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Abstract

We propose TOPOOPT, a novel direct-connect fabric for deep

neural network (DNN) training workloads. TOPOOPT co-

optimizes the distributed training process across three dimen-

sions: computation, communication, and network topology.

We demonstrate the mutability of AllReduce traffic, and lever-

age this property to construct efficient network topologies

for DNN training jobs. TOPOOPT then uses an alternating

optimization technique and a group theory-inspired algorithm

called TotientPerms to find the best network topology and

routing plan, together with a parallelization strategy. We build

a fully functional 12-node direct-connect prototype with re-

mote direct memory access (RDMA) forwarding at 100 Gbps.

Large-scale simulations on real distributed training models

show that compared to similar-cost Fat-tree interconnects,

TOPOOPT reduces DNN training time by up to 3.4×.

1 Introduction

Our society is rapidly becoming reliant on deep neural net-

works (DNNs). New datasets and models are invented fre-

quently, increasing the memory and computational require-

ments for training. This explosive growth has created an ur-

gent demand for efficient distributed DNN training systems.

Today’s DNN training systems are built on top of tradi-

tional datacenter clusters, with electrical packet switches ar-

ranged in a multi-tier Fat-tree topology [47]. Fat-tree topolo-

gies are traffic-oblivious fabrics, allowing uniform band-

width and latency between server pairs. They are ideal when

the workload is unpredictable and consists mostly of short

transfers±two inherent properties of legacy datacenter work-

loads [49, 50, 54, 67, 68]. But Fat-tree networks are be-

coming a bottleneck for distributed DNN training work-

loads [58, 69, 77, 85, 102, 105, 136].

Previous work has addressed this challenge by reducing the

size of parameters to transmit through the network [48,58,59,

69,73,79,82,83,94,105,123,139] and developing techniques

to discover faster parallelization strategies while considering

the available network bandwidth [46, 48, 85, 105, 129]. These

proposals co-optimize computation and communication as

two important dimensions of distributed DNN training, but

they do not consider the physical layer topology as an opti-

mization dimension.

In this paper, we analyze DNN training jobs from produc-

tion clusters of Meta. We demonstrate that training workloads

do not satisfy common assumptions about datacenter traffic

that underlie the design of Fat-tree interconnects. Specifically,

we show that (i) the communication overhead of large DNN

training jobs increases dramatically as we increase the num-

ber of workers; and (ii) the traffic pattern of a DNN training

job depends on its parallelization strategies.

Motivated by these observations, we propose TOPOOPT,

a direct-connect DNN training system that co-optimizes net-

work topology and parallelization strategy. TOPOOPT creates

dedicated partitions for each training job using reconfigurable

optical switches and patch panels, and jointly optimizes the

topology and parallelization strategy within each partition. To

achieve our goal, we grapple with the algorithmic challenges

of finding the best topology, such as how to navigate the large

search space across computation, communication, and topol-

ogy dimensions, and also with various operational challenges,

such as which optical switching technologies match well with

the traffic patterns of DNN models.

We cast the topology and parallelization strategy co-

optimization problem as an off-line alternating optimization

framework. Our optimization technique alternates between

optimizing the parallelization strategy and optimizing the net-

work topology. It searches over the parallelization strategy

space assuming a fixed topology, and feeds the traffic demand

to a TOPOLOGYFINDER algorithm. The updated topology is

then fed back into the parallelization strategy search algorithm.

This alternating process repeats until the system converges to

an optimized parallelization strategy and topology.

We demonstrate that finding an optimized network topol-

ogy for DNNs is challenging because the ideal network topol-

ogy needs to meet two goals simultaneously: (i) to complete

large AllReduce transfers efficiently, and (ii) to ensure a small



hop-count for Model Parallel transfers. To meet these goals,

we propose a novel group theory-based technique, called To-

tientPerms, that exploits the mutability of AllReduce transfers.

Our TotientPerms approach builds a series of AllReduce per-

mutations that not only carry AllReduce transfers efficiently,

but are also well-positioned to carry Model Parallel transfers

and, hence, improve the overall training performance.

Optical circuit-switched networks traditionally support

point-to-point traffic across hosts with direct circuits between

them. As a result, for a given set of circuits, only directly

connected hosts can communicate leaving the rest of the hosts

wait for new circuits to be established. To support arbitrary

communication across all hosts participating in a job, we en-

able TOPOOPT’s hosts to act as relays and forward the traffic

that does not belong to them. Host-based forwarding intro-

duces a new challenge for RDMA flows since RDMA NICs

drop packets that do not belong to them. To enable host-based

RDMA forwarding, we exploit the network partition (NPAR)

function of modern NICs, creating an efficient logical overlay

network for RDMA packet forwarding (§6).

To evaluate TOPOOPT, we build a 12-server prototype with

NVIDIA A100 GPUs [37], 100 Gbps NICs and a Telescent re-

configurable optical patch panel [43]. Moreover, we integrate

our TotientPerms AllReduce permutations into NCCL and

enable it to load-balance parameter synchronization across

multiple ring-AllReduce sub-topologies. Our evaluations with

six representative DNN models (DLRM [20], CANDLE [4],

BERT [134], NCF [75], ResNet50 [74], and VGG [126])

show that TOPOOPT reduces the training iteration time by

up to 3.4× compared to a similar-cost Fat-tree. Moreover,

we demonstrate that TOPOOPT is, on average, 3.2× cheaper

than an ideal full bisection bandwidth Fat-tree. TOPOOPT is

the first system that co-optimizes topology and parallelization

strategy for ML workloads and is currently being evaluated for

deployment at Meta. The source code and scripts of TOPOOPT

are available at https://topoopt.csail.mit.edu.

2 Motivation

Prior research has illustrated that demand-aware network fab-

rics are flexible and cost-efficient solutions for building effi-

cient datacenter-scale networks [64, 68, 113]. However, pre-

dicting the upcoming traffic distribution is challenging in a

traditional datacenter setting. This section demonstrates that

DNN training workloads present a unique opportunity for

demand-aware networks, as the jobs are long-lasting, and the

traffic distribution can be pre-computed before the jobs start

to run. First, we provide the necessary background to under-

stand distributed DNN training and introduce three types of

data dependencies between accelerator nodes in training jobs

(§2.1). Then, we present measurements from production clus-

ters in Meta (§2.2), and discuss the important properties of

DNN training traffic.

2.1 Background on Distributed DNN training

Training iteration. A common approach to training DNNs

is stochastic gradient descent (SGD) [90]. Each SGD iter-

ation involves selecting a random batch of labeled training

data, computing the error of the model with respect to the la-

beled data, and calculating gradients for the model’s weights

through backpropagation. The SGD algorithm seeks to up-

date the model weights so that the next evaluation reduces the

error [55]. Training iterations are repeated with new batch of

data until the model converges to the target accuracy.

Data parallelism. Data parallelism is a popular paralleliza-

tion strategy, whereby a batch of training samples is dis-

tributed across training accelerators. Each accelerator holds a

replica of the DNN model and executes the forward and back-

propagation steps locally. In data parallelism, all accelerators

synchronize their model weights during each training iteration.

This step is commonly referred to as AllReduce and can be per-

formed using various techniques, such as broadcasting [141],

parameter servers [93], ring-AllReduce [3, 83, 130], tree-

AllReduce [116], or hierarchical ring-AllReduce [131, 133].

Hybrid data and model parallelism. Large DNN mod-

els cannot fit in the memory of a single accelerator or even

a single server with multiple accelerators. As a result, the

model needs to be divided across multiple accelerators using

model parallelism [84, 92]. Moreover, pure data parallelism

is becoming suboptimal for large training jobs because of the

increasing cost of synchronizing model parameters across ac-

celerators [20, 78, 85, 104, 106, 125]. As a result, large DNNs

are distributed using a hybrid of data and model parallelism,

where different parts of a DNN and its dataset are processed

on different accelerators in parallel.

Types of data dependencies in DNN training. Each train-

ing iteration includes two major types of data dependencies.

Type (1) refers to activations and gradients computed during

the Forward and Backpropagation steps. This data depen-

dency is required for each input sample. Type (2) refers to

synchronizing the model weights across accelerators through

the AllReduce step once a batch of samples is processed. De-

pending on the parallelization strategy, these data dependen-

cies may result in local memory accesses or cross-accelerator

traffic. For instance, in a hybrid data and model paralleliza-

tion strategy, type (1) and (2) both result in cross-accelerator

traffic, depending on how the model is distributed across ac-

celerators. Given that type (1) is related to model parallelism,

we refer to the network traffic created by type (1) as MP trans-

fers. Similarly, we refer to the network traffic created by type

(2) as AllReduce transfers. Note that AllReduce transfers do

not strictly mean data parallelism traffic, as model parallelism

can also create AllReduce transfers across a subset of nodes.

Example: DLRM traffic pattern. Deep Learning Rec-

ommendation Models (DLRMs) are a family of personaliza-

tion and recommendation models based on embedding table

lookups that capitalize on categorical user data [107]. DLRMs
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Figure 1: DLRM traffic heatmaps for different parallelization

strategies.

are large, typically with 100s of billions of parameters, primar-

ily because of their large embedding tables. Using pure data

parallelism to distribute a DLRM results in massive AllRe-

duce transfers. For instance, consider a DLRM architecture

with four embedding tables E0, · · · ,E3, each with embedding

dimensions of 512 columns and 107 rows (total size 22 GB

for the model) distributed across 16 servers S0, · · · ,S15 with

data parallelism. We compute the resulting traffic distribu-

tion, and Figure 1a illustrates the traffic pattern for a single

training iteration. The rows and columns indicate source and

destination servers, while the color encodes the amount of

traffic between server pairs. The heatmap shows that using

ring-AllReduce for synchronization, a pure data parallelism

strategy results in 44 GB of AllReduce transfers.

Hence, a common parallelization strategy for DLRMs is

to use a hybrid of data and model parallelism where the em-

bedding tables are divided across nodes, while the rest of the

model is replicated on all nodes [102]. Following the paral-

lelization strategy used at Meta, we place E0 on S0, E1 on S3,

E2 on S8, and E3 on S13, and replicate the rest of the model

on all servers. This parallelization strategy creates a mix of

MP and AllReduce traffic, shown in Figure 1b. It reduces the

maximum transfer size from 44 GB to 4 GB.

Note that MP transfers in DLRM form one-to-many broad-

cast and many-to-one incast patterns to transfer the activation

and gradients to all nodes because the servers handling embed-

ding tables must communicate with all other servers. In this

example, the size of each AllReduce transfer is 4 GB, whereas

the size of MP transfers is 32 MB, as shown by darker green

elements in the heatmap.

2.2 Production Measurements

We study traffic traces from hundreds of production DNN

training jobs running on multiple clusters at Meta. We instru-

ment each job to log its training duration, number of workers,

and the total amount of data transferred across its workers

during training.

Number of workers and job duration. Figure 2a shows

the cumulative distribution function (CDF) of the number of

workers for different models in Meta’s clusters. Most jobs are

distributed across 32 to 700 workers, agreeing with recent an-
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Figure 2: Profiling distributed DNN training jobs in Meta.

nouncements by other major players in the industry [45, 104],

where each worker is a single GPU. Figure 2b demonstrates

the CDF of total training job duration; as the figure shows,

most jobs last over 10 hours. In fact, the top 10% of jobs take

more than 96 hours (four days) to finish. This measurement

shows production DNN jobs at Meta are long-lasting, and

take up to weeks to finish.

