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Abstract— In order to perform highly dynamic and agile
maneuvers, legged robots typically spend time in underactuated
domains (e.g. with feet off the ground) where the system
has limited command of its acceleration and a constrained
amount of time before transitioning to a new domain (e.g. foot
touchdown). Meanwhile, these transitions can instantaneously
change the system’s state, possibly causing perturbations to
be mapped arbitrarily far away from the target trajectory.
These properties make it difficult for local feedback controllers
to effectively recover from disturbances as the system evolves
through underactuated domains and hybrid impact events.
To address this, we utilize the fundamental solution matrix
that characterizes the evolution of perturbations through a
hybrid trajectory and its 2-norm, which represents the worst-
case growth of perturbations. In this paper, the worst-case
perturbation analysis is used to explicitly reason about the
tracking performance of a hybrid trajectory and is incorporated
in an iLQR framework to optimize a trajectory while taking
into account the closed-loop convergence of the trajectory
under an LQR tracking controller. The generated convergent
trajectories recover more effectively from perturbations, are
more robust to large disturbances, and use less feedback control
effort than trajectories generated with traditional methods.

Index Terms— Legged Robots, Trajectory Optimization, Ro-
bust Control

I. INTRODUCTION

Legged robotics research has increasingly focused on

enabling highly dynamic and agile motions such as jumping,

leaping, and landing [1–4]. Implementing these capabili-

ties reliably would improve legged robot performance in

applications such as extraterrestrial or urban environment

navigation where jumping up on ledges or leaping across

chasms may be necessary. However, jumping and leaping

are dangerous maneuvers, with failure often resulting in

catastrophic outcomes for the robot.

What makes these actions challenging is that they induce

trajectories that are both hybrid and underactuated, which

doubly contribute to the difficulty in controlling legged

robots. Broadly speaking, a system is hybrid if it undergoes

discrete changes in state and/or dynamics [5,6], and it is

underactuated if there exists a direction of acceleration in

state space that can not be commanded by any valid input [7,

Ch. 1.2]. Even when an underactuated system is controllable,

driving the system to a desired target state may require

significant time and control effort, neither of which may

be readily available. For instance, a robot jumping in the
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Fig. 1. Similar quadruped gaits tracked with equivalent LQR controllers
display enormous differences in final tracking performance. Results for 50
paired trials of trajectories sampled from an initial error covariance of 10−2

in all directions are shown. The top blue trajectory was generated with a
standard (vanilla) iLQR algorithm, while the bottom green trajectory was
generated with our novel χ-iLQR, which improves the average closed-loop
convergence by 92%. The horizontal distance between the displayed frames
is exaggerated for visual clarity. Only the convergence of the position states
is represented, and does not indicate convergence of the velocity states.

air can not arbitrarily choose how much time it has until

its feet touchdown on the ground. This means that the

controller needs to spend a lot of effort to correct tracking

errors prior to touchdown, or else discontinuous, unbounded

saltation effects [8] can cause arbitrarily large divergence

if incoming errors are not sufficiently mitigated, e.g. with

grazing impacts. Increasing control gains is one possible

solution to improve stability, though that strategy comes

at a large drawback of worsening robustness in the face

of modelling errors and uncertainties [9, Ch. 13]. Instead,

this work leverages nonlinearities in continuous and hybrid

dynamics that make some trajectories easier to stabilize than

others, even under equivalent feedback controllers.

This paper presents a novel adaptation of the iLQR trajec-

tory optimization algorithm that improves closed-loop con-

vergence under an equivalent feedback controller (i.e. with-

out changing the LQR controller weights), as demonstrated

in Fig. 1. Our simulation results show that this convergent

iLQR (χ-iLQR) achieves three simultaneous improvements

over standard iLQR: superior tracking performance from

initial perturbations, reduced feedback control effort over the

trajectory, and improved robustness to large initial errors.

Compared to existing methods, χ-iLQR has two additional

key strengths. Firstly, it is based on an analysis that is

simple to compute compared to methods such as sum-of-

squares. Additionally, χ-iLQR captures the local tracking

performance of a closed-loop trajectory, which directly pre-

dicts experimental results.



