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Abstract 20 

Estimating transmission rates is a challenging yet essential aspect of comprehending and controlling 21 

the spread of infectious diseases. There are various methods available for this purpose, each with its 22 

own assumptions, data requirements, and limitations. This paper introduces a phylogenetic approach 23 

called transRate, designed to estimate inter-population transmission rates. The phylogenetic method, 24 

which maintains statistical consistency under the multi-population Susceptible-Infected-Recovered 25 

(SIR) model, integrates genetic information with traditional epidemiological approaches. This 26 

integration improves the accuracy of transmission rate estimates, facilitating more effective disease 27 

control and prevention strategies. Simulation analyses validate the precision of transRate in 28 

estimating transmission rates. With the growing abundance of public databases for genomic 29 

sequences, transRate is becoming more prevalent in tracking and preventing the spread of such 30 

diseases.  31 
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Background  32 

Assessing transmission rates is essential for understanding the dynamics of infectious diseases 33 

and developing effective control measures (ANDRAUD et al. 2009; ALSHAMMARI 2023). By gaining 34 

insights into transmission rates, public health officials can create strategies to mitigate the impact of a 35 

disease outbreak and be prepared for potential future outbreaks (AUDU et al. 2006; ARAVINDAKSHAN 36 

et al. 2022). Various techniques and approaches have been devised to estimate transmission rates 37 

using epidemiological and genetic data in infectious diseases (BECKER AND HASOFER 1998; STADLER 38 

et al. 2013; KIRKEBY et al. 2017; MUBAYI et al. 2021; CHANG AND DE JONG 2023). Conventional 39 

approaches, such as the computation of the basic reproduction number 𝑹𝟎, represent some of the 40 

most straightforward techniques for assessing transmission rates. Estimation of 𝑹𝟎 involves 41 

examining the growth rate of the epidemic curve under the Susceptible-Infected-Recovered (SIR) and 42 

Susceptible-Exposed-Infectious-Recovered (SEIR) models, assuming a consistent transmission rate 43 

and a homogeneous population (FRASSO AND LAMBERT 2016). This method fails to consider temporal 44 

fluctuations in the transmission rate (DERAKHSHAN et al. 2021), attributable to seasonal variations, 45 

interventions, or shifts in behavior. Several methods have been devised to account for temporal 46 

variations in estimating transmission rates (GANYANI et al. 2020; LIPPIELLO et al. 2022; BUCH et al. 47 

2023). The performance of these methods relies on the assumption that symptom onset accurately 48 

reflects the date of infection, which might not hold true for cases of asymptomatic transmission 49 

(PARK et al. 2020).  50 

Analyzing epidemiological data offers valuable insights into the transmission dynamics of a 51 

disease by fitting models to observed data and estimating relevant parameters (DABIS et al. 1993; 52 

KEELING et al. 2020; LARREMORE et al. 2021; MOON AND SCOGLIO 2021). Since transmission rates 53 

can exhibit spatial variability (KUO AND WEN 2022), analyzing the disease spread across different 54 

regions is instrumental in understanding the spatial distribution of transmission rates (OESTERHOLT et 55 
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al. 2006; LACHISH et al. 2011). Furthermore, advancements in genomic sequencing technologies 56 

have enabled researchers to trace the dissemination of pathogens at a molecular level (STOCKDALE et 57 

al. 2023). The analysis of genetic data, in particular, has emerged as a potent tool for estimating 58 

transmission rates in infectious diseases (MOHAMED et al. 2019). In the realm of infectious diseases, 59 

phylogenetic trees constructed from genetic data are the fundamental tools to elucidate the 60 

relatedness of different pathogen strains. By scrutinizing the branching patterns of the tree, 61 

researchers can deduce transmission dynamics, including the direction and frequency of transmission 62 

events (STADLER et al. 2013).  63 

Traditional approaches for estimating transmission rates have primarily focused on 64 

understanding the spread of infectious diseases within a single population. In this paper, we introduce 65 

a multi-population susceptible-infectious-recovered (SIR) model to investigate transmission rates 66 

within and across populations (Figure 1). Based on the multi-population SIR model, a phylogenetic 67 

method is developed to accurately estimate the inter-population transmission rate. The phylogenetic 68 

approach aims to provide a comprehensive understanding of disease transmission dynamics across 69 

multiple populations. 70 

Materials and Methods 71 

Modelling transmissions for multiple populations 72 

The multi-population SIR model is an expanded version of the conventional SIR model 73 

(KERNER AND MCKENDRICK 1927) that is used to simulate disease transmissions in a population (S1 74 

in Supplementary data). In the multi-population SIR model, transmission events occur within and 75 

between 𝐾 populations Ω1, … , Ω𝐾 of size 𝑁1, … , 𝑁𝐾 during a time interval [0, 𝑑]. Let 𝑆𝑡,𝑘 , 𝐼𝑡,𝑘 , 𝑅𝑡,𝑘 be 76 

the number of susceptible, infectious, and recovered individuals at time 𝑡 for the population 𝑘 =77 
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1,… ,𝐾. The variables 𝑆𝑡,𝑘 , 𝐼𝑡,𝑘 , 𝑅𝑡,𝑘 in each population satisfy the differential equations of the SIR 78 

model for a single population (S1 in Supplementary data), i.e., 79 

{
 
 

 
 
