
Pairing Security Advisories with Vulnerable

Functions Using Open-Source LLMs

Trevor Dunlap1,2, John Speed Meyers2, Bradley Reaves1, and William Enck1

1 North Carolina State University, Raleigh, NC, USA
2 Chainguard, Kirkland, WA, USA

{trevor.dunlap, jsmeyers}@chainguard.dev

{bgreaves, whenck}@ncsu.edu

Abstract. As the reliance on open-source software dependencies in-
creases, managing the security vulnerabilities in these dependencies be-
comes complex. State-of-the-art industry tools use reachability analysis
of code to alert developers when security vulnerabilities in dependencies
are likely to impact their projects. These tools heavily rely on precisely
identifying the location of the vulnerability within the dependency, specif-
ically vulnerable functions. However, the process of identifying vulnerable
functions is currently either manual or uses a naive automated approach
that falsely assumes all changed functions in a security patch link are
vulnerable. In this paper, we explore using open-source large language
models (LLMs) to improve pairing security advisories with vulnerable
functions. We explore various prompting strategies, learning paradigms
(i.e., zero-shot vs. few-shot), and show our approach generalizes to other
open-source LLMs. Compared to the naive automated approach, we show
a 173% increase in precision while only having an 18% decrease in recall.
The significant increase in precision to enhance vulnerable function iden-
tification lays the groundwork for downstream techniques that depend
on this critical information for security analysis and threat mitigation.

Keywords: Vulnerable Function · Security Advisory · Security Database
· Large Language Model

1 Introduction

In software development, leveraging open-source dependencies is fundamental,
accelerating innovation and development processes. Yet, these dependencies
often carry the burden of security vulnerabilities, posing significant management
challenges [2]. This challenge has led to the widespread use of software composition
analysis tools (e.g., OWASP Dependency-Check, GitHub Dependabot) that notify
developers of potential vulnerabilities in their dependencies. One shortcoming is
that these tools often overgeneralize by flagging any inclusion or use of a known
vulnerable dependency as potentially vulnerable, resulting in a high rate of false
positives [10] and alert fatigue [1].

State-of-the-art industry tools [28,14,17] have begun to determine how those
dependencies are used within projects. These tools rely on a program analysis

concept known as reachability to determine whether functions containing vul-
nerable portions of code are ever called within dependencies. By assessing if
vulnerable functions are called, developers can prioritize genuine threats, focusing
on vulnerabilities that pose an actual risk to their projects. However, the success
of reachability analysis first depends on accurately identifying vulnerable func-
tions within dependencies. Incorrectly identifying safe functions as vulnerable
causes unnecessary alerts for developers about threats that do not exist.

There are two common approaches for pairing security advisories with vulner-
able functions: (1) manual curation and (2) using a naive automated approach
that considers all changed functions in a security patch link as vulnerable. The
Go Vulnerability Database (GoVulnDB [16]), supported by Google’s Go security
team, exemplifies the manual approach by releasing high-quality security reports
for the Go community. In these reports, the Go security team manually identifies
the root cause of vulnerabilities, accurately pinpointing the exact vulnerable
functions. Despite its high accuracy and the trust it builds, this manual process
is time-consuming and limited in scalability.

Alternatively, the automated approach, often seen in academic literature
[40,7,15,27,4], is intuitive but flawed. The automated approach assumes all mod-
ified functions in a security patch are vulnerable. The underlying assumption
is that developers are only addressing the vulnerability and not any additional
changes during the patching process. However, our preliminary analysis found
that out of all the functions the automated approach labeled as vulnerable,
only 22% were correct when using GoVulnDB as ground truth. This means that
78% of the functions modified in a security patch were unrelated to the actual
vulnerability, underscoring the significant issue of overestimation and highlighting
the need for improved automated methods.

In this paper, we hypothesize that LLMs can significantly improve the accuracy
of pairing security advisories with vulnerable functions over the current naive
automated approach. Our high-level approach is to take a vulnerability description
from the security advisory and the associated changes from the security patch
link to ask the model if the changes fix the underlying vulnerability. We explore
various model sizes (i.e., CodeLlama 7 billion (B) parameters, 13B, and 34B
versions [31]) using a variety of prompting strategies. We develop three prompts:
a simple standard prompt, a detailed prompt, and a chain-of-thought prompt
that involves the model providing an explanation [38]. We evaluate these prompts
in two learning paradigms: either zero-shot or few-shot. The zero-shot approach
does not have examples in the prompt, and the few-shot relies on our retrieval
system to obtain similar examples to provide in the prompt to help guide the
model. Additionally, we evaluate the computation times for each strategy. Finally,
we explore how these techniques generalize to three other popular code-oriented
LLMs (Mixtral [21], WizardCoder [26], and DeepSeek [26]).

Our experimentation demonstrates the following key findings:

– LLMs surpass the naive automated approach that assumes all functions
modified in a security patch are vulnerable. We show a 173% increase in

func unzipFile(file *zip.File , dstDir
string) error {

- filePath := path.Join(dstDir , file
.Name)

+ name := strings.TrimPrefix(
filepath.Join(string(filepath.
Separator), file.Name), string(
filepath.Separator))

+ filePath := path.Join(dstDir , name
)

(a) Modifications in the unzipFile function
prevent a path traversal vulnerability by
sanitizing the file name before joining the
destination directory path.

func RemoveFile(path string) error {
- err := os.Remove(path)
- return err
+ return os.Remove(path)
}

(b) Refactoring of the RemoveFile non-
vulnerable function to directly return the
result of os.Remove(path), removing the
temporary variable.

