhedra CX are defined by

S
Chi= (N CE with Cl = {x eR" | (x,x. (1) < c;j}
=1

with some vectors x, (tf‘) and numbers CZ. Furthermore, all the approximating
arcs x*(-) are Lipschitz continuous on [0, T] with the same Lipschitz constant
as x(-). . )

(ili) The piecewise linear extensions of x. k(t;‘) and CZ on the continuous time
interval [0, T] converge uniformly on [0, T] as k=>€ fly to cj(t) and (),
respectively.

Having in hand the strong approximation results of Theorem 2.3 applied to
the designated relaxed W'? x L? x R, -local minimizer (X(-), @(-), T) of (P),
we construct the sequence of discrete approximation problems (Py) with a vary-
ing grid whose optimal solutions exists (assuming that the cost function ¢
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is lower semicontinuous) and strongly converge in W'? x L? x Ry-norm to
{x(-), u(-), T}. For each k € N, define problem (Py) as follows:

minimize ]k[xk, uk, Ti] == (p(xllz, Ti) + (T — T)?

L ik — 2 )
i+1 i+ i— k_ =
&= ,-_EO € tt{F — x| + ” u; — u(t) H dt
over (xk, uk, Ty) = (xlg, x]f, . ,xllj_l,x’]z, ué, ull‘, e uﬁ_l, T} ) satisfying the con-

straints
xﬁrl — xf-‘ IS —hkFlk(t,k,xf-‘, uf-‘) fori=0,...,k—1,
xk = xo € C(0),
k k k . k k
(x> T) € Qy x Q1 := (Qy + 6" B) x (Qr + ),

Zettﬂ ’ 2+“uﬂ-‘—jﬂ)‘$dt§‘,

<L+1 foralli=0,...,k—1,

k k
X — X .
i+1 i =
)

k k
Xiv1 — %
Lk

ueU fori=0,...,k—1,

(e, uby — @@, m fori=0,...,k—1,
Tk —T| < €

(xi(t),x’li} <¢i(t) forallj=1,...,s, (8)
where the discrete velocity mappings F¥ are given by
Fk(tk Kby = NGK; CFy — gk, uf-‘) — 1¥B,

where 0% := |%(T) — X*(T) || with the sequence {xK(T)} constructed in Theorem
2.3 for x(-), where € > 0 is taken from Definition 2.2 for Xx(-), and where L is the
Lipschitz constant of X(-) on [0, T].

Employing Theorem 2.3 and using the construction of problems (Px) allow
us to verify the strong W'? x L2 x Ry convergence of the extended (as in
Theorem 2.3) optimal solutions to the designated local minimizer (x(-, u(-), T)
of (P). This means that optimal solutions to the discrete approximation prob-
lems (Px) can be viewed as suboptimal solutions to the original sweeping control
problem (P).

To derive further precise necessary optimality conditions for the given local
minimizer in (P), we develop the following two-step procedure:

Step A:  Obtain necessary conditions for optimal solutions to (Py)
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8 (& B.S.MORDUKHOVICHETAL.

Step B: By passing to the limit in the necessary optimality conditions for (Py)
as K=>€ fty, establish necessary optimality conditions for the designated
local minimizers (x(-), u(-), T) in (P).

The goal of Step A is accomplished by reducing each problem (Px) to a
mathematical program with geometric and functional constraints and deriving
necessary optimality conditions in the latter setting by employing appropriate
tools of generalized differentiation in variational analysis. Major requirements to
such tools to be useful for furnishing the limiting procedure in Step B include
robustness with respect to small perturbations, comprehensive calculus rules of
generalized differentiation, and the ability to deal with geometric constraints of
the graphical type (8), which are crucial to reflect the sweeping dynamics. Note
to this end that Clarke’s constructions of generalized differentiation [33] are not
suitable for these purposes, since his normal cone is too large for graphical sets
associated with functions and mappings even in very simple situations as, e.g. for
the graph of f(x) := |x|, where Clarke’s normal cone at (0, 0) is the entire plane
R2. On the other hand, the limiting generalized differential constructions, intro-
duced by the first author and then developed in numerous publications (see, e.g.
the books [17, 42-44] and the references therein), provide the desired variational
machinery for passing to the limit in Step B and deriving in this way an adequate
collection of necessary optimality conditions in the sweeping control prob-
lem (P) that are satisfactory for applications to the practical models considered
below.

The underlying feature of the sweeping dynamics and its discrete approxi-
mations is their descriptions via the normal cone mapping, which accumulates
first-order information about the process. Thus the adjoint systems in both
discrete-time and continuous-time problems unavoidably require a dual-type
generalized derivative (coderivative) of normal cone mappings that are formal-
ized by the first author as the second-order subdifferential (or generalized Hessian).
The explicit calculations of this second-order construction for set-valued map-
pings, which appear in the sweeping dynamics (2) and (8), play a crucial in
the realization of the method of discrete approximations for optimal control of
sweeping processes. The reader can find such calculations and related results
in the aforementioned papers on sweeping optimal control with the references
therein. A comprehensive theory of second-order subdifferentials with a wide
spectrum of applications is presented in [45].

To formulate the major necessary optimality conditions for problem (P)
proved in [36, Theorem 5.2] by using the method of discrete approximations,
we need the following notion. Observe to this end that Motzkin’s theorem of
the alternative gives us the representation of the normal cone N (x(t); C(t)) as

[ et # O @ 11i0) 2 0},
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Definition 2.4: Let x(-) be a solution to the controlled sweeping process (2), i.e.

—i(t) = > () — g (x(0),u(t))  forallt e [0,7),

=1

where 7; € L?([0, T};RT) and nj(t) = 0 for a.e. t such that j & I(t, x(t)). We say
that the normal cone to C(¢) is active along x(-) on the set E C [0, T] if for a.e.
t € Eandallj € I(t, x(¢)) it holds that 5j(t) > 0. Denoting by E the largest subset
of [0, T] where the normal cone to C(t) is active along x(-) (i.e. the union of the
density points of E such that the normal cone to C(t) is active with respect to
this set), we simply say that the normal cone is active along x(-) provided that
Ey = [0, T].

Note that the requirement that the normal cone is active along a trajectory
of (2) distinguishes (2) from trajectories of the classical controlled ODE x =
g(x, u) which satisty the tangency condition <g(x(t),u(t)),x{k(t)) <0 for ae. t
such that j € I(t,x(t)) and thus x(t) € C(¢) for all t € E. Observe also that the
above requirement holds automatically when the set I(t, x(¢)) is empty, i.e. when
x(t) stays in the interior of C(t).