𝑑𝑆𝑡,𝑘
𝑑𝑡

= −𝛽𝑘𝐼𝑡,𝑘𝑆𝑡,𝑘       

𝑑𝐼𝑡,𝑘
𝑑𝑡

= 𝛽𝑘𝐼𝑡,𝑘𝑆𝑡,𝑘 − 𝛾𝑘𝐼𝑡,𝑘

𝑑𝑅𝑡,𝑘
𝑑𝑡

= 𝛾𝑘𝐼𝑡,𝑘                 

                       (1) 80 

Moreover, transmissions occur between two populations 𝑖 and 𝑗 at a constant rate 𝜔𝑖𝑗 for 81 

transmissions from population Ω𝑗 to population Ω𝑖 and 𝜔𝑗𝑖 for transmissions from population Ω𝑖 to 82 

population Ω𝑗 (Figure 1). The inter-population transmission rate 𝜔𝑖𝑗 represents the probability of an 83 

individual from population Ω𝑗 traveling to population Ω𝑖 and contracting the infection in Ω𝑖, i.e.,  84 

𝜔𝑖𝑗 = 𝑤𝑣      (2) 85 

where 𝑤 is the probability that an individual in population Ω𝑗 travels to population Ω𝑖, and 𝑣 is the 86 

probability that an individual who has traveled to population Ω𝑖 gets infected in Ω𝑖. If individuals in 87 

population Ω𝑗 independently have the same probability 𝑤 of travelling to population Ω𝑖, then the 88 

number 𝑦𝑡,𝑗 of individuals in population Ω𝑗 who travel to population Ω𝑖 at time 𝑡 follows the 89 

binomial distribution, i.e.,  90 

𝑦𝑡,𝑗~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑗 , 𝑤)   (3) 91 

Given 𝑦𝑡,𝑗, the number 𝑥𝑡,𝑗 of individuals in population Ω𝑗 who have travelled to and gotten infected 92 

in population Ω𝑖 at time 𝑡 follows the binomial distribution, i.e., 93 

𝑥𝑡,𝑗|𝑦𝑡,𝑗 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑦𝑡,𝑗𝐼𝑡,𝑖 , 𝑣)  (4) 94 

The transmission events occurring in population Ω𝑖 involve not only the infected individuals 95 

in the population Ω𝑖, but also the 𝑥𝑡,𝑗 individuals from population Ω𝑗 who travel to and get infected in 96 

Ω𝑖. Every newly infected individual ℐ𝑡,𝑖 in Ω𝑖 at time 𝑡, including the 𝑥𝑡,𝑗 individuals who have 97 
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traveled from Ω𝑗 to Ω𝑖, can be traced back to an infectious individual 𝒜𝑡−1,𝑖 in Ω𝑖 at time 𝑡 − 1. This 98 

transmission event is indicated by a mapping 𝜏 defined as follows 99 

𝜏: ℐ𝑡,𝑖 ↦ 𝒜𝑡−1,𝑖 (5) 100 

Since the number 𝑥𝑡,𝑗 is negligible compared to the number 𝐼𝑡−1,𝑖 of infectious individuals in the 101 

population Ω𝑖 at time 𝑡 − 1, we only consider the 𝐼𝑡−1,𝑖 infectious individuals when we look 102 

backward to find the infectious individual 𝒜𝑡−1,𝑖 at time 𝑡 − 1 who is the ancestor of a newly 103 

infected individual ℐ𝑡,𝑖 at time 𝑡. Furthermore, it is assumed that the 𝐼𝑡−1,𝑖 infectious individuals at 104 

time 𝑡 − 1 are equally likely to be the ancestor 𝒜𝑡−1,𝑖 of a newly infected individual ℐ𝑡,𝑖, i.e., for 𝑎 =105 

1,… , 𝐼𝑡−1,𝑖, where 𝑎 represents one of the 𝐼𝑡−1,𝑖 infectious individuals in population 𝑖 at time 𝑡 − 1,  106 

𝑃(𝒜𝑡−1,𝑖 = 𝑎) =
1

𝐼𝑡−1,𝑖
  (6) 107 

Moreover, the 𝑥𝑡,𝑗 individuals from population Ω𝑗 are infected by the 𝐼𝑡,𝑖 infectious individuals of 108 

population Ω𝑖 at time 𝑡. We assume that the 𝐼𝑡,𝑖 infectious individuals at time 𝑡 are equally likely to 109 

be the ancestor 𝒜𝑡,𝑖 of one of the 𝑥𝑡,𝑗 individuals from population Ω𝑗, i.e., for 𝑏 = 1,… , 𝐼𝑡,𝑖, where 𝑏 110 

represents one of the 𝐼𝑡,𝑖 infectious individuals, 111 

𝑃(𝒜𝑡,𝑖 = 𝑏) =
1

𝐼𝑡,𝑖
 (7) 112 

All transmissions within an arbitrary time interval [0, 𝑑𝑖] for 𝑑𝑖 > 2 and 𝑑𝑖 ∈ ℕ in population Ω𝑖 113 

form a tree-like structure, which is the transmission tree 𝑇𝑖 for population Ω𝑖 (Figure 1). We assume 114 

that the roots 𝑂1, … , 𝑂𝐾  of 𝐾 transmission trees 𝑇1, … , 𝑇𝐾 share a common ancestor, denoted by 𝑂∗, 115 

i.e., the root of a super tree 𝑇∗ in which the 𝐾 transmission trees 𝑇1, … , 𝑇𝐾 are the subtrees of 𝑇∗. 116 
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It follows from Equations 3-4 that the expected number 𝐸(𝑥𝑡,𝑗) of individuals who travel to 117 

