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Abstract—In order to perform highly dynamic and agile
maneuvers, legged robots typically spend time in underactuated
domains (e.g. with feet off the ground) where the system
has limited command of its acceleration and a constrained
amount of time before transitioning to a new domain (e.g. foot
touchdown). Meanwhile, these transitions can instantaneously
change the system’s state, possibly causing perturbations to
be mapped arbitrarily far away from the target trajectory.
These properties make it difficult for local feedback controllers
to effectively recover from disturbances as the system evolves
through underactuated domains and hybrid impact events.
To address this, we utilize the fundamental solution matrix
that characterizes the evolution of perturbations through a
hybrid trajectory and its 2-norm, which represents the worst-
case growth of perturbations. In this paper, the worst-case
perturbation analysis is used to explicitly reason about the
tracking performance of a hybrid trajectory and is incorporated
in an iLQR framework to optimize a trajectory while taking
into account the closed-loop convergence of the trajectory
under an LQR tracking controller. The generated convergent
trajectories recover more effectively from perturbations, are
more robust to large disturbances, and use less feedback control
effort than trajectories generated with traditional methods.

Index Terms— Legged Robots, Trajectory Optimization, Ro-
bust Control

I. INTRODUCTION

Legged robotics research has increasingly focused on
enabling highly dynamic and agile motions such as jumping,
leaping, and landing [1-4]. Implementing these capabili-
ties reliably would improve legged robot performance in
applications such as extraterrestrial or urban environment
navigation where jumping up on ledges or leaping across
chasms may be necessary. However, jumping and leaping
are dangerous maneuvers, with failure often resulting in
catastrophic outcomes for the robot.

What makes these actions challenging is that they induce
trajectories that are both hybrid and underactuated, which
doubly contribute to the difficulty in controlling legged
robots. Broadly speaking, a system is hybrid if it undergoes
discrete changes in state and/or dynamics [5,6], and it is
underactuated if there exists a direction of acceleration in
state space that can not be commanded by any valid input [7,
Ch. 1.2]. Even when an underactuated system is controllable,
driving the system to a desired target state may require
significant time and control effort, neither of which may
be readily available. For instance, a robot jumping in the
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Vanilla iLQR

Fig. 1. Similar quadruped gaits tracked with equivalent LQR controllers
display enormous differences in final tracking performance. Results for 50
paired trials of trajectories sampled from an initial error covariance of 102
in all directions are shown. The top blue trajectory was generated with a
standard (vanilla) iLQR algorithm, while the bottom green trajectory was
generated with our novel x-iLQR, which improves the average closed-loop
convergence by 92%. The horizontal distance between the displayed frames
is exaggerated for visual clarity. Only the convergence of the position states
is represented, and does not indicate convergence of the velocity states.

air can not arbitrarily choose how much time it has until
its feet touchdown on the ground. This means that the
controller needs to spend a lot of effort to correct tracking
errors prior to touchdown, or else discontinuous, unbounded
saltation effects [8] can cause arbitrarily large divergence
if incoming errors are not sufficiently mitigated, e.g. with
grazing impacts. Increasing control gains is one possible
solution to improve stability, though that strategy comes
at a large drawback of worsening robustness in the face
of modelling errors and uncertainties [9, Ch. 13]. Instead,
this work leverages nonlinearities in continuous and hybrid
dynamics that make some trajectories easier to stabilize than
others, even under equivalent feedback controllers.

This paper presents a novel adaptation of the iLQR trajec-
tory optimization algorithm that improves closed-loop con-
vergence under an equivalent feedback controller (i.e. with-
out changing the LQR controller weights), as demonstrated
in Fig. 1. Our simulation results show that this convergent
iLQR (x-iILQR) achieves three simultaneous improvements
over standard iLQR: superior tracking performance from
initial perturbations, reduced feedback control effort over the
trajectory, and improved robustness to large initial errors.
Compared to existing methods, x-iLQR has two additional
key strengths. Firstly, it is based on an analysis that is
simple to compute compared to methods such as sum-of-
squares. Additionally, x-iLQR captures the local tracking
performance of a closed-loop trajectory, which directly pre-
dicts experimental results.