Fig. 1: Condensed updates of multiple functions in the patch for the Go utility
library, go-huge-util, addressing CVE-2023-28105. Figure 1a are changes to the
root causing vulnerable function, unzipFile. Figure 1b shows unrelated changes
to the underlying vulnerability in function RemoveFile.

precision (i.e., from 0.22 to 0.60) with only an 18% decrease in recall (i.e.,
from 0.90 to 0.74).

– Smaller models, with appropriate prompting, can match or even exceed the
performance of larger models, suggesting a resource-efficient alternative.

– While chain-of-thought prompting proves the best approach in zero-shot
settings, it comes at a 13x slowdown compared to more streamlined prompting
with a few-shot setting that can show similar results.

– Our approach generalizes to multiple LLMs, allowing downstream users to
pair security advisories with vulnerable functions.

We have released our data and implementation on GitHub.3

2 Background

2.1 Motivating Example

Security advisory CVE-2023-28105 highlights a path traversal vulnerability in
the go-huge-util Go library. Within the security advisory, a reference link exists,
also known as a patch link, that points to how a developer applies a fix for the
vulnerability. These patch links are the basis for identifying vulnerable functions.
However, the patch for CVE-2023-28105 does more than fix the vulnerable
function, as described by the developer in the commit message: “fix zip.Unzip path

traversal vulnerability and add some new file utility functions.” Specifically, the
patch has modifications in four files, modifies five existing functions, adds two new
functions, and totals 104 line additions and 45 line deletions. The comprehensive

3 https://github.com/s3c2/llm-vulnerable-functions

id: GO -2023 -1640
modules:

- module: github.com/dablelv/go-huge -util
packages:

- package: github.com/dablelv/go -huge -util/zip
symbols:

- unzipFile
derived_symbols:

- Unzip
cves:

- CVE -2023 -28105
references:

- fix: https: // github.com/dablelv/go -huge -util/commit /0 e308b0

Fig. 2: Condensed GO-2023-1640 report for CVE-2023-28105.

changes within the patch link underscore the complexity of accurately identifying
vulnerable functions.

Figure 1a contains the changes to the root causing vulnerability within the
patch link for CVE-2023-28105 and its fix in the unzipFile function. The fix was
straightforward: the file path input requires sanitization to prevent the traversal
vulnerability. Interestingly, the security advisory and developer mentions the
function zip.Unzip: “When users use ‘zip.Unzip‘ to unzip zip files from a malicious

attacker, they may be vulnerable to path traversal.” However, the Unzip function
was unchanged during the patch link, and this is simply the public-facing function
that calls the underlying vulnerable function, unzipFile.

In addition to fixing the underlying path traversal vulnerability, other changes
occurred within the patch link. Figure 1b is an example of one of the five existing
functions modified during the patch link unrelated to fixing the path traversal
vulnerability. In this case, the developer refactored the function RemoveFile to
directly return the status of removing the given file instead of saving the result
in a temporary variable. Using a naive approach to label all changed functions
in a patch link as vulnerable would misidentify the non-vulnerable function
RemoveFile as vulnerable, thus creating noise for downstream data consumers.

2.2 Go Vulnerability Database (GoVulnDB)

The Go Vulnerability Database (GoVulnDB), supported by Google, is a high-
quality dataset of vulnerabilities in Go [16]. The Go Security team compiles data
from various datasets (e.g., the National Vulnerability Database, GitHub Advisory
Database). The Go Security team then manually checks reports for precise details
about the vulnerabilities, including descriptions and affected versions [18].4

Vulnerable Functions: One unique aspect of GoVulnDB is its curation
of vulnerable functions. These vulnerable functions are in two distinct fields:
symbols and derived symbols. The symbols field identifies the root causing vulner-
able functions, such as functions or methods, that directly cause the reported

4 After the submission of this paper, GoVulnDB started experimenting with assigning
any changed functions within the patch links as vulnerable.

Algorithm 1: Generalization of the naive automated approach used in
prior work [40,7,15,27,4].

Input: patchLink from the security advisory
Output: functions unique set of changed functions in the patch

1 ChangedFuncs(patchLink):

2 functions← empty set
3 for (gitHunk, fileName) ∈ PatchParser(patchLink) do

4 if "test" not in ToLower(fileName) then

5 for lineNumber ∈ gitHunk do

6 for func ∈ Tree-Sitter(fileName) do

7 if func.startLine ≤ lineNumber ≤ func.endLine then

8 functions.add(func.name)

9 return functions

vulnerability. These initial symbols are manually identified by the Go security
team. The derived symbols represents a further analysis of public functions that
reach the root causing vulnerable symbols. These derived symbols are generated
automatically using portions of their static analysis tool govulncheck [17] and
converted into reports using their vulnreport tool [19]. The GoVulnDB is a
reliable, ground-truth foundation for understanding the nature of pairing security
advisories with their associated vulnerable functions.

Figure 2 shows the GoVulnDB report, GO-2023-1640, for the prior motivating
examples. The Go security team manually reviewed the report and identified the
root causing vulnerable function as unzipFile. When automatically generating
the derived symbols, the Unzip function is identified as the public-facing function
initially mentioned in the security advisory description.