Theorem 2.5 ([36]): Let (x(t),u(t),T), 0 <t < T, be a relaxed WH* x L* x
R -local minimizer to problem (P). In addition to the standing assumptions, sup-
pose that LICQ holds along x(t), t € [0, T], and that ¢ is locally Lipschitzian
around (J_C(T),T). Then there exist a multiplier ;1 > 0, a nonnegative vector
measure y~. = (y>1, L YS)E C*([O,T];RS), and a signed vector measure yo =
(yol, oY) € C*([O,T];]RS) together with adjoint arcs p(-) € WI’Z([O,T];R”)
and q(-) € BV([0, T];R") such that the following conditions are fulfilled:

e The sweeping trajectory representation
—3(t) = > (XD — g G(1), a(r)) forae.t e [0,T), (9)
j=1

where the functions i/ (-) € L*([0, T]); Ry.) are uniquely determined for a.e. t €
[0,T) by representation (9).
e The adjoint arc inclusion

(—j)(t), l//(f)) € cod{q(t),g) (x(t),u(t)) forae. te [0, T],

where the limiting subdifferential is taken with respect to (x, u), where y(-) €
L*([0, T]; RY) satisfies the

w(t) € coN(u(t); U) forae. te[0,T],



388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
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where the right continuous representative of q(-) is given by
s . ]
q(t) = p(t)— €ty > dyi(2)x(r)
j=1

for a.e. t € [0, T] except at most a countable subset, and where y := y~ + 7q.
Moreover, p(T) = q(T).

The tangential maximization condition: if the limiting normal cone is generated
as

N@u(t); U) = T*(u(t); U) := {v eR"| (vyu) <Oforallu e T (u(t); U)}
by some tangent set T (u(t); U) associated with U at u(t), then we have

(w (), u(t) = ueTm(ﬁ%;U) (w(t),u) forae.te[0,T].

In particular, the global maximization condition

(w(t),u(t) = mal)]( (w(t),u) forae.te[0,T]

is satisfied provided that the control set U is convex.
The dynamic complementary slackness conditions

<xi(t),5c(t)> <q(t) = PO=0 and () >0=> <x’;(t),q(t)> —0

forae. te [0, T] and all indicesj =1,...,s.
The transversality conditions at the optimal final time: there exist numbers
W (T) > 0 whenever j € I(T, x(T)) ensuring the relationships

M- >, #DAT)H
jel(T.x(T))
€ udp(E(T), T) + N(((T), T); Qx x Qr),
W(T) > 0= jeI(T,x(T)), (10)

where EIF=ITI e tOT(p(t),J;c(t)) dt is a characteristic of the optimal time.
The endpoint complementary slackness conditions

<x’; (T),&(T)) < ¢(T) = W(T) =0 foralljel(T,T))

with the nonnegative numbers n/(T) taken from (1 0).
The nonatomicity condition: If t € [0,T) and (x,(t),x(t)) < ¢j for all j=
1,...,s, then there exists a neighbourhood Vy of t in [0, T) such that y(])(V) =
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yi (V) = 0 for all Borel subsets V of V;. In particular, supp(yi) and supp(yg)
are contained in the set {t | j € I(t,x(t))}.
o The general nontriviality condition

(e ps lyollzvs > liTv) # O,

accompanied by the support condition

supp(y-) Nint(Ep) = @,

which holds provided the normal cone is active on a set with nonempty interior.

e The enhanced nontriviality: we have u =1 for the cost function multiplier
in (10) provided that (x, (1), X(1)) < cj(t) forall t € [0, T] and all indices j =
1,...,s.

In the subsequent sections, we develop applications of the obtained results to
practical models formulated in the form of the sweeping optimal control problem
(P).

3. Modeling

In this section, we delineate a class of rather general dynamical optimization
models on the plane whose dynamics are described by sweeping processes. These
models deal with n > 2 objects that have arbitrary shapes identified as virtual
safety disks of different radius R;, i = 1,. . ., n, on the plane. Each object aims at
reaching the target by the shortest path with the minimum time T while avoiding
the other n—1 static and/or dynamic obstacles. We define the configuration space
of objects at some time ¢ € [0, T] by the vector x(¢) = (x!(¢),...,x"(t)) € R*"
with the variable ending time T, where x'(t) = (Ix*(£)|| cos 07, %% (£) || sin 0) e
R2 denotes the Cartesian position of the i-th object, and where ; stands for the
corresponding constant direction which is the smallest positive angle in stan-
dard position formed by the positive x-axis and vectors x* with 0 € R? as the
target. The configuration is admissible when the motion of different objects is safe
by imposing the noncollision/nonoverlapping condition. This can be formulated
mathematically as

A= {x= (xl,...,x") e R*"| Djj(x) > Oforalli,j e {1,...,n}},

where Djj(x) := Ix' — || — (R + Rj) is the distance between the disks i and j.
Describing the motion of objects without collisions can be outlined as follows:
starting from an admissible configuration at time t; € [0, T] (with different T),
consider xj := x(tx) € A. Then the next configuration after the period of time
h> 0is xx+1 = x(tx + h). To ensure a nonoverlapping motion of all objects at the
next time i + h for a small value of 4 > 0, the next configuration should also be
admissible, i.e. x(fx + h) € A. This implies that the constraint D;;(x(t + h)) > 0
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should be satisfied. To verify the latter, by using the first-order Taylor expansion
at x; # 0 we deduce the constraint on the velocity vector as

Djj (x(tx + h)) = Djj (x(tx)) + hVDjj (x(tx)) x(tx) + o(h), for smallh > 0.
(11)
where VD;; is the gradient of the distance function. This constraint will be used
to construct the next configuration or the next reference position of objects in
order to avoid static and/or dynamic obstacles. In this regard, set the vector V'(x)
to be the desired velocity of all objects. The admissible velocities providing no
collision during the navigation of objects are defined as

Cn(x) == {V(x) € R*" | Djj(x) + hVDjj(x)V(x) > 0 forall
ijel{l,...,n}, i<j}, xeR™"

Taking now the admissible velocity x(tx) € Cp(xx) gives us
Dij(xx) 4 h(VDjj(x), x(ty)) > 0.