II. RELATED WORKS

A strategy that has been used to enable dynamic yet pre-
carious behaviors for legged robots is leveraging highly accu-
rate, complex models and full-body trajectory optimization to
plan precise motions [3,10]. While these methods incorporate
feedback controllers to stabilize the generated trajectories,
there has been little focus on how these feedback controllers
should be designed to stabilize closed-loop systems under
error and uncertainty.

Robust trajectory planning has been successfully im-
plemented for smooth systems like wheeled robots, with
some recent results being adapted to hybrid systems like
legged robots. These works have focused on optimizing
over uncertainties in system dynamics, such as unknown
disturbances and modelling errors [11-13]. For example, [11]
designs robust closed-loop trajectories for smooth systems by
optimizing the volume reduction of an ellipsoidal disturbance
set, but was not applied to hybrid systems. Risk-sensitive
planning and control is an alternate method that optimizes
over the variance of a cost distribution that evolves through
the trajectory [14,15]. Other approaches present trajectory
optimization algorithms for legged robots over uncertain
terrain [16] and compute a forward reachable set to bound
closed-loop errors [17]. Many of these methods require the
distribution of errors to be prespecified, which is not always
clear how to tune. Additional actuation, such as reaction
wheels or tails, also relieves the difficulties of underactuated
systems [18,19]. However, this comes with obvious tradeoffs
of increased cost, size, and weight.

Separately, consider the problem of quantifying the stabil-
ity or convergence properties of a system. A very popular
method is Lyapunov analysis, where the existence of a
positive definite differentiable scalar function with nega-
tive definite derivatives, called the Lyapunov function, can
guarantee asymptotic stability of the system [20]. Lyapunov
functions can be difficult to compute, particularly for hybrid
systems, and can require methods such as sum-of-squares
[21] or machine learning [22] to be tractable. A similar
strategy known as control barrier functions, which restricts
the system from entering some set of undesirable states, has
been successfully implemented on legged robot hardware
[23], but has the same drawback as Lyapunov functions.

A different strategy to analyze the stability and conver-
gence of trajectories is contraction analysis [24], which
tracks the distance between two close trajectories. If this
distance monotonically decreases over the trajectory, then
the system is contractive and asymptotic stability can be
guaranteed [24]. Contraction analysis has been incorporated
into path planning and trajectory optimization algorithms on
smooth systems [25,26], but applying contraction analysis to
hybrid systems is difficult because many mechanical hybrid
systems are not contractive at hybrid events [27]. [28] loos-
ened the contraction criterion and optimized the stability of
open-loop periodic orbits using monodromy matrix analysis.
Here, we extend that work by generalizing to non-periodic
trajectories under feedback control.

III. ANALYSIS AND PLANNING FOR HYBRID SYSTEMS

This section defines a hybrid system and quantifies the per-
formance of a closed-loop hybrid trajectory using linearized
variational equations. With this analysis, we can generate a
scalar measure of a trajectory’s convergence which is then
incorporated into a trajectory optimization framework.

A. Hybrid Systems

Hybrid systems are a class of dynamical systems that
consist of continuous domains connected by hybrid events
[5,6]. Following the notation in [8], we describe a hybrid
system as a set of discrete modes {I,J,..., K}, each with
a domain Dy and a time-varying vector field F1. G(1,j) is a
guard that triggers a transition between mode I and mode J
and Ry j is the reset map defining that transition.

An execution of a hybrid system [29] begins at an initial
state o € D;. With input uy(¢,z), the system obeys the
dynamics F1 on Dj. If the system reaches guard surface
G(1,5), the reset map R j) is applied and the system
continues in domain Dj under the corresponding dynamics
defined by Fj. The flow &(t,to,xo,U) describes how the
hybrid system evolves from some initial time £y and state zg
until some final time ¢ under input sequence U.