3 Naive Automated Approach (ChangedFuncs)

While manual curation of vulnerable functions delivers high-quality data (e.g.,
GoVulnDB), it suffers in scalability. The alternative approach, commonly seen in
academic literature [40,7,15,27,4], uses an automated approach. The automated
approach, while intuitive, is naive. The underlying assumption is that all modified
functions within a patch link are vulnerable. However, we find the approach only
correctly identifies 22% of the root causing vulnerable functions (Section 5.2),
further emphasizing the need for an accurate automated approach.

To replicate the naive automated approach for identifying vulnerable functions,
we implement Algorithm 1, referred to as ChangedFuncs. This process begins
with a patch link from a security advisory. Such patch links lead to specific
commits in a project’s source code repository, highlighting the changes. These
commits, also known as git-diffs, appear in hunk levels (git-hunks). A git-hunk
represents a block of code changes within a file. Naturally, git-hunks do not
specify if these changes are within functions, as modifications can occur inside
and outside functions. Determining if the git-hunks are modifying code inside

Prompt
Design

Advisory
Description

Retrieval
System

Function
Git-Hunk

Zero-Shot

Few-Shot

LLM
Generation

Text
Output

Fig. 3: Our design approach involves using either a zero-shot or few-shot technique
for pairing security advisories with vulnerable functions.

of a function is trivial. We first parse the patch links with PatchParser [13], a
Python library that transforms commits into machine-readable data and provides
the associated line numbers of git-hunk modifications. Using Tree-sitter [33], a
language-agnostic parsing library, we identify the functions’ start and end line
numbers within the same file the git-hunk appears in. If a git-hunk’s modifications
are within a function’s line range, the git-hunk is labeled with the function name.
We also exclude files containing the word “test,” ensuring only non-test functions
impacted by the patch are considered. In our results, we use ChangedFuncs as a
baseline, treating each identified function within the patch link as vulnerable.

4 LLM Approach

Figure 3 overviews our approach for using Large Language Models (LLMs) to pair
security advisories with vulnerable functions. Our approach consumes a given
security advisory (i.e., GoVulnDB report) and individual function code changes
(i.e., git-hunks) from the associated patch link within the security advisory. We
design three prompts: a standard, detailed, or chain-of-thought prompt, all aimed
at determining whether the code changes address the vulnerabilities described in
a security advisory. We compare these prompts in two scenarios: a “zero-shot”
setting, where the LLM operates without prior examples, and a “few-shot” setting,
incorporating similar examples into the prompt to guide the LLM’s analysis.
These similar examples rely on our retrieval system. From there, the prompt
is given to the LLM to generate an output to determine if the given function
changes are related to fixing the specific security advisory description.

4.1 Input Data

Our approach relies on two inputs: the description from the security advisory
and associated function changes (i.e., git-hunk) from the patch link.

Security Advisory Description: We rely on the free-form text description
given within the security advisory. We preprocess the description details by
removing any additional spaces and new lines.

Function Git-Hunk: The input granularity within the system is at the
git-hunk level based on the patch links provided within the security advisory. We
chose this level as it helps separate individual changes for a commit.

4.2 System Prompt Design

LLMs rely on system prompts to instruct the model on what to do. We design
three system prompts to instruct the model to determine if the git-hunk is
responsible for fixing a given security advisory. 1) The standard prompt, designed
to be straightforward, asks if the provided git-hunk fixes a vulnerability. 2) The
detailed prompt has more specific instructions for the model, asking to consider
the git-hunk’s direct relevance to the vulnerability description. These prompts
instruct the model to respond in a boolean fashion of either True or False. Where
True represents the git-hunk was indeed fixing or related to the vulnerability
description, and False would mean the fix is unrelated. 3) The third prompt uses
the chain-of-thought method [38], prompting the model to explain the git-hunk’s
function before producing a decision. Each of our prompts is as follows:

Standard Prompt: I want you to act as a vulnerability fix detection
system. Determine if the following git-hunk fixed a vulnerability. Respond
with only ‘True’ or ‘False.’

Detailed Prompt: Your task is to analyze the provided code changes
(GIT-HUNK) to determine if they target a specific vulnerability (Fixed
Vulnerability Description). Review each line, considering its direct rele-
vance to the vulnerability description. Ignore any new vulnerabilities that
may have been introduced. Answer ‘True’ if changes are directly related to
fixing or even somewhat partially related to fixing the vulnerability. Only
provide a ‘False’ conclusion if the GIT-HUNK changes are absolutely
unrelated to the vulnerability. Respond with only ‘True’ or ‘False.’

Chain-of-Thought (CoT): Your task is to analyze the provided code
changes (GIT-HUNK) to determine if they target a specific vulnerability
(Fixed Vulnerability Description). Review each line, considering its direct
relevance to the vulnerability description. Ignore any new vulnerabilities
that may have been introduced. Provide a brief description of what
the GIT-HUNK changes have done, then conclude by labeling ‘True’ if
changes are directly related to fixing or even somewhat partially related
to fixing the vulnerability. Only provide a ‘False’ conclusion if the GIT-
HUNK changes are absolutely unrelated to the vulnerability. Justify your
decision before ending with a clear ‘True’ or ‘False’ decision. Do not
answer right away. Answer in the following format:
Explanation - {Your Explanation}
Final Decision - {True/False}

4.3 Zero-shot and Few-shot Learning Paradigms

Two distinct learning paradigms exist in LLMs: zero-shot and few-shot learning.
The primary difference between the two is if example data is present in the
prompt. Figure 4 illustrates the high-level template for each approach. A primary

{system prompt}

System Input
Advisory Description:
{advisory-description}
Function GIT-HUNK:
=====================
{git-hunk}
=====================

(a) Zero-shot prompt template for pairing
security advisories to vulnerable functions.