Network overhead. Figure 3 illustrates the percentage of

network overhead as the number of GPUs is increased from

8 to 128 for six DNN jobs in production. We use RDMA to

transmit packets between servers and measure the percentage

of time consumed by communication during training as net-

work overhead. The figure shows that as the number of GPUs

increases, the network quickly takes up a significant portion of

training iteration time. In fact, the network overhead accounts

for up to 60% of a DNN training iteration time in Meta’s pro-

duction environment. Similar observations have been made

in prior work [59, 77, 89, 105, 110, 123]. Such bottleneck sug-

gests the existing datacenter networks are insufficient for the

emerging DNN training workloads.

Traffic heatmaps. Figure 4 shows the heatmap of server-to-

server traffic for four training jobs running in Meta’s produc-

tion GPU clusters. The values on the colormap and the exact

names of DNN models are not shown for confidentiality rea-

sons. All heatmaps in the figure contain diagonal squares (in

dark blue), indicating a ring communication pattern between

servers. This is expected, as ring-AllReduce is the common

AllReduce communication collective at Meta. But the MP

transfers (light blue and green squares) are model-dependent

because MP transfers depend on the parallelization strategy

and device placement of a training job. Moreover, we find that

the traffic patterns of training jobs do not change between it-

erations for the entire training duration, resulting in the same

per-iteration heatmap throughout the training. Once a training

job starts, the same parallelization strategy and synchroniza-

tion method are used across training iterations, resulting in a

periodic and predictable traffic pattern. Similar observations

have been made in previous work [140]. In particular, the traf-

fic heatmap is identical across training iterations. Note that

the traffic pattern changes within a training iteration during

forward, backward, and AllReduce phases.
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Figure 4: Traffic heatmaps of production jobs in Meta.

3 TOPOOPT System Design

The observations in the previous section suggest that demand-

aware fabrics are excellent candidates for a DNN training

cluster. In this section, we seek to answer the following ques-

tion: ªCan we build a demand-aware network to best support

distributed training?" To answer this question, we propose

TOPOOPT, a novel system based on optical devices that jointly

optimizes DNN parallelization strategy and topology to ac-

celerate today’s training jobs.

TOPOOPT interconnect. A TOPOOPT cluster is a shard-

able direct-connect fabric where each server has d interfaces

connected to a core layer of d optical switches, as shown in

Figure 5. The optical switches enable TOPOOPT to shard the

cluster into dedicated partitions for each training job. The

size of each shard depends on the number of servers the

job requests. Given a DNN training job and a set of servers,

TOPOOPT first finds the best parallelization strategy and topol-

ogy between the servers off-line (§4.1). Then, it reconfigures

the optical switches to realize the target topology for the

job. Appendix C provides details on how TOPOOPT achieves

sharding and dynamic job arrivals in shared clusters.

Degree of each server. We denote the number of interfaces

on each server (i.e., the degree of the server) by d. Typically,

d is the same as the number of NICs installed on the server.

In cases where the number of NICs is limited, the degree can

be increased using NICs that support break-out cables or the

next generation of co-packaged optical NVLinks [11]. In our

testbed, we use one 100 Gbps HPE NIC [29] with 4×25 Gbps

interfaces to build a system with degree four (d = 4).

Direct-connect topology. In TOPOOPT, optical switches

connect the servers directly, forming a direct-connect topol-

ogy. To further scale a TOPOOPT cluster, we create a hierar-

chical interconnect by placing the servers under Top-of-Rack

(ToR) switches and connecting ToR switches to the optical

layer, creating a direct-connect topology at the ToR or spine

layers, similar to previous work [53, 71, 72, 100, 114].

Host-based forwarding. In DNN training workloads, the

degree of each server is typically smaller than the total num-

ber of neighbors with whom the server communicates during

training. To ensure traffic is not blocked when there is no

d interfaces

Server1 Server2 Servern

Optical Switch1 Optical Switch2 Optical Switchd-1 Optical Switchd

Servern-1

d Optical Switches

Figure 5: Illustration of TOPOOPT’s interconnect.

direct link between two servers, we use a technique called

host-based forwarding, where hosts act as switches and for-

ward incoming traffic toward the destination. Previous work

used similar technique at the ToR switch level [53, 99, 100].

Optical switching technologies. A wide range of optical

switches is suitable for TOPOOPT, including commodity avail-

able optical patch panels [43] and 3D-MEMS [6, 41], as well

as futuristic designs such as Mordia [113], MegaSwitch [57],

and Sirius [53,60]. Table 1 lists the characteristics of these de-

vices. TOPOOPT is compatible with any of these technologies.

Appendix B provides details about these devices.

One-shot reconfiguration. Patch panel and OCS are both

applicable for an immediate deployment of TOPOOPT, as

shown in Table 1. The choice of which technology to use

depends on several factors, including scale of the cluster, iter-

ation time of jobs, and frequency of job arrivals. For instance,

OCSs can potentially be used to reconfigure the topology of

a job within training iterations, whereas patch panels are only

suitable when the topology remains intact throughout the en-

tire training of a particular job. Our evaluations demonstrate

that the reconfiguration latency of today’s OCSs is too high

for today’s DNNs, leading to sub-optimal performance when

the topology is reconfigured within iterations (§5). As a result,

given that faster technologies are not yet available, TOPOOPT

uses a one-shot reconfiguration technique based on an offline

co-optimization framework (§4) that jointly optimizes the

parallelization strategy and topology. TOPOOPT then recon-

figures the interconnection between training servers of each

job before the job starts and keeps the topology intact until

the training is complete (or to recover from failures).



Technology Port-

count

Reconfig.

latency

Insertion

Loss (dB)

Cost /port

Optical Patch Panels [43] 1008 minutes 0.5 $100

3D MEMS [6, 41] 384 10 ms 1.5±2.7 $520

2D MEMS [57, 113] 300 11.5 µs 10±20 Not commercial

Silicon Photonics [89, 122] 256 900 ns 3.7 Not commercial

Tunable Lasers [53, 60] 128 3.8 ns 7-13 Not commercial

RotorNet [99, 100] 64 10 µs 2 Not commercial

Table 1: Comparison of optical switching technologies.

4 Co-optimizing Parallelization Strategy and

Network Topology

This section describes TOPOOPT’s co-optimization frame-

work for finding a network topology and parallelization strat-

egy for a given DNN training job.

4.1 Alternating Optimization

The search space is too large. Finding the optimal paral-

lelization strategy alone is an NP-complete problem [85], and

adding network topology and routing makes the problem even

harder. An extreme solution is to jointly optimize compute,

communication, and topology dimensions using a cross-layer

optimization formulation. Theoretically, this approach finds

the optimal solution, but the search space quickly explodes,

even at modest scales (e.g., six nodes [129]).

Naive approach. The other extreme is to optimize the net-

work topology sequentially after the parallelization strategy

has been found. While this approach is able to reconfigure

the network to match its traffic demand better, the eventual

combination of topology and parallelization strategy is likely

to be sub-optimal in the global configuration space.

TOPOOPT’s approach: alternating optimization. In

TOPOOPT, we seek to combine the best of both worlds. To

make the problem tractable, we divide the search space into

two planes: Comp.×Comm. and Comm.×Topo. We use an

alternating optimization technique to iteratively search in one

plane while keeping the result of the other plane constant.

Figure 6 illustrates our alternating optimization framework.

We use FlexFlow’s MCMC (Markov Chain Monte Carlo)

search algorithm [85] to find the best parallelization strategy

for a given network topology while considering the com-

munication cost. If the parallelization strategy improves the

training iteration time, we feed it to the Comm.×Topo. plane

to find the efficient network topology and routing using our

TOPOLOGYFINDER algorithm. The discovered topology is

then fed back into the Comp.×Comm. plane, which further

optimizes the parallelization strategy and device placement

based on the new topology. This optimization loop repeats un-

til convergence or after k iterations, where k is a configurable

hyper-parameter.

FlexFlow’s MCMC 

Parallelization Strategy Search

Topology and routing

Parallelization strategy

Comm. x Topo. plane

Comp. x Comm. plane

Device placement
topology

Find Allreduce

permutations & 

maximum weight 

matchings

Use coin-change 

routing and 

shortest path 

routing

TopologyFinder Algorithm (Section 4.2)

Figure 6: TOPOOPT searches for the best parallelization strat-

egy, jointly with routing, and topology.

4.2 TOPOLOGYFINDER Algorithm

TOPOLOGYFINDER steps. Algorithm 1 presents the pseu-

docode of our TOPOLOGYFINDER procedure. The algorithm

takes the following inputs: n dedicated servers for the train-

ing job, each with degree d, as well a list of AllReduce

and MP transfers (TAllReduce and TMP) based on the paral-

lelization strategy and device placement obtained from the

Comp.×Comm. plane. The algorithm then finds the best

topology (G) and routing rules (R) and returns them to the

Comp.×Comm. plane for the next round of alternating opti-

mization. Our algorithm consists of the following four steps.

Step 1: Distribute the degree. This step distributes the

degree d between AllReduce and MP sub-topologies propor-

tionally, based on their share of total traffic. We specifically

start with AllReduce transfers and allocate at least one de-

gree to the AllReduce sub-topology to ensure the network

remains connected (line 2). The remaining degrees, if any, are

allocated to the MP sub-topology (line 3).

Step 2: Construct the AllReduce sub-topology. To find

the AllReduce sub-topology, the algorithm iterates over every

AllReduce group k and allocates degree dk to each group pro-

portionally based on the amount of traffic (line 6). Note that

in hybrid data and model parallelism strategies, the AllRe-

duce step can be performed across a subset of servers when

a DNN layer is replicated across a few servers instead of all

servers. To efficiency serve both AllReduce and MP trans-

fers, TOPOOPT constructs the AllReduce sub-topology such

that the diameter of the cluster is minimized. Section 4.3

explains two algorithms, called TotientPerms (line 8) and

SelectPermutations (line 9) to construct the AllReduce

sub-topology.

Step 3: Construct the MP sub-topology. We use the Blos-

som maximum weight matching algorithm [63] to find the

best connectivity between servers with MP transfers (line 14).

We repeat the matching algorithm until we run out of degrees.

To increase the likelihood of more diverse connectivity across

server pairs, we divide the magnitude of TMP for pairs that

already have an edge between them by two (line 17). In gen-

eral, division by two can be replaced by a more sophisticated

function with a diminishing return.

Step 4: Final topology and routing. Finally, we combine

the MP and AllReduce sub-topologies to obtain the final

topology (line 18). We then use a modified version of the

coin-change algorithm [52] (details in Appendix E.1) to route



Algorithm 1 TOPOLOGYFINDER pseudocode

1: procedure TOPOLOGYFINDER(n, d, TAllReduce, TMP)
▷ Input n: Number of dedicated training servers for the job.
▷ Input d: Degree of each server.
▷ Input TAllReduce: AllReduce transfers.
▷ Input TMP: MP transfers.
▷ Output G: Topology to give back to the Comp.×Comm. plane.
▷ Output R: Routing rules to give back to the Comp.×Comm. plane.