II. RELATED WORKS

A strategy that has been used to enable dynamic yet pre-

carious behaviors for legged robots is leveraging highly accu-

rate, complex models and full-body trajectory optimization to

plan precise motions [3,10]. While these methods incorporate

feedback controllers to stabilize the generated trajectories,

there has been little focus on how these feedback controllers

should be designed to stabilize closed-loop systems under

error and uncertainty.

Robust trajectory planning has been successfully im-

plemented for smooth systems like wheeled robots, with

some recent results being adapted to hybrid systems like

legged robots. These works have focused on optimizing

over uncertainties in system dynamics, such as unknown

disturbances and modelling errors [11–13]. For example, [11]

designs robust closed-loop trajectories for smooth systems by

optimizing the volume reduction of an ellipsoidal disturbance

set, but was not applied to hybrid systems. Risk-sensitive

planning and control is an alternate method that optimizes

over the variance of a cost distribution that evolves through

the trajectory [14,15]. Other approaches present trajectory

optimization algorithms for legged robots over uncertain

terrain [16] and compute a forward reachable set to bound

closed-loop errors [17]. Many of these methods require the

distribution of errors to be prespecified, which is not always

clear how to tune. Additional actuation, such as reaction

wheels or tails, also relieves the difficulties of underactuated

systems [18,19]. However, this comes with obvious tradeoffs

of increased cost, size, and weight.

Separately, consider the problem of quantifying the stabil-

ity or convergence properties of a system. A very popular

method is Lyapunov analysis, where the existence of a

positive definite differentiable scalar function with nega-

tive definite derivatives, called the Lyapunov function, can

guarantee asymptotic stability of the system [20]. Lyapunov

functions can be difficult to compute, particularly for hybrid

systems, and can require methods such as sum-of-squares

[21] or machine learning [22] to be tractable. A similar

strategy known as control barrier functions, which restricts

the system from entering some set of undesirable states, has

been successfully implemented on legged robot hardware

[23], but has the same drawback as Lyapunov functions.

A different strategy to analyze the stability and conver-

gence of trajectories is contraction analysis [24], which

tracks the distance between two close trajectories. If this

distance monotonically decreases over the trajectory, then

the system is contractive and asymptotic stability can be

guaranteed [24]. Contraction analysis has been incorporated

into path planning and trajectory optimization algorithms on

smooth systems [25,26], but applying contraction analysis to

hybrid systems is difficult because many mechanical hybrid

systems are not contractive at hybrid events [27]. [28] loos-

ened the contraction criterion and optimized the stability of

open-loop periodic orbits using monodromy matrix analysis.

Here, we extend that work by generalizing to non-periodic

trajectories under feedback control.

III. ANALYSIS AND PLANNING FOR HYBRID SYSTEMS

This section defines a hybrid system and quantifies the per-

formance of a closed-loop hybrid trajectory using linearized

variational equations. With this analysis, we can generate a

scalar measure of a trajectory’s convergence which is then

incorporated into a trajectory optimization framework.

A. Hybrid Systems

Hybrid systems are a class of dynamical systems that

consist of continuous domains connected by hybrid events

[5,6]. Following the notation in [8], we describe a hybrid

system as a set of discrete modes {I, J, . . . ,K}, each with

a domain DI and a time-varying vector field FI. G(I,J) is a

guard that triggers a transition between mode I and mode J
and R(I,J) is the reset map defining that transition.

An execution of a hybrid system [29] begins at an initial

state x0 ∈ DI. With input uI(t, x), the system obeys the

dynamics FI on DI. If the system reaches guard surface

G(I,J), the reset map R(I,J) is applied and the system

continues in domain DJ under the corresponding dynamics

defined by FJ. The flow ϕ(t, t0, x0, U) describes how the

hybrid system evolves from some initial time t0 and state x0

until some final time t under input sequence U .

B. Linearized Variational Equations

For both continuous domains and hybrid transitions, lin-

earized variational equations can be constructed to character-

ize the evolution of perturbations δx [30]. In each continuous

domain, the linearized variational equation is discretized

from timestep i to i + 1 and is δxi+1 ≈ (AI − BIKI)δxi

[30] with AI and BI being the derivatives of the discretized

dynamics in mode I w.r.t. state xi and control inputs ui,

respectively, and KI are linear feedback gains. The feedback

term drops out for open-loop systems. For hybrid events,

the analogous variational equation is the saltation matrix

Ξ(I,J), which describes the transition between modes I and

J. The saltation matrix is the first-order approximation of

the change in state perturbations from before the hybrid

event at δx(t−) to perturbations after δx(t+) [27], such that

δx(t+) ≈ Ξ(I,J)δx(t
−). This linear approximation assumes

that nearby trajectories undergo the same mode transition.

