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Abstract

Estimating transmission rates is a challenging yet essential aspect of comprehending and controlling
the spread of infectious diseases. There are various methods available for this purpose, each with its
own assumptions, data requirements, and limitations. This paper introduces a phylogenetic approach
called transRate, designed to estimate inter-population transmission rates. The phylogenetic method,
which maintains statistical consistency under the multi-population Susceptible-Infected-Recovered
(SIR) model, integrates genetic information with traditional epidemiological approaches. This
integration improves the accuracy of transmission rate estimates, facilitating more effective disease
control and prevention strategies. Simulation analyses validate the precision of transRate in
estimating transmission rates. With the growing abundance of public databases for genomic
sequences, transRate is becoming more prevalent in tracking and preventing the spread of such

diseases.
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Background

Assessing transmission rates is essential for understanding the dynamics of infectious diseases
and developing effective control measures (ANDRAUD ef al. 2009; ALSHAMMARI 2023). By gaining
insights into transmission rates, public health officials can create strategies to mitigate the impact of a
disease outbreak and be prepared for potential future outbreaks (AUDU et al. 2006; ARAVINDAKSHAN
et al. 2022). Various techniques and approaches have been devised to estimate transmission rates
using epidemiological and genetic data in infectious diseases (BECKER AND HASOFER 1998; STADLER
et al. 2013; KIRKEBY et al. 2017; MUBAYI et al. 2021; CHANG AND DE JONG 2023). Conventional
approaches, such as the computation of the basic reproduction number Ry, represent some of the
most straightforward techniques for assessing transmission rates. Estimation of R involves
examining the growth rate of the epidemic curve under the Susceptible-Infected-Recovered (SIR) and
Susceptible-Exposed-Infectious-Recovered (SEIR) models, assuming a consistent transmission rate
and a homogeneous population (FRASSO AND LAMBERT 2016). This method fails to consider temporal
fluctuations in the transmission rate (DERAKHSHAN ef al. 2021), attributable to seasonal variations,
interventions, or shifts in behavior. Several methods have been devised to account for temporal
variations in estimating transmission rates (GANYANI et al. 2020; LIPPIELLO et al. 2022; BUCH et al.
2023). The performance of these methods relies on the assumption that symptom onset accurately
reflects the date of infection, which might not hold true for cases of asymptomatic transmission

(PARK et al. 2020).

Analyzing epidemiological data offers valuable insights into the transmission dynamics of a
disease by fitting models to observed data and estimating relevant parameters (DABIS ef al. 1993;
KEELING et al. 2020; LARREMORE ef al. 2021; MOON AND SCOGLIO 2021). Since transmission rates
can exhibit spatial variability (KUO AND WEN 2022), analyzing the disease spread across different
regions is instrumental in understanding the spatial distribution of transmission rates (OESTERHOLT et
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al. 2006; LACHISH et al. 2011). Furthermore, advancements in genomic sequencing technologies
have enabled researchers to trace the dissemination of pathogens at a molecular level (STOCKDALE et
al. 2023). The analysis of genetic data, in particular, has emerged as a potent tool for estimating
transmission rates in infectious diseases (MOHAMED ef al. 2019). In the realm of infectious diseases,
phylogenetic trees constructed from genetic data are the fundamental tools to elucidate the
relatedness of different pathogen strains. By scrutinizing the branching patterns of the tree,
researchers can deduce transmission dynamics, including the direction and frequency of transmission

events (STADLER et al. 2013).

Traditional approaches for estimating transmission rates have primarily focused on
understanding the spread of infectious diseases within a single population. In this paper, we introduce
a multi-population susceptible-infectious-recovered (SIR) model to investigate transmission rates
within and across populations (Figure 1). Based on the multi-population SIR model, a phylogenetic
method is developed to accurately estimate the inter-population transmission rate. The phylogenetic
approach aims to provide a comprehensive understanding of disease transmission dynamics across

multiple populations.