B. Linearized Variational Equations

For both continuous domains and hybrid transitions, lin-
earized variational equations can be constructed to character-
ize the evolution of perturbations §z [30]. In each continuous
domain, the linearized variational equation is discretized
from timestep ¢ to ¢ + 1 and is dz;41 ~ (A1 — BiK1)dx;
[30] with A; and Bj being the derivatives of the discretized
dynamics in mode I w.r.t. state x; and control inputs u;,
respectively, and K7 are linear feedback gains. The feedback
term drops out for open-loop systems. For hybrid events,
the analogous variational equation is the saltation matrix
=(1,7), Which describes the transition between modes I and
J. The saltation matrix is the first-order approximation of
the change in state perturbations from before the hybrid
event at 0z (t~) to perturbations after dz(¢t) [27], such that
dx(tt) ~ E1 )0x(t™). This linear approximation assumes
that nearby trajectories undergo the same mode transition.
Computing the saltation matrix relies on the derivatives of
the reset and guard of the transition along with the dynamics
in each mode, and is detailed in [8].

C. Convergence Measure

Consider a trajectory that begins at state zo = xz(tp)
at time to and is executed until time ¢y where it arrives
at state x5 = ¢(ty,to, 0, U). The control objective is to
bring any nearby initial state o = x¢ + dxp towards the
nominal trajectory so that at time ¢ 7, 7 = @(ty, to, To,U) =
x¢ + dxy is closer to xy. To characterize the closeness
of Zy and xy, we utilize the fundamental solution matrix,
®. Following [31], the fundamental solution matrix is the
linearized approximation éxy ~ ®dxo and represents the
transformation of error from the initial state to final state.



The fundamental solution matrix can be computed by
sequentially composing the linearized variational equations
in each continuous domain (4 := A— BK ) and the saltation
matrices (=) at each hybrid event [28]. For a hybrid trajectory
with N domains, the fundamental solution matrix is:

®=ANEN_1n) .- Bz A2Z 10 A (1)

Since the fundamental solution matrix captures the change
in errors across a trajectory, the singular values of ® charac-
terize error change along principle axes of state space. The
largest singular value, which is equivalent to the induced 2-
norm of &, describes the evolution of the most divergent
direction of initial error dzg. We define the convergence
measure, x to be exactly this worst-case value:

X = [|2]]2 2

X is a continuous measure of local convergence, where
smaller values of x indicate stronger reduction of worst-case
final errors. A value of x < 1 indicates errors in all directions
will shrink.

D. iLQR for Hybrid Systems

The iterative linear quadratic regulator (iLQR) is a trajec-
tory optimization method that also computes LQR feedback
gains over the generated trajectory [32]. iLQR is convenient
because compared to other trajectory optimization methods
like direct collocation [33], it is less computationally in-
tensive and guarantees a feasible trajectory. We draw from
recent work that adapts the iLQR algorithm for use on hybrid
dynamical systems [34,35].

In brief, iLQR solves the optimal control problem over [NV
discretized timesteps:

N-1
min In(zn) + ; li(xi,u) 3)
where 2z = x(0) 4)
Tiy1 = Q(tit1, ti, Ti, u;) Vi o)

where £;(x;,u;) and ¢x(zx) represent the nonlinear stage
cost and terminal cost, respectively, X := {zg, 21, ...,ZN}
is a sequence of states with x; € R™ the system state
at timestep ¢ and U := {ug,u1,...,un—_1} IS a sequence
of control inputs with u; € R™ the control input at
timestep 7. We also record the sequence of domains M :=
{Dg, D1, ..., Dy} with D; the domain at timestep 4 such that
z; € D;. ¢ is the aforementioned flow of the trajectory.

iLQR computes gradient and Hessian information of the
cost, which results in a quadratic approximation of the
cost function. As such, the state and terminal costs can
equivalently be simplified as quadratic functions such that
the cost function is simplified to:

N-1
J=28Qnan + Z z!l Qiz; + ul Riu; (6)
=0

with Q;, Qx € R™*™ and R; € R™*™ all positive definite.

iLQR solves the optimal control problem by alternating
between forward passes that simulate the system under a
given control input sequence, and backward passes that solve
for a new locally optimal control sequence. In the backward
pass, the value function, which is the optimal cost to go at
any timestep, is propagated through the trajectory in reverse,
and gives locally optimal feedforward inputs and feedback
gains at each timestep. Computing the value function relies
on gradient and Hessian computations of the cost function
and Jacobians of the dynamics, which equates to computing
the linearized variational equations discussed in Sec. III-B.
For much greater detail of iLQR for hybrid systems, see
[34,35].

