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Abstract

We propose TOPOOPT, a novel direct-connect fabric for deep
neural network (DNN) training workloads. TOPOOPT co-
optimizes the distributed training process across three dimen-
sions: computation, communication, and network topology.
We demonstrate the mutability of AllReduce traffic, and lever-
age this property to construct efficient network topologies
for DNN training jobs. TOPOOPT then uses an alternating
optimization technique and a group theory-inspired algorithm
called TotientPerms to find the best network topology and
routing plan, together with a parallelization strategy. We build
a fully functional 12-node direct-connect prototype with re-
mote direct memory access (RDMA) forwarding at 100 Gbps.
Large-scale simulations on real distributed training models
show that compared to similar-cost Fat-tree interconnects,
TopPOOPT reduces DNN training time by up to 3.4 .

1 Introduction

Our society is rapidly becoming reliant on deep neural net-
works (DNNs). New datasets and models are invented fre-
quently, increasing the memory and computational require-
ments for training. This explosive growth has created an ur-
gent demand for efficient distributed DNN training systems.

Today’s DNN training systems are built on top of tradi-
tional datacenter clusters, with electrical packet switches ar-
ranged in a multi-tier Fat-tree topology [47]. Fat-tree topolo-
gies are traffic-oblivious fabrics, allowing uniform band-
width and latency between server pairs. They are ideal when
the workload is unpredictable and consists mostly of short
transfers—two inherent properties of legacy datacenter work-
loads [49, 50, 54, 67, 68]. But Fat-tree networks are be-
coming a bottleneck for distributed DNN training work-
loads [58,69,77,85,102, 105, 136].

Previous work has addressed this challenge by reducing the
size of parameters to transmit through the network [48,58,59,
69,73,79,82,83,94,105,123,139] and developing techniques
to discover faster parallelization strategies while considering

the available network bandwidth [46,48, 85, 105, 129]. These
proposals co-optimize computation and communication as
two important dimensions of distributed DNN training, but
they do not consider the physical layer topology as an opti-
mization dimension.

In this paper, we analyze DNN training jobs from produc-
tion clusters of Meta. We demonstrate that training workloads
do not satisfy common assumptions about datacenter traffic
that underlie the design of Fat-tree interconnects. Specifically,
we show that (i) the communication overhead of large DNN
training jobs increases dramatically as we increase the num-
ber of workers; and (ii) the traffic pattern of a DNN training
job depends on its parallelization strategies.

Motivated by these observations, we propose TOPOOPT,
a direct-connect DNN training system that co-optimizes net-
work topology and parallelization strategy. TOPOOPT creates
dedicated partitions for each training job using reconfigurable
optical switches and patch panels, and jointly optimizes the
topology and parallelization strategy within each partition. To
achieve our goal, we grapple with the algorithmic challenges
of finding the best topology, such as how to navigate the large
search space across computation, communication, and topol-
ogy dimensions, and also with various operational challenges,
such as which optical switching technologies match well with
the traffic patterns of DNN models.

We cast the topology and parallelization strategy co-
optimization problem as an off-line alternating optimization
framework. Our optimization technique alternates between
optimizing the parallelization strategy and optimizing the net-
work topology. It searches over the parallelization strategy
space assuming a fixed topology, and feeds the traffic