Materials and Methods

Modelling transmissions for multiple populations

The multi-population SIR model is an expanded version of the conventional SIR model
(KERNER AND MCKENDRICK 1927) that is used to simulate disease transmissions in a population (S1
in Supplementary data). In the multi-population SIR model, transmission events occur within and
between K populations Q, ..., Qg of size Ny, ..., Ny during a time interval [0, d]. Let S, i, I i, Ry be

the number of susceptible, infectious, and recovered individuals at time ¢t for the population k =
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1,...,K. The variables S; y, I x., R; . in each population satisfy the differential equations of the SIR

model for a single population (S1 in Supplementary data), i.e.,

( dSex

dt = _.Bklt,k'st,k
dl
\ d—l;t = Brle xSt — Vilek (1)
AR
\ gr - Velek

Moreover, transmissions occur between two populations i and j at a constant rate w;; for
transmissions from population (; to population ; and wj; for transmissions from population £; to
population Q; (Figure 1). The inter-population transmission rate w;; represents the probability of an
individual from population (); traveling to population (; and contracting the infection in Q;, i.e.,
wij=wv (2)

where w is the probability that an individual in population {); travels to population €2;, and v is the
probability that an individual who has traveled to population Q; gets infected in £);. If individuals in
population (); independently have the same probability w of travelling to population ();, then the
number y, ; of individuals in population (); who travel to population (); at time ¢t follows the
binomial distribution, i.e.,

i~ Binomial(N;,w) (3)

Given y; ;, the number x; ; of individuals in population Q; who have travelled to and gotten infected

in population ; at time t follows the binomial distribution, i.e.,

xt,jlyt,j ~ Binomial(yt_jlt,i, U) 4)

The transmission events occurring in population (); involve not only the infected individuals
in the population ();, but also the x; ; individuals from population (; who travel to and get infected in

;. Every newly infected individual J;; in Q; at time ¢t, including the x, ; individuals who have
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traveled from (); to {;, can be traced back to an infectious individual A;_, ; in ; at time t — 1. This

transmission event is indicated by a mapping t defined as follows
T: g = A1, (5)

Since the number x, ; is negligible compared to the number /;_; ; of infectious individuals in the
population (); at time t — 1, we only consider the I;_, ; infectious individuals when we look
backward to find the infectious individual A,_, ; at time t — 1 who is the ancestor of a newly
infected individual 7, ; at time t. Furthermore, it is assumed that the I,_, ; infectious individuals at
time t — 1 are equally likely to be the ancestor A,_, ; of a newly infected individual 7 ;, i.e., for a =
1,...,I,_1;, where a represents one of the I;_, ; infectious individuals in population i at time t — 1,

1

P("qt—lri = a) = I_q;
-1,

(6)

Moreover, the x; ; individuals from population {); are infected by the I ; infectious individuals of
population (); at time t. We assume that the I, ; infectious individuals at time t are equally likely to
be the ancestor A ; of one of the x; ; individuals from population ;, i.e., for b = 1, ..., I ;, where b

represents one of the I;; infectious individuals,
1
P(Ay=b) = (7)
t,i

All transmissions within an arbitrary time interval [0, d;] for d; > 2 and d; € N in population ;
form a tree-like structure, which is the transmission tree T; for population ); (Figure 1). We assume
that the roots Oy, ..., Og of K transmission trees Ty, ..., Tx share a common ancestor, denoted by O,

i.e., the root of a super tree T* in which the K transmission trees Tj, ..., Tk are the subtrees of T*.
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It follows from Equations 3-4 that the expected number E (xt_ j) of individuals who travel to
and get infected in the population (); is given by E(xt,j) =F (E(xt,j |yt,j)) = Njl;wv = NI jw;j,
where I; ; is the number of infectious individuals in the population {); at time t. The expectation of
the total number ), x, ; of individuals from the population ; who get infected in the population £; is
equal to E (Zt Xy, J-) = Njw;; Xt I;, indicating that the transmission rate w;; can be estimated by the
ratio of Yp x ; and N; Y Iy, ie.,

thtj
~ _ Ltk 8
@y N Yl ®)

The numerator Y, x, ; is the total number of individuals from the population Q; who travel to and get

infected in the population ;. The denominator N; ., I;; can be calculated by N; Y. I, ; =

N; Ziﬁl:l(t,’;_i — t,’n’l-) where tffl’l- and t,’n'i are the recovery and infection time of the infected
individual m in the population (};, and [; is the total number of infected individuals in the population

Q; by time d;. Thus, the estimate @,, can be calculated by

o = Xt
y - Ti
NJ' 21;1=1(t51,i - trln,i)

€)

The estimate @, is unbiased and statistically consistent in estimating the inter-population
transmission rate w;; (S2 and S3 in Supplementary data).