Computing the saltation matrix relies on the derivatives of

the reset and guard of the transition along with the dynamics

in each mode, and is detailed in [8].

C. Convergence Measure

Consider a trajectory that begins at state x0 = x(t0)
at time t0 and is executed until time tf where it arrives

at state xf = ϕ(tf , t0, x0, U). The control objective is to

bring any nearby initial state x̄0 = x0 + δx0 towards the

nominal trajectory so that at time tf , x̄f = ϕ(tf , t0, x̄0, Ū) =
xf + δxf is closer to xf . To characterize the closeness

of x̄f and xf , we utilize the fundamental solution matrix,

Φ. Following [31], the fundamental solution matrix is the

linearized approximation δxf ≈ Φδx0 and represents the

transformation of error from the initial state to final state.



The fundamental solution matrix can be computed by

sequentially composing the linearized variational equations

in each continuous domain (Ã := A−BK) and the saltation

matrices (Ξ) at each hybrid event [28]. For a hybrid trajectory

with N domains, the fundamental solution matrix is:

Φ = ÃNΞ(N−1,N) . . .Ξ(2,3)Ã2Ξ(1,2)Ã1 (1)

Since the fundamental solution matrix captures the change

in errors across a trajectory, the singular values of Φ charac-

terize error change along principle axes of state space. The

largest singular value, which is equivalent to the induced 2-

norm of Φ, describes the evolution of the most divergent

direction of initial error δx0. We define the convergence

measure, χ to be exactly this worst-case value:

χ = ||Φ||2 (2)

χ is a continuous measure of local convergence, where

smaller values of χ indicate stronger reduction of worst-case

final errors. A value of χ < 1 indicates errors in all directions

will shrink.

D. iLQR for Hybrid Systems

The iterative linear quadratic regulator (iLQR) is a trajec-

tory optimization method that also computes LQR feedback

gains over the generated trajectory [32]. iLQR is convenient

because compared to other trajectory optimization methods

like direct collocation [33], it is less computationally in-

tensive and guarantees a feasible trajectory. We draw from

recent work that adapts the iLQR algorithm for use on hybrid

dynamical systems [34,35].

In brief, iLQR solves the optimal control problem over N

discretized timesteps:

min
U

ℓN (xN ) +

N−1∑

i=0

ℓi(xi, ui) (3)

where x0 = x(0) (4)

xi+1 = ϕ(ti+1, ti, xi, ui) ∀i (5)

where ℓi(xi, ui) and ℓN (xN ) represent the nonlinear stage

cost and terminal cost, respectively, X := {x0, x1, ..., xN}
is a sequence of states with xi ∈ R

n the system state

at timestep i and U := {u0, u1, ..., uN−1} is a sequence

of control inputs with ui ∈ R
m the control input at

timestep i. We also record the sequence of domains M :=
{D0, D1, ..., DN} with Di the domain at timestep i such that

xi ∈ Di. ϕ is the aforementioned flow of the trajectory.

iLQR computes gradient and Hessian information of the

cost, which results in a quadratic approximation of the

cost function. As such, the state and terminal costs can

equivalently be simplified as quadratic functions such that

the cost function is simplified to:

J = xT
NQNxN +

N−1∑

i=0

xT
i Qixi + uT

i Riui (6)

with Qi, QN ∈ R
n×n and Ri ∈ R

m×m all positive definite.

iLQR solves the optimal control problem by alternating

between forward passes that simulate the system under a

given control input sequence, and backward passes that solve

for a new locally optimal control sequence. In the backward

pass, the value function, which is the optimal cost to go at

any timestep, is propagated through the trajectory in reverse,

and gives locally optimal feedforward inputs and feedback

gains at each timestep. Computing the value function relies

on gradient and Hessian computations of the cost function

and Jacobians of the dynamics, which equates to computing

the linearized variational equations discussed in Sec. III-B.

For much greater detail of iLQR for hybrid systems, see

[34,35].