Skipping the term o(h) for small 4, it follows from (11) that D;;(x(tx + h)) > 0,
i.e. x(t + h) € A. Since all the objects intend to reach the target by the short-
est path, by taking into account that in the absence of obstacles the objects tend
to keep their spontaneous velocities till reaching the target and that ||x'(¥) —
®(t)| = R; + R; if the designated object touches the obstacles, we conclude that
the object’s velocity should be adjusted in order to keep the distance to be at least
R; + R; by using some control actions in the velocity term. The desired controlled
velocities can be now represented as

g (x(t), u(t)) = (s1u (@) cos 0} (1), s1[[u (B)|| sin O (1), ..., sullu” (®)l]
cos 8, (1), sullu” (t)| sin gg(t)) ,

where 0/ stands for the corresponding constant direction, which is the smallest
positive angle in standard position formed by the positive x-axis and vectors u'(t),
and where s; < 0 denotes the speed of the object i, with practically motivated
control constraints represented by

u(t) = (ul(t),...,u”(t)) e U forae.te0,T] (12)

with the control set U C R" to be specified below in particular settings.

Having the above discussions in mind, let us describe the model dynamics
as a sweeping process. To proceed, for any k € N consider the ending time Tk
and the grid as in (7) with xf.‘ = xk(tf‘) fori=1,...,k. According to the model
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description, we have the algorithm
xke A and xﬁrl = xf+thik+1 foralli=0,...,k—1,
where Vik+1 is defined as the projection of g(x¥, u¥) onto the admissible velocity
set Cpe(xF) by
VikH =11 (g(xf-‘,uf.‘); Chk(xf)) , i=0,...,k—1 (13)

Using the construction of xf.‘ for0 < i < k—landk € N, design next a sequence
of piecewise linear mappings x: [0, Tx] — R*", k € N, which pass through
those points by

) =af+ (e =tV forallt e IF = [t 1, ) (14)
withi =0,...,k — 1. Whenever k € N, we clearly have the relationships
A== 0and () =V, forallte (15,15, (15)
L4(0)

As discussed in [3], the solutions to (14) in the uncontrolled setting of (13) with
g = g(x(t)) uniformly converge on [0, T] to a trajectory of a certain perturbed
sweeping process. The controlled model under consideration here is significantly
more involved. For all x(t) € R?", consider the set

K(x(1))
= {y(t) e R*"| Djj(x()) + VD;j(x(t)) G =%(E))= wheneveri < j},
(16)

which allows us to represent the algorithm in (13), (14) as
xfﬁrl =1 (xfc + HRg (K, uf);K(xf-‘)) fori=0,...,k—1.
Thus it can be equivalently rewritten in the form of
o (50 = 1 (K F@) + i (FF o) ik 0) s ko)

forall t € [0, Ty], where the functions rk(t) = tf‘ and 19k(t) = tff+1 forallt If‘.
Using the construction of the convex set K(x) in (16) and the definition of the
normal cone together with the relationships in (15), we arrive at the sweeping

process inclusions

*@eN (xk(l‘}k(t));K(xk(rk(t)))) tg (xk(Tk(t)), uk(rk(t))) ae. te[0,T]

(17)
with x%(0) = xp € K(xo) = A and x*(9%(¢)) € K(x*(z*(¢))) on [0, T]. To for-
malize (17) as a controlled perturbed sweeping process of type (2), we define the


THI DAI TRANG NGUYEN

THI DAI TRANG NGUYEN


560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602

14 (&) B.S.MORDUKHOVICHET AL.

convex polyhedron C(t) C R?" by

c) = {x(t) e R¥™ | ((£),x(D) < (D), j=1,...,n— 1} (18)

with ¢;(t) := —(Ropj + Rops), where Ropj, Rops are the radii of the designated
object and the obstacle, respectively. The n—1 vertices of the polyhedron are given
by

X{k = ej1 + €2 — €(j+1)1 — €(j+1)2 € Rzn, j=1...,n—1, (19)
where eji (j=1,...,nand i = 1, 2) are the vectors in R2" of the form
e = (611)612’ 621’ 622a LR ) enl»enZ) € Rzn

with 1 at only one position of ej; and 0 at all the other positions. In order to obtain
the optimal solutions to the formulated problem by using Theorem 2.5 in what
follows, we choose for convenience the norm || (x'!, ¥/2) || := |»'!| 4 || for each
component ¥ € R? of x € R*".

In the next two sections, we study in detail the two practical models, which
have some common features described in the framework discussed above. The
first model addresses optimal control of marine surface vehicles whose dynam-
ics was described as a sweeping process in [7]. The second model concerns the
motion of nanoparticles, where the dynamics is based on the sweeping process
description taken from [3]. Note that both these models are essentially differ-
ent from the corridor and planar versions of the microscopical crowd motion
model described via the sweeping dynamics in [15], optimal control problems for
such models were studied in [22, 39] based on necessary optimality conditions
developed in [21, 39], respectively. In what follows, we present applications to the
aforementioned new models based on the novel necessary optimality conditions
derived in [36].

Let us emphasize here that the major differences between the new two mod-
els and the crowd motion model lie in the complexity of the dynamical systems
involved. In particular, for the nanoparticle model, it is more than just the
motions of two objects; this model is strongly influenced by other factors in
the body. Indeed, the movement of nanoparticles is determined by the forces
applied by the flow (bloodstream) and gravity. The forces influencing nanoparti-
cles encompass hemodynamic forces, buoyancy, and Van der Waals interactions
among nanoparticles, both inter-particle and with surrounding walls. There-
fore, to have the velocities of the nanoparticles, we calculated all these factors,
as detailed in Table 1-(en=theslastspage)- This integrated approach ensures a
more precise and scientific understanding of nanoparticle dynamics in biolog-
ical environments. The differences between the machine surface vehicle and
nanoparticle models, as well as between their mathematical descriptions and
optimality conditions for them are discussed below in Sections 4 and 5.
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Table 1. Data of the nanoparticles inside a straight microtube.