IV. CONVERGENT ILQR

Here we present a novel trajectory optimization algorithm
called convergent iLQR or x-iLQR, summarized in Algo-
rithm 1. In this method, the convergence measure is added to
the cost function from (6) such that the algorithm minimizes:

N-1
Jy= Qyx+ x%QNxN + Z JciTQizi + uiTRiui 7
i=0
where (), is a scalar weighting parameter. Since X is solely a
function of states and inputs, iLQR uses gradient and Hessian
information to make a quadratic approximation compatible
with the other cost terms.

Typically in iLQR, the cost function J is evaluated after
each forward pass, since it is only dependent on the states
and inputs of the most recent trajectory. However, in this
case the convergence measure portion of the cost function is
dependent on the feedback gains generated by the algorithm.
This means that the gradient and Hessian terms of the cost
function rely on the feedback gains that are being updated
at every timestep in the backward pass. Due to this, the cost
function derivatives are highly coupled with the gains and
become convoluted to compute.

To resolve this, we propose executing two separate back-
ward passes that each compute a different set of gains. We
do this to preserve the convergence properties of iLQR,
though other choices might be possible such as borrowing
the previous set of gains under the assumption that the gains
do not change significantly over iterations. First, the tracking
backward pass computes the feedback gains that will be used
as the LQR tracking controller gains and to compute the
convergence measure. It is equivalent to the backward pass
in standard iLQR using the cost function J (6), which solves
the Riccati equation for the most recent trajectory. With
the gains generated in the tracking backward pass K, the
convergent cost function J, (7) can be computed. The search
backward pass takes J, from the tracking backward pass
and computes the gradients of the convergent cost function
with controller gains K. The feedforward inputs k4 and the
feedback gains K, from this pass are used to search for an
improved trajectory in the forward pass.

Since J,, is returned by the tracking backward pass, a line
search is performed after this function call to guarantee the



Algorithm 1 Convergent iLQR Algorithm

Initialize U’ QX’ QN7 Q’i? Ris Niterations
X, U, M, J <+ RoLLouT(U)
K, Jy, P < TRACKINGBP(X, U, M, J)
O + CoOMPUTEO(X, U, M, Ky)
for i < 1 t0 Njterations dO
ks, Ks < SEARCHBP(X, U, M, J,, O)
repeat
X, U, M, J, O+ FORWARDPASS(X, U, M, k,, K,)
K;, Jy, P < TRACKINGBP(X, U, M, J)

until LINESEARCHISSATISFIED(.J,,)
return X, U, M, K,

reduction of the cost function J, . If the line search condition
is not satisfied, the forward pass and tracking backward pass
are looped until the line search condition is passed.

Within the search backward pass, iLQR requires compu-
tation of the gradient and Hessian of x. The derivatives
of x can be computed by leveraging the singular value
decomposition of ® = USVT where S is a diagonal matrix
of singular values and the columns of U and V are the
left and right singular vectors, respectively. x is the largest
singular value of ® and let u, and v, be its corresponding
left and right singular vectors. Following [36], the derivative
of x with respect to the state at timestep ¢ is:

ox 709

axi = UX 87%1))( (8)

gTi in turn can be computed by using the product rule

along with leveraging the fact that only A; and Z@,i+1)
are functions of x;, and all other A and = terms have zero

derivatives with respect to x;. For notational brevity, let:

P=Ax-Eitrire)din 9
O; =Eu-1,pAi-1--Eaod (10)
such that & = PL'E(Z-,Hl)AiOi and % = g—% = 0. Thus:
0P OZ(5,i41) % 0A;
=P———A4,0;+ PEi+1)50; 11
ox; ox; + (6,i+1) ox; (1D