IV. CONVERGENT ILQR

Here we present a novel trajectory optimization algorithm

called convergent iLQR or χ-iLQR, summarized in Algo-

rithm 1. In this method, the convergence measure is added to

the cost function from (6) such that the algorithm minimizes:

Jχ = Qχχ+ xT
NQNxN +

N−1∑

i=0

xT
i Qixi + uT

i Riui (7)

where Qχ is a scalar weighting parameter. Since χ is solely a

function of states and inputs, iLQR uses gradient and Hessian

information to make a quadratic approximation compatible

with the other cost terms.

Typically in iLQR, the cost function J is evaluated after

each forward pass, since it is only dependent on the states

and inputs of the most recent trajectory. However, in this

case the convergence measure portion of the cost function is

dependent on the feedback gains generated by the algorithm.

This means that the gradient and Hessian terms of the cost

function rely on the feedback gains that are being updated

at every timestep in the backward pass. Due to this, the cost

function derivatives are highly coupled with the gains and

become convoluted to compute.

To resolve this, we propose executing two separate back-

ward passes that each compute a different set of gains. We

do this to preserve the convergence properties of iLQR,

though other choices might be possible such as borrowing

the previous set of gains under the assumption that the gains

do not change significantly over iterations. First, the tracking

backward pass computes the feedback gains that will be used

as the LQR tracking controller gains and to compute the

convergence measure. It is equivalent to the backward pass

in standard iLQR using the cost function J (6), which solves

the Riccati equation for the most recent trajectory. With

the gains generated in the tracking backward pass Kt, the

convergent cost function Jχ (7) can be computed. The search

backward pass takes Jχ from the tracking backward pass

and computes the gradients of the convergent cost function

with controller gains Kt. The feedforward inputs ks and the

feedback gains Ks from this pass are used to search for an

improved trajectory in the forward pass.

Since Jχ is returned by the tracking backward pass, a line

search is performed after this function call to guarantee the



Algorithm 1 Convergent iLQR Algorithm

Initialize U , Qχ, QN , Qi, Ri, niterations

X , U , M , J ← ROLLOUT(U )

Kt, Jχ, P ← TRACKINGBP(X , U , M , J)

O ← COMPUTEO(X , U , M , Kt)

for i← 1 to niterations do

ks, Ks ← SEARCHBP(X , U , M , Jχ, O)

repeat

X , U , M , J , O ← FORWARDPASS(X , U , M , ks, Ks)

Kt, Jχ, P ← TRACKINGBP(X , U , M , J)

until LINESEARCHISSATISFIED(Jχ)
return X , U , M , Kt

reduction of the cost function Jχ. If the line search condition

is not satisfied, the forward pass and tracking backward pass

are looped until the line search condition is passed.

Within the search backward pass, iLQR requires compu-

tation of the gradient and Hessian of χ. The derivatives

of χ can be computed by leveraging the singular value

decomposition of Φ = USV T where S is a diagonal matrix

of singular values and the columns of U and V are the

left and right singular vectors, respectively. χ is the largest

singular value of Φ and let uχ and vχ be its corresponding

left and right singular vectors. Following [36], the derivative

of χ with respect to the state at timestep i is:

∂χ

∂xi

= uT
χ

∂Φ

∂xi

vχ (8)

∂Φ
∂xi

in turn can be computed by using the product rule

along with leveraging the fact that only Ãi and Ξ(i,i+1)

are functions of xi, and all other Ã and Ξ terms have zero

derivatives with respect to xi. For notational brevity, let:

Pi = ÃN · · ·Ξ(i+1,i+2)Ãi+1 (9)

Oi = Ξ(i−1,i)Ãi−1 · · ·Ξ(1,2)Ã1 (10)

such that Φ = PiΞ(i,i+1)ÃiOi and ∂Pi

∂xi
= ∂Oi

∂xi
= 0. Thus:

∂Φ

∂xi

= Pi

∂Ξ(i,i+1)

∂xi

ÃiOi + PiΞ(i,i+1)
∂Ãi

∂xi

Oi (11)

Derivatives with respect to the input ui follow equivalently.

To improve computational efficiency, Oi at each timestep can

be computed recursively during the forward pass and each Pi

can be computed recursively in the tracking backward pass.

Since the rollout does not yet have feedback gain informa-

tion, the initial O values must be computed separately.