▷ Distribute degree d between AllReduce and MP sub-topologies

2: dA = max(1, ⌈d × sum(Treduce)

sum(Treduce)+sum(TMP) ⌉)

3: dMP = d −dAllReduce

▷ Construct the AllReduce sub-topology GAllReduce

4: GAllReduce = {}
5: for each AllReduce group k with set of transfers Tk do

▷ Assign degree dk to group k according to its total traffic

6: dk = ⌈dA × sum(Tk )

sum(Treduce)
⌉

7: dA = dA −dk

▷ Find all the permutations between servers in group k

8: Pk = TotientPerms(n, k) ▷ (Details in §4.3)

▷ Select dk permutations from Pk

9: GAllReduce = GAllReduce∪ SelectPermutations(n, dk, Pk) ▷ (§4.3)

10: if dAllReduce == 0 then

11: break
▷ Construct the MP sub-topology GMP

12: GMP = {}
13: for i : i < dMP do

▷ Find a maximum weight matching according to TMP

14: g = BlossomMaximumWeightMatching(TMP)

15: GMP = GMP ∪g

▷ Reduce the amount of demand for each link l in graph g

16: for l ∈ g do

17: TMP[l] = TMP[l]/ 2

▷ Combine the AllReduce and MP topologies

18: G = GAllReduce ∪GMP

▷ Compute routes on GAllReduce using the coin change algorithm [52]

19: R = CoinChangeMod(n, GAllReduce) ▷ (Appendix §E.1)

▷ Compute routes on GMP with shortest path

20: R += ShortestPath(G, TMP)

21: return G,R

AllReduce on the AllReduce sub-topology (line 19). Further,

we use k-shortest path routing for the MP transfers to take

advantage of the final combined topology (line 20).

4.3 Traffic Mutability and AllReduce Topology

Finding an efficient AllReduce sub-topology. At first blush,

finding an AllReduce sub-topology for a given DNN seems

straightforward: we just need to translate the parallelization

strategy and device placement from the Comp.×Comm.
plane into a traffic matrix and map the traffic matrix into

circuit schedules. Several papers have used this technique

for datacenter networks [57, 64, 68, 72, 89, 95±97, 113, 137].

However, the conventional wisdom in prior work is to allocate

as many direct parallel links as possible to elephant flows and

leave mice flows to take multiple hops across the network.

In principle, this approach works well for datacenters but it

leads to sub-optimal topologies for distributed DNN training.

While the size of AllReduce transfers is larger than MP trans-

fers, MP transfers have a higher communication degree than

AllReduce (Appendix D). Hence, the conventional approach

creates parallel direct links for carrying AllReduce traffic and

forces MP flows to have a large hop-count, thereby degrading

the training performance.
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Figure 8: DLRM traffic heatmaps.

TOPOOPT’s novel technique. In TOPOOPT, we seek to

meet two goals simultaneously: (i) allocate ample bandwidth

for AllReduce transfers, as the bulk of the traffic belongs to

them, but (ii) ensure a small hop-count for MP transfers. We

meet both goals by demonstrating a unique property of DNN

training traffic ± the AllReduce traffic is mutable.

Mutability of AllReduce transfers. We define traffic mu-

tability as the ability to change the traffic pattern without alter-

ing parallelization strategy or device placement while main-

taining correctness, and demonstrate that AllReduce transfers

are mutable whereas MP transfers are not. Intuitively, this

is because MP traffic is composed of network flows among

nodes that contain different parts of a DNN model thus creat-

ing immutable data dependencies, while AllReduce transfers

contain network flows among nodes that handle the same

part of the model, providing flexibility in the order of nodes

participating in AllReduce. For instance, consider a DLRM

distributed across 16 servers each with three NICs. The com-

mon AllReduce pattern is shown as a ring with consecutive

node IDs, as shown in Figure 7a. However, this is not the only

possible permutation. Each heatmap in 8a, 8b, and 8c corre-

sponds to a different ring-AllReduce permutation, shown in

Figures 7a, 7b, and 7c. We denote each of these permutations

as +p, where server Si connects to server S(i+p)%n, and n is

the number of servers, as shown in Figure 7. Although all

three heatmaps correspond to the exact same parallelization

strategy and device placement, the blue diagonal lines appear

at different parts of the heatmaps, depending on the order of

servers in the ring-AllReduce permutation. But MP transfers

(green vertical and horizontal lines in each heatmap) are dic-

tated by the parallelization strategy and device placement;

thus, they remain at the same spot in all three heatmaps.



Algorithm 2 TotientPerms pseudocode

1: procedure TOTIENTPERMS(n, k)

▷ Input n: Total number of nodes

▷ Input k: AllReduce group size

▷ Output Pk: Set of permutations for AllReduce group of size k

▷ Initially, Pk is empty

2: Pk = {}
▷ This loop runs φ(p) times, where

▷ φ is the Euler’s totient function, φ(p) = |{k < p : gcd(k, p) = 1}|

▷ one can also restrict p to be prime only

3: for p ≤ k, gcd(p,k)== 1 do

4: one_perm = []

5: for i in 0 to N/k do

6: one_perm += [i+ j× p for j in 0 to k]

7: Pk += one_perm

8: return Pk

Algorithm 3 SelectPermutations pseudocode

1: procedure SELECTPERMUTATIONS(n, dk , Pk)

▷ Input n: Total number of nodes

▷ Input dk: Degree allocated for group this AllReduce group of size k

▷ Input Pk: Candidate permutations for this AllReduce group of size k

▷ Output Gk: Parameter synchronization topology, given as a set of

permutations

▷ Initially, Gk is empty

2: Gk = {}
▷ q now is the minimum candidate in Pk

3: q = Pk[0]
▷ GetConn(q) gives the connection described

▷ by the permutation corresponding to q

4: Gk = Gk∪GetConn(q)

▷ Ratio of the geometric sequence to fit

5: x = dk
√

N

6: for i ∈ {1, · · · ,dk −1} do

▷ Select the next candidate based on the ratio

7: q′ = x×q

▷ Project q′ onto Pk \Gk with minimal distance (L1-norm)

8: q′ = argminr∈Pk\Gk
|r−q′|

▷ Add this candidate to final topology

9: Gk = Gk∪GetConn(q′)
10: q = q′

11: return Gk

Leveraging AllReduce traffic mutability. Traffic mutabil-

ity implies that if a group of servers is connected in a certain

order, simply permuting the label of the servers gives another

ordering that will finish the AllReduce operation with the

same latency while potentially providing a smaller hop-count

for MP transfers. Instead of selecting just one AllReduce

order, TOPOOPT finds multiple permutations for each AllRe-

duce group and overlaps their corresponding sub-topologies.

In doing so, TOPOOPT efficiently serves the AllReduce traffic

while decreasing the hop-count for MP transfers.

TotientPerms algorithm. While overlapping multiple per-

mutations sounds straightforward, navigating through the set

of all possible AllReduce orderings is non-trivial since the

number of possible permutations is O(n!). To reduce the

search space of all possible permutations, we design the To-

tientPerms algorithm to find the ring generation rule for all
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Figure 9: TOPOOPT’s topology and traffic matrix.

regular rings, based on group theory. Regular rings are those

where the distance between indices of consecutive servers is

equal; i.e., server Si is connected to server S(i+p)%n for some

p. Algorithm 2 presents the pseudocode of TotientPerms.

Inspired by Euler’s totient function [25], we find all integer

numbers p< n, where p is co-prime with n (i.e. gcd(p,n) = 1,

line 3, Algorithm 2), represent a valid ring-AllReduce per-

mutation (§E.1). For instance, for n = 12 servers, the ring

generation rule for p= 1,5,7,11 will lead to four distinct ring-

AllReduce permutations between the servers. Note that each p

describes a unique regular permutation. To handle large-scale

clusters, we restrict p to be a prime number, thereby reduc-

ing the search space size to only O( n
ln n

), as per the Prime

Number Theorem [66].

SelectPermutations algorithm. For a group of n servers

participating in AllReduce, TotientPerms finds a set of reg-

ular permutations Pk =∪p:gcd(p,n)=1{p} across them. TOPOL-

OGYFINDER then selects dk permutations using a module

called SelectPermutations, where dk is the number of

degree allocated to the group of nodes running AllReduce

(line 6, Algorithm 1). Algorithm 3 presents the pseudocode

of SelectPermutations. Several metrics can be used in

the SelectPermutations module. In our implementation,

SelectPermutations aims to reduce the cluster diameter to

benefit the MP transfers. To this end, SelectPermutations

chooses {p1, · · · , pdk
} ⊂ Pk, such that {p1, · · · , pdk

} is close

(in L1-norm) to a geometric sequence (line 7, Algorithm 3).

Theorem 1. TOPOOPT’s SelectPermutations algo-

rithm bounds the diameter of the AllReduce sub-topology to

O(dA ·n1/dA), under certain assumptions.

We list the assumptions and proof of Theorem 1 in Ap-

pendix E.2. Intuitively, each server in the topology is able to

reach a set of servers with a geometrically distributed hop-

count distance (line 5, Algorithm 3), creating a topology sim-

ilar to Chord [128].

Example. Consider the DLRM model in Figure 8. Instead

of choosing one of the AllReduce permutations in Figure 7,

TOPOOPT combines the three ring-AllReduce permutations to

load-balance the AllReduce transfers while providing a short

hop-count for MP transfers. Figure 9 illustrates TOPOOPT’s



topology and traffic matrix and shows a more balanced traffic

matrix than Figure 8.

5 Large Scale Simulations

This section evaluates the performance of a large-scale

TOPOOPT interconnect. First, we explain our simulation soft-

ware and methodology (§5.1). Then, we provide a cost analy-

sis of TOPOOPT to inform our simulations when comparing

different interconnects (§5.2). Next, we demonstrate the per-

formance of TOPOOPT when a cluster is dedicated to a single

distributed DNN training job (§5.3). We perform a sensitivity

analysis to quantify the impact of all-to-all traffic (§5.4) and

host-based forwarding (§5.5). We extend this setting to a case

where a training cluster is shared among multiple jobs (§5.6).

Finally, we evaluate the impact of reconfiguration latency

(§5.7) on TOPOOPT’s performance.

5.1 Methodology & Setup

We implement two simulators to evaluate TOPOOPT.

FlexNet simulator. We augment FlexFlow’s simulator [27]

to be network-aware and call it FlexNet. Given a DNN model

and a batch size, FlexFlow’s simulator explores different par-

allelization strategies and device placements to minimize it-

eration training time. The output of this simulator is a task

graph describing the set of computation and communication

tasks on each GPU and their dependencies. The current im-

plementation of FlexFlow ignores the network topology by

assuming servers are connected in a full-mesh interconnect.

Our FlexNet simulator extends the FlexFlow simulator and

enables it to consider multiple networks, including Fat-trees,

TOPOOPT, and expander networks. Moreover, FlexNet imple-

ments our alternating optimization framework (§4) to find an

optimized network topology and routing rules for TOPOOPT.

FlexNetPacket simulator. FlexFlow’s simulator only pro-

vides course-grind estimation of training iteration time,

because it does not simulate individual packets travers-

ing through a network. Extending FlexNet to become a

packet-level simulator is computationally infeasible, because

FlexFlow generally requires thousands of MCMC iterations

to converge. To faithfully simulate per-packet behavior of

network switches, buffers, and multiple jobs sharing the same

fabric, we build a second event-based packet simulator, called

FlexNetPacket, on top of htsim [7]. FlexNetPacket takes the

output of FlexNet (i.e., the optimized parallelization strategy,

device placement of each operator, network topology, and

routing rules) and simulates several training iterations. The

link propagation delay is set to 1 µs throughout this section.