Nanoparticle i

Data

i=1

dwi; =a— |x'2| — Ry =145
dW21 =a+ |X12| — Ry =845

h' (X1%) = 6m uRy |1+ %

+0.13868 ( ) ~ 0.3267374

(R1 +dwi,1 R +dW1 1

hg? (X1%) = 6m uRy |1+ %

+0.13868 ( ) ~ 0.3215246

( R +dwz 1

R1+dwz1
w 12y
B (x02) = mtm Fn RW,W”% + R1+dw11J ~0.0000971

hY2(x'2) = Bz uky |In T ) T madw,y | A —0.0000030
h (12) = hgvz (x”) = 6m Ry | — 1_‘1,;1% + i (1- l;‘};)} ~ —0.3256629
Fiw = d’:v’? 27
Fi, = DT = 4, 139e — 28, where D1, = 197.1320344
S K A R ) 0366 + 13

dr AT (x12) + hy? (x12)
12 An ’
PR i LU TP
dt he' (x'2) + hg? (x12)
51 =3.156e + 14
dwry =a— 2| — Ry =290
dwyy = a+ x| — Ry = 690

he' () = 6m uRy |1+ & (

+0.13868 ( A 0.6534748

Rz+dw1 z)

Ry +dW1 2 )

hE202) = 67 e |1+ 5 (s ) + 013868 (7 ) ~ 0.6461981

Ry +sz 2

W1 y,22Y
Y 02) = 7 ufy [in (1 - R2+de) + R2+dw1 J A —0.0001942

2+dW2 2

w. 22y __ 48
B2 62) = i uky [In (1= 75 ) + mdss | & —0.0000352
hY (x22) = B2 (x22) = 6z R, [1 n In( lfgz)} ~ —0.6787248
Ix 22|
ARS ARS
Faw = | G = G| ~ 6849 — 28

& = ‘[‘Tg ~ 3311e — 27, where Dy = 197.1320344
212 S O OIS
dt TR LR
&2 IRy Ap + Fyy +F '
o ST T 30076 + 14
dt AT O®) + a2
5 = 3.0284¢ + 14

Note furthermore that in these two new optimal control models, the neces-

sary optimality conditions from [36] not only allow us to get the shortest path but

also provide minimizing the duration of the dynamic process, which has not been

considered before in the settings of the crowd motion and other models involving
the sweeping dynamics. This difference has significant practical implications for
the applications. In the context of marine vehicles, if optimization of travel time
is not addressed, each vehicle may proceed leisurely to its destination, although
along the optimal trajectory. Such an approach not only leads us to the exces-
sive fuel consumption but also fails to deliver economic efficiency, resulting in
additional negative consequences. Efficiently optimizing the time of movements
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is crucial for maximizing performance and minimizing costs enhancing thereby
the overall effectiveness of maritime operations as well as boosting advancements
in pharmaceutical and therapeutic practices.

4. Optimal control of marine surface vehicles

In this section, we explore the dynamic movements of unmanned surface vehi-
cles (USVs) with diverse shapes as they navigate through maritime environments.
These USVs are not only capable of reaching their destinations safely but also
adept at avoiding both stationary and moving obstacles. This modelling approach
transforms the scenario into a controlled perturbed sweeping process using the
procedure established in Section 3, which treats each USV as an object within the
dynamic system alongside n—1 other obstacles on the way to reach the target.
This framework finds practical applications in a variety of real-world scenarios,
such as oceanographic research, environmental monitoring, maritime surveil-
lance, and autonomous shipping while showcasing the versatility and adaptability
of unmanned surface vehicles across different domains.

Note that, in the absence of obstacles, the desired velocities are given by
V(x) = g(x) € R?", In the presence of obstacles, we take into account the algo-
rithmic developments of [7] and seek optimal velocities to escape from different
surrounding obstacles by solving the following convex constrained optimization
problem:

minimize ||g(x, 1) — V(x)||*

subject to V(x) € Cy(x), (20)

where the control u is involved into the desired velocity term to adjust the actual
velocities of the USVs and make sure that they do not overlap. The algorith-
mic design in (20) means that Vi is selected as the (unique) element from the
set of admissible velocities as the closest one to the desired velocity g(x, u) in
order to avoid the overlapping. Consequently, the proposed scheme seeks new
directions V(x) of USVs close to the desired direction g(x, u) in order to by
pass the surrounding obstacles. The desired position of the next configuration
of marine vessels is then generated as Xpef(t + h) = (Xpef, Vref) = x(¢) + hV (%),
and the desired via point posture position of the designated marine craft is given

by
Vrefi — yz(t))

-1
Nref = (xrefa Vref> l//ref)> where Wref := tan (
Xrefi — xi(t)

With the constructions in Section 3, we now formulate the sweeping optimal
control problem (P) that can be treated as a continuous-time counterpart of the
discrete algorithm of the marine surface vehicles model by taking into account
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the model goals discussed above. Consider the cost functional
L 1 2 1o
minimize J[x, u, T] := 3 lx(T)|I* + ET , (21)

which reflects the model goals to minimize the distance and the time for the
USV to achieve the target from the admissible configuration set. We describe
the continuous-time dynamics by the controlled sweeping process

(22)
x(0) = xo € C(0), u(t) e U,

[—x(t) € N (x(t); C(1)) + g (x(1), u(t)),
for a.e. t € [0, T], where the constant set C(¢) is taken from (18), the control
constraints reduce to (12), and the dynamic nonoverlapping condition ||x'(¢) —
(1)) = Ri + R; is equivalent to the pointwise state constraints

x(t) € C(t) = (X (6),x(t)) < ¢j(t) forallt €[0,T] andj=1,...,n—1,

which follow from the construction of C(¢) and the normal cone definition.

From now on, we exclusively study the sweeping optimal control problem
defined in (21) and (22) with the marine surface vehicles model data speci-
fied below. Applying Theorem 2.5 allows us to obtain the necessary optimality
conditions for the problem that are formulated entirely in terms of the model
data.

Consider the two marine crafts (MCs), MC 1 and MC 2, as moving vehicles.
The marine surface vehicles are represented by triangle shapes immersed in discs
Figure 1. The objective is to move MC 1 and MC 2 to the target without colliding
with each other. However, in the presence of MC 2, after the contacting time t*
the vehicle MC 1 pushes MC 2 to the target together with the same velocity. The
mathematical USV model is taken from the physical ship called Cyber-Ship [46]
with the mass of 23.8 kg and the length of 1.255 m. The initial configuration is
x(0) = (xl (0), x? (0)), where x!(0) is the initial position of MC 1 and x?(0) is
the initial position of MC 2. The position of the target is the origin. The radii of
different discs used in this model are chosen as R; = R, = 3.5 m. We specify the
other model data as follows:

n=2,x(0) = (xl(O),xz(O)), x(t) = (1,1,—1,—1), c(t) = —7 for all ¢,
geu)i=u 9 1) = 3 Ix(DIP + 3T s1 =52 = 1,
U= {u(®) = ' @®),4*®) e R* | ' (®)]| < 100, [[(1)]| < 60},
0" = 0 = 0¥ = 45°, x1(0) = (—25,-25), x*(0) = (—15,—15).
(23)
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5

-20

=25

-30

-30 -25 -20 -15 -10 -5 0 5
X(m)

Figure 1. Marine vehicle navigation before the contacting time.