Because the scalar χ is derived from the norm of the

matrix Φ, the gradient of χ relies on computing a 3-

dimensional tensor of Ãi and Ξ derivatives, and the Hessian

of χ is computed from a 4-dimensional tensor of matrix

second derivatives. While recent work has enabled faster

computation of second derivatives of dynamics [37] which

can aid in the computation of the 3-D tensor derivatives,

computing 4-D tensor derivatives is generally untenable. In-

stead, numerical methods like finite differences for gradients

and BFGS [38] for Hessians can perform at reasonable

speed. In order to approach real-time computation, it is

likely that the full Hessian of χ is not necessary to find an

appropriate search direction and that a partial computation

or even leaving out the Hessian completely is sufficient to

compute optimal trajectories. Future work will address this

gap. Nonetheless, the algorithm in its current form can still be

useful for offline planning for trajectories that are expected

to have a high degree of risk, such as leaping across ledges

or traversing narrow beams. In real-world applications, it can

be acceptable for a robot to pause and plan a safe trajectory

before executing these dangerous maneuvers.

V. EXAMPLES AND RESULTS

In this section, we demonstrate the convergence improve-

ments of our method on a spring hopper system and a planar

quadruped robot model. Simulation results show that the

improved convergence measure correlates with an improve-

ment in average tracking performance, robustness to large

disturbances, and feedback control effort. Both examples

were implemented in MATLAB, with forward simulations

using the ode113 function. Cost function gradients were

computed using (11), derivatives of Ãi and Ξ(i,i+1) were

computed with finite differences, and Hessians were com-

puted with BFGS.

A. Rocket Hopper

1) Rocket Hopper Model: This system is made up of a

point mass body with a single massless spring leg. The state

of the hopper is characterized by the positions xB , yB of the

body, the angle θ of the leg and their derivatives ẋB , ẏB , θ̇

such that the full state is a 6× 1 vector. The system has two

domains: an aerial phase D1 and a stance phase D2. Taking

a constant ground height at zero gives a touchdown guard

function g(1,2) that is the height of the foot and a liftoff guard

function g(2,1) that is the ground reaction force applied by

the spring leg. Both reset maps R(1,2) and R(2,1) are identity

since position and velocity are continuous.

The system has two inputs: a hip actuation and an ac-

tuation in the direction of the leg. In the air, this allows

the hopper to rotate the leg around the body and exert a

propulsion in the direction of the leg, somewhat akin to a

rocket, though this force can approximate forces from other

legs or actuators. A small rotor inertia in the air ensures the

dynamics are well-conditioned when controlling the massless

leg. In stance, the hip torque and rocket force exert ground

reaction forces on the body. The body mass of the hopper

was chosen as 1 kg, spring constant as 250 N/m, and resting

leg length as 0.75 m.

2) Rocket Hopper Results: The objective for this system

is to begin in the air at rest with a height of 2 m and end in the

air at rest with the same height displaced 0.2 m horizontally.

The system is given 1.5 s for this trajectory.

We generated four trials of paired trajectories with varied

weighting parameters, shown in Table I, and compared the

performance of the standard (vanilla) iLQR method (where

Qχ = 0) to χ-iLQR. There is no reference trajectory to track,

so Qi is zero for all trials.



TABLE I

ROCKET HOPPER CONVERGENCE MEASURE AND SIMULATION RESULTS

Trial
LQR Parameters Convergence Measure Mean Simulated Error Ratio Mean Simulated Feedback Effort

Qχ QN Riair
Ristance Vanilla χ-iLQR %Difference Vanilla χ-iLQR %Difference Vanilla χ-iLQR %Difference

1 50 500I 0.01I 0.1I 1.01 0.71 -29.70% 0.42 0.33 -21.72% 1.74 · 10
−5

1.6 · 10
−5 -7.16%

2 50 800I 0.005I 0.01I 0.78 0.51 -34.50% 0.32 0.24 -25.74% 4.66 · 10
−5

3.25 · 10
−5 -30.31%

3 50 250I 0.02I 0.05I 1.14 0.94 -17.70% 0.49 0.45 -8.00% 7.12 · 10
−6

7.05 · 10
−6 -1.01%

4 75 500I 0.01I 0.01I 1.01 0.68 -33.24% 0.41 0.32 -21.73% 1.89 · 10
−5

1.62 · 10
−5 -14.20%

For 3 of these trials, vanilla iLQR generated a trajectory

with χ > 1, meaning the worst-case error direction was

expansive, see Table I. χ-iLQR decreases every convergence

measure to below 1 so that all error directions are reduced

over the trajectory. On average, χ-iLQR decreased χ by

28.79% compared to the vanilla method.