{system prompt}

{retrieval system examples}

System Input
Advisory Description:
{advisory-description}
Function GIT-HUNK:
=====================
{git-hunk}
=====================

(b) Few-shot prompt, note the addition of
the retrieval-based examples.

Fig. 4: Simplified prompt templates for both the zero-shot and few-shot paradagms.
The difference is the addition of the retrieval examples placed after the system
prompt within the few-shot template.

benefit of these approaches is that they do not require end-users to fine-tune any
models and avoid the significant effort of obtaining training data.

Zero-Shot: The zero-shot learning paradigm prompts an LLM without exam-
ples [30]. Instruction-tuned models, such as the ones used within our experiments,
have shown promising capabilities in zero-shot learning [37]. Additionally, zero-
shot is useful when end-users have little to no example data.

Few-Shot: Contrary to zero-shot, few-shot learning incorporates a set of
examples within the prompt [6]. These examples serve as a guide, allowing the
LLM to grasp the context and specifics of the new task quickly. This approach is
beneficial in limited data scenarios, but a set of known ground truth labels must
exist. In the few-shot setting, these examples are added directly after the system
prompts, shown in Figure 4b. However, determining which examples to provide
within the prompt is essential for few-shot learning.

4.4 Retrieval System

The retrieval system enhances few-shot learning by providing relevant examples
to the git-hunk under analysis. The relevant examples are returned through
a similarity comparison process of the known labeled examples and the git-
hunk in question. We begin by building an offline datastore of known labeled
examples, with the GoVulnDB serving as our primary data source (as detailed in
Section 5.1). The core of this system lies in transforming these git-hunks into
embeddings, which are compact vector representations that encapsulate their
semantic meaning. These embeddings are typically generated with a specialized
code embedding model (i.e., CodeT5+ [36]). The embeddings are then stored in
a datastore optimized for vector retrieval (i.e., Faiss index [12]). Upon querying,

Real-time Query

CodeT5+
Embeddings

Function
Git-Hunk

Offline Indexing

CodeT5+
Embeddings

GoVulnDB
Functions

Faiss
Index

K-Similar
Examples

Fig. 5: The retrieval system takes the function git-hunk as input. Then, it returns
k-similar examples based on the set of labeled GoVulnDB changed functions at
the git-hunk level from the ground truth data.

the system fetches both True and False examples of git-hunks with the associated
advisory description similar to the git-hunk under analysis.

Populating the Retrieval System with Examples: To populate the
retrieval system, we rely on a model specifically designed to create embeddings,
the CodeT5+ 110M embedding model [36]. Wang et al. [36] extensively evaluated
CodeT5+ and found it performed exceptionally well for retrieval tasks. The input
into the embedding model is at the git-hunk level. The resulting embeddings from
this process are 256-dimensional vectors that we store within a Faiss index [12].

Querying the Retrieval System: When inputs come into the retrieval
system, we use the same CodeT5+ embedding model as previously described.
When querying the retrieval system, the Faiss index computes a similarity metric
(based on the dot product) between the input vector and all pre-populated
vectors. The search returns the top-K similar git-hunks with the associated
advisory description of both True and False examples in alternating order.
Leading with the most similar True example first, then the next most similar
False example. We show the impact of this ordering in Section 5.4. We also ensure
that the examples come from a different advisory and git-hunk, confirming that
we are not leaking data or labels at inference time. The overall retrieval system
is implemented using the LangChain library [23].

4.5 LLM Text Generation

LLMs use an autoregressive generation method, where text is generated iteratively
by predicting the next words, more specifically tokens, based on the context
of all previously generated tokens [34]. This process involves a sequence of
forward passes through the model’s network, each pass calculating the probability
distribution for the next possible token. The next token is selected based on this
distribution and then appended to the growing text sequence. Generating longer
sequences increases computational time due to the number of iterative passes

required through the model. Consequently, the output format from the LLM
(e.g., boolean responses vs. an explanation) significantly impacts generation time.

Standard and Detailed Prompt Responses: When we use the standard
and detailed prompts, we aim for a boolean single-word response of True or
False from the model. This requires just a single forward pass through the model
to produce the boolean response. At the end of this step, the model produces
preliminary scores, known as logits, for each potential token in its vocabulary [3].
These logits are the model’s initial guesses, not yet probabilities. We then use
a function called softmax to turn these logits into actual probabilities, showing
how confident the model is in each outcome. By focusing on the probabilities for
True and False tokens, we can identify the model’s decision.

Chain-of-Thought Responses: The expected result is a longer free-form
text when using the chain-of-thought (CoT) prompt. This is because the model
explains what the git-hunk has changed, then concludes with a definitive True

or False, categorizing the git-hunk as related or unrelated to the vulnerability
fix. A consequence of the longer text will be an increase in computation time. To
identify the final decision, we search the text for either True or False values.

4.6 Aggregating Results to the Function Level

Predictions from the LLM are at the git-hunk level. However, this paper aims to
associate security advisories with entire functions rather than individual git-hunks.
In some cases, multiple changes can occur within a single function spanning
multiple git-hunks, requiring us to aggregate the results into one function. To
do so, if any git-hunk of a function is predicted as True, indicating a relation to
the vulnerability, we classify the entire function as vulnerable. This methodology
assumes that the vulnerability impacts the whole function if any portion of the
function is involved in the vulnerability fix.