and get infected in the population Ω𝑖 is given by 𝐸(𝑥𝑡,𝑗) = 𝐸 (𝐸(𝑥𝑡,𝑗|𝑦𝑡,𝑗)) = 𝑁𝑗𝐼𝑡,𝑖𝑤𝑣 = 𝑁𝑗𝐼𝑡,𝑖𝜔𝑖𝑗, 118 

where 𝐼𝑡,𝑖 is the number of infectious individuals in the population Ω𝑖 at time 𝑡. The expectation of 119 

the total number ∑ 𝑥𝑡,𝑗𝑡  of individuals from the population Ω𝑗 who get infected in the population Ω𝑖 is 120 

equal to 𝐸(∑ 𝑥𝑡,𝑗𝑡 ) = 𝑁𝑗𝜔𝑖𝑗 ∑ 𝐼𝑡,𝑖𝑡 , indicating that the transmission rate 𝜔𝑖𝑗 can be estimated by the 121 

ratio of ∑ 𝑥𝑡,𝑗𝑡  and 𝑁𝑗 ∑ 𝐼𝑡,𝑖𝑡 , i.e., 122 

𝜔𝑖𝑗̂ =
∑ 𝑥𝑡,𝑗𝑡

𝑁𝑗 ∑ 𝐼𝑡,𝑖𝑡
           (8) 123 

The numerator ∑ 𝑥𝑡,𝑗𝑡  is the total number of individuals from the population Ω𝑗 who travel to and get 124 

infected in the population Ω𝑖. The denominator 𝑁𝑗 ∑ 𝐼𝑡,𝑖𝑡  can be calculated by 𝑁𝑗 ∑ 𝐼𝑡,𝑖𝑡 =125 

𝑁𝑗 ∑ (𝑡𝑚,𝑖
𝑅 − 𝑡𝑚,𝑖

𝐼 )
𝐼𝑖
𝑚=1  where 𝑡𝑚,𝑖𝑅  and 𝑡𝑚,𝑖𝐼  are the recovery and infection time of the infected 126 

individual 𝑚 in the population Ω𝑖, and 𝐼𝑖 is the total number of infected individuals in the population 127 

Ω𝑖 by time 𝑑𝑖.  Thus, the estimate 𝜔𝑖𝑗̂ can be calculated by 128 

𝜔𝑖𝑗̂ =
∑ 𝑥𝑡,𝑗𝑡

𝑁𝑗 ∑ (𝑡𝑚,𝑖
𝑅 − 𝑡𝑚,𝑖

𝐼 )
𝐼𝑖
𝑚=1

    (9) 129 

The estimate 𝜔𝑖𝑗̂ is unbiased and statistically consistent in estimating the inter-population 130 

transmission rate 𝜔𝑖𝑗 (S2 and S3 in Supplementary data).  131 

In real data analysis, however, we can only obtain a sample of infected individuals in 132 

populations Ω1, … , Ω𝐾. We assume that the infected individuals in the samples 𝒮1,…,𝒮𝐾 are randomly 133 

selected from populations Ω1, … , Ω𝐾. Let 𝑛𝑖 be the sample size of 𝒮𝑖, and 𝑥𝑡,𝑗 (𝑗 ≠ 𝑖) denotes the 134 

number of individuals in the sample 𝒮𝑗 who travel to and get infected population Ω𝑖 at time 𝑡. Let 𝐼𝑖̃ 135 

for 𝑖 = 1, … , 𝐾 be the number of individuals in the samples 𝒮𝑖 who get infected in population Ω𝑖. Let 136 

𝐼𝑖 be the total number of infected individuals by the time 𝑑𝑖 in population Ω𝑖. The inter-population 137 

transmission rate 𝜔𝑖𝑗 can be estimated by the samples 𝒮𝑖 and 𝒮𝑗, i.e., 138 
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𝜔𝑖𝑗̃ =

𝐼𝑗
𝐼𝑗̃
∑ 𝑥𝑡,𝑗𝑡

𝑁𝑗 (
𝐼𝑖
𝐼𝑖̃
∑ (𝑡𝑚,𝑖

𝑅 − 𝑡𝑚,𝑖
𝐼 )

𝐼𝑖̃
𝑚=1 )

  (10) 139 

The estimate 𝜔𝑖𝑗̃ converges to 𝜔𝑖𝑗̂, i.e., 𝜔𝑖𝑗̃ → 𝜔𝑖𝑗̂, as the sample sizes 𝑛𝑖 and 𝑛𝑗 approach to the total 140 

numbers 𝑁𝑖 and 𝑁𝑗 of the infected individuals in the populations Ω𝑖 and Ω𝑗 . We can show that 𝜔𝑖𝑗̃ is 141 

an asymptotically unbiased estimator of 𝜔𝑖𝑗 and is statistically consistent in estimating the parameter 142 

𝜔𝑖𝑗 as the sample sizes 𝑛1 and 𝑛2 increase to infinity (S4 in Supplementary data).  143 

We have developed a phylogenetic approach (transRate) to estimate the inter-population 144 

transmission rate 𝜔𝑖𝑗 using the pathogen genomes labeled with their population origins Ω1, … , Ω𝐾. 145 

The phylogenetic method for transmission rate estimation consists of four steps: 1) Building a 146 

phylogenetic tree based on the pathogen genomes. 2) Identifying clades in the tree that have at least a 147 

certain percentage (default is 60%) of taxa with the same population origin. 3) Labeling each 148 

identified clade with the population origin of the majority of sequences in that clade. Any sequences 149 

labeled with a different population origin are inferred as inter-population transmission events. 4) 150 