Simulated network architectures. We simulate dis-

tributed training clusters with n servers equipped with four

NVIDIA A100 GPUs [37]. We vary n in different experiments

and simulate the following network architectures:

• TOPOOPT. A TOPOOPT interconnect where each server

is equipped with d NICs, each with bandwidth B connected

via a flat layer of optical devices. At the beginning of each

job, a shard of the network is selected, and the topology of the

shard is reconfigured based on the output of our alternating

optimization framework (§4) and remains unchanged through-

out the entire training job. Both OCS and patch panels are

suitable for this architecture.

• OCS-reconfig. To study the impact of changing the net-

work topology within training iterations, we simulate a recon-

figurable TOPOOPT interconnect. We rely on commercially

available Optical Circuit Switches (OCSs) for this design

and assume the reconfiguration latency is 10 ms. Given that

FlexFlow’s parallelization strategy search is not aware of dy-

namically reconfigurable networks, following prior work [89],

we measure the traffic demand every 50 ms and adjust the

circuits based on a heuristic algorithm to satisfy the current

traffic demand as much as possible. We also enable host-based

forwarding such that the communication is not blocked even

when a direct link is not available (Appendix E.4).

• Ideal Switch. An ideal electrical switch that scales to any

number of servers, where each server is connected to the

switch via a link with d ×B bandwidth. For any pair of d

and B, no network can communicate faster than this ideal

case. In practice, the Ideal Switch can be approximated with

a full-bisection bandwidth Fat-tree where the bandwidth of

each link is d ×B.

• Fat-tree. To compare the performance of TOPOOPT to

that of a similar-cost Fat-tree architecture, we simulate a full

bisection bandwidth Fat-tree where each server has one NIC

and the bandwidth of each link is d ×B′, where B′ is lower

than B and is selected such that Fat-tree’s cost is similar to

TOPOOPT (§5.2).

• Oversub. Fat-tree. This is a 2:1 oversubscribed Fat-tree

interconnect, where the bandwidth of each link is d ×B but

half of the links in the ToR uplink layer are omitted.

• SiP-ML [89]. SiP-ML is a futuristic DNN training clus-

ter with Tbps of bandwidth per GPU. While having a Tbps

network is beneficial, our goal is to compare the algorithmic

contributions of TOPOOPT and SiP-ML. Hence, to make a fair

comparison, we allocate d wavelengths, each with bandwidth

B, to each SiP-ML GPU and follow its SiP-Ring algorithm

to find a topology with a reconfiguration latency of 25 µs.

Appendix F elaborates on our modifications to SiP-ML.

• Expander [127, 135]. Finally, we simulate a fabric where

each server has d NICs with bandwidth B interconnected via

an Expander topology.

DNN Workloads. We simulate six real-world DNN mod-

els: DLRM [20], CANDLE [4], BERT [62], NCF [75],

ResNet50 [74] , and VGG [126]. List 1 (Appendix D) pro-

vides details about model configurations and batch sizes used

in this paper.

Parallelization strategy. We use FlexNet’s topology-aware

parallelization strategy search for Ideal Switch, Fat-tree, Over-
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Figure 10: Interconnect cost comparison.

sub. Fat-tree, SiP-ML, and Expander networks. For TOPOOPT,

we use FlexNet’s alternating optimization framework to find

the best parallelization strategy jointly with topology, where

the final parallelization strategy is either hybrid or pure data-

parallel. We use ring-AllReduce and distributed parameter

server [93] as default AllReduce communication collectives

between servers and within servers, respectively. Each data

point averages 5±10 simulation runs.

5.2 Cost Analysis

We begin our evaluations by comparing the cost of various net-

work architectures. Details about the cost of each component

used in each architecture are given in Appendix G.

Figure 10 compares the interconnect cost across various

network architectures as the number of servers is increased.

We estimate the cost of Ideal Switch with a full-bisection

Fat-tree of the same bandwidth. We make the following obser-

vations. First, using OCSs for TOPOOPT is more expensive

(1.33×, on average) than patch panels. Note that OCSs can be

used in both TOPOOPT and OCS-reconfig interconnects. Sec-

ond, the cost of TOPOOPT overlaps with that of the Fat-tree.

This is intentional, because having a cost-equivalent archi-

tecture enables us to compare the performance of TOPOOPT

to a cluster at the same price point. Third, the ratio of Ideal

Switch’s cost to TOPOOPT’s cost is 3.2× on average. Fi-

nally, the most and least expensive fabrics are SiP-ML and

Expander, respectively, and as this section shows, they both

perform worse than TOPOOPT for certain workloads.

We acknowledge that estimating the cost of networking

hardware is challenging because prices are subject to signifi-

cant discounts with bulk orders. Assuming all components in

this analysis are subject to similar bulk order discounts, the

relative comparison across architectures remains valid. As a

point of comparison, we compute the cost of a cluster with

4,394 servers (k = 26 Fat-tree) by following the discounted

cost trends in Sirius [53] and with 50% discounts for patch

panels. For a cluster at this scale, the cost of full-bisection

bandwidth Fat-tree (which approximates our Ideal Switch

baseline) relative to the cost of TOPOOPT changes from 3.0×
to 3.6×, indicating our estimates are reasonable. Moreover, a

TOPOOPT cluster incurs lower energy cost than Fat-trees, as

optical switches are passive.

5.3 Performance Comparison on Dedicated

Clusters

This section compares the training iteration time of TOPOOPT

with that of other network architectures when the cluster is

dedicated to serving one DNN training job.

Figure 11a compares the training iteration times of various

architectures for CANDLE distributed on a dedicated cluster

of 128 servers with a server degree of four (d = 4). We vary

the link bandwidth (B) on the x-axis. The figure shows that

Ideal Switch, TOPOOPT, and SiP-ML architectures achieve

similar performance because the best parallelization strategy

for CANDLE at this scale is mostly data parallel, with few

MP transfers. The OCS-reconfig architecture performs poorly

because it uses the instantaneous demand as the baseline to

estimate the future traffic to schedule circuits. This estima-

tion becomes inaccurate during training, in particular when

the current AllReduce traffic is about to finish but the next

round of AllReduce has not started. The Expander architecture

has the worst performance, as its topology is not optimized

for DNN workloads. Averaging across all link bandwidths,

compared to Fat-tree interconnect, TOPOOPT improves the

training iteration time of CANDLE by 2.8×; i.e., the ratio

of CANDLE’s iteration time on Fat-tree to TOPOOPT is 2.8.

TOPOOPT’s servers have more raw bandwidth, resulting in

faster completion time.1

Figures 11b and 11c show the training iteration times for

VGG and BERT. The trends are similar to CANDLE, as these

models have similar degree requirements. Compared to Fat-

tree, on average, TOPOOPT improves the iteration time of

VGG and BERT by 2.8× and 3×, respectively.

The cases of DLRM and NCF are more interesting, as they

have more MP transfers than the other DNNs. As shown in

Figures 11d and 11e, TOPOOPT’s performance starts to de-

viate from Ideal Switch, especially for NCF, because it uses

host-based forwarding for the many-to-many MP transfers

(§5.4 and §5.5). For DLRM (and NCF), TOPOOPT is 2.8×
(and 2.1×) faster than Fat-tree, while Ideal Switch further

improves the training iteration time by 1.3× (and 1.7×) com-

pared to TOPOOPT. SiP-ML performs poorly, and even when

we increase the link bandwidth, its training iteration time

stays flat. This happens because MP transfers in DLRM and

NCF require several circuit reconfigurations to meet the traffic

demand.

Finally, Figure 11f shows most architectures achieve sim-

ilar training iteration times for ResNet50 since it is not a

communication-heavy model. The Expander architecture per-

forms poorly when the link bandwidth is lower than 100 Gbps,

as the topology does not match the AllReduce traffic pattern.

1It is possible to improve the performance of the Expander fabric by

augmenting Blink’s approach [136] to a cluster-level solution.
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Figure 11: Dedicated cluster of 128 servers (d = 4).

We repeat this simulation with d = 8 and observe a similar

performance trend (Appendix H).

5.4 Impact of All-to-all Traffic

This section evaluates the impact of all-to-all traffic patterns

on TOPOOPT’s performance. In particular, TOPOOPT’s host-

based forwarding approach incurs bandwidth tax [99] exacer-

bated by all-to-all and many-to-many communication patterns.

This tax is defined as the ratio of the traffic volume in the

network (including forwarded traffic) to the volume of logical

communication demand. Hence, the bandwidth tax for a full

bisection bandwidth Fat-tree topology is always one, because

hosts do not act as relays for each other.

Consider a DNN model with R bytes of AllReduce traffic

and A bytes of all-to-all traffic, distributed on a full bisection

bandwidth topology with total network bandwidth N ·BF (i.e.,

number of servers multiplied by the bisection bandwidth). The

training iteration time of this DNN is: TF = R
N·BF

+ A
N·BF

+Cbs,

where Cbs is the computation time of the model with batch

size bs.2

Now suppose the same DNN is distributed on a TOPOOPT

topology with total network bandwidth NBT . In this case,

assuming the entire AllReduce traffic is carried on Totient-

Perms with direct links, the training iteration time becomes

TT = R
N·BT

+ α·A
N·BT

+Cbs (Eq. 1), where α represents the slow-

down factor that all-to-all transfers create in the network, due

to host-based forwarding. The value of α depends on the

amount of bandwidth tax and routing strategy (§5.5).

Increasing the amount of all-to-all traffic (A) increases the

iteration time for both TF and TT . But when N ·BF and N ·BT

2For clarify of presentation, this formulation assumes no overlap between

communication and computation stages and no competing traffic.

are equal, TOPOOPT’s performance degrades faster because

of the α factor in the numerator. To quantify this behavior

concretely, we distribute a DLRM training task with 128 em-

bedding tables on a cluster with 128 servers. We choose large

embedding tables and distribute each table on each server,

creating worst-case all-to-all traffic.

Figure 12 compares the training iteration times of

TOPOOPT, Ideal Switch, and Fat-tree as the batch size is

increased. The top x-axis lists the ratio of all-to-all to AllRe-

duce traffic for each batch size value given on the bottom

x-axis. As shown in Figure 12a, when the batch size is 128

and d = 4, TOPOOPT’s performance matches that of Ideal

Switch, while Fat-tree is a factor of 2.7 slower. This result

agrees with the performance gains in Figure 11d, as the batch

sizes are the same.

Increasing the batch size increases A, and this, in turn, in-

creases the training iteration times in all three architectures.

As predicted by Eq. (1), TOPOOPT’s iteration time increases

faster. Specifically, when the batch size is 2048 and all-to-

all traffic is 80% of AllReduce traffic, TOPOOPT performs

poorly, and the iteration time is a factor of 1.1 higher than

that of the Fat-tree architecture. Increasing the server degree

d mitigates the problem, as shown in Figure 12b. Note that in-

creasing the batch size does not always result in faster training

time [89, 109, 124]. Moreover, publicly available data suggest

2048 is the largest batch size for training DLRM [102]. The

number of columns in the embedding tables and the number

of servers are smaller in their workload: (92, 16) vs. (128,

128), respectively. Hence, the DLRM workload we evaluate

contains more all-to-all traffic than the state-of-the-art model

used in industry.
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5.5 Impact of Host-based Forwarding

Two factors impact the performance of host-based forwarding

in TOPOOPT: bandwidth tax and routing strategy.

Bandwidth tax. Figure 13 shows the amount of bandwidth

tax experienced by the DLRM job in the previous section.