5 Results

We evaluate the use of LLMs to pair security advisories with vulnerable functions
with the goal of addressing the following questions:

Q1: How well does the naive approach work for identifying vulnerable functions?
Q2: How do various prompts impact the performance of using LLMs?
Q3: How does zero-shot and few-shot learning impact the effectiveness of LLMs?
Q4: How does the computational time compare across prompt strategies?
Q5: Can the developed prompts generalize from one LLM to another LLM?

Key Takeaways: Our analysis shows that using open-source large language
models (LLMs) to link security advisories with vulnerable functions presents
various insights and challenges. Current automated detection methods, like the
naive ChangedFuncs approach, identify only 22% of actual vulnerable functions,
leading to many false positives. This highlights the need for more advanced

techniques. LLMs can improve precision in detecting these functions by up to
173% compared to ChangedFuncs; however, they have an 18% drop in recall.
The study also finds that the effectiveness of LLMs varies with the quality
of the input prompt, with well-designed prompts significantly boosting the
performance of smaller models. Few-shot learning enhances recall but comes at
the cost of reducing precision. The Chain-of-Thought prompting method excels
in performance but requires significantly more computational resources, 13 times
slower than other methods. Finally, our findings apply across different LLMs.

5.1 Experimental Setup

Throughout the results, we primarily focus on the CodeLlama family of mod-
els [31]. The CodeLlama family is designed explicitly for coding tasks and has
instruction-following versions, each available in 7 billion (B), 13B, and 34B
parameter configurations. Additionally, we also evaluate other popular coding-
oriented LLMs: Mixtral 7x8B [21], DeepSeek [5], and WizardCoder [26]. We use
a machine with an Intel i7-9700k CPU, 128GB RAM, and two NVIDIA RTX
3090 Ti GPUs. During evaluation, each model is split across both GPUs with
4-bit quantization and parameters set to half-precision (float16). We use the same
CodeLama parameters as Meta for text generation throughout [31]. We evaluate
against the GoVulnDB data described in Section 5.1.

Data Collection: We rely on the GoVulnDB as ground truth data. We
initially cloned GoVulnDB on October 26, 2023, and obtained 409 GoVulnDB
reports. Out of these, 318 (78%) had an associated patch link. Of those 318
security advisories, 280 (88%) of the reports listed vulnerable functions. When
a vulnerable function is not listed, the entire project is considered vulnerable;
therefore, we do not consider those for further analysis. These 280 reports form
the foundation for our subsequent analysis. Using ChangedFuncs, Algorithm 1, we
identify 2,370 modified functions from 298 patch links across the 280 GoVulnDB
reports. From GoVulnDB, 528 of those functions were labeled as vulnerable
functions. We consider the remaining 1,842 functions non-vulnerable. We note
that some git-hunks can change multiple functions; we split these git-hunks to
ensure that only one function is processed at a time.

5.2 Comparing the ChangedFuncs to GoVulnDB

When comparing ChangedFuncs (Section 3) to the GoVulnDB dataset, we found
the approach produces a precision of 0.22. The remaining functions (1,842 func-
tions) changed during the patch links were not listed in the GoVulnDB reports,
resulting in false positives. Furthermore, 61 reported vulnerable functions were
not found within the patch link. The overall recall rate is 0.9, demonstrating
the ability to capture the majority of vulnerable functions. Through a manual
analysis, we found that the missing functions were either due to a missing patch
link from the advisory or were mentioned in a subsequent link (e.g., a reference
to the Issue). Researchers and practitioners using the naive automated approach
will create significant noise for downstream consumers.

Table 1: Zero-shot vs Few-Shot in terms of F1 across CodeLlama (7B, 13B, 34B)
using the standard, detailed, and CoT prompt. Best metrics are bolded.

CodeLlama-7B CodeLlama-13B CodeLlama-34B

Examples 0 3 5 10 0 3 5 10 0 3 5 10

Standard 0.27 0.38 0.39 0.35 0.53 0.57 0.54 0.53 0.59 0.53 0.54 0.60

Detailed 0.45 0.53 0.58 0.52 0.54 0.56 0.56 0.54 0.62 0.57 0.59 0.62

CoT 0.57 0.56 0.59 0.60 0.59 0.60 0.60 0.55 0.62 0.63 0.62 0.61

The GIT-DIFF changes have addressed the path traversal vulnerability in
the ‘unzipFile‘ function by using the ‘path.Join‘ and ‘strings.TrimPrefix‘
functions to ensure that the file path is valid and does not contain any
malicious traversal sequences. Final Decision: True

5.4 Zero-Shot vs. Few-Shot

Table 1 compares the performance of the CodeLLama 7B, 13B, and the 34B
model in a few-shot learning context using the standard, detailed, and CoT
prompting. The few-shot approach helps improve performance compared to the
zero-shot approach, primarily in recall in the basic and detailed prompt settings.

Introducing a few-shot paradigm has the largest impact on the smaller CodeL-
lama 7B model. On average, each prompt in a few-shot setting increased the F1
score of the CodeLlama 7B model by 26.2%. Few-shot learning increased the
CodeLlama 13B version’s F1 on average by 4.1%, and the CodeLlama 34B ver-
sion’s by only 1.1%. The overall trend for the standard and detailed prompt after
adding few-shot examples was an increase in recall and a decrease in precision.
The CoT prompt had the opposite reaction, typically seeing a minor decrease
in recall and an increase in precision. Interestingly, a few-shot approach in the
detailed and CoT prompts allows the smaller CodeLlama 7B model to perform
similarly to the 13B and 34B versions.