To validate these trajectories, each closed-loop trajectory

was simulated 100 times with equivalent small random initial

perturbations in both positions and velocities with covariance

matrix cov(X0) = 10−4I . A small covariance was chosen so

that the linearizations assumed in the convergence measure

and LQR control are valid. For each simulation run, the

initial error δx0 and the final error δxf were recorded, along

with the sequence of control inputs V := {v0, v1, ..., vN−1}.
Note that these inputs are distinct from the nominal feed-

forward inputs to the system U because there is additional

feedback effort exerted by the actuators.

Two values were recorded during each simulation run to

characterize the convergence properties of the trajectories.

The first is the error ratio, E =
||δxf ||2
||δx0||2

defined as the ratio

of the final error 2-norm to the initial error 2-norm. A lower

error ratio means better tracking performance, and E < 1
indicates a net reduction in error on average. The second

value is the feedback effort, F =
∑N−1

i=0 (vi − ui)
2 which is

the sum of squares of the difference between V and U .

Table I shows that the simulation results support our

assertion that an improved convergence measure correlates

with an improved mean tracking performance and feedback

effort. The mean error ratio and feedback effort over the 100

simulations were both lower for trajectories generated with

χ-iLQR. The average improvement over the four trials was

19.30% for mean error ratio and 13.17% for feedback effort.

None of the simulated runs had an error ratio greater than

one, which is sensible since the worst-case direction occurs

with probability zero. However, even if none of the sampled

initial errors aligned exactly with the worst-case direction

predicted by the fundamental solution matrix, nearby initial

error directions still see improvement in convergence, which

explains the improvement in mean simulated error ratio.

B. Planar Quadruped

Here we demonstrate the improvements of χ-iLQR on a

more complex robot model akin a standard quadruped robot.

The model is simplified as a planar quadruped, meaning that

all movement occurs in the sagittal plane and the left-right

pairs of legs are constrained to move identically.

1) Planar Quadruped Model: In the sagittal plane, we

can model the robot with 7 positional states. xB , yB , θB are

the position and orientation of the body. The front and back

sets of legs each have two states for the hip angle αf , αb

and knee angle βf , βb. Thus the full state is dimension 14.

This system has four domains: the aerial domain D1, front

stance domain D2, back stance domain D3, and full stance

domain D4. The impact guard function is the height of the

foot and the guard function for liftoff is the vertical ground

reaction force. The dynamics of the robot body in the aerial

phase follow ballistic motion, while the legs are simplified to

be massless while including the aforementioned rotor inertia.

The impact reset map for each foot consists of a discrete

update to the hip and knee velocities, while the body states

are unchanged due to the massless legs. The liftoff reset map

is identity. The input vector for this system is 4-dimensional

to actuate the hip and knee joints.

In this model, parallel torsion springs are added to the

knee joints. Parallel joint springs have been utilized to mimic

tendons found in animals [39] that increase the energy effi-

ciency of legged locomotion [40,41]. Due to the resonance

of the natural spring dynamics, controlling these systems

requires special care [42,43]. For example, [44] solved for

optimal gait timings to leverage resonant spring frequencies.

These spring models of legged robots are good candidates

for χ-iLQR because the dynamics of the stance phase depend

strongly on the leg configuration at touchdown. Thus, a small

error in leg states at touchdown can have a large effect on

tracking performance.

The inertial and dimensional properties were chosen to

match the Ghost Robotics Spirit 40 quadruped. The added

torsional knee spring has a spring constant 75 N ·m · rad−1

and rest angle 1.2 rad.

2) Planar Quadruped Results: The trajectory optimiza-

tion task for the planar quadruped is to generate a gait with

a forward velocity of 0.25 m/s. The robot begins in the air

with a body height of 0.3 m. The hip joints begin at an angle

of 0.6 rad and the knee joints begin at 1.2 rad. The terminal

target state is translated 0.0875 m in the x-direction from

the initial state. The trajectory is given 0.35 s to execute. We

choose to set a constant input weight of Ri = 5 ·10−4I . The

terminal weight is QN = 500I and the convergence weight

for χ-iLQR is Qχ = 1.