Derivatives with respect to the input u; follow equivalently.
To improve computational efficiency, O; at each timestep can
be computed recursively during the forward pass and each P;
can be computed recursively in the tracking backward pass.
Since the rollout does not yet have feedback gain informa-
tion, the initial O values must be computed separately.
Because the scalar x is derived from the norm of the
matrix @, the gradient of x relies on computing a 3-
dimensional tensor of fll and = derivatives, and the Hessian
of x is computed from a 4-dimensional tensor of matrix
second derivatives. While recent work has enabled faster
computation of second derivatives of dynamics [37] which
can aid in the computation of the 3-D tensor derivatives,
computing 4-D tensor derivatives is generally untenable. In-
stead, numerical methods like finite differences for gradients
and BFGS [38] for Hessians can perform at reasonable

speed. In order to approach real-time computation, it is
likely that the full Hessian of x is not necessary to find an
appropriate search direction and that a partial computation
or even leaving out the Hessian completely is sufficient to
compute optimal trajectories. Future work will address this
gap. Nonetheless, the algorithm in its current form can still be
useful for offline planning for trajectories that are expected
to have a high degree of risk, such as leaping across ledges
or traversing narrow beams. In real-world applications, it can
be acceptable for a robot to pause and plan a safe trajectory
before executing these dangerous maneuvers.

V. EXAMPLES AND RESULTS

In this section, we demonstrate the convergence improve-
ments of our method on a spring hopper system and a planar
quadruped robot model. Simulation results show that the
improved convergence measure correlates with an improve-
ment in average tracking performance, robustness to large
disturbances, and feedback control effort. Both examples
were implemented in MATLAB, with forward simulations
using the odel13 function. Cost function gradients were
computed using (11), derivatives of A; and E(i,i+1) Were
computed with finite differences, and Hessians were com-
puted with BFGS.

A. Rocket Hopper

1) Rocket Hopper Model: This system is made up of a
point mass body with a single massless spring leg. The state
of the hopper is characterized by the positions z g, yp of the
body, the angle 0 of the leg and their derivatives =g, ¥z, 0
such that the full state is a 6 x 1 vector. The system has two
domains: an aerial phase D; and a stance phase D-». Taking
a constant ground height at zero gives a touchdown guard
function g(; 2y that is the height of the foot and a liftoff guard
function g(2,1) that is the ground reaction force applied by
the spring leg. Both reset maps R(; 2y and R 1) are identity
since position and velocity are continuous.

The system has two inputs: a hip actuation and an ac-
tuation in the direction of the leg. In the air, this allows
the hopper to rotate the leg around the body and exert a
propulsion in the direction of the leg, somewhat akin to a
rocket, though this force can approximate forces from other
legs or actuators. A small rotor inertia in the air ensures the
dynamics are well-conditioned when controlling the massless
leg. In stance, the hip torque and rocket force exert ground
reaction forces on the body. The body mass of the hopper
was chosen as 1 kg, spring constant as 250 N/m, and resting
leg length as 0.75 m.

2) Rocket Hopper Results: The objective for this system
is to begin in the air at rest with a height of 2 m and end in the
air at rest with the same height displaced 0.2 m horizontally.
The system is given 1.5 s for this trajectory.

We generated four trials of paired trajectories with varied
weighting parameters, shown in Table I, and compared the
performance of the standard (vanilla) iLQR method (where
@y = 0) to x-iLQR. There is no reference trajectory to track,
80 ; is zero for all trials.



TABLE I
ROCKET HOPPER CONVERGENCE MEASURE AND SIMULATION RESULTS

Trial LQR Parameters Convergence Measure Mean Simulated Error Ratio Mean Simulated Feedback Effort
Qx QN Ri, Rig | Vanilla x-iLQR %Difference | Vanilla x-iLQR %Difference Vanilla x-iILQR  %Difference
1 50 5007 0.01f 0.11 1.01 0.71 -29.70% 0.42 0.33 -21.72% 1.74-1075 1.6-107° -7.16%
2 50 800I 0.005I 0.011 | 0.78 0.51 -34.50% 0.32 0.24 -25.74% 4.66-107% 3.25-107° -30.31%
3 50 2507 0.02f 0.051 1.14 0.94 -17.70% 0.49 0.45 -8.00% 7.12-107% 7.05-1076 -1.01%
4 75 500 0.01 0.011 1.01 0.68 -33.24% 0.41 0.32 -21.73% 1.89-107% 1.62-107° -14.20%

For 3 of these trials, vanilla iLQR generated a trajectory
with x > 1, meaning the worst-case error direction was
expansive, see Table I. x-iLQR decreases every convergence
measure to below 1 so that all error directions are reduced
over the trajectory. On average, Xx-iLQR decreased x by
28.79% compared to the vanilla method.