In real data analysis, however, we can only obtain a sample of infected individuals in
populations €1y, ..., Q. We assume that the infected individuals in the samples Sj,...,5k are randomly
selected from populations €y, ..., Qg. Let n; be the sample size of §;, and X ; (j # i) denotes the
number of individuals in the sample §; who travel to and get infected population £; at time t. Let I,
fori = 1, ..., K be the number of individuals in the samples §; who get infected in population ();. Let
I; be the total number of infected individuals by the time d; in population );. The inter-population

transmission rate w;; can be estimated by the samples §; and §;, i.e.,
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I; of,
N (F Ses (1~ )

XXy

(1)” =

(10)
)

P —_~

The estimate &,, converges to @, i.e., @,, = @,

;> as the sample sizes n; and n; approach to the total
numbers N; and N; of the infected individuals in the populations £; and €);. We can show that @, is

an asymptotically unbiased estimator of w;; and is statistically consistent in estimating the parameter

w;; as the sample sizes n; and n, increase to infinity (S4 in Supplementary data).

We have developed a phylogenetic approach (transRate) to estimate the inter-population
transmission rate w;; using the pathogen genomes labeled with their population origins (14, ..., Q.
The phylogenetic method for transmission rate estimation consists of four steps: 1) Building a
phylogenetic tree based on the pathogen genomes. 2) Identifying clades in the tree that have at least a
certain percentage (default is 60%) of taxa with the same population origin. 3) Labeling each
identified clade with the population origin of the majority of sequences in that clade. Any sequences
labeled with a different population origin are inferred as inter-population transmission events. 4)
Estimating the inter-population transmission rate w;; based on the identified clades. The variability
inherent in the estimation of phylogenetic trees, including the formation of clades, could skew the
accuracy of transmission rate estimation. However, given the constancy of the transmission rate over
time, the percentage of transmission events remains the same throughout any given time frame. This
indicates that, despite the inherent uncertainty in the phylogenetic tree and the identification of

clades, the estimation of the transmission rate retains a certain degree of reliability.

Simulation

Estimation of transmission rates from phylogenetic trees



159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

Given the transmission tree of two populations, we evaluated the performance of transRate for
estimating the inter-population transmission rate. The transmission tree was generated from the two-
population SIR model during a time interval [0, d] (i.e., d = 50). The population size was set to be
N; =N, = 10,000 and N; = N, = 1,000,000. For the population size 10,000, we set the infection
rate § = 0.00005 and the recovery rate y = 0.05. For the population size 1,000,000, we set f =
0.0000005 and y = 0.05. The number of susceptible (S;), infected (I;), and recovered (R;) at time t
was obtained by solving the differential equations of the two-population SIR model using an R
package deSolve (SOETAERT et al. 2010). The number y, , of individuals who traveled from the
population £, to the population Q at time t € [0,50] was simulated from the binomial distribution
with mean = N,w, where w = 0.0001 for the population size 10,000 and w = 0.000001 for the
population size 1,000,000. The parameter w is the probability that an individual in the population (2,
travels to the population (14, 1.e., the average number of travelers from the population (), to the
population €1 of size 10000 is 10000 X 0.0001 = 10 individuals per day. Given y; ,, the number
X of individuals who traveled to and were infected in the population (), at time ¢ was simulated
from the binomial distribution with the infection rate v = 0.002,0.004,0.006,0.008. The inter-
population transmission rate w;, from the population ), to the population (1, is equal to the product
of two probabilities w and v, ie, w = wv =2x1077,4x 1077,6 x 1077,8 x 1077 for the
population size 10,000 and w = wv =2 X 1072,4 x 107%,6 x 1072,8 x 10~? for the population
size 1000,000, respectively. Similarly, the transmissions from the population €, to the population (),
were simulated with the transmission rate w,;. Two inter-population transmission rates were

assumed to be equal to each other, i.e., W1, = w,;.