The moving set C() in the sweeping inclusion (22) is described now by

ClH) = {x e R*| (x.(t),x) < c(t)}
:{XER4 | x11+x12_x21_x22 S_7}

— {x€R4 | |X21 _xlll +|x22_x12| > 7}

21

(under the imposed assumptions x*! > x'! and x*? > x'%)

={xeR*| |¥* —x'| > 2R} forallt e [0,T].

The structure of the problem in (22) and (23) suggests that the object changes its
velocity only when it hits the boundary at some time ¢, with m € {0,1,...,k}. If
furthermore t,,, < T, the object slides on the boundary of C(¢) for the entire time
interval [t,,, T].

Observing that the controlled sweeping process in (22), (23) satisfies all the
assumptions of Theorem 2.5, we have the following relationships to find optimal
solutions x(¢) = (X' (t), x*(t)), u(t) = (#'(t), #*(t)), and T.
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u(t) = no(L,1,=1,=1) ift € (0, 1),
(1) x(t) = w(t) — pm(1,1,=1,=1) ift € (ty, T)
with 79, 17, > 0.
(2) p(t) =0forae.t e [0,T].
(3) q(®) =pH)— €t/ dy (1)(1, 1,1, ~1).
(4) w(t) =q(t) € Nu(t); U) ae.t € [0, T].
(5) (w(t), u(t)) = max,ey(y(t),u) a.e. t € [0, T], which can be rewritten as

(1O 2 0) + (20,7 0) = max {{y1(©,u') + p2(0) )}

where y1 () = (y11(2), w12(9)) and w2 (t) = (w21(5), w22 (2)).

6) n(t) =0, |x* —x'|| > 7= 5(t) =0forae.t e [0,T)].

(7) n(t) > 0= x> —=x'|| =7aetel0,T]

® { 1D >0= B +2D] =7,
L e tlip(t),x() dt = uT.

) { (> p, lyollry > ly>1llpy) # 0, u >0, A
u=1if{1,1,—-1,-1),x(¢t)) < =7 on [0, T].

(10y | supP(ro) U supp(y=) C (] 1% (8) = () = 7%

supp(y>) Nint(Ep) = @ if int(Ep) = int({t | #(¢) > 0}) # 0.

By condition 2, p(t) is constant on [0, T]. Substituting it into 3 yields

q(t) = p(h)— e t] (1,1, -1,=1)dy () = p(T) — (1,1, =1, = 1)y ([, T]).
(24)
Then combining (24) and 8 gives us the expression

Since we start from an interior point of the polyhedron, the measure y is zero
in the interval [0, ¢,,,]. Let us investigate behaviour of the trajectory before and
after the hitting time t = t,,. Remembering that the trajectory does not hit the
boundary before t = t,,, it follows from 6 that y ([¢t, T]) = y ([tm, T]) for all t €
[0, t,,,). Thus

q(t) = —ux(T) = (1,1, =1, =1) (0(T) + y ({tm, 1)) =: Tm = (r1m, 72m) € R*

(25)
for all ¢ € [0, t,,). From now on, we suppose for determinacy and simplicity in
this complicated model that optimal control under consideration is constant on
[0, T] and belong to the interior of U. Combining 4 and 5 tells us that

(rims #8') 4 (rag, #°) = max {(rim,u') + (ram, )},
(ut,u)eU


Deleted Text
Deleted Text
behavior 

THI DAI TRANG NGUYEN

THI DAI TRANG NGUYEN

THI DAI TRANG NGUYEN


818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860

20 (&) B.S.MORDUKHOVICH ET AL.

which can be written by (25) in the form

(—ux"(T) = (L D) + y (b, TH), ')
+(~uX(T) = (L, =D)(T) + 7 ([t TH), &)
= max {(—,ufcl (T) — (1, 1)(5(T) + y ([fm,ﬂ))>”1)

(ul,u?)eU
+ (=) = (=1, =) (T) + y (b, T)), )}
According to the above, consider the linear function
P!, u?) = (—ux"(T) = (LK) + y ([t T)), ')
+{=p%(T) = (=1, =1)((T) + 7 ([tm, TH), 1),

which attains its maximum over U at the interior point (i1, #2). Thus the Fermat
rule for ¢ gives us the conditions

— ux (D) = (L)) + 7 ([t TN and
#3(T) = (LHO(D) + 7 ((tm: 1),
which imply in turn the equalities
—x'(T) = (1) = (LD@(T) + 7 ([tm, T1)). (26)

When the particle moving hits the boundary at the time ¢ = ¢,,, it follows from
6 that

122! (tn) — X' (tm)] + 152 (tm) — ¥ 2(tm)| =7, and

P [;10=0 ift e [0,t,],

Nm >0 ift e [ty T].

After the hitting point, both these marine USVs will move to the target under the
control u. This yields

x'(t) = (=254 tl|u'| cos 0¥, =25 + t[|u* || sin %),
x2(t) = (=15 + t]|u?|| cos %, —15 + t[|u?|| sin 6*)

for t € [0, t,,) as well as the representations

x1(t) = (=254 tllu || cos 6% + (t — ty) (|| 5 || cos % — 1),
—25 + ty || it || sin 0% + (t — t) (|0 || sin 6% — ),

X2(t) = (=15 + tmllu* || cos 0% + (t — ty) (|42 cos 6" + 1),
—15 + ty |5 sin 0¥ + (t — ty) (7] sin 0¥ + 3,))
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for t € [tm, T]. Recalling that the normal vectors are inactive before the hitting
time, we arrive at the equality

V2

2 X=
2

10 + gtm(uazn — [l + (¢ — tm)( (e = Nzt + 277m)

=7 ift>t,
for the time of contact. This brings us to the equation

NG

10 — 7tm(nfﬂn — @' =7,

which has the following two solutions:
tm = 13 and t,, = —27
V222 = latl) V22 — luk])
with [|#?|| < ||&!]|, which will both be checked for the optimality below. When