Example Order: When experimenting with the few-shot paradigm, we
noticed that the order in which the examples in the prompt appear impacts the
model performance, as shown in Figure 7. For instance, our retrieval system
returns both True and False examples (detailed in Section 4.4). Once examples
are returned, we place them in an alternating order in the prompt: start with a
True example followed by a False example.

Figure 7a shows the alternating impact of precision and recall depending on
the number of examples in the prompt. The number of examples changes the
type of example before the input. For instance, an even number of examples ends
with a False example, and an odd number ends with a True example. A closing
True example tends to influence the model towards a true prediction, enhancing
recall but at the cost of precision. While a closing False example influences the
model towards false predictions, improving precision while reducing recall. In
Figure 7b, we randomly shuffle the order of examples to counteract the observed

Table 2: Comparing mean generation times (seconds) at report level with detailed
vs. CoT prompts across CodeLlama models (7b/13b/34b) in zero-shot and few-
shot settings. The Increase Factor CoT measures the slowdown with CoT prompts.

Zero-Shot Time Five-Shot Time

Model Detailed CoT
Increase

Factor CoT
Detailed CoT

Increase
Factor CoT

CodeLlama 7B 1.30s 38.80s 30x 4.57s 43.01s 9x
CodeLlama 13B 2.87s 46.85s 16x 10.13s 65.54s 6x
CodeLlama 34B 8.08s 88.05s 11x 28.78s 126.54s 4x

when moving from the 13B to the 34B model, regardless of the prompt or learning
paradigm. These findings highlight the generation complexity of CoT prompts
(discussed in Section 4.5), the inclusion of more text (i.e., few-shot), and larger
models contribute to longer performance times.

6 Discussion

LLMs demonstrate a possible path forward for pairing security advisories with
vulnerable functions, offering high-quality pairings with minimal manual effort,
thereby enhancing industry vulnerability management efforts. Despite the poten-
tial, considerable scope exists for improvement, especially in increasing the overall
recall of our analysis. Integrating program analysis with LLMs could improve
recall. For example, a challenge for all models was identifying vulnerabilities
addressed by introducing new functions, which are then invoked from within
the existing vulnerable function. Such fixes are common in vulnerabilities requir-
ing sanitization (e.g., CWE-20 Improper Input Validation, CWE-79 Cross-Site
Scripting), where sanitization needs to be applied across multiple code locations.
In such instances, additional context (e.g., surrounding code) would be required.
Outside of code aspects, integrating commit messages and identifying additional
links or missing patch links could enrich LLM effectiveness in the future. This
could address cases where patch links are missing or vulnerable functions are
located elsewhere. Another area for improvement is in the retrieval of examples.
When the retrieval system finds similar examples between both True and False

labels, the models have trouble discerning the correct results.

Threats to Validity: Our research is subject to both internal and external
validity threats. Internally, we trust that the Google Go security team accurately
identifies vulnerable functions in Go data. If these identifications are inaccurate,
our results and evaluations could be inaccurate. The models we evaluated were
also trained on public data, potentially including some of the Go code under
investigation and GoVulnDB report data. However, our methodology, which
pairs these security advisories with vulnerable functions from git-diff data, differs
from the original training and testing approaches of these models, helping to
mitigate the risk of data leakage. Externally, limiting our evaluation to the Go

language could impact the generalizability of our findings. We expect similar
performance across different languages, drawing on the generalization capabilities
of LLMs [31,21,5,26]. Nevertheless, this assumption remains speculative without
further empirical validation across a broader set of programming languages for
pairing security advisories with vulnerable functions. This highlights a critical
area for future research. However, it will take substantial effort first to accumulate
high-quality data such as GoVulnDB in other languages.

7 Related Work

Vulnerability Datasets: Recent work [9,8] has found that commonly used
vulnerability datasets have significant inaccuracy rates. These issues in such
labels are due to automatic data collection and flawed semantic filters, under-
scoring the need for manual verification and comprehensive function analysis to
assess vulnerability relevance accurately. For instance popular datasets such as
CVEFixes [4], ReVeal [7], BigVul [15], CrossVul [27], and Devign [40] consider
the changed functions within a security patch as vulnerable. Guo and Bettaieb
found that vulnerability dataset quality (i.e., mislabeled data) can significantly
degrade models that depend on noisy datasets [20]. Alongside our research, Wang
et al. introduced ReposVul [35], a vulnerability dataset featuring CVE entries
in 1,491 projects across four programming languages, detailed to the line level.
ReposVul uses vulnerability untangling, using both LLMs and static analysis
tools to separate vulnerability-related code changes from unrelated patch changes.