A phylogenetic tree T; was subsequently constructed from the simulated transmissions in the
population ;. Let x; be the number of new infections on day i. Let y;_,be the number of infections

on day (i — 1). Note that x; and y;_; may include inter-population infections. It follows that the x;
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new infections on day i were infected by the y;_; infectious individuals on day (i — 1). Since the
infectious individuals on day (i — 1) were equally likely to infect the susceptible individuals on day
i, the ancestor of each new infection on day i was found by randomly sampling an infectious
individual on day (i — 1). The ancestors formed the ancestral history (i.e., the phylogenetic tree T;)
of the transmissions in the population (); generated from the two-population SIR model. Similarly, a
phylogenetic tree T, was constructed from the transmissions in the population (2,. Two trees were
combined into a super tree T. This super tree T was the input to estimate the transmission rates w;,
and w, using Equation 9. Moreover, we randomly selected n = 100,200,300,400, 500 infected
individuals (taxa) from each population in the super tree T. The phylogenetic tree of the sampled
infections was utilized to estimate the inter-population transmission rates w,, and w,; using
Equation 10. Each simulation was repeated 100 times and we calculated the mean squared error
(MSE) and co-efficient variation (CV) of the estimates of the transmission rate. Since two

transmission rates are equal to each other, we only present the MSE and CV of the transmission rate

sd(@12)

. 1 v100(,~ i 2
W1y, 1.6, MSE = —): 25 (w1, —w and CV =
12> » 10021—1 12 12) mean(@13)

, where sd (@7, ) is the standard

deviation of @q5.

Estimation of transmission rates from molecular sequences

In the preceding simulation, the phylogenetic tree was derived from the transmissions generated by
the two-population SIR model and was assumed to be a known input for estimating the inter-
population transmission rate w;,. However, in practice, the phylogenetic tree is typically inferred
from the sequence alignments of pathogen genomes. Therefore, it becomes crucial to account for the
uncertainty associated with the estimated phylogenetic tree when estimating the transmission rate
w12. Once the phylogenetic tree was constructed based on the transmissions generated from the two-
population SIR model, we proceeded to simulate DNA sequences of 20,000 base pairs using the

phylogenetic program Seq-Gen (RAMBAUT AND GRASSLY 1997) with the mutation rate yu =

10
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0.01,0.001,0.0001. If the phylogenetic tree involved polytomies which were not readable by the
program Seq-Gen, the polytomy nodes in the phylogenetic tree were replaced by bifurcating nodes
with 0 internal branch length. These sequences were utilized to reconstruct the maximum likelihood
(ML) tree using FastTree (PRICE et al. 2009), employing the following command line: fasttree -nt -
nosupport seqfile > outputfile. The estimated phylogenetic tree served as the input for inferring the
transmission rate wq,. Each simulation was repeated 100 times and we calculated the mean squared

error (MSE) and co-efficient variation (CV) of the estimates of the transmission rate w;,.

Estimation of transmission rates for multiple populations

In this simulation, transmissions were generated from the multi-population SIR model for five
populations Q4, Q,, Q3,Q,, Qs. The populations were characterized by two different sizes, one with
10,000 individuals and another with 1,000,000 individuals. For the smaller population (10,000
individuals), transmission rates (w;; for i,j = 1, ...,5) were set at values of 2 X 1077,

4%x1077,6 x 1077 and 8 x 1077, while for the larger population (1,000,000 individuals),
transmission rates were configured at 2 X 1072, 4 X 1072,6 X 1079, and 8 x 107°. A sample of
infected individuals (i.e., n; = n, = n; = n, = ng = 100,200, 300) was randomly selected from
each of the five populations. Due to the limitation of the phylogenetic tree reconstruction method, we
did not sample more than 300 individuals. The selected individuals were labelled with their
population origins. Subsequently, a phylogenetic tree was constructed from the transmissions among
the five samples of infected individuals. This phylogenetic tree featured five major clades, each
corresponding to the sample selected from one of the five populations. DNA sequences of 20,000
base pairs were simulated from the phylogenetic tree using Seq-Gen. These simulated sequences
were employed as input data to estimate ML trees using the FastTree algorithm. The ML tree, in turn,

was utilized to infer the transmission rates (w;;). Finally, we evaluated the performance of transRate

by calculating the MSE and CV of the estimates of the transmission rates (w;;). The MSE and CV of

11
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the transmission rate estimates served as a measure of how well the phylogenetic approach performed

in estimating transmission rates in the simulation.