X() hits the boundary of C, it would stay there while pointing in the direction
shown in Figure 2. Thus we get

(27)

a1 = 1) + 210 =0, andso g, = LZUELZITD o
Furthermore, it follows from (26) that the optimal time is calculated by
pem 02
2] + Nl |

Since p(-) is constant on [0, T}, the third condition in 8 yields

% e p(T), 5N dt = uT, e p(DXT) = uT". (29)

To get enough information, suppose that 4 = 1. Substituting (29) into the first
equation in 8 yields
T2
—m(1,1,-1,-1) = X(T) + —=. (30)
Nm( ) (T) (T
With (27) and 7, taken from (27) and (28), respectively, the cost function value
at (30) is

2
_ 2 2
JI%u, T] = =25+ %tmllﬁlll + (t = tm) (%IIQIII - 77m)

2
V2 V2o 1—
+—15+Ttm||u2||+(t—tm) T||u2||+nm —I—ETZ.

When the object hits the boundary, it then slights there until the end of the pro-
cess, i.e. t > t,. It then follows that #,, > 0. By using computer calculations, all
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the cases can be analysed. This shows that the best performance is obtained by
-13
V2@ = @)

—13||%Y N 404/2 —-13
2(||ﬁ2|| — @) @+ lutll V2@ — at)

g Y20~ Wn))}2
4

—13|)#?| N 4042 —-13
2(||112|| — [l@tl) @20+l 2312 — fat])

2
(£ (L ||f¢2||))}2
2

4
2
+ 1 4042
121+ [l

This function achieves the minimum value J ~ 6.1875 at ||u'|| &~ 99.9999,
42| & 59.9999, and T = 0.35355, which imply that t,, ~ 0.2298 and x(T) ~
(—1.7502, —1.7502, 1.7498, 1.7498). This tells us that under the imposed assump-
tions we arrive at the unique optimal control (ii!,%?) & (70.7106,70.7106,
42.4263,42.4263). The corresponding optimal trajectory is

choosing the contacting time t,, = for which we have

JIx, i, T)

ol
(

x1(t) & (=25 + 70.7106t, —25 + 70.7106t) ,
x%(f) &~ (=15 + 42.4263t, —15 + 42.4263t)

for t € [0,0.2298), and finally

x!(t) & (=21.7500 + 56.5685¢t, —21.7500 + 56.5685t)
x%(t) ~ (—18.2500 + 56.5685¢t, —18.2500 + 56.5685t)

for the last interval t € [0.2298, 0.35355].

5. Applications to nanoparticles

The motivation to explore the motion of nanoparticles in a straight tube is
driven by the profound influence of nanotechnology and biotechnology on phar-
macology. This impact has significantly enhanced the performance of existing
drugs while also enabling the development and utilization of novel drugs and
therapies. Recognizing the transformative effects of these technologies on drug
delivery and treatment strategies, this section seeks to understand and optimize
the motion of nanoparticles within a confined space. Our research is motivated


Deleted Text
Deleted Text
analyzed


947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

OPTIMIZATION 23

-20 +*

=25

-30

-30 -25 -20 -15 -10 -5 0 5
X(m)

Figure 2. Marine vehicle navigation after the contacting time.

by the potential applications of such motion in improving drug delivery preci-
sion, facilitating controlled release mechanisms, and ultimately contributing to
advancements in pharmaceutical and therapeutic practices. We study a scenario
involving nanoparticles characterized as inelastic disks with varying radii. The
objective for each nanoparticle is to traverse straight circular capillaries and reach
the target at the end of the tube, in the shortest time. Throughout this motion,
the nanoparticles potentially make contact with the other n—1 nanoparticles and
treat them as obstacles while avoiding collisions.

For simplicity, taking into account the assumptions in [3] that the motion of
the nanoparticles is considered on the xz-plane, i.e. the nanoparticle inelastic disk
centre is always in the y = 0 plane, and there is no rotation of the nanoparti-
cle about the z-axis. The nanoparticle therefore has two degrees of freedom: its
motion is fully described by specifying (x'!, x?) as functions of time t, where
x'! and x™ are coordinates of the centre of nanoparticle i. The trajectory of
each nanoparticle is governed by the forces exerted by the flow (blood stream)
and the gravitation. Forces acting on nanoparticles include hemodynamic forces,

| Colour online, B/W in print
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Figure 3. Nanoparticles in a straight tube.

buoyancy, Van der Waals’ interactions between nanoparticles each-to-other and
between nanoparticles and walls. To derive the equations describing the motion
on the x-axis and on the z-axis, we apply (as suggested in [47]) the balance prin-
ciple of forces acting on the nanoparticles. As considered in [48], the balance of
forces acting on the nanoparticles requires, for each nanoparticle 7, a system of
two equations on the x-axis and the z-axis; see Figure 3.

Since all the nanoparticles intend to reach the end of the straight circular cap-
illaries by the shortest path, their desired spontaneous (i.e. in the absence of other
obstacles) velocities can be represented as

S(x) =(s1,...,8n), withs; = (s,1,8,2), fori=1,...,n,

where the velocity of nanoparticles are obtained after solving the following ODE
system from [3]:
dixl _ — [hg’l (xiZ) + hg/z(xiZ)] S
d.t \ Wit (xi2) + hi? (x2)
d.xlz _ ?ﬂgRAP + 21751 FI] + Fiw
dt he' (xi2) 4+ he* (x72)

fori=1,...,n.
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Here S is the shear rate of the flow, h{* and h;* are the hemodynamic resistant
force induced by the wall wy on the x-axis, hs* is the hemodynamic resistant
force induced by the wall wy on the z-axis (k = 1, 2), Fj; is the force exerted over
nanoparticle i due to van der Waals’ interaction energy between the nanoparticle
i and nanoparticle j, and Fj, is the force exerted over nanoparticle i due to van
der Waals’ interaction energy between the nanoparticle i and the walls, i.e.

Fiy = |Fiw1 _Fiwzla

where Fj,, is the force exerted over nanoparticle i due to van der Waals’ interac-
tion energy between the nanoparticle i and the wall . It is known that

AR}
Ij = 4
I)g

where Dj; is the distance between the nanoparticles i and j. In the equations above,
R; denotes the radius of nanoparticle i, A , stands for the difference between mass
densities of the nanoparticles and the fluid, and g is the standard gravitational
acceleration.