LLMs for Vulnerability Detection: The growing interest in LLMs for
software vulnerability detection has significant insights, yet the field is still in
its infancy. In several scenarios, Khare et al.[22] showed GPT-4’s ability to out-
perform static analysis and other deep learning-based approaches in detecting
vulnerabilities. Zhang et al.[39] assessed ChatGPT’s performance on synthetic
Java datasets and the CVEFixes dataset with various prompting strategies. How-
ever, Purba et al.[29] evaluated the efficacy of both open-source and proprietary
LLMs in detecting SQL injection and buffer overflow vulnerabilities, noting a
high incidence of false positives. Liu et al.[25] combined LLMs with binary taint
analysis to uncover 37 new bugs in real-world firmware. The LLM4Vuln frame-
work [32] focuses on identifying smart contract vulnerabilities by enhancing LLMs
with additional knowledge, tool integration, and prompt engineering, uncovering
nine zero-days. Other studies have explored using LLMs to generate fuzzing
inputs [11] and integrating them with static analysis tools for new vulnerability
discovery [24]. However, our interest lies in pairing security advisories with the
corresponding vulnerable functions, differing from identifying new vulnerabilities.

8 Conclusion

In summary, this study highlights the challenge of automating the association
between security advisories and vulnerable functions and demonstrates the po-
tential of LLMs as a promising initial solution. Our findings suggest that while

CoT prompting enhances accuracy, it incurs computational costs. Alternatively,
strategies using few-shot learning and concise prompts achieve comparable accu-
racy with reduced computational overhead. These advancements suggest a path
to scale the automated matching of security advisories with vulnerable functions,
which is key for enhancing vulnerability management processes.

Acknowledgments

This work is supported in part by NSF grants CNS-1946273 and CNS-2207008.
Any findings and opinions expressed in this material are those of the authors and
do not necessarily reflect the views of the funding agencies.

References

1. Alahmadi, B.A., Axon, L., Martinovic, I.: 99% False Positives: A Qualitative Study
of SOC Analysts’ Perspectives on Security Alarms. In: 31st USENIX Security
Symposium (USENIX Security 22). pp. 2783–2800. USENIX Association (2022)

2. Alomar, N., Wijesekera, P., Qiu, E., Egelman, S.: "You’ve got your nice list of
bugs, now what?" vulnerability discovery and management processes in the wild. In:
Proceedings of the Sixteenth USENIX Conference on Usable Privacy and Security.
SOUPS’20, USENIX Association, USA (2020)

3. Arora, A.: Understanding Logits, Sigmoid, Softmax, and Cross-Entropy Loss in
Deep Learning — wandb.ai. https://wandb.ai/amanarora/Written-Reports/repor
ts/Understanding-Logits-Sigmoid-Softmax-and-Cross-Entropy-Loss-in-Deep-Lea
rning--Vmlldzo0NDMzNTU3 (2023)

4. Bhandari, G., Naseer, A., Moonen, L.: CVEfixes: automated collection of vulner-
abilities and their fixes from open-source software. In: Proceedings of the 17th
International Conference on Predictive Models and Data Analytics in Software
Engineering. p. 30–39. PROMISE 2021, Association for Computing Machinery, New
York, NY, USA (2021). https://doi.org/10.1145/3475960.3475985

5. Bi, X., Chen, D., Chen, G., Chen, S., Dai, D., Deng, C., Ding, H., Dong, K., Du, Q.,
Fu, Z., et al.: Deepseek llm: Scaling open-source language models with longtermism.
arXiv preprint arXiv:2401.02954 (2024)

6. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., et al.: Language models are
few-shot learners. In: Proceedings of the 34th International Conference on Neural
Information Processing Systems. NIPS ’20, Curran Associates Inc. (2020)

7. Chakraborty, S., Krishna, R., Ding, Y., Ray, B.: Deep learning based vulnerability
detection: Are we there yet? IEEE Transactions on Software Engineering 48(09),
3280–3296 (sep 2022). https://doi.org/10.1109/TSE.2021.3087402

8. Chen, Y., Ding, Z., Alowain, L., Chen, X., Wagner, D.: Diversevul: A new vulnerable
source code dataset for deep learning based vulnerability detection. In: Proceedings
of the 26th International Symposium on Research in Attacks, Intrusions and
Defenses. p. 654–668. RAID ’23, Association for Computing Machinery, New York,
NY, USA (2023). https://doi.org/10.1145/3607199.3607242

9. Croft, R., Babar, M.A., Kholoosi, M.M.: Data quality for software vulnerability
datasets. In: Proceedings of the 45th International Conference on Software Engineer-
ing. p. 121–133. ICSE ’23 (2023). https://doi.org/10.1109/ICSE48619.2023.00022

10. Dann, A., Plate, H., Hermann, B., Ponta, S., Bodden, E.: Identifying Challenges for
OSS Vulnerability Scanners - A Study & Test Suite. IEEE Transactions on Software
Engineering 48(09), 3613–3625 (2022). https://doi.org/10.1109/TSE.2021.3101739

11. Deng, Y., Xia, C.S., Peng, H., Yang, C., Zhang, L.: Large Language Models Are
Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models.
In: Proceedings of the 32nd ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis. p. 423–435. ISSTA 2023, Association for Computing
Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3597926.3598067

12. Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G., Mazaré, P.E., Lomeli,
M., Hosseini, L., Jégou, H.: The faiss library. arXiv preprint arXiv:2401.08281
(2024)

13. Dunlap, T.: A python package for extracting commit features - patchparser (2022),
https://github.com/tdunlap607/patchparser

14. EndorLabs: Endor Labs vs. SCA (Nov 2022), https://www.endorlabs.com/endor-l
abs-vs-sca

15. Fan, J., Li, Y., Wang, S., Nguyen, T.N.: A c/c++ code vulnerability dataset
with code changes and cve summaries. In: Proceedings of the 17th International
Conference on Mining Software Repositories. p. 508–512. MSR ’20, Association for
Computing Machinery (2020). https://doi.org/10.1145/3379597.3387501