Estimating the inter-population transmission rate 𝜔𝑖𝑗 based on the identified clades. The variability 151 

inherent in the estimation of phylogenetic trees, including the formation of clades, could skew the 152 

accuracy of transmission rate estimation. However, given the constancy of the transmission rate over 153 

time, the percentage of transmission events remains the same throughout any given time frame. This 154 

indicates that, despite the inherent uncertainty in the phylogenetic tree and the identification of 155 

clades, the estimation of the transmission rate retains a certain degree of reliability.  156 

Simulation 157 

Estimation of transmission rates from phylogenetic trees 158 
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Given the transmission tree of two populations, we evaluated the performance of transRate for 159 

estimating the inter-population transmission rate. The transmission tree was generated from the two-160 

population SIR model during a time interval [0, 𝑑] (i.e., 𝑑 = 50). The population size was set to be 161 

𝑁1 = 𝑁2 = 10,000 and 𝑁1 = 𝑁2 = 1,000,000. For the population size 10,000, we set the infection 162 

rate 𝛽 = 0.00005 and the recovery rate 𝛾 = 0.05. For the population size 1,000,000,  we set 𝛽 =163 

0.0000005 and 𝛾 = 0.05. The number of susceptible (𝑆𝑡), infected (𝐼𝑡), and recovered (𝑅𝑡) at time 𝑡 164 

was obtained by solving the differential equations of the two-population SIR model using an R 165 

package deSolve (SOETAERT et al. 2010). The number 𝑦𝑡,2 of individuals who traveled from the 166 

population Ω2 to the population Ω1 at time 𝑡 ∈ [0, 50] was simulated from the binomial distribution 167 

with mean = 𝑁2𝑤, where 𝑤 = 0.0001 for the population size 10,000 and 𝑤 = 0.000001 for the 168 

population size 1,000,000. The parameter 𝑤 is the probability that an individual in the population Ω2 169 

travels to the population Ω1, i.e., the average number of travelers from the population Ω2 to the 170 

population Ω1 of size 10000 is 10000 × 0.0001 = 10 individuals per day. Given 𝑦𝑡,2, the number 171 

𝑥𝑡,2 of individuals who traveled to and were infected in the population Ω1 at time 𝑡 was simulated 172 

from the binomial distribution with the infection rate 𝑣 = 0.002,0.004,0.006,0.008. The inter-173 

population transmission rate 𝜔12 from the population Ω2 to the population Ω1 is equal to the product 174 

of two probabilities 𝑤 and 𝑣, i.e.,  𝜔 = 𝑤𝑣 = 2 × 10−7, 4 × 10−7, 6 × 10−7, 8 × 10−7 for the 175 

population size 10,000 and 𝜔 = 𝑤𝑣 = 2 × 10−9, 4 × 10−9, 6 × 10−9, 8 × 10−9 for the population 176 

size 1000,000, respectively. Similarly, the transmissions from the population Ω1 to the population Ω2 177 

were simulated with the transmission rate 𝜔21. Two inter-population transmission rates were 178 

assumed to be equal to each other, i.e., 𝜔12 = 𝜔21. 179 

A phylogenetic tree 𝑇1 was subsequently constructed from the simulated transmissions in the 180 

population Ω1. Let 𝑥𝑖 be the number of new infections on day 𝑖. Let 𝑦𝑖−1be the number of infections 181 

on day (𝑖 − 1). Note that 𝑥𝑖 and 𝑦𝑖−1 may include inter-population infections. It follows that the 𝑥𝑖 182 
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new infections on day 𝑖 were infected by the 𝑦𝑖−1 infectious individuals on day (𝑖 − 1). Since the 183 

infectious individuals on day (𝑖 − 1) were equally likely to infect the susceptible individuals on day 184 

𝑖, the ancestor of each new infection on day 𝑖 was found by randomly sampling an infectious 185 

individual on day (𝑖 − 1). The ancestors formed the ancestral history (i.e., the phylogenetic tree 𝑇1) 186 

of the transmissions in the population Ω1 generated from the two-population SIR model. Similarly, a 187 

phylogenetic tree 𝑇2 was constructed from the transmissions in the population Ω2. Two trees were 188 

combined into a super tree 𝑇. This super tree 𝑇 was the input to estimate the transmission rates 𝜔12 189 

and 𝜔21 using Equation 9. Moreover, we randomly selected 𝑛 = 100, 200, 300, 400, 500 infected 190 

individuals (taxa) from each population in the super tree 𝑇. The phylogenetic tree of the sampled 191 

infections was utilized to estimate the inter-population transmission rates 𝜔12 and 𝜔21 using 192 

Equation 10. Each simulation was repeated 100 times and we calculated the mean squared error 193 

(MSE) and co-efficient variation (CV) of the estimates of the transmission rate. Since two 194 

transmission rates are equal to each other, we only present the MSE and CV of the transmission rate 195 

𝜔12, i.e., 𝑀𝑆𝐸 = 1

100
∑ (𝜔12̂

𝑖 −𝜔12)
2100

𝑖=1  and 𝐶𝑉 = 𝑠𝑑(𝜔12̂)

𝑚𝑒𝑎𝑛(𝜔12̂)
, where 𝑠𝑑(𝜔12̂) is the standard 196 

deviation of 𝜔12̂. 197 

Estimation of transmission rates from molecular sequences 198 

In the preceding simulation, the phylogenetic tree was derived from the transmissions generated by 199 

the two-population SIR model and was assumed to be a known input for estimating the inter-200 

population transmission rate 𝜔12. However, in practice, the phylogenetic tree is typically inferred 201 

from the sequence alignments of pathogen genomes. Therefore, it becomes crucial to account for the 202 

uncertainty associated with the estimated phylogenetic tree when estimating the transmission rate 203 