Now we introduce the sweeping optimal control problem (P) for the nanopar-
ticles model discussed above. This formulation considers the aforementioned
model objective and utilizes the modelling framework developed in Section 3.
Similarly to Section 4, define the cost functional

1 1
minimize J[x, u, T] = 3 lix(T)|1* + 5TZ, (31)

which reflects the model goals to minimize the distance of the nanoparticle from
the admissible configuration set to the end of the straight circular capillaries
together with minimizing the time to reach the target. Employing the nonover-
lapping algorithm introduced in [10] for the study of inelastic collision (see also
[15, 20] for further developments in other models) and taking into account the
above discussions, we describe the continuous-time dynamics by the controlled
sweeping process

x(t) € =N (x(t); C(t)) + g (x(t), u(t)) a.e. t € [0, T],
x(0) = xy € C(0) C R?", (32)
u(t)y e Uae.t € [0,T],

where the control constraints reduce to (12), and the dynamic nonoverlapping
condition ||x'(f) — ¥/ (#)|| > R; + R; is used to formulate the moving set

C(t) = {x(t) e R¥ | (:(£),x(D) < (D), j=1,...,n— 1} (33)

with ¢j(t) := —(Rpano + Robs), where Ryano, Rops are the radii of the considered
nanoparticle and the obstacle, respectively. The n—1 vertices of the polyhedron
are constructed as in (19).
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Observe that, although the frameworks of nanoparticle and marine USV
models are rather similar, these two models are essentially different. The dif-
ference between them lie in both dynamics and constraints. In particular, the
motion of nanoparticles is governed by the forces exerted by the flow (such as
the bloodstream) and gravity. The forces influencing nanoparticles encompass
hemodynamic forces, buoyancy, as well as Van der Waals’ interactions, occurring
among nanoparticles, both inter-particle and with surrounding walls. Conse-
quently, to have the velocities of the nanoparticles, we should take into account
all these factors, which are presented in Table 1.

Our initial data for the nanoparticle model are given as follows:

(11 =2, 1= 7um = 7000nm, h = 0.0075, R, = 5nm,

Ry = 10nm, S = 1600e6 s~ 1,

A=5e—21,g=981e9, u =3.4e—3, Ap = —1e3,

a = 0.5um = 500nm,
1%, = (1,1,—1,—1), x(0) = (x'1(0), x'2(0), x*1 (0), x%2(0)),

c=—R;y — R, = —15,

glow) =1, 9 (5, T) := 3lx(D* + 317,

U= {u= (u',u?) e RY [lu'] € [0,3], l2] € [0,3]] [lu']| =2]l2|},
0% = 45°, x1(0) = (=350, —350), x%(0) = (=200, —200) .

(34)

The data for nanoparticles in the viscous flow inside a tube with length [, width

a, and parameters h, R;, Ry, T, A, g, 11, and A p are taken from [3]. The data for S

and related parameters reflected in Figure 4 are taken from [49]. The controlled
desired velocities are naturally described by

g (x(®), u(t)) = u(t) = (s1)|u' (1| cos 6*(2),
stllul (1)1l sin 0% (£), 521t (£) || cos 0 (8), sz |lu* () || sin 0¥ (£)) .

Table 1 collects the results of calculations of the model ingredients according to
the above formulas with the data of (34) for two nanoparticles i = 1, 2.

At the initial time, we have (x'1(0) — x%1(0))? + (x12(0) — x?2(0))? =45,000.
Let t, > 0stand for the first contacting time between the two nanoparticles, i.e.

t,:==min {t € [0,T] | IX'(t) — ¥ ()| = Ry + R, }.

Recall that the nanoparticle tends to keep its constant direction and velocity
until either touching the other nanoparticle (obstacle), or reaching the end of
the straight microtube at t = T. To proceed further, suppose that x > 0 for def-
initeness and apply the necessary optimality conditions of Theorem 2.5 in our
control model. We arrive at the following relationships:



1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161

OPTIMIZATION 27

N

V

Figure 4. Nanoparticles with the desired velocities.

(1

2
3)
4
®)

(6)

™)
®)

=G0, X12(0), ¥(0), X2 (1) = n(H(1,1,—1,-1) —

(s1|@t(1)] cos 0¥, sy |ul (t)] sin 0%, s;|u*(t)| cos 0¥, s,|u*(t)| sin6*) for a.e.
t e [0,T].

X' (£) — X2(t)|| > Ry + Ry == n(t) = 0forae. t € [0, T].

n(t) > 0 = (x.,q(t)) = 0forae.t e [0, T].

(—p(T) — (T)x,, H) € Vo (x(T), T) whergiHp== % e tl(p(t), x(t)) dt.
q(t) = p(H)— € b T dyn(@)e for all t € [0, T] except at most a countable
subset.

(w (1), u(t)) = maxyeu(y (1), u),  where  y(t) := V,g(x(r), u(t))*q(r)
fora.e. t € [0, T].

n(T) > 0 = ||x'(T) + X*(T)|| = Ry + Ry.

p(t) =0, forae.t € [0, T]
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1162 Taking into account that the nanoparticle directions are constant as well as the
1163 assumptions in the model imposed above, we seek for simplicity constant opti-
1164 mal controls. Then it follows from condition 2 that the function #(-) is piecewise
1165 constant on [0, T] and admits the representation

1166

0 fort e [0,t,),
1167 n(t) = i (35)
1168 n fort e [t T].
1169 . . . . . .
1170 Using now 1, the dynamic equations prior to and after the time ¢, can be rewritten
1171 2
1172 X\(t) = (silit'| cos 0%, sy |u'| sin6*) and
1172 X4 (t) = (s]#| cos 0%, 5, |u?| sin0*)  for t € [0, 1,),
117
1175 x1(t) = ( n(t) + 1|t cos 0%, —n(t) + s1 || sinQ”) and
1176 X2(t) = (17(1‘) + sp|1?| cos 0%, 5(t) + sz sin«9“) for t € [t,, T].
1177

1178 At the contacting time ¢ = t,, the two nanoparticles have the same velocities till
1179 the end of the straight tube, which yields x (t) = x2 (t) for all t € [t,, T]. This
1180 gives us in turn the following calculation of the corresponding value of # in
1181 representation (35):

1182 1

1183 3 (s1]i'| cos 0" — s3|u?| cos 0) if sy|it}| # s,]i?| and cos@* = sin 6,
]’I el