Each bar represents a different batch size. At batch size 64

with d = 4, TOPOOPT experiences a bandwidth tax of 1.11,

indicating that host-based forwarding creates 11% extra traf-

fic in the network. Increasing the degree to d = 8 further

improves this number to 1.05. In the worst-case scenario with

batch size 2048, TOPOOPT pays a bandwidth tax of 3.03 when

d = 4, causing it to perform worse than Fat-tree, as shown

in Figure 12a. Determining the value of tolerable bandwidth

tax is challenging for a TOPOOPT cluster, as it depends on

the compute time and the amount of compute-communication

overlap, and this varies for different DNN models.

Impact of path length. Intuitively, the amount of band-

width tax grows with the path length [99]. Figure 14 shows

the CDF of path length across all server pairs. When d = 4,

the average path length is 5.7, resulting in at least 5.7× over-

head of host-based forwarding relative to Ideal Switch for

all-to-all traffic. Based on Eq. (1), and since the total network

bandwidth in TOPOOPT is higher than Fat-tree (NBT > NBF ),

the overhead of host-based forwarding becomes at least 1.4×
for the Fat-tree architecture. Increasing the server degree to

8 reduces the average path length to 3, thereby reducing the

overhead bound. Appendix H evaluates the impact of increas-

ing node degree on performance for other models.

Routing strategy. Building a topology with a small path

length is necessary but not sufficient to reduce the impact

of host-based forwarding. To handle forwarded traffic with

minimum performance impact, the routing strategy also needs

to be efficient. The best routing strategy minimizes the max-

imum link utilization for a given network topology, similar

to WAN traffic engineering solutions [91]. However, finding

the optimal routing strategy requires solving a set of linear

equations with a centralized controller [76, 81]. To quantify

the load imbalance in TOPOOPT, Figure 15 illustrates the

CDF of the amount of traffic carried by each physical link

for an all-to-all traffic matrix. When the batch size is 128

(Figure 15a), the link with the least traffic carries 39% and

59% less traffic than the link with the most traffic, for d = 4
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and d = 8, respectively. This imbalance in load suggests fur-

ther opportunities to improve the performance of TOPOOPT.

Achieving optimal routing makes α (Eq. (1)) equal to the aver-

age path length. Without a centralized controller, however, the

link utilization becomes non-uniform, and the average path

length only serves as a lower bound. We leave optimizing the

routing strategy in TOPOOPT to future work.

5.6 Performance on Shared Clusters

We now compare the performance of different network archi-

tectures when the cluster is shared across multiple DNN jobs.

Following prior work [98,115], we run a series of simulations

where 40% of the jobs are DLRM, 30% are BERT, 20% are

CANDLE, and 10% are VGG16. We change the number of

active jobs to represent the load on the cluster. Assuming each

job requests 16 servers (64 GPUs), we execute 5, 10, 15, 20,

and 27 jobs on the cluster to represent 20%, 40%, 60%, 80%

and 100% load, respectively.

Figure 16 compares the average and 99%-tile iteration time

at different loads for a cluster with 432 servers where d = 8

and B = 100 Gbps. SiP-ML does not support multiple jobs;

hence, we omit it in this experiment. We omit OCS-reconfig

and Expander networks, as they both show poor performance

in this setting. Instead, we add the Oversub. Fat-tree inter-

connect to demonstrate the impact of congestion on Fat-tree

topologies. Figure 16a shows that TOPOOPT improves the

average iteration time by 1.7× and 1.15×, compared to the

Fat-tree and Oversub. Fat-tree architectures, respectively. We

observe a similar trend for the tail iteration completion times,

depicted in Figure 16b. At the extreme case when all servers

are loaded, TOPOOPT’s tail training iteration time is 3.4×



(a) Average Iteration Time

A
v
e

ra
g

e
 I

te
ra

ti
o

n
 T

im
e

 (
s)

(b) 99%-ile Iteration Time

9
9

%
-i

le
It

e
ra

ti
o

n
 T

im
e

 (
s)

0.05

0.1

0.15

20% 40% 60% 80% 100%
0.1

0.2

0.3

0.4

0.5

20% 40% 60% 80% 100%
Load Load

TopoOpt Fat-tree Ideal Switch Oversub Fat-tree

Figure 16: Shared cluster of 432 servers (d = 8, B = 100 Gbps).

faster compared to Fat-tree architecture. Averaging across all

load values on the x-axis, TOPOOPT improves the tail train-

ing iteration time by 3× and 1.4× compared to Fat-tree and

Oversub. Fat-tree architectures.

5.7 Impact of Reconfiguration Latency

Figure 17 shows the training iteration time of DLRM and

BERT in the same setting as Figure 11, while sweeping the

reconfiguration latency of OCSs in OCS-reconfig from 1 µs

to 10 ms. The horizontal blue line corresponds to TOPOOPT’s

iteration time; it remains constant as it does not reconfig-

ure the network topology. We find host-based forwarding

is challenging when the network is reconfigurable, as the

circuit schedules need to account for forwarding the traffic

while the topology reconfigures. Therefore, we evaluate the

performance of OCS-reconfig with and without host-based

forwarding. The purple line corresponds to OCS-reconfig

with host-based forwarding (same as OCS-reconfig evaluated

in Figure 11), denoted by OCS-reconfig-FW. For the orange

line, we disable host-based forwarding (similar to SiP-ML)

and call it OCS-reconfig-noFW.

We find enabling host-based forwarding when the topolo-

gies reconfigures within a training iteration is not always ben-

eficial. For DLRM (Figure 17a), OCS-reconfig-FW achieves

better performance than OCS-reconfig-noFW, as DLRM has

all-to-all MP transfers which benefit from host-based forward-

ing. However, for BERT (Figure 17b), enabling forwarding

increases the chance of inaccurate demand estimation and

imposes extra bandwidth tax, therefore increasing the itera-

tion time of OCS-reconfig-FW by a factor of 1.4 compared to

OCS-reconfig-noFW.

Reducing the reconfiguration latency all the way to 1 µs

enables OCS-reconfig-noFW to match the performance of

TOPOOPT. However, OCS-reconfig-FW still suffers from in-

accurate demand estimations. Although fast reconfigurable

switches are not yet commercially available, they are go-

ing to be essential in elastic scenarios where the cluster is

shared across multiple jobs and servers join and leave different

jobs unexpectedly, or when large, high-degree communication

dominates the workload. We believe futuristic fast reconfig-

urable switches, such as Sirius [53], are well-suited for this
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Figure 17: Impact of reconfiguration latency (d=8,

B=100 Gbps).

setting. Finding a parallelization algorithm that is aware of

reconfigurability within training iterations is a challenging

and exciting future research problem.

6 Prototype

Testbed setup. We build a prototype to demonstrate the

feasibility of TOPOOPT. Our prototype includes 12 ASUS

ESC4000A-E10 servers and a G4 NMT patch panel [43].

Each server is equipped with one A100 Nvidia GPU [37]

(40 GB of HBM2 memory), one 100 Gbps HP NIC [29], and

one 100 Gbps Mellanox ConnectX5 NIC. Our HP NICs are

capable of supporting 4×25 Gbps interfaces using a PSM4

transceiver with four breakout fibers [8], enabling us to build

a TOPOOPT system with degree d = 4 and B = 25 Gbps. We

use RoCEv2 for communication, and enable DCB [19] and

PFC on these interfaces to support a lossless fabric for RDMA.

We build a completely functional TOPOOPT prototype with

our patch panel (Figure 18). We compare TOPOOPT’s per-

formance with two baselines: (i) Switch 100Gbps, where the

servers are connected via 100 Gbps links to a switch, and (ii)

Switch 25Gbps, where the servers are connected via 25 Gbps

links to a switch. The Switch 100Gbps baseline corresponds

to the Ideal Switch case in our simulations.

Distributed training framework. We use FlexFlow’s

training engine [26], based on Legion’s parallel program-

ming system [30], to train four DNN models: ResNet50 [74],

BERT [62], VGG16 [126], and CANDLE [4]. For DLRM,

we use Facebook’s implementation from [20]. Since our pro-

totype is an order of magnitude smaller in scale than our

simulation setup, we use smaller model and batch sizes.

Modifications to NCCL. By default, the NCCL com-

munication library [36] assumes all network interfaces are

routable from other interfaces. This assumption is not ideal

for TOPOOPT because we have a specific routing strategy

to optimize training time. We modify NCCL to understand

TOPOOPT’s topology and respect its routing preferences.

Moreover, we integrate our TotientPerms AllReduce permuta-

tions into NCCL and enable it to load-balance parameter syn-

chronization across multiple ring-AllReduce permutations.
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traffic in our testbed.

RDMA forwarding. Implementing TOPOOPT with today’s

RDMA NICs requires solving an engineering challenge, be-

cause the RDMA protocol assumes a switch-based network.

Packet processing and memory access in RDMA protocol are

offloaded to the NIC, and a RoCEv2 packet whose destination

IP address is different from that of the host is assumed to

be corrupted. Therefore, the NIC silently drops forwarded

packets. To address this issue, we collaborated with engineers

at Marvell who developed the firmware and driver of our HP

NICs. Our solution uses a feature called network partitioning

(NPAR) which enables the NIC to separate host-based for-

warding traffic from direct traffic, and uses the Linux kernel

to route them (details in Appendix I). Our conversations with

Marvell indicate that updating the firmware and the driver

enables the NIC to route forwarded RoCEv2 packets, thereby

bypassing the kernel entirely.

Training performance. Figure 19 demonstrates that

TOPOOPT’s training throughput (samples/second) is simi-

lar to our Switch 100 Gbps baseline for all models. The

performance of Switch 25Gbps baseline is lower because

its available bandwidth is lower than TOPOOPT. Figure 20

shows the time-to-accuracy plot of training VGG19 on the

ImageNet [61] dataset. As the figure indicates, TOPOOPT

reaches the target accuracy of 90% 2.0× faster than the

Switch 25Gbps baseline. TOPOOPT achieves similar perfor-

mance to the Switch 100Gbps baseline, as the blue and red

lines overlap in Figure 20.

Impact of all-to-all traffic. Similar to Section 5.4, we

evaluate the impact of all-to-all MP traffic on our RDMA-

forwarding enabled testbed by measuring the average iteration

time across 320 iterations of a DLRM job distributed in our

testbed. We vary the amount of all-to-all traffic by changing

the batch size. To create worst-case traffic, we increase the

embedding dimensions by 128× relative to the state-of-the-

art [20] (model details are in List 1, Appendix D). Figure 21

shows the training iteration time for various batch sizes. The

results are consistent with Figure 12, but since the bandwidth

tax in our 12-server testbed is much smaller than a 128-server

cluster in simulations, TOPOOPT performs better relative to

the switch-based architectures for a given all-to-all to AllRe-

duce traffic ratio. For instance, for batch size 512, the ratio of

all-to-all traffic to AllReduce is 78%, and the training iteration

time with TOPOOPT is 1.6× better than the Switch 25Gbps

baseline.

7 Discussion

Target workload. The most suitable workload for a

TOPOOPT cluster is a set of large DNN training jobs with hy-

brid data and model parallelism (or simply data parallelism).

We assume the set of servers assigned to each job remains the

same throughout the lifetime of the job, and the GPUs are not

shared across multiple jobs.