𝜔12. Once the phylogenetic tree was constructed based on the transmissions generated from the two-204 

population SIR model, we proceeded to simulate DNA sequences of 20,000 base pairs using the 205 

phylogenetic program Seq-Gen (RAMBAUT AND GRASSLY 1997) with the mutation rate 𝜇 =206 
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0.01,0.001,0.0001. If the phylogenetic tree involved polytomies which were not readable by the 207 

program Seq-Gen, the polytomy nodes in the phylogenetic tree were replaced by bifurcating nodes 208 

with 0 internal branch length. These sequences were utilized to reconstruct the maximum likelihood 209 

(ML) tree using FastTree (PRICE et al. 2009), employing the following command line: fasttree -nt -210 

nosupport seqfile > outputfile. The estimated phylogenetic tree served as the input for inferring the 211 

transmission rate 𝜔12. Each simulation was repeated 100 times and we calculated the mean squared 212 

error (MSE) and co-efficient variation (CV) of the estimates of the transmission rate 𝜔12. 213 

Estimation of transmission rates for multiple populations 214 

In this simulation, transmissions were generated from the multi-population SIR model for five 215 

populations Ω1, Ω2, Ω3, Ω4, Ω5. The populations were characterized by two different sizes, one with 216 

10,000 individuals and another with 1,000,000 individuals. For the smaller population (10,000 217 

individuals), transmission rates (𝜔𝑖𝑗 for 𝑖, 𝑗 = 1,… ,5) were set at values of 2 × 10−7,218 

4 × 10−7, 6 × 10−7 and 8 × 10−7, while for the larger population (1,000,000 individuals), 219 

transmission rates were configured at 2 × 10−9, 4 × 10−9, 6 × 10−9, and 8 × 10−9. A sample of 220 

infected individuals (i.e., 𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 𝑛5 = 100, 200, 300) was randomly selected from 221 

each of the five populations. Due to the limitation of the phylogenetic tree reconstruction method, we 222 

did not sample more than 300 individuals. The selected individuals were labelled with their 223 

population origins. Subsequently, a phylogenetic tree was constructed from the transmissions among 224 

the five samples of infected individuals. This phylogenetic tree featured five major clades, each 225 

corresponding to the sample selected from one of the five populations. DNA sequences of 20,000 226 

base pairs were simulated from the phylogenetic tree using Seq-Gen. These simulated sequences 227 

were employed as input data to estimate ML trees using the FastTree algorithm. The ML tree, in turn, 228 

was utilized to infer the transmission rates (𝜔𝑖𝑗). Finally, we evaluated the performance of transRate 229 

by calculating the MSE and CV of the estimates of the transmission rates (𝜔𝑖𝑗). The MSE and CV of 230 
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the transmission rate estimates served as a measure of how well the phylogenetic approach performed 231 

in estimating transmission rates in the simulation. 232 

Data Analysis of SARS-CoV-2 Genomes in the Early Pandemic 233 

The proposed phylogenetic method transRate was applied to a genomic dataset consisting of 40,028 234 

sequences of SARS-CoV-2 in human hosts during the early SARS-CoV-2 pandemic (YANG et al. 235 

2023). This dataset was formed from 41,910 coronavirus genomes downloaded from NCBI GenBank 236 

“nucleotide” database on August 26, 2021, with all sequences collected between December 31, 2019, 237 

and April 1, 2020. The dataset was filtered to remove sequences with missingness, containing frame 238 

shift, and incomplete genomes. There was no geographical filtering. Samples originated from the 239 

Americas, Europe, Oceania, and Asia. This filtration returned a dataset of 40,028 SARS-CoV-2 240 

genomes isolated from human hosts.Thespecies tree was estimated from the genomic data using a 241 

coalescent method NJst (LIU AND YU 2011). The geographical distribution of the clades in the species 242 

tree are as follows: 11 clades geographically centered in the Americas, 5 clades geographically 243 

centered in Asia, 18 clades geographically centered in Europe, and 1 clade geographically centered in 244 

Oceania (S5 in Supplementary data). A number of these clades did not contain any geographical 245 

outliers. A group of datasets were formed for the following populations: “Africa” (includes any 246 

clades that were centered in countries within the continent of Africa), “Americas” (includes any 247 

clades that were centered in countries or localities that were in North, Central, and South America), 248 

”Asia” (includes any clades that were centered in countries located in Asia), ”Europe” (includes any 249 

clades that were centered in countries located in Europe), and “Oceania” (includes any clades that 250 

were centered in localities in Oceania). The transmission rate estimation calculation was applied to 251 

the above populations. The recovery time is equal to 14 days as initially issued by the World Health 252 

Organization in the early pandemic. Population data was collected based on the World Health 253 