1184 0 otherwise

1156 (6

1187 The case of # = 0 is trivial. Applying the first formula in (36) and the constant
1188 nanoparticles velocity after the contacting time till reaching the target, we deduce
1189 from the Newton-Leibniz formula that

1190 ia_cl(t) = (9_611(0),3_612(0)) + (tsllitll cos %, tsi|u'| sinH“) and

1191

1192 xX*(t) = (5621(0),.9_C22(0)) + (tszlitzl cos %, tsy|u?| sin@”) fort € [0, t,),
193 [31(r) = (%11(0),x'2(0))

113451 + (tsllitll cos 0% — n(t — t,), ts|u'| sin@* — n(t — t*)) and

96 [¥0 =("1(0,30)

1197 + (tszlitzl cosO" + 5(t — t,), tsp|u?| sin 0% + y(t — t*)) fort € [t,, T).
1198 (37)
1199

1200 Note that [|X?(t.) — x!(t.)|| = Ry + R, at the contacting time ¢ = t,. Recalling
1207 then thatwe use the sum norm yields the following equation for £,:

1202 1%21(0) — %11(0) + £, (s21?| — s1li]) cos 0]

1203
1204 + [X*%(0) — ¥'2(0) + t, (s2li?| — s1lé']) sin 0¥ = Ry + Ry, (38)
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which makes the connection between t, and the control # = (i, 112) via the
given model data. Since the trajectory does not hit the boundary before ¢t = ¢,,
we deduce from 4, 5, and 8 that

qt) = —ux(T) — (1, =1) (n(T) + y (6 T)) =: (i) e R (39)
for all ¢t € [0, t,). Thus the maximization condition in 6 tells us that
(rys () + (i, @2 (0)) = max {(ry, uh) + (1, 0)}
fora.e. t € [0, t,), which can be written by (39) as

(—ux"(T) — ui*(T) + (T + y ([t, TD), (=i (1) + @ (1))
= gleag{(—ﬂ (x'(T) + X*(T)) + (n(T) + y (L, TD) » (=u' + u™))}  (40)

with #(T) > 0. Considering the case when the optimal control controls #' and
2 are interior points of the control domain U, we have from the maximization
of the function

¢ @', u?) = (u', (=n(T) =y ([t, T]) — ux'(T)))
+(u, (n(T) + 7 (1, T]) — u&*(T)))

the following explicit conditions:

o If[[#(1)|| < 3, then —y(T) — y (1, T]) = ux'(T).
o If[|#2(D)|| < 3, then 4(T) + y ([t, T]) = ux*(T).

If both cases above occur, then we get u(x'(T) + x*(T)) = 0. The last
equation gives us the relationship

*1(T) + ¥*(T) = 0,

provided that u = 1 assumed without loss of generality. Combining the latter
with (37) gives us T|#?| ~ 8.3275¢ — 13. Furthermore, it follows from (38) that
either t,|#%| & 6.1372e — 13, or t,|i?| & 6.7832¢ — 13. Examine now both these
possibilities for t,.

Case 1: If t,|#%| &~ 6.1372¢ — 13, then we get T = 1.3569t,. Furthermore,
using (36) and the fminsearch program from MATLAB for the cost functional
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1248 J[x, i1, T], we obtain that
1249

1250 1 2 «/5 2 \/5 )
= — | 2s1|u — | —s|u — = (1.1609¢ + 14)|u 0
o1 " 2( Y |( )l ) )=« )| #

1252
1253 and that the following expressions hold:

1254 (120 ~ 23806, 72| ~ 1.1903
1255 || ~ 2.3806, [u7] ~ 1.1903,

1256 x1(t) & (=350 — (5.3126e + 14)t, —350 — (5.3126e + 14)t),
1257 t € [0,5.1688e — 13),
1258 x1(t) &~ (=278.5765 + (3.9308¢ + 14)t, —278.5765 + (3.9308¢ + 14)t),

323 | t € [5.1688¢ — 13,7.0135¢ — 13],

1261 x2(t) &~ (=200 — (2.5489¢ + 14)t, —200 — (2.5489%¢ + 14)t),

1262 t e [0, 5.1688¢e — 13),

1263 X2(t) ~ (—271.4235 + (3.9307¢ + 14)t, —271.4235 + (3.9307e + 14)t),
1264 t € [5.1688¢ — 13,7.0135¢ — 13],

1265 )

1266 with t, = 5.1688¢ — 13, T = 7.0135e — 13, and J = 14.3596.
1267  Case 2: If t,|u?| ~ 6.7832¢ — 13, then we get T ~ 1.2277t,. Furthermore,
1268 using (36) and fminsearch program from MATLAB for the cost functional

1269 J[x, u, T], we obtain that

1270

1271 |u'| ~ 2.3804, [u?| ~ 1.1902,

1272 |®'() & (=350 + (5.3122¢ + 14)1, —350 + (5.3122¢ + 14)t),

1273 t € [0,5.6744e — 13),

E;‘; 7 (f) & (=271.5966 + (3.9305¢ + 14)t, —271.5966 + (3.9305¢ + 14)t),
e t € [5.6744e — 13,6.9665¢ — 13],

1277 x%(t) & (=200 + (2.5487¢ + 14)t, —200 + (2.5487¢ + 14)t),
1278 t € [0,5.6744e — 13),
1279 %% (t) ~ (—278.4034 + (3.9304¢ + 14)t, —278.4034 + (3.9304e + 14)t),

1280 t € [5.6744¢ — 13,6.9665¢ — 13].
1281\

1282 Then the corresponding value of the cost functional is ] = 36.3565.

1283 Comparing the cost functional values in the two cases above, we confirm
1284 that (!, %) = (5.3126e + 14, 5.3126e + 14,3.9308¢ + 14,3.9308¢ + 14) is the
1285  optimal control to this problem.

1286
1287
1288
1289 The paper presents applications of newly derived necessary optimality conditions
1290 for free-time optimal control of sweeping processes to practical problems arising

6. Concluding remarks
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in marine surface vehicle and nanoparticles models. This is done for the first time
in the literature. The obtained results and calculations demonstrate the efficiency
of the established optimality conditions to solve practical problems under certain
assumptions that simplify the calculations. In our future research on these and
related topics, we intend to relax the imposed assumptions to be able, in partic-
ular, to determine optimal strategies in these and related models among variable
control actions in the corresponding sweeping processes.
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