To validate these trajectories, each closed-loop trajectory
was simulated 100 times with equivalent small random initial
perturbations in both positions and velocities with covariance
matrix cov(Xp) = 107*1. A small covariance was chosen so
that the linearizations assumed in the convergence measure
and LQR control are valid. For each simulation run, the
initial error dz¢ and the final error dz s were recorded, along
with the sequence of control inputs V' := {vg, vy, ..., un—_1}.
Note that these inputs are distinct from the nominal feed-
forward inputs to the system U because there is additional
feedback effort exerted by the actuators.

Two values were recorded during each simulation run to
characterize the convergence proFerties of the trajectories.
The first is the error ratio, F/ = hgii Hz defined as the ratio
of the final error 2-norm to the initial error 2-norm. A lower
error ratio means better tracking performance, and ' < 1
indicates a net reduction in error on average. The second
value is the feedback effort, F' = Zi]\;}l (v; — u;)? which is
the sum of squares of the difference between V" and U.

Table I shows that the simulation results support our
assertion that an improved convergence measure correlates
with an improved mean tracking performance and feedback
effort. The mean error ratio and feedback effort over the 100
simulations were both lower for trajectories generated with
x-iILQR. The average improvement over the four trials was
19.30% for mean error ratio and 13.17% for feedback effort.

None of the simulated runs had an error ratio greater than
one, which is sensible since the worst-case direction occurs
with probability zero. However, even if none of the sampled
initial errors aligned exactly with the worst-case direction
predicted by the fundamental solution matrix, nearby initial
error directions still see improvement in convergence, which
explains the improvement in mean simulated error ratio.

B. Planar Quadruped

Here we demonstrate the improvements of x-iLQR on a
more complex robot model akin a standard quadruped robot.
The model is simplified as a planar quadruped, meaning that
all movement occurs in the sagittal plane and the left-right
pairs of legs are constrained to move identically.

1) Planar Quadruped Model: In the sagittal plane, we
can model the robot with 7 positional states. x5, yp, 0p are
the position and orientation of the body. The front and back
sets of legs each have two states for the hip angle oy, oy
and knee angle 3¢, 3. Thus the full state is dimension 14.

This system has four domains: the aerial domain D1, front
stance domain D5, back stance domain D3, and full stance
domain D,. The impact guard function is the height of the
foot and the guard function for liftoff is the vertical ground
reaction force. The dynamics of the robot body in the aerial
phase follow ballistic motion, while the legs are simplified to
be massless while including the aforementioned rotor inertia.
The impact reset map for each foot consists of a discrete
update to the hip and knee velocities, while the body states
are unchanged due to the massless legs. The liftoff reset map
is identity. The input vector for this system is 4-dimensional
to actuate the hip and knee joints.

In this model, parallel torsion springs are added to the
knee joints. Parallel joint springs have been utilized to mimic
tendons found in animals [39] that increase the energy effi-
ciency of legged locomotion [40,41]. Due to the resonance
of the natural spring dynamics, controlling these systems
requires special care [42,43]. For example, [44] solved for
optimal gait timings to leverage resonant spring frequencies.
These spring models of legged robots are good candidates
for x-iLQR because the dynamics of the stance phase depend
strongly on the leg configuration at touchdown. Thus, a small
error in leg states at touchdown can have a large effect on
tracking performance.

The inertial and dimensional properties were chosen to
match the Ghost Robotics Spirit 40 quadruped. The added
torsional knee spring has a spring constant 75 N - m - rad !
and rest angle 1.2 rad.

2) Planar Quadruped Results: The trajectory optimiza-
tion task for the planar quadruped is to generate a gait with
a forward velocity of 0.25 m/s. The robot begins in the air
with a body height of 0.3 m. The hip joints begin at an angle
of 0.6 rad and the knee joints begin at 1.2 rad. The terminal
target state is translated 0.0875 m in the x-direction from
the initial state. The trajectory is given 0.35 s to execute. We
choose to set a constant input weight of R; = 5-10741. The
terminal weight is @ = 500/ and the convergence weight
for x-iLQR is @, = 1.