Organization and United Nations published data (S6 in Supplementary data). 254 
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A transmission analysis airplane plot was constructed using the previously described data set 255 

of 40,028 whole genome sequences of SARS-CoV-2 in human hosts. These samples underwent the 256 

process of forming clades based on bootstrap support, location, and number of individuals per clade, 257 

as outlined above. The inferred transmission events were plotted as an airplane plot with the larger 258 

black dots representing the location of which the majority of clade members originated. The smaller 259 

black dots are geographical outliers (samples not from within the location of the majority) in the 260 

clade and the arcs connecting the clade center to the geographical outliers represent an inferred 261 

transmission event. The color of the arcs indicates the time point at which the inferred transmission 262 

event occurred. This plot was created using the maps (Becker et al, 2022) and geosphere (Hijmans et 263 

al, 2022) packages.  264 

Results 265 

Simulation  266 

Estimation of transmission rates from phylogenetic trees 267 

Given the transmission tree generated from the two-population SIR model, we evaluated the 268 

performance of transRate in estimating the inter-population transmission rate 𝜔12. We considered 269 

two scenarios: 1) the phylogenetic tree was constructed from all transmissions simulated by the two-270 

population SIR model and 2) the phylogenetic tree was constructed from a sample of transmissions 271 

simulated by the two-population SIR model. For Scenario 1, the MSE of the transmission rate 272 

estimates increases as the true value of the transmission rate increases from 2 × 10−7 to 8 × 10−7 273 

(Figure 2). The MSEs for the population size of 10,000 are very small (< 2 × 10−14) (Figure 2a). 274 

Similar results can be observed for the population size of 1,000,000 (Figure 2b), indicating that 275 

transRate can accurately estimate the transmission rate 𝜔12 when the phylogenetic tree of all 276 

transmissions is given. The coefficient of variation (CV, i.e., the ratio of the standard deviation to the 277 
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mean) of the estimates of the transmission rate 𝜔12 for the population size of 1,000,000 (Figure 2b) is 278 

less than those for the population size of 10,000 (Figure 2a). This result is consistent with our theory 279 

that increasing the population size leads to a more accurate estimate of the transmission rate.  280 

For Scenario 2 where the phylogenetic tree was constructed from a sample of transmissions, the 281 

MSE of the transmission rate estimates appears to decrease as the sample size increases from 100 to 282 

1000 (Figure 3a), indicating that transRate can accurately estimate the transmission rate when the 283 

sample size is large. This rate of decrease varies across different values (2 × 10−7, 4 × 10−7, 6 ×284 

10−7, 8 × 10−7) of the transmission rate 𝜔12. Notably, the rate of decrease appears to be constant 285 

across different values of the transmission rate 𝜔 (see Figure 3a-b). Moreover, the MSE of the 286 

transmission rate estimates decreases at a faster rate when the sample size increases from 100 to 200, 287 

then it becomes stable after the sample size increases to 400 (Figure 3a-b). The CV of the 288 

transmission rate estimates is less than 0.45 for the sample size ≥ 200. This result indicates that the 289 

sample size 200 is sufficient to accurately estimate the transmission rate when the phylogenetic tree 290 

of a sample of transmissions is given.  291 

Estimation of transmission rates from sequences 292 

In real-world scenarios, the transmission tree is often inferred from the pathogen genomes. In this 293 

simulation, we assess the accuracy of transRate in the presence of uncertainty of the estimated 294 

transmission tree. We employed the two-population SIR model to generate the transmission tree for a 295 

sample of transmissions, followed by simulating DNA sequences based on this transmission tree to 296 

construct the Maximum Likelihood (ML) trees. These ML trees were then utilized to estimate the 297 

transmission rate. The simulation results, based on a population size of 10,000 individuals, indicate 298 

that the MSE of the transmission rate estimate decreases as the sample size increases from 100 to 500 299 

(Figure 4). This rate of decrease varies across different values (2 × 10−7, 4 × 10−7, 6 × 10−7, 8 ×300 
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10−7) of the transmission rate. Notably, the rate of decrease appears to be positively correlated with 301 

the values of the transmission rate (Figure 4). Moreover, the MSE of the transmission rate estimate 302 

decreases at a faster rate when the sample size increases from 100 to 200, then it becomes stable after 303 

the sample size increases to 300. In contrast, the MSE of the transmission rate estimate remains 304 

consistent across various values (0.0001,0.001,0.01) of the mutation rate. The CV of the 305 

transmission rate estimates is less than 0.3 when the sample size increases to 200, indicating that the 306 

sample size 200 is sufficient to accurately estimate the transmission rate. The MSE and CV of the 307 

transmission rate estimates for the population size 1,000,000 are less than those for the population 308 

size 10,000, which is consistent with the expectation of the multi-population SIR model that 309 

increasing the population size leads to a more accurate estimate of the transmission rate. 310 

Estimation of transmission rates for five populations 311 

In this simulation, transmission events were generated from the five-population SIR model. It was 312 

assumed that all of 20 inter-population transmission rates 𝜔𝑖𝑗 for 𝑖, 𝑗 = 1,… ,5 and 𝑖 ≠ 𝑗 were equal 313 

to each other. For the population size of 10,000, 𝜔𝑖𝑗 = 2 × 10−7, 4 × 10−7, 6 × 10−7, 8 × 10−7. For 314 

the population size of 1,000,000, 𝜔𝑖𝑗 = 2 × 10−9, 4 × 10−9, 6 × 10−9, 8 × 10−. To evaluate the 315 

performance of transRate for estimating the transmission rate, we calculated the MSE and CV of the 316 

average 𝜔̅ of the estimates of 20 transmission rates. The MSE of the average estimate 𝜔̅ appears to 317 

be constant as the sample size increases from 100 to 300 (Figure 5a-b). For the population size of 318 

10,000 and 1,000,000, the CV of the transmission rate estimates is less than 0.15 across various 319 

values (0.0001, 0.001, 0.01) of the mutation rate and the population size (10,000 and 1,000,000), 320 

indicating that the sample size of 100 is sufficient to accurately estimate the transmission rate.  321 