Data Analysis of SARS-CoV-2 Genomes in the Early Pandemic

The proposed phylogenetic method transRate was applied to a genomic dataset consisting of 40,028
sequences of SARS-CoV-2 in human hosts during the early SARS-CoV-2 pandemic (YANG ef al.
2023). This dataset was formed from 41,910 coronavirus genomes downloaded from NCBI GenBank
“nucleotide” database on August 26, 2021, with all sequences collected between December 31, 2019,
and April 1, 2020. The dataset was filtered to remove sequences with missingness, containing frame
shift, and incomplete genomes. There was no geographical filtering. Samples originated from the
Americas, Europe, Oceania, and Asia. This filtration returned a dataset of 40,028 SARS-CoV-2
genomes isolated from human hosts. Thespecies tree was estimated from the genomic data using a
coalescent method NJst (L1U AND YU 2011). The geographical distribution of the clades in the species
tree are as follows: 11 clades geographically centered in the Americas, 5 clades geographically
centered in Asia, 18 clades geographically centered in Europe, and 1 clade geographically centered in
Oceania (S5 in Supplementary data). A number of these clades did not contain any geographical
outliers. A group of datasets were formed for the following populations: “Africa” (includes any
clades that were centered in countries within the continent of Africa), “Americas” (includes any
clades that were centered in countries or localities that were in North, Central, and South America),
”Asia” (includes any clades that were centered in countries located in Asia), ”Europe” (includes any
clades that were centered in countries located in Europe), and “Oceania” (includes any clades that
were centered in localities in Oceania). The transmission rate estimation calculation was applied to
the above populations. The recovery time is equal to 14 days as initially issued by the World Health
Organization in the early pandemic. Population data was collected based on the World Health

Organization and United Nations published data (S6 in Supplementary data).
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A transmission analysis airplane plot was constructed using the previously described data set
of 40,028 whole genome sequences of SARS-CoV-2 in human hosts. These samples underwent the
process of forming clades based on bootstrap support, location, and number of individuals per clade,
as outlined above. The inferred transmission events were plotted as an airplane plot with the larger
black dots representing the location of which the majority of clade members originated. The smaller
black dots are geographical outliers (samples not from within the location of the majority) in the
clade and the arcs connecting the clade center to the geographical outliers represent an inferred
transmission event. The color of the arcs indicates the time point at which the inferred transmission
event occurred. This plot was created using the maps (Becker et al, 2022) and geosphere (Hijmans et

al, 2022) packages.

Results

Simulation

Estimation of transmission rates from phylogenetic trees

Given the transmission tree generated from the two-population SIR model, we evaluated the
performance of transRate in estimating the inter-population transmission rate w;,. We considered
two scenarios: 1) the phylogenetic tree was constructed from all transmissions simulated by the two-
population SIR model and 2) the phylogenetic tree was constructed from a sample of transmissions
simulated by the two-population SIR model. For Scenario 1, the MSE of the transmission rate
estimates increases as the true value of the transmission rate increases from 2 X 1077 to 8 X 1077
(Figure 2). The MSEs for the population size of 10,000 are very small (< 2 X 10~1%) (Figure 2a).
Similar results can be observed for the population size of 1,000,000 (Figure 2b), indicating that
transRate can accurately estimate the transmission rate w;, when the phylogenetic tree of all

transmissions is given. The coefficient of variation (CV, i.e., the ratio of the standard deviation to the
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mean) of the estimates of the transmission rate w;, for the population size of 1,000,000 (Figure 2b) is
less than those for the population size of 10,000 (Figure 2a). This result is consistent with our theory

that increasing the population size leads to a more accurate estimate of the transmission rate.

For Scenario 2 where the phylogenetic tree was constructed from a sample of transmissions, the
MSE of the transmission rate estimates appears to decrease as the sample size increases from 100 to
1000 (Figure 3a), indicating that transRate can accurately estimate the transmission rate when the
sample size is large. This rate of decrease varies across different values (2 X 1077,4 X 1077,6 X
1077,8 x 1077) of the transmission rate w;,. Notably, the rate of decrease appears to be constant
across different values of the transmission rate w (see Figure 3a-b). Moreover, the MSE of the
transmission rate estimates decreases at a faster rate when the sample size increases from 100 to 200,
then it becomes stable after the sample size increases to 400 (Figure 3a-b). The CV of the
transmission rate estimates is less than 0.45 for the sample size = 200. This result indicates that the
sample size 200 is sufficient to accurately estimate the transmission rate when the phylogenetic tree

of a sample of transmissions is given.