16. Google: Go Vulnerability Database, https://go.dev/doc/security/vuln/database

17. Google: Govulncheck, https://pkg.go.dev/golang.org/x/vuln/cmd/govulncheck

18. Google: Handling Go Vulnerability Reports, https://github.com/golang/vulndb/b
lob/master/doc/triage.md#add-a-new-report-label-needsreport

19. Google: Vulnreport, https://pkg.go.dev/golang.org/x/vulndb/cmd/vulnreport

20. Guo, Y., Bettaieb, S.: An Investigation of Quality Issues in Vulnerability Detection
Datasets. In: 2023 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW) (2023). https://doi.org/10.1109/EuroSPW59978.2023.00008

21. Jiang, A.Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C.,
Chaplot, D.S., Casas, D.d.l., Hanna, E.B., Bressand, F., et al.: Mixtral of experts.
arXiv preprint arXiv:2401.04088 (2024)

22. Khare, A., Dutta, S., Li, Z., Solko-Breslin, A., Alur, R., Naik, M.: Understanding
the Effectiveness of Large Language Models in Detecting Security Vulnerabilities.
arXiv preprint arXiv:2311.16169 (2023)

23. LangChain: Custom example selector (2023), https://python.langchain.com/docs/
modules/model_io/prompts/example_selectors/custom_example_selector

24. Li, H., Hao, Y., Zhai, Y., Qian, Z.: The Hitchhiker’s Guide to Program Analysis: A
Journey with Large Language Models. arXiv preprint arXiv:2308.00245 (2023)

25. Liu, P., Sun, C., Zheng, Y., Feng, X., Qin, C., Wang, Y., Li, Z., Sun, L.: Harnessing
the power of llm to support binary taint analysis. arXiv preprint arXiv:2310.08275
(2023)

26. Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao, C., Ma, J., Lin, Q., Jiang,
D.: WizardCoder: Empowering Code Large Language Models with Evol-Instruct.
arXiv preprint arXiv:2306.08568 (2023)

27. Nikitopoulos, G., Dritsa, K., Louridas, P., Mitropoulos, D.: Crossvul: a cross-
language vulnerability dataset with commit data. In: Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. p. 1565–1569. ESEC/FSE 2021, Association
for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/34
68264.3473122

28. Ponta, S.E., Plate, H., Sabetta, A.: Detection, assessment and mitigation of vul-
nerabilities in open source dependencies. Empirical Software Engineering 25(5),
3175–3215 (2020). https://doi.org/10.1007/s10664-020-09830-x

29. Purba, M.D., Ghosh, A., Radford, B.J., Chu, B.: Software Vulnerability Detection
using Large Language Models. In: 2023 IEEE 34th International Symposium on
Software Reliability Engineering Workshops (ISSREW). pp. 112–119 (2023). https:
//doi.org/10.1109/ISSREW60843.2023.00058

30. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language
models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

31. Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X.E., Adi, Y., Liu,
J., Remez, T., Rapin, J., et al.: Code Llama: Open Foundation Models for Code.
arXiv preprint arXiv:2308.12950 (2023)

32. Sun, Y., Wu, D., Xue, Y., Liu, H., Ma, W., Zhang, L., Shi, M., Liu, Y.: Llm4vuln: A
Unified Evaluation Framework for Decoupling and Enhancing LLMs’ Vulnerability
Reasoning. arXiv preprint arXiv:2401.16185 (2024)

33. TreeSitter: An incremental parsing system for programming tools - tree-sitter (2023),
https://tree-sitter.github.io/tree-sitter/

34. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L.u., Polosukhin, I.: Attention is All you Need. In: Guyon, I., Luxburg, U.V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural
Information Processing Systems. vol. 30. Curran Associates, Inc. (2017)

35. Wang, X., Hu, R., Gao, C., Wen, X.C., Chen, Y., Liao, Q.: Reposvul: A Repository-
Level High-Quality Vulnerability Dataset. arXiv preprint arXiv:2401.13169 (2024)

36. Wang, Y., Le, H., Gotmare, A.D., Bui, N.D., Li, J., Hoi, S.C.: Codet5+: Open
code large language models for code understanding and generation. arXiv preprint
arXiv:2305.07922 (2023)

37. Wei, J., Bosma, M., Zhao, V.Y., Guu, K., Yu, A.W., Lester, B., Du, N., Dai, A.M.,
Le, Q.V.: Finetuned Language Models Are Zero-Shot Learners. arXiv preprint
arXiv:2109.01652 (2021)

38. Wei, J., Wang, X., Schuurmans, D., Bosma, M., ichter, b., Xia, F., Chi, E., Le,
Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language
models. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A.
(eds.) Advances in Neural Information Processing Systems. vol. 35, pp. 24824–24837.
Curran Associates, Inc. (2022)

39. Zhang, C., Liu, H., Zeng, J., Yang, K., Li, Y., Li, H.: Prompt-Enhanced Software
Vulnerability Detection Using ChatGPT. arXiv preprint arXiv:2308.12697 (2023)

40. Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y.: Devign: Effective Vulnerability Identifi-
cation by Learning Comprehensive Program Semantics via Graph Neural Networks.
In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett,
R. (eds.) Advances in Neural Information Processing Systems. vol. 32. Curran
Associates, Inc. (2019)

	Pairing Security Advisories with Vulnerable Functions Using Open-Source LLMs