Storage and control plane traffic. Meta’s training clus-

ters consist of custom-designed servers, each with eight

GPUs, eight dedicated NICs for training traffic (GPU NICs),

and four additional NICs for storage and other traffic (CPU

NICs) [102]. Other companies, such as NVIDIA, have similar

architectures [10]. TOPOOPT only considers GPU NICs as

server degree and partitions the network dedicated for training

traffic. The CPU NICs are connected through a separate fabric

to carry storage and other control plane traffic.

Supporting dynamic scheduling and elasticity. Others

have demonstrated the benefits of dynamically choosing the

training servers for elastic training jobs [98, 115]. Our tar-

get use case in Meta is to leverage TOPOOPT for the vast

number of long-lasting training jobs that do not change dy-

namically. In cases where elasticity is required, instead of

using patch panels, we use OCSs (or other fast reconfigurable

optical switches) to change the servers participating in a job

quickly. Note that dynamically changing the set of servers

participating in a job while keeping both the topology and

the parallelization strategy optimal requires augmenting the

optimization space with an additional dimension, making the

problem even more challenging. We leave this to future work.

Handling failures. Unlike SiP-ML’s single ring topol-

ogy [89], a single link failure does not disconnect the graph

in TOPOOPT. When a fiber fails, TOPOOPT can temporarily

use a link dedicated to MP traffic to recover an AllReduce

ring. In case of permanent failures, TOPOOPT reconfigures to

swap ports and recover the failed connection.

Supporting multi-tenancy. To support multi-tenancy [142,



143], TOPOOPT can leverage NVIDIA’s MIG [39] to treat

one physical server as multiple logical servers in its topology.

TotientPerms in Fat-trees. Although our TotientPerms

technique is well-suited for reconfigurable optical intercon-

nects, it may be of independent interest for Fat-tree intercon-

nects as well since load-balancing the AllReduce traffic across

multiple permutations can help with network congestion.

TOPOOPT’s limitations. TOPOOPT’s approach assumes

the traffic pattern does not change between iterations. How-

ever, this assumption may not hold for Graphic Neural Net-

work (GNN) models [121] or Mixture-of-Expert (MoE) mod-

els [80]. In addition, we plan to extend TOPOOPT by bringing

its demand-awareness design within training iterations. This

is an open research question, and as shown in Section 5.7,

we will need fast-reconfigurable optical switches, as well as a

more sophisticated scheduling algorithm. Another limitation

of TOPOOPT is that a single link failure within a AllReduce

ring causes the full ring to become inefficient for AllReduce

traffic. A fast optical switch addresses this problem by quickly

reconfiguring the topology.

8 Related Work

Optimizing DNN training. To address the increasing compu-

tation and network bandwidth requirements of large training

jobs, a plethora of frameworks have been proposed [5, 46, 58,

69, 77, 79, 85, 86, 105, 108, 111, 117, 118, 123, 129, 136, 146].

These frameworks distribute the dataset and/or DNN model

across accelerators while considering the available network

bandwidth, but unlike TOPOOPT, they do not consider opti-

mizing the physical layer topology. Specifically, Blink [136]

builds collectives for distributed ML, but it needs a physi-

cal topology to generate spanning trees. Zhao et al. [147]

study the optimal topology for collective communication op-

erations, but this does not apply for general MP traffic. In

addition, several methods have been proposed to quantize

and compress the gradients to reduce the amount of com-

munication data across servers [48, 56, 144]. While these

approaches are effective, they are designed for data parallel

strategies and do not consider the large amount of data trans-

fers caused by model parallel training. Wang et al. [138] com-

pare the performance of Fat-trees and BCube topologies for

distributed training workloads and highlight several inefficien-

cies in Fat-trees. SiP-ML [89] demonstrates the benefits of

8 Tbps silicon photonics-based networks for distributed train-

ing. However, unlike TOPOOPT, these proposed approaches

do not co-optimize topology and parallelization strategy.

DNN parallelization strategies. Data and model paral-

lelism are widely used by today’s DNN frameworks (e.g., Ten-

sorFlow [44], PyTorch [42], MXNet [17]) to parallelize train-

ing across multiple devices. Recent work has also proposed

automated frameworks (e.g., FlexFlow [85], ColocRL [101],

MERLIN [38]) that find efficient parallelization strategies

by searching over a comprehensive space of potential strate-

gies. These frameworks rely on and are optimized for the

conventional Fat-tree interconnects. TOPOOPT proposes a

new approach to building DNN training systems by jointly

optimizing network topology and parallelization strategy.

DNN training infrastructures and schedulers. Several

training infrastructures have been proposed recently, in-

cluding NVIDIA DGX SuperPOD [10], TPU cluster [9],

and supercomputers [1]. All these systems assume non-

reconfigurable network topologies, such as Fat-tree, Torus,

and other traffic-oblivious interconnects. TOPOOPT is the first

DNN system to use commodity reconfigurable interconnects

to accelerate DNN jobs.Gandiva [140], Themis [98], Tire-

sias [70], BytePS [86, 111], and Pollux [115] seek to improve

the utilization of GPU clusters through scheduling algorithms.

These approaches are complementary to ours, and many of

their techniques can be applied to a TOPOOPT cluster.

Optical Interconnects. Several papers have demonstrated

the benefits of optically reconfigurable interconnects for dat-

acenters [51, 53, 57, 60, 64, 68, 95±97, 99, 100, 113]. These

designs lead to sub-optimal topologies for distributed DNN

traffic. Similarly, traffic oblivious interconnects, such as Ro-

torNet [99, 100], are a great fit for datacenter workloads, but

they are not suitable for DNN training jobs characterized

by repetitive traffic demands. Hybrid electrical/optical dat-

acenter proposals [64, 137] can be used to route AllReduce

traffic through the optical fabric and MP flows through a stan-

dard electrical Fat-tree network. But hybrid clusters are not

cost effective and suffer from many problems, including TCP

ramp-up inefficiencies [103], segregated routing issues [65],

and uncertainty in terms of how to divide the cluster between

electrical and optical fabrics [68, 72].

9 Conclusion

We present TOPOOPT, a novel system based on optical de-

vices that jointly optimizes DNN parallelization strategy and

topology to accelerate training jobs. We design an alternating

optimization algorithm to explore the large space of Compu-

tation × Communication × Topology strategies for a DNN

workload, and demonstrate TOPOOPT obtains up to 3.4×
faster training iteration time than Fat-tree.
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A Tree-AllReduce and Other AllReduce Per-

mutations

Section 2 established that we can manipulate the traffic of

a ring-AllReduce collective by permuting the labeling of

servers in the AllReduce group. Here, we illustrate how to use

the same technique on another AllReduce algorithm, called

tree-AllReduce.

In the tree-AllReduce algorithm, the servers are connected

logically to form a tree topology. The AllReduce operation

starts by running a reduce operation to the root node with

recursive halving, followed by a broadcast to the rest of the

cluster with recursive doubling [132].

A common instantiation of tree-AllReduce is the

double binary tree (DBT) algorithm [120]. In this algorithm,

the first step is to create a balanced binary tree for the nodes.

The properties of balanced binary trees guarantee that one

half of the nodes will be leaf-nodes, and the other half will be

in-tree; thus, a second binary tree is constructed by flipping

the labeling of the leaf and in-tree nodes. This way, each node

(except the root in both trees) has the same communication

requirements for the AllReduce operation, as described in

the last paragraph, and bandwidth-optimally is achieved. Fig-

ure 23a shows an example where in the first binary tree, the

in-tree nodes are even, and the leaf nodes are odd, while the

second tree flips the labeling.

The DBT itself is essentially an example of permuting the

node labeling to achieve an AllReduce operation with bal-

anced communication load. We also note that we can permute

the labeling for the entire set of nodes for a pair of DBTs to

create a new pair of trees that can perform the AllReduce op-

eration at the same speed. Figures 23b and 23c illustrate two

other possible double binary trees, and their corresponding

traffic demand matrix for the DLRM and CANDLE exam-

ple shown in Figures 22 and 24 (§2). Arbitrary permutations

can be used, and to limit the cases, we could simply consider

the cyclic permutations in the modular space as described in

TotientPerms.

In general, all AllReduce operations can be described as

a directed graph G = (V,E) where V is the set of nodes in

the cluster, and E denotes data dependencies. The permutable

property says every graph G′ = (V,E ′) that is isomorphic to

G can perform the AllReduce operation equally well, where

the homomorphism between G and G′ is described by the

symmetric group on V (generally denoted by Sym(V ) in group

theory).

B Commercially Available Patch Panels and

Optical Circuit Switches

Optical patch panels. A patch panel is a device to facilitate

connecting different parts of a system. For instance, electrical

patch panels are used in recording studios and concert sound
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AllReduce.

systems to connect microphones and electronic instruments

on demand [40]. Fiber optic patch panels are commonly used

for cable management, and have been proposed in recent dat-

acenter topology designs [145]. Reconfigurable optical patch

panels are a new class of software-controlled patch panels

and are already commercialized at scale [119]. For instance,

Telescent offers 1008 duplex ports with insertion loss less than

0.5 dB and cost ≈$100K ($100/port) [88, 119]. Reconfigura-

tion is performed using a robotic arm that grabs a fiber on the

transmit side and connects it to a fiber on the receive side [88].

However, the reconfiguration latency of optical patch panels is

several minutes [43]. Note that reliability is of utmost concern

for operation in unmanned locations; for example, Telescent

NTM patch panels have been certified to NEBS Level 3 and

have over 1 billion port hours in operation [31].

3D MEMS-based Optical Circuit Switches (OCSs). An

OCS uses tiny mirrors to change the direction of light, thereby
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reconfiguring optical links. The largest optical circuit switch

on the market has 384 duplex ports with ≈10 ms reconfig-

uration latency and is available for $200K ($520/port) [41].

However, the optical loss of these switches is 1.5±2.7 dB [2].

Compared to patch panels, OCSs have the following disad-

vantages: (i) each port is five times more expensive; (ii) their

insertion loss is higher; and (iii) their port-count is three times

lower. The main advantage of OCSs is that their reconfigu-

ration latency is four orders of magnitude faster than patch

panels.

C Handling Sharding and Dynamic Job Ar-

rivals in Shared Clusters

Section 3 explained how TOPOOPT can support multiple

job sharing the cluster through sharding; here we provide a

detailed explanation of how sharding works. Figure 26 shows

how a TOPOOPT cluster is sharded to train two jobs together.

In this scenario, the optical switches are configured in a way

such that the green part (Server 1, 2 and their corresponding

links) is completely disjointed from the red part (Server n−1,

server n). The complete isolation ensures each job gets its

dedicated resources, and benefits the performance (especially

the tail latency) as shown in Section 5.6.

To start a job with k servers, we need to reconfigure the

interconnection between these k servers before the job starts.

This can be done quickly when OCSs are used, but when

patch panels are used, there could be several minutes of delay

before the job can start. To address this challenge, we use a

look-ahead approach to pre-provision the next topology while

current jobs are running. More specifically, we use a simple

1×2 mechanical optical switch [112] at each server’s interface

to choose between Active and Look-ahead ports. These 1×2

switches are inexpensive ($25) and have 0.73 dB optical loss

measured in our prototype. Unlike optical splitters [14], that

incur 3 dB loss, these switches choose where to send light

between their two output ports. We then connect the two ends

of each 1×2 switch to different patch panels, as shown in

Figure 25. As a result, a TOPOOPT cluster with n servers, each

with d interfaces, has 2d patch panels where each interface is

split into two parts: Active and Look-ahead. At any point in

time, only one end of each 1×2 switch is participating in the

active topology; the other end is pre-provisioning the topology

for the next job. Since the topology and parallelization strategy

are calculated off-line, we already know the sequence of job

arrivals and the number of servers required by each job. This

design allows each server to participate in two independent

topologies. Hence, when a set of servers uses one topology

for a training job, TOPOOPT pre-provisions the next topology,

optimized for the next task by reconfiguring Look-ahead ports.