Estimation of transmission rates from sequences

In real-world scenarios, the transmission tree is often inferred from the pathogen genomes. In this
simulation, we assess the accuracy of transRate in the presence of uncertainty of the estimated
transmission tree. We employed the two-population SIR model to generate the transmission tree for a
sample of transmissions, followed by simulating DNA sequences based on this transmission tree to
construct the Maximum Likelihood (ML) trees. These ML trees were then utilized to estimate the
transmission rate. The simulation results, based on a population size of 10,000 individuals, indicate
that the MSE of the transmission rate estimate decreases as the sample size increases from 100 to 500

(Figure 4). This rate of decrease varies across different values (2 X 1077,4 x 1077,6 x 1077,8 X
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1077) of the transmission rate. Notably, the rate of decrease appears to be positively correlated with
the values of the transmission rate (Figure 4). Moreover, the MSE of the transmission rate estimate
decreases at a faster rate when the sample size increases from 100 to 200, then it becomes stable after
the sample size increases to 300. In contrast, the MSE of the transmission rate estimate remains
consistent across various values (0.0001,0.001,0.01) of the mutation rate. The CV of the
transmission rate estimates is less than 0.3 when the sample size increases to 200, indicating that the
sample size 200 is sufficient to accurately estimate the transmission rate. The MSE and CV of the
transmission rate estimates for the population size 1,000,000 are less than those for the population
size 10,000, which is consistent with the expectation of the multi-population SIR model that

increasing the population size leads to a more accurate estimate of the transmission rate.

Estimation of transmission rates for five populations

In this simulation, transmission events were generated from the five-population SIR model. It was
assumed that all of 20 inter-population transmission rates w;; for i,j = 1,...,5 and i # j were equal
to each other. For the population size of 10,000, w;; = 2 X 1077,4 x 1077,6 x 1077,8 x 10~7. For
the population size of 1,000,000, w;; = 2 X 107%,4 x 107%,6 x 107%,8 x 10~. To evaluate the
performance of transRate for estimating the transmission rate, we calculated the MSE and CV of the
average w of the estimates of 20 transmission rates. The MSE of the average estimate @ appears to
be constant as the sample size increases from 100 to 300 (Figure 5a-b). For the population size of
10,000 and 1,000,000, the CV of the transmission rate estimates is less than 0.15 across various
values (0.0001,0.001,0.01) of the mutation rate and the population size (10,000 and 1,000,000),

indicating that the sample size of 100 is sufficient to accurately estimate the transmission rate.

Data Analysis of SARS-CoV-2 Genomes in the Early Pandemic
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The transmission rate estimates for the early SARS-CoV-2 pandemic, between December 31, 2019
and March 31, 2020, reveal transmission between Europe, Africa, Americas, and Asia (Table 1).
Population 1 is the population in which the majority of the clade is geographically centered and
Population 2 is the population in which geographical outliers originate from. The analysis of the
40,028 whole genome sequences of SARS-CoV-2 in human hosts revealed the efficiency of certain
protection measures enacted by public health officials. The findings suggest that, by the time many
travel restrictions were in place, much transmission had already occurred between populations and

with unstable availability in testing, inter-population transmission rapidly increased.

The airplane plot of 40,028 whole genome sequences of SARS-CoV-2 in human hosts
between December 31, 2019-March 31, 2020 (Figure 6). The clades pictured in the airplane plot
reflect the 35 clades in Table 1. The geographic coordinates were taken as the closest non-
transmission taxon to the transmissions within a clade as an inference for “case 0” in a particular
clade. The arcs indicate early transmission throughout Asia and spreading to Europe. Later
transmission events are pictured from Europe the Americas. The latest transmission events shown in

the airplane plot are within Oceania.