Data Analysis of SARS-CoV-2 Genomes in the Early Pandemic 322 
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The transmission rate estimates for the early SARS-CoV-2 pandemic, between December 31, 2019 323 

and March 31, 2020, reveal transmission between Europe, Africa, Americas, and Asia (Table 1). 324 

Population 1 is the population in which the majority of the clade is geographically centered and 325 

Population 2 is the population in which geographical outliers originate from. The analysis of the 326 

40,028 whole genome sequences of SARS-CoV-2 in human hosts revealed the efficiency of certain 327 

protection measures enacted by public health officials. The findings suggest that, by the time many 328 

travel restrictions were in place, much transmission had already occurred between populations and 329 

with unstable availability in testing, inter-population transmission rapidly increased. 330 

The airplane plot of 40,028 whole genome sequences of SARS-CoV-2 in human hosts 331 

between December 31, 2019-March 31, 2020 (Figure 6). The clades pictured in the airplane plot 332 

reflect the 35 clades in Table 1. The geographic coordinates were taken as the closest non-333 

transmission taxon to the transmissions within a clade as an inference for “case 0” in a particular 334 

clade. The arcs indicate early transmission throughout Asia and spreading to Europe. Later 335 

transmission events are pictured from Europe the Americas. The latest transmission events shown in 336 

the airplane plot are within Oceania. 337 

Discussion 338 

Estimating transmission rate is a challenging but essential task for understanding and controlling the 339 

spread of infectious diseases. There are different methods for estimating transmission rate from data, 340 

each with its own assumptions, data requirements, and limitations. The choice of the best method 341 

depends on the availability and quality of the data, the characteristics of the disease, and the 342 

objectives of the analysis. In this paper, we develop a phylogenetic approach (transRate) for 343 

estimating inter-population transmission rates. TransRate is statistically consistent in estimating 344 
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inter-population transmission rates. The simulation and real data analyses indicate that transRate can 345 

accurately estimate inter-population transmission rates.  346 

 The accuracy of transRate is influenced by the number of pathogen genomes that have been 347 

sampled from different populations. This underscores the importance of conducting higher rates of 348 

whole genome sequencing during outbreak events. However, the availability of data can present 349 

significant gaps, as not all sequences may be publicly accessible. For instance, while the dataset for 350 

SARS-CoV-2 mentioned here is extensive, there can still be biases in the data, particularly in the 351 

early stages of a pandemic (YANG et al. 2023).  The release policies for viral genomes can vary 352 

greatly between countries and change over time, as observed during the 2020 pandemic. 353 

Consequently, the sample is no longer random. Additionally, there are regions around the world 354 

where limited resources hinder the acquisition of viral genomes, as mentioned earlier. This can create 355 

limitations, especially when it comes to analyzing non-simulated data. Another important 356 

consideration is the presence of asymptomatic cases in viral infections. Asymptomatic individuals 357 

may not receive whole genome testing, which may introduce further challenges to the accuracy of the 358 

method. 359 

Conclusion 360 

Molecular epidemiology and genetic data play a crucial role in estimating transmission rates, 361 

providing a detailed understanding of the genetic diversity and dynamics of infectious agents. The 362 

phylogenetic approach developed in this paper integrates genetic information with traditional 363 

epidemiological approaches to improve the accuracy of transmission rate estimates. Simulation and 364 

analytic results indicate that transRate can accurately estimate transmission rates from genomic data, 365 

contributing to more effective strategies for disease control and prevention. This method is well-366 

suited for estimating transmission rates on large multi-population datasets in both epidemic and 367 
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endemic states. With the increasing availability of public databases for genomic sequences, this 368 

methodology is expected to become more prevalent as a valuable policy tool. 369 

Key Points 370 

• We develop a novel phylogenetic approach for estimating transmission rates in infectious disease 371 

• The phylogenetic approach integrates genetic information with traditional epidemiological 372 

approaches.  373 

• The phylogenetic approach is statistically consistent in estimating transmission rates under the 374 

multi-population SIR model 375 

• Simulation studies confirm the accuracy of the phylogenetic method in estimating transmission 376 

rates. 377 

• The utilization of this phylogenetic approach enhances the efficacy of disease control and 378 

prevention strategies. 379 

Data Availability 380 

The datasets analyzed for this study can be found in “The species coalescent indicates possible bat 381 

and pangolin origins of the COVID-19 pandemic” (YANG et al. 2023). R code generated for the 382 

simulation study is available on Github at https://github.com/sagay2022/Phylogenetic-inference-of-383 

inter-population-transmission-rates-for-infectious-diseases. 384 
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 394 

Figures 395 

 396 

Figure 1: Transmission events generated from the two-population SIR model. The numbers of 397 

susceptible we consider the transmission events that occur within and between two populations Ω1 398 

(left panel) and Ω2 (right panel). The numbers of susceptible (sky blue), infected (blue), and 399 

recovered (red) individuals at time 𝑡 (day) were obtained by solving the differential equations for the 400 

two-population SIR model. Moreover, the model assumes that transmissions occur between two 401 

populations at a constant rate 𝜔12 for transmissions from the population Ω1 to the population Ω2 and 402 
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𝜔21 for transmissions from population the Ω2 to the population Ω1. Every infected individual in the 403 

population Ω1 can be traced back to an infector (i.e., ancestor) in the population Ω1. The ancestral 404 

history of all transmissions in the population Ω1 form a phylogenetic tree (left panel) with a root 𝑂1 405 

in which the blue lineages are the transmissions within the population Ω1 and the orange lineages are 406 

the inter-population transmissions from the population Ω2 to the population Ω1. Similarly, a 407 

phylogenetic tree with a root 𝑂2 (right panel) can be generated for the transmissions in the population 408 