Once all the servers for the new job are ready, TOPOOPT

immediately flips to the new topology by reconfiguring the

corresponding 1×2 switches.

D Model Configurations and Transfer Sizes

List 1 summarizes the parameters we used in our simulation

and testbed. Model parameters and batch sizes are selected

based on common values used in Meta for simulations. For

the prototype, we reduce parameter values and batch sizes to

fit the models in our 12-node cluster.

In most workloads observed in Meta, the size of AllReduce

transfers is larger than the size of MP transfers for each iter-

ation, because in most cases, it would not be worthwhile if

MP transfers were as large as AllReduce transfers. Consider

the DLRM example in Section 4.3 with 20 GB embedding

tables with double-precision floating parameters. If we were

to distribute this embedding table using data parallelism, each

server would need to send and receive 37.5 GB of data for the

AllReduce operation. On a 100 Gbps fabric, this would take 3

seconds by itself, but if we put it on one server, it would only

need to transfer 32 MB/server (assume we have a per-server

batch size of 8192; then, MP traffic is calculated as 16 servers

× 8192 samples/server × 512 activation per sample × 8 bytes

per activation / 16 servers = 32 MB). We note that adding

pipeline parallelism can increase the amount of MP traffic

as it overlaps forward and backward passes. Efficient ways

to pipeline batches remains an active research area [77, 105]

especially when hybrid parallelism is employed. Pure model

parallelism creates another type of sparse traffic pattern where

only accelerators with inter-layer dependencies need to com-

municate. Our TOPOLOGYFINDER algorithm can support

such communication patterns.

Conceptually, however, when the network bandwidth goes



VGG:
Batch/GPU: 64 (§5.3, §5.6), 32 (§6)

ResNet50:
Batch/GPU: 128(§5.3), 20 (§6)

BERT:
Batch/GPU: 16 (§5.3, §5.6), 2 (§6)

#Trans. blks: 12 (§5.3), 6 (§5.6, §6)

Hidden layer: 1024 (§5.3), 768 (§5.6), 1024(§6)

Seq. length: 64 (§5.3), 256 (§5.6), 1024(§6)

#Attn. heads: 16 (§5.3), 6 (§5.6), 16(§6)

Embed. size: 512 (§5.3, §5.6, §6)

DLRM:
Batch/GPU: 128 (§5.3),[32, · · · ,2048] (§5.4), 256 (§5.6), [64, · · · ,512]

(§6)

#Dense layer: 8 (§5.3, §5.6), 4 (§6)

Dense layer size: 2048 (§5.3), 1024 (§5.6, §6)

#Dense feat. layer: 16 (§5.3, §5.6), 8 (§6)

Feat. layer size: 4096 (§5.3), 2048 (§5.6, §6)

Embed.: 128×107 (§5.3), 256×107 (§5.6), 32768×105 (§6)

#Embed. tables: 64 (§5.3), 16 (§5.6), 128 (§5.4) , 12 (§6)

CANDLE:
Batch/GPU: 256 (§5.3, §5.6), 10 (§6)

#Dense layer: 8 (§5.3, §5.6), 4 (§6)

Dense layer size: 16384 (§5.3), 4096 (§5.6, §6)

#Dense feat. layer: 16 (§5.3, §5.6), 8 (§6)

Feat. layer size: 16384 (§5.3), 4096 (§5.6, §6)

NCF:
Batch/GPU: 128 (§5.3)

#Dense layer: 8 (§5.3)

Dense layer size: 4096 (§5.3)

#User embedding table (MF, MLP): 32, 32 (§5.3)

#User per table: 106 (§5.3)

#Item embedding table (MF, MLP): 32, 32 (§5.3)

#Item per table: 106 (§5.3)

MF embedding dimension: 64 (§5.3)

MLP embedding dimension: 128 (§5.3)

List 1: DNN models used in our simulations and testbed.

to infinity, other overheads in the system (e.g. CUDA kernel

launch) will dominate the latency. In such cases, it might

be beneficial to choose model parallelism instead of data

parallelism, to reduce the amount of system overheads. In

particular, prior work shows 10 Tbps Silicon Photonics links

enable more aggressive model parallelism where the size

of MP traffic is significant [89]. TOPOOPT’s approach to

distribute the degree between the MP and AllReduce sub-

topologies enables us to accommodate this case as well.

E Algorithm Details

E.1 TOPOLOGYFINDER

Using group theory to find AllReduce permutations. For

a ring-AllReduce group with n servers labeled S0, ...,Sn−1, a

straightforward permutation is (S0 → S1 → S2 · · · → Sn−1 →
S0). We denote this permutation by a ring generation rule

as: Si → S(i+1) mod n. Since the servers form a ring, the index

of the starting server does not matter. For instance, these

two rings are equivalent: (S0 → S1 → S2 → S3 → S0) and

(S1 → S2 → S3 → S0 → S1).
3

We first provide the mathematical foundation of the ring

permutation rule.

Theorem 2 (Ring Generation). For a cluster of n nodes V =
{S0,S1, · · · ,SN−1}, all integer numbers p < n, where p is co-

prime with n (i.e. gcd(p,n) = 1) represent a unique ring-

AllReduce permutation rule.

Proof. Consider the integer modulo n group with addition

Z
+
n = {0,1, · · · ,(n−1)}. Z+

n is a cyclic group. By the funda-

mental theorem of cyclic groups, p is a generator of Z+
n if and

only if gcd(p,n) = 1. Hence we can cover the entire Z
+
n by

repeatedly adding p to itself.

Now consider the graph G
Z
+
n ,p = (V

Z
+
n
,Ep) where the set of

vertices V
Z
+
n
=Z

+
n and Ep = {(a× p,(a+1)× p)∈V 2

Z
+
n
, a ∈

Z
+
n }. The set Ep forms a cycle on G

Z
+
n ,p. Now denote our

cluster as G = (V,E) where V is defined as above and E

represents a set of directed links. Then G
Z
+
n ,p is isomorphic

to G, hence following the rule in Ep we can define a valid

ring in G. Furthermore, since ∀pi ̸= p j we can guarantee that

(0, pi) ∈ Epi
and (0, p j) /∈ Epi

, and each pi is guaranteed to

describe a unique ring.

One way to extend our approach to other AllReduce algo-

rithms is to generalize TotientPerms (Algorithm 2) so that the

Ep described in theorem 2 simply represents a permutation

which we apply to the original node labeling, while keeping

the edge relation, to create an isomorphic graph that describes

the new AllReduce topology.

E.2 Bounding maximum hop count with To-

tientPerms

In this section, we argue that fitting a geometric sequence

for choosing permutation provides an approximately O(d d
√

n)
bound for the maximum diameter of a cluster with n nodes

and degree d. Denote x ≡ d
√

n. We simplify the question

to the following: given a contiguous set of numbers N =
{1, . . . ,n} and a set of numbers from the geometric sequence

S = {x0,x1, . . . ,xd−1}, choose h numbers (allow repetition)

s1, ·,sk from S so that m = ∑h
i=1 si for some m ∈ N . Let

h = κ(m), find minm∈N κ(m).
Again for simplicity, assume x ∈ Z. Then for a given m ∈

N , we get the recursive relation κ(m) = 1+κ(m− xi) where

i = argmaxi≤d,xi≤m. m = N − 1 gives the maximum κ(N −
1) = dx.

The problem above is simpler than the one in TOPOOPT.

In TOPOOPT, x is rarely an integer, and S is a projection

of the geometric sequence S = {x0,x1, . . . ,xd−1} onto the

3Given that ring-AllReduce is the dominant AllReduce collective, we

describe our algorithms based on ring-AllReduce. Appendix E.1 explains

how to extend our algorithm to other AllReduce communication collectives.



Algorithm 4 CoinChangeMod pseudocode

1: procedure COINCHANGEMOD(n, G)

▷ Input n: Total number of nodes

▷ Input G: Network Topology

▷ Output R: Routings

▷ R is the routing result

2: R = {}
▷ Acquire the set of ªcoins" from the topology,

▷ which are the choices of Algorithm 3

3: C = GetCoins(G)

4: for i ∈ [1,N −1] do

▷ curr_dist denotes the ªdistance" of a value

▷ (node distance) counted by number of ªcoins"

5: curr_dist[i] = ∞
▷ curr_bt record a back-trace of ªcoins" to

▷ get to a value (node distance)

6: curr_bt[i] = ∞

7: for c ∈C do

8: curr_dist[c] = 0

9: curr_bt[c] = c

10: while curr_dist has at least one ∞ in it do

11: for i ∈ [1,N −1] do

12: new_dist[i] = curr_dist[i]
13: new_bt[i] = curr_bt[i]
14: for c ∈C do

15: if curr_dist[(i− c) mod N]< new_dist[i] then

16: new_dist[i] = cur_dist[(i− c) mod N]+1

17: new_bt[i] = c

18: curr_dist = new_dist

19: curr_bt = new_bt

▷ Construct the routing for each node distance from the back-trace

20: R = GetRouteSeq(curr_bt)

21: return R

candidates (co-prime numbers with the size of a subset of

node participating in AllReduce). The intuition still holds.

Note that when d
√

n < 2, it is advantageous to choose x = 2

and spend less degree to create a geometric sequence with a ra-

tio of at least 2. In this case, the d factor becomes the actually

used degree d = log2 n, and the bound holds at O(log2 n).

E.3 Coin Change Routing

Consider servers Si and S j that need to exchange AllReduce

transfers but do not have a direct edge between them. We use a

modified version of the classical coin change problem [52] to

find an efficient routing path (line 19). In classical coin change,

the goal is to find the minimum number of coins that would

sum to a certain total value. Our ring generation rules enable

us to treat the routing problem similarly. In particular, the

p values of AllReduce permutations that have been selected

in the AllReduce sub-topology are the coin values, and the

difference between server i and j indices (( j− i) mod n) is the

target total value that we want to achieve. The only difference

is that our problem runs with modulo n arithmetic, as the

server IDs wrap around in the ring structure. Algorithm 4 lists

the pseudocode of CoinChangeMod.

E.4 OCS-reconfig Heuristic

Algorithm 5 describes the heuristic we use for OCS-reconfig.

As mentioned in Section 4, our goals are (i) to have enough

bandwidth for large transfer demands, (ii) while also mini-

mizing the latency of indirect routing for nodes that do not

have a direct link between them.

To achieve this goal in a reconfigurable interconnect, we

propose a utility function that finds a balance between the two

goals by maximizing the number of parallel links between

high demand nodes but with a diminishing return. More for-

mally, assume a network topology is represented by graph

G = (V,E) and each node has degree d. We define L(i, j) to

be the number of parallel links between node-pair (i, j). Let

T (i, j) be the amount of unsatisfied traffic demand. We define

a topology G’s utility function as follows:

Utility(G) = ∑
{i, j}∈E

T (i, j)×Discount(L(i, j))
(1)

The Discount function can be defined in different ways; in

Algorithm 5 and Algorithm 1’s MP construction, we use

Discount(l) =
l

∑
x=1

2−x (2)

to reduce the utility of additional links exponentially. We can

also explore other discount scaling, such as linear or factorial

functions.