Discussion

Estimating transmission rate is a challenging but essential task for understanding and controlling the
spread of infectious diseases. There are different methods for estimating transmission rate from data,
each with its own assumptions, data requirements, and limitations. The choice of the best method
depends on the availability and quality of the data, the characteristics of the disease, and the
objectives of the analysis. In this paper, we develop a phylogenetic approach (transRate) for

estimating inter-population transmission rates. TransRate is statistically consistent in estimating
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inter-population transmission rates. The simulation and real data analyses indicate that transRate can

accurately estimate inter-population transmission rates.

The accuracy of transRate is influenced by the number of pathogen genomes that have been
sampled from different populations. This underscores the importance of conducting higher rates of
whole genome sequencing during outbreak events. However, the availability of data can present
significant gaps, as not all sequences may be publicly accessible. For instance, while the dataset for
SARS-CoV-2 mentioned here is extensive, there can still be biases in the data, particularly in the
early stages of a pandemic (YANG ef al. 2023). The release policies for viral genomes can vary
greatly between countries and change over time, as observed during the 2020 pandemic.
Consequently, the sample is no longer random. Additionally, there are regions around the world
where limited resources hinder the acquisition of viral genomes, as mentioned earlier. This can create
limitations, especially when it comes to analyzing non-simulated data. Another important
consideration is the presence of asymptomatic cases in viral infections. Asymptomatic individuals
may not receive whole genome testing, which may introduce further challenges to the accuracy of the

method.

Conclusion

Molecular epidemiology and genetic data play a crucial role in estimating transmission rates,
providing a detailed understanding of the genetic diversity and dynamics of infectious agents. The
phylogenetic approach developed in this paper integrates genetic information with traditional
epidemiological approaches to improve the accuracy of transmission rate estimates. Simulation and
analytic results indicate that transRate can accurately estimate transmission rates from genomic data,
contributing to more effective strategies for disease control and prevention. This method is well-

suited for estimating transmission rates on large multi-population datasets in both epidemic and
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endemic states. With the increasing availability of public databases for genomic sequences, this

methodology is expected to become more prevalent as a valuable policy tool.

Key Points

We develop a novel phylogenetic approach for estimating transmission rates in infectious disease

e The phylogenetic approach integrates genetic information with traditional epidemiological
approaches.

e The phylogenetic approach is statistically consistent in estimating transmission rates under the
multi-population SIR model

e Simulation studies confirm the accuracy of the phylogenetic method in estimating transmission
rates.

e The utilization of this phylogenetic approach enhances the efficacy of disease control and

prevention strategies.

Data Availability

The datasets analyzed for this study can be found in “The species coalescent indicates possible bat
and pangolin origins of the COVID-19 pandemic” (YANG et al. 2023). R code generated for the
simulation study is available on Github at https://github.com/sagay2022/Phylogenetic-inference-of-

inter-population-transmission-rates-for-infectious-diseases.
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Figure 1: Transmission events generated from the two-population SIR model. The numbers of
susceptible we consider the transmission events that occur within and between two populations (04
(left panel) and Q, (right panel). The numbers of susceptible (sky blue), infected (blue), and
recovered (red) individuals at time t (day) were obtained by solving the differential equations for the
two-population SIR model. Moreover, the model assumes that transmissions occur between two

populations at a constant rate w, for transmissions from the population (1, to the population Q, and
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403  w,; for transmissions from population the (), to the population ;. Every infected individual in the
404  population (1, can be traced back to an infector (i.e., ancestor) in the population €2;. The ancestral
405  history of all transmissions in the population (); form a phylogenetic tree (left panel) with a root 0,
406  in which the blue lineages are the transmissions within the population (), and the orange lineages are
407  the inter-population transmissions from the population 2, to the population ;. Similarly, a

408  phylogenetic tree with a root O, (right panel) can be generated for the transmissions in the population
409  Q, where the orange lineages are the transmissions within the population 1, and the blue lineages

410 are the inter-population transmissions from the population (), to the population (2,.