Ω2 where the orange lineages are the transmissions within the population Ω2 and the blue lineages 409 

are the inter-population transmissions from the population Ω1 to the population Ω2. 410 

 411 

Figure 2: Estimation of the transmission rate from the phylogenetic tree of all infected individuals. 412 

The phylogenetic tree of all infected individuals was generated from the two-population SIR model. 413 

a) For population size = 10000, transmission events were simulated with the transmission rate 𝜔 =414 
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2 × 10−7, 4 × 10−7, 6 × 10−7, 8 × 10−7. b) For population size = 1000000, transmission events were 415 

simulated with the transmission rate 𝜔 = 2 × 10−9, 4 × 10−9, 6 × 10−9, 8 × 10−9. The phylogenetic 416 

tree was then utilized to estimate the transmission rate 𝜔. The simulation was repeated 100 times. 417 

The Mean Squared Error (MSE) and Coefficient Variation (CV) of the transmission rate estimates 418 

were calculated. 419 

 420 

 421 

Figure 3: Estimation of the transmission rate from the phylogenetic tree of a sample of infected 422 

individuals. The phylogenetic tree of a sample of infected individuals (sample size = 100, 200, 400, 423 

600, 800, 10000) was generated from the two-population SIR model. a) For population size = 10000, 424 

transmission events were simulated with the transmission rate 𝜔 = 2 × 10−7, 4 × 10−7, 6 ×425 

10−7, 8 × 10−7. b) For population size = 1000000, transmission events were simulated with the 426 
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transmission rate 𝜔 = 2 × 10−9, 4 × 10−9, 6 × 10−9, 8 × 10−9. The phylogenetic tree was then 427 

utilized to estimate the transmission rate 𝜔. The simulation was repeated 100 times. The Mean 428 

Squared Error (MSE) and Coefficient Variation (CV) of the transmission rate estimates were 429 

calculated. 430 

 431 

Figure 4: Estimation of the transmission rate from sequences. The phylogenetic tree of a sample of 432 

infected individuals (sample size = 100, 200, 300, 400, 500) was generated from the two-population 433 

SIR model. a) For population size = 10000, transmission events were simulated with the transmission 434 

rate 𝜔 = 2 × 10−7, 4 × 10−7, 6 × 10−7, 8 × 10−7. b) For population size = 1000000, transmission 435 

events were simulated with the transmission rate 𝜔 = 2 × 10−9, 4 × 10−9, 6 × 10−9, 8 × 10−9. DNA 436 

sequences of 20,000 base pairs were simulated from the phylogenetic tree with the mutation rate = 437 

0.0001, 0.001, 0.01 and then used to build the Maximum Likelihood (ML) trees. Finally, the 438 
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transmission rate 𝜔 was estimated by transRate using ML trees. The simulation was repeated 100 439 

times. The Mean Squared Error (MSE) and Coefficient Variation (CV) of the transmission rate 440 

estimates 𝜔̂ were calculated. 441 

 442 

Figure 5: Estimation of the transmission rate for five populations. The phylogenetic tree of a sample 443 

of infected individuals (sample size = 100, 200, 300) was generated from the multi-population SIR 444 

model for five populations. a) For the population size = 10,000, transmission events were simulated 445 

with the transmission rate 𝜔 = 2 × 10−7, 4 × 10−7, 6 × 10−7, 8 × 10−7. b) For the population size = 446 

1,000,000, transmission events were simulated with the transmission rate 𝜔 = 2 × 10−9, 4 ×447 

10−9, 6 × 10−9, 8 × 10−9. DNA sequences of 20,000 base pairs were simulated from the 448 
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phylogenetic tree with the mutation rate = 0.0001, 0.001, 0.01 and then used to build the Maximum 449 

Likelihood (ML) trees. Finally, the transmission rate was estimated by transRate using ML trees. The 450 

simulation was repeated 100 times. The Mean Squared Error (MSE) and Coefficient Variation (CV) 451 

of the transmission rate estimates 𝜔̂ were calculated. 452 

 453 

Figure 6: An airplane plot of transmission analysis of 40,028 whole genome sequences of SRAS-454 

CoV-2 in human hosts between December 31, 2019-March 31, 2020. The larger black dots on the 455 

map represent the geographical location of clades formed based on 80% bootstrap support value and 456 

80% locality identity. The smaller black dots are geographical outliers in the clade and the arcs 457 

connecting the clade center to the geographical outliers represent an inferred transmission event. The 458 

color of the arcs indicates the time point in which the inferred transmission event occurred. 459 

Transmission events are categorized into three time points: January 2020, February 2020, and March 460 

2020. The geographic coordinates were taken as the closest non-transmission taxon to the 461 

transmissions within a clade as an inference for “case 0” in a particular clade. 462 
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 463 

 464 

 465 

 466 

Table 1: Inter-population transmission rate estimates of 40,028 whole genome SARS-CoV-2 467 

sequences. 468 

 Africa Asia Americas Europe Oceania 

Africa -     

Asia  - 2.205031e-09  6.178179e-07 

Americas  1.562009e-09 - 1.01126e-08 7.398807e-08 

Europe 1.123952e-07 6.297804e-10 1.414143e-09 - 1.337251e-07 

Oceania   2.255848e-08 9.023393e-08 - 

 469 

 470 

 471 

 472 
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 474 

 475 
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 477 
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