When the fabric is reconfigurable (as in OCS-reconfig),

we collect the unsatisfied traffic demand every 50 ms and

run Algorithm 5 to decide the new network topology. After

the new topology is computed, we pause all the flows for

10 ms representing the reconfiguration delay of the OCS,

apply the new topology, and then resume the flows with one

or more corresponding physical links across the flow source

and destination. The two-edge replacement algorithm from

OWAN [87] in line 21 ensures the topology is connected,

when we enable host-based forwarding.

F Modifications to SiP-ML

Since SiP-ML’s SiP-Ring proposal is based on a physical

ring topology, its reconfiguration algorithm has several con-

straints on wavelength allocation for adjacent nodes. Given

that TOPOOPT’s physical topology is not a ring, directly ap-

plying SiP-Ring’s optimization using the original C++ code

causes SiP-ML to perform extremely poorly in our setup. To

give SiP-ML a leg up, we observe that its formulation tries

to optimize a utility function very similar to Equation 1 with-

out the Discount part (i.e. Discount = 1), but with an integer

liner program (ILP). While an ILP gives the optimal solution,

its runtime makes it prohibitive for the amount of simula-

tion parameters we explore. Therefore, we substitute the ILP



Algorithm 5 OCS-reconfig pseudocode

1: procedure OCS-RECONFIG(V , T , d, L)

▷ Input V : Nodes in the network

▷ Input T : Unsatisfied traffic demand matrix

▷ Input d: Node degree limit

▷ Input L: Number of links between ordered node-pair, initially zero

▷ Output E: Allocated links, initially empty

▷ Initially, E is empty

2: E = {}
▷ Initially, each node has d available tx and rx interfaces

3: for v ∈V do

4: availabletx[v] = d

5: availablerx[v] = d

▷ Create new links according to the demand list

6: while ∃i, j < |V | : i ̸= j,availabletx[vi]> 0,availablerx[v j]> 0 do

▷ allocate a direct connection for the highest demand pair

7: (v1,v2) = node-pair with highest demand in T

8: e = NewLink(v1, v2)

9: E = E ∪{e}
▷ Increment the number of parallel links from v1 to v2

10: L(v1,v2) += 1

▷ Scale the demand down by the number of links

11: T (v1,v2) ×= 1/2

▷ Update available interfaces

12: for v ∈ (v1,v2) do

13: availabletx[v1] −= 1

14: availablerx[v2] −= 1

▷ Stop considering nodes with zero available interfaces

15: if availabletx[v1] == 0 then

16: for u ∈V do

17: Remove (v1,u)’s entry from T

18: if availablerx[v2] == 0 then

19: for u ∈V do

20: Remove (u,v2)’s entry from T

▷ Ensure the network graph is connected

21: 2-EdgeReplacement(E, T )

▷ Updte route for host-based forwarding

22: UpdateRoute(E)

23: return E

with Algorithm 5 with Discount = 1, a heuristic that tries to

achieve a similar goal.

Note that the SiP-ML paper has another design called SiP-

OCS, which is similar architecturally to TOPOOPT. In the

paper, SiP-OCS is proposed as a one-shot reconfiguration ap-

proach due to the long reconfiguration latency of 3D-MEMS

based OCSs.

G Cost of Network Components

Table 2 lists the cost of network components we use in Sec-

tion 5.2, namely NICs, transceivers, fibers, electrical switches,

patch panels, and optical switches. The cost of transceivers,

NICs, and electrical switch ports is based on the lowest avail-

able prices in official retailer websites [18, 28]. Note that

for 200 Gbps, we use more 100 Gbps ports and fibers, be-

cause they were less expensive than high-end 200 Gbps and

400 Gbps components, or their price was not available. To esti-

mate the cost of electrical switch ports, we consider Edgecore

4200 G transceivers and switch ports are estimated as 2× 100G cost.

Link

band-

width

Tran-

sceiver

($)

NIC

($)

Electrical

switch

port ($)

Patch

panel

port ($)

OCS

port

($)

1×2

switch

($)
10 Gbps 20 [13] 185 [32] 94 [21] 100 [43] 520 [41] 25 [112]
25 Gbps 39 [15] 185 [32] 144 [23] 100 [43] 520 [41] 25 [112]
40 Gbps 39 [16] 354 [33] 144 [22] 100 [43] 520 [41] 25 [112]
100 Gbps 99 [12] 678 [34] 187 [24] 100 [43] 520 [41] 25 [112]

200 Gbps4 198 [12] 815 [35] 374 [24] 100 [43] 520 [41] 25 [112]

Table 2: Cost of network components.

bare metal switches with L3 switching and maximum number

of ports to amortize the per port cost. The cost of NICs is

taken from the Mellanox ConnectX series, and we consider

two 2-port NICs as one 4-port NIC. We obtain the cost of the

patch panel, OCS, and 1×2 optical switch directly from their

suppliers, Telescent [43] and Polatis [41] (with 40% discount).

The cost of transceivers matches that reported in Sirius [53].

To compute the network cost of Fat-tree and Ideal Switch,

we consider number of nodes in a full bisection bandwidth Fat-

tree. For example, a standard k = 8 Fat-tree has 80 switches

with 64 ports, or 640 switch ports in total, in addition to 1

NIC per host and one transceiver per NIC and switch port. A

TOPOOPT system of 128 nodes with degree d uses 128×d

NICs and transceivers, but 128×2×d patch panel ports be-

cause of the look-ahead design. Note that the cost of optical

components stays constant as link bandwidth increases, an in-

herent advantage of optics. Following prior work, we estimate

the cost of fiber optics cables as 30 cents per meter [68] and

select each fiber’s length from a uniform distribution between

0 and 1000 meters [148]. We calculate the cost of TOPOOPT

based on 2d patch panels and 1×2 switches at each link to

support its look-ahead design (§C). OCS-reconfig’s cost is

based on d OCSs connected to all servers in a flat topology.

H Impact of Server Degree on TOPOOPT’s Per-

formance

Figure 27 shows the same setting as Figure 11 except that

each server has a degree of eight (d = 8). The results show a

similar trend: even though per server bandwidth has increased,

the behavior of different network architectures remains con-

sistent.

Next we do a sensitivity analysis of impact of server de-

gree d on TOPOOPT’s performance. Specifically, we vary

the degree of each server in TOPOOPT for two link band-

widths: 40 Gbps and 100 Gbps. Figure 28 shows the trend

for different DNN models. Both DLRM and CANDLE are

network-heavy; therefore, they benefit more from the addi-

tional bandwidth obtained by increasing d. CANDLE’s im-

provement is almost linear as degree goes up, as the strategy

is closer to data parallel and the amount of bandwidth avail-

able to AllReduce operation increases linearly as well. In the

case of DLRM, we observe a super-liner scaling when B =

100 Gbp because DLRM has one-to-many and many-to-one
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Figure 27: Dedicated cluster of 128 servers (d = 8).
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Figure 28: Impact of server degree (d) on performance.
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Figure 29: Host-based RDMA forwarding to create a logical

RDMA connection between end hosts.

MP transfers which require a low hop count in the topology.

As we increase d, TOPOLOGYFINDER is able to find network

topologies with much lower diameter, consequently benefiting

the performance by both increasing bandwidth and reducing

hop-count for MP transfers. Finally, BERT is mostly com-

pute bound at higher bandwidth; hence, increasing the server

degree and bandwidth per node has marginal impact on its

iteration time.

I Enabling Host-based Forwarding in RDMA

To support a multihop TOPOOPT interconnect using host-

based forwarding, we enable RDMA RoCEv2 forwarding on

all our HP NICs. RoCEv2 is an implementation of RDMA

on top of UDP/IP protocol, by utilizing a particular UDP

port (4791) and encapsulating an InfiniBand (IB) data packet.

Hence, each RoCEv2 packet can be routed with its source and

destination IP addresses. However, host-based forwarding is

challenging in RDMA protocol, as the packet processing and

memory access are offloaded to the NIC, and the host does

not have access to individual packets. More precisely, if a

packet’s IP destination IP address does not match the NIC’s

IP address, the RDMA engine silently drops the packet.

To address this issue, we collaborated with engineers from

Marvell, the provider of the firmware and driver for our HP

NICs. The solution that came out of our collaboration does

not require proprietary software or firmware, and is applicable

to commodity NICs with the same ASIC. We will release our

scripts publicly. At a high-level, we use a feature called NPAR,

or network partitioning. It allows us to split each 25 Gbps

physical interface into two logical interfaces in the hardware

level: i f1 and i f2, as shown in the right-most port of server

A in Figure 29. i f1 is a normal RDMA interface, where the

RDMA engine of the NIC bypasses the kernel, and it has an

IP address. This enables the upper layer software to consider

i f1 as a normal RDMA interface. However, i f2 does not have

an IP address and RDMA is disabled. i f2 has a different MAC

address from i f1, and we use this address to split the traffic

across i f1 and i f2. The traffic that needs to be forwarded uses

the MAC address of i f2 and hence is delivered to the host

networking stack instead of NIC’s RDMA engine.

Furthermore, we establish a set of iproute, arp, and tc

flower rules in Linux to enable the proper forwarding of

packets. If two servers are directly connected, such as the

third port of server A and the second port of Server B in

Figure 29, we only need to indicate the outgoing interface



on each of these servers. RDMA engines will handle the

communication. However, for the connection between server

A and D, we set the iproute and arp tables on server A

and server D to dictate which port the traffic should go out,

as well as the proper MAC address of the next server in the

forwarding chain. In this case, the packets are delivered to

the kernel. Then, on servers B and C, we set the tc flower

rules to forward the packets to the next server with the proper

MAC address. In these tc flower rules, we look-up the final

destination IP and assert the routing that was computed by

our algorithm.

Walk-through of an example of a packet going from

server A to server D. In Figure 29, the RDMA engine of

server A assumes server D is connected on the third port.

It uses the kernel’s routing tables for the destination MAC

address, which is set to the MAC address of i f2 of the second

port on server B. Therefore, a packet which starts as an RDMA

packet of server A is treated as an Ethernet packet when it

arrives at server B, and goes to server B’s kernel. In the kernel,

based on the packet’s final destination IP of server D, server B

redirects the packet to the fourth port, with destination MAC

address set to i f2 of server C. In this connection, the packet

is treated as a normal Ethernet packet. Finally, on server C,

the kernel rewrites the destination MAC address to that of i f1

on the third port of server D, and redirects it to that port. In

this connection, the outgoing Ethernet packet is considered an

RDMA packet because of the destination MAC address. For

the reverse connection from server D to A, the same process

happens in reverse, to support a bidirectional connection.

With these forwarding rules, we construct logical RDMA

connections between all pairs of servers. Upper layer commu-

nication libraries such as NCCL requires all-to-all connectiv-

ity, and they will utilize these connections. We also modify

NCCL to be topology-aware, as certain pairs of servers are

only connected through specific ports.

Compared to native point-to-point RDMA, this approach

takes a performance penalty. Our experiments indicate the

overhead is negligible when the amount of forwarded traffic

is small. Our NICs currently support TCP forwarding offload.

With firmware and driver modifications or future versions of

the NICs, they will also support RDMA forwarding offload.

This will further reduce the overhead of our approach.
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