412  Figure 2: Estimation of the transmission rate from the phylogenetic tree of all infected individuals.

a)

b)

411

413  The phylogenetic tree of all infected individuals was generated from the two-population SIR model.

414  a) For population size = 10000, transmission events were simulated with the transmission rate w =
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2x1077,4%x1077,6 x 1077,8 x 10~7. b) For population size = 1000000, transmission events were
simulated with the transmission rate w = 2 X 107%,4 x 107%,6 x 1072,8 x 1077, The phylogenetic
tree was then utilized to estimate the transmission rate w. The simulation was repeated 100 times.
The Mean Squared Error (MSE) and Coefficient Variation (CV) of the transmission rate estimates

were calculated.
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Figure 3: Estimation of the transmission rate from the phylogenetic tree of a sample of infected
individuals. The phylogenetic tree of a sample of infected individuals (sample size = 100, 200, 400,
600, 800, 10000) was generated from the two-population SIR model. a) For population size = 10000,
transmission events were simulated with the transmissionrate @ = 2 X 1077,4 X 1077, 6 X

1077,8 x 1077. b) For population size = 1000000, transmission events were simulated with the
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transmission rate w = 2 X 1072,4 X 107%,6 x 107%,8 x 107, The phylogenetic tree was then
utilized to estimate the transmission rate w. The simulation was repeated 100 times. The Mean
Squared Error (MSE) and Coefficient Variation (CV) of the transmission rate estimates were

calculated.
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Figure 4: Estimation of the transmission rate from sequences. The phylogenetic tree of a sample of

infected individuals (sample size = 100, 200, 300, 400, 500) was generated from the two-population
SIR model. a) For population size = 10000, transmission events were simulated with the transmission
rate w =2 X 1077,4x 1077,6 x 1077,8 x 10~7. b) For population size = 1000000, transmission
events were simulated with the transmission rate w = 2 X 107°2,4 x 1072,6 x 107°,8 x 10~°. DNA
sequences of 20,000 base pairs were simulated from the phylogenetic tree with the mutation rate =

0.0001, 0.001, 0.01 and then used to build the Maximum Likelihood (ML) trees. Finally, the
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439  transmission rate w was estimated by transRate using ML trees. The simulation was repeated 100
440  times. The Mean Squared Error (MSE) and Coefficient Variation (CV) of the transmission rate

441  estimates @ were calculated.

a) ulation 0

ol M Al [ e e
ol Ml Al [wiwes
Al Al [
Al A [T
ol e
ol Al B [T e e

442

443  Figure 5: Estimation of the transmission rate for five populations. The phylogenetic tree of a sample
444  of infected individuals (sample size = 100, 200, 300) was generated from the multi-population SIR
445  model for five populations. a) For the population size = 10,000, transmission events were simulated
446  with the transmission rate w = 2 X 1077,4 X 1077,6 X 1077,8 x 10~7. b) For the population size =
447 1,000,000, transmission events were simulated with the transmission rate w = 2 X 107°,4 x

448  107%,6 x 107%,8 x 10~°. DNA sequences of 20,000 base pairs were simulated from the
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462

phylogenetic tree with the mutation rate = 0.0001, 0.001, 0.01 and then used to build the Maximum
Likelihood (ML) trees. Finally, the transmission rate was estimated by transRate using ML trees. The
simulation was repeated 100 times. The Mean Squared Error (MSE) and Coefficient Variation (CV)

of the transmission rate estimates @ were calculated.

W January 2020
B February 2020
B March 2020

Figure 6: An airplane plot of transmission analysis of 40,028 whole genome sequences of SRAS-
CoV-2 in human hosts between December 31, 2019-March 31, 2020. The larger black dots on the
map represent the geographical location of clades formed based on 80% bootstrap support value and
80% locality identity. The smaller black dots are geographical outliers in the clade and the arcs
connecting the clade center to the geographical outliers represent an inferred transmission event. The
color of the arcs indicates the time point in which the inferred transmission event occurred.
Transmission events are categorized into three time points: January 2020, February 2020, and March
2020. The geographic coordinates were taken as the closest non-transmission taxon to the

transmissions within a clade as an inference for “case 0 in a particular clade.
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Table 1: Inter-population transmission rate estimates of 40,028 whole genome SARS-CoV-2

sequences.
Africa Asia Americas Europe Oceania
Africa -
Asia - 2.205031e-09 6.178179e-07
Americas 1.562009¢-09 - 1.01126e-08 | 7.398807e-08
Europe | 1.123952¢-07 | 6.297804e-10 | 1.414143e-09 - 1.337251e-07
Oceania 2.255848e-08 | 9.023393¢-08 -
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