We set up a similar experiment to the prior example,
with the addition of simulating over a range of covariance
magnitudes. This is done to evaluate the basin of attraction of



TABLE I
MEAN CONVERGENCE RESULTS FOR THE QUADRUPED MODEL FOR
VANILLA AND X-ILQR WITH COVARIANCE MAGNITUDE 10—

Vanilla ~ x-iILQR  %Difference
Vanilla Cost 65.58 74.39 +13.43%
Convergence Measure 60.52 41.35 -31.68%
Mean Simulated Error Ratio 6.66 4.78 -28.23%
Mean Simulated Feedback Effort  0.016 0.013 -16.56%

each trajectory over larger initial errors that introduce greater
nonlinear effects. The two trajectories were evaluated with 6
sets of 100 paired simulation runs with random initial error
covariance magnitudes of 1074, 5-107%, 1073, 5- 1073,
1072, and 5 - 10~2 in each direction. The lowest covariance
magnitude of 10~* approximates local linear behavior well,
while 5-1072 is the maximum magnitude before some trials
begin with the robot’s feet below the ground.

Table II shows the vanilla cost (6), convergence measure,
mean simulated error ratio, and mean simulated feedback
effort of the two trajectories at the covariance magnitude
10—, As expected, the vanilla cost of the convergent tra-
jectory increases since its optimizing for a different cost
function, while the convergence measure and simulation
values improve. We argue that in dynamic legged locomo-
tion, a costlier nominal trajectory can often be worth an
improvement in the trajectory’s robustness.

The mean simulated error ratio for the convergent trajec-
tory at this small covariance magnitude was 28.23% less and
the mean simulated feedback effort was 16.56% less. Fig. 2
displays a histogram of the error ratio for each of the trials,
with the convergent trajectory having improved performance.

As the magnitude of initial errors grows, the performance
of the LQR tracking controller becomes worse due to the
increase in nonlinear effects. Fig. 3 shows the simulation
results for each trajectory over a range of initial error co-
variance magnitudes. Each pair of lines indicates the success
rate of the respective closed-loop trajectories at maintaining
error ratios of less than 50, 10, and 5 respectively. An error
ratio of greater than 50 is representative of a catastrophic
failure, which the vanilla trajectory encounters at a covari-
ance magnitude of 5 - 10~%, while the convergent trajectory
first experiences a failure at covariance magnitude 10~2. This
difference in performance suggests the convergent trajectory
is more robust to larger initial errors and nonlinearities.

Even with the x-iLQR convergence improvements, the
controller does not reduce errors in all directions. The
simulation results show there was usually some error growth,
which is reasonable since the body dynamics are fully
unactuated in the aerial phase and the system undergoes
multiple hybrid events. A combination of higher feedback
gains and a global footstep planner could be able to grant this
system full convergence. Even so, this work can be valuable
to ensure that the system does not diverge too far from its
target trajectory between iterations of a global planner.

20+
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Fig. 2. Histogram of error ratio for 100 paired simulated trials of the

quadruped model with small initial perturbations. Error ratio is the 2-norm
of final errors divided by the 2-norm of initial errors.
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Fig. 3. Plots showing success of LQR controllers at tracking vanilla (V)
and convergent () trajectories over various initial perturbation covariances.
Vs0 and x50 indicate proportion of trials where error ratio was below 50,
Vio and x10 below 10, and V5 and x5 below 5.

VI. CONCLUSION

In this work, we present a novel trajectory optimization
method, x-iLQR that optimizes over the worst-case error
growth of a hybrid trajectory. This method is based on the
fundamental solution matrix, which maps the evolution of
perturbations through a trajectory. Incorporating the salta-
tion matrix into the fundamental solution matrix allows for
straightforward handling of hybrid events. The simulation re-
sults presented on two legged robot models demonstrate that
this method produces trajectories with improved tracking per-
formance, decreased feedback actuation effort, and improved
robustness to large perturbations. Even for a quadrupedal
trajectory that was very difficult to track, x-iLQR produced
a trajectory that was superior at avoiding failures.

Following this work, we aim to apply these principles
to robot hardware and demonstrate robust performance for
maneuvers such as leaping and flipping. We also aim to
apply this work to other hybrid systems like robots that
undergo stick-slip transitions. This work and its extensions
will further enable robots to navigate complex, uncertain
environments and unlock worlds for robots to explore.
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