We set up a similar experiment to the prior example,

with the addition of simulating over a range of covariance

magnitudes. This is done to evaluate the basin of attraction of



TABLE II

MEAN CONVERGENCE RESULTS FOR THE QUADRUPED MODEL FOR

VANILLA AND χ-ILQR WITH COVARIANCE MAGNITUDE 10
−4

Vanilla χ-iLQR %Difference

Vanilla Cost 65.58 74.39 +13.43%

Convergence Measure 60.52 41.35 -31.68%

Mean Simulated Error Ratio 6.66 4.78 -28.23%

Mean Simulated Feedback Effort 0.016 0.013 -16.56%

each trajectory over larger initial errors that introduce greater

nonlinear effects. The two trajectories were evaluated with 6

sets of 100 paired simulation runs with random initial error

covariance magnitudes of 10−4, 5 · 10−4, 10−3, 5 · 10−3,

10−2, and 5 · 10−2 in each direction. The lowest covariance

magnitude of 10−4 approximates local linear behavior well,

while 5 ·10−2 is the maximum magnitude before some trials

begin with the robot’s feet below the ground.

Table II shows the vanilla cost (6), convergence measure,

mean simulated error ratio, and mean simulated feedback

effort of the two trajectories at the covariance magnitude

10−4. As expected, the vanilla cost of the convergent tra-

jectory increases since its optimizing for a different cost

function, while the convergence measure and simulation

values improve. We argue that in dynamic legged locomo-

tion, a costlier nominal trajectory can often be worth an

improvement in the trajectory’s robustness.

The mean simulated error ratio for the convergent trajec-

tory at this small covariance magnitude was 28.23% less and

the mean simulated feedback effort was 16.56% less. Fig. 2

displays a histogram of the error ratio for each of the trials,

with the convergent trajectory having improved performance.

As the magnitude of initial errors grows, the performance

of the LQR tracking controller becomes worse due to the

increase in nonlinear effects. Fig. 3 shows the simulation

results for each trajectory over a range of initial error co-

variance magnitudes. Each pair of lines indicates the success

rate of the respective closed-loop trajectories at maintaining

error ratios of less than 50, 10, and 5 respectively. An error

ratio of greater than 50 is representative of a catastrophic

failure, which the vanilla trajectory encounters at a covari-

ance magnitude of 5 · 10−4, while the convergent trajectory

first experiences a failure at covariance magnitude 10−2. This

difference in performance suggests the convergent trajectory

is more robust to larger initial errors and nonlinearities.

Even with the χ-iLQR convergence improvements, the

controller does not reduce errors in all directions. The

simulation results show there was usually some error growth,

which is reasonable since the body dynamics are fully

unactuated in the aerial phase and the system undergoes

multiple hybrid events. A combination of higher feedback

gains and a global footstep planner could be able to grant this

system full convergence. Even so, this work can be valuable

to ensure that the system does not diverge too far from its

target trajectory between iterations of a global planner.

Fig. 2. Histogram of error ratio for 100 paired simulated trials of the
quadruped model with small initial perturbations. Error ratio is the 2-norm
of final errors divided by the 2-norm of initial errors.

Fig. 3. Plots showing success of LQR controllers at tracking vanilla (V )
and convergent (χ) trajectories over various initial perturbation covariances.
V50 and χ50 indicate proportion of trials where error ratio was below 50,
V10 and χ10 below 10, and V5 and χ5 below 5.

VI. CONCLUSION

In this work, we present a novel trajectory optimization

method, χ-iLQR that optimizes over the worst-case error

growth of a hybrid trajectory. This method is based on the

fundamental solution matrix, which maps the evolution of

perturbations through a trajectory. Incorporating the salta-

tion matrix into the fundamental solution matrix allows for

straightforward handling of hybrid events. The simulation re-

sults presented on two legged robot models demonstrate that

this method produces trajectories with improved tracking per-

formance, decreased feedback actuation effort, and improved

robustness to large perturbations. Even for a quadrupedal

trajectory that was very difficult to track, χ-iLQR produced

a trajectory that was superior at avoiding failures.

Following this work, we aim to apply these principles

to robot hardware and demonstrate robust performance for

maneuvers such as leaping and flipping. We also aim to

apply this work to other hybrid systems like robots that

undergo stick-slip transitions. This work and its extensions

will further enable robots to navigate complex, uncertain

environments and unlock worlds for robots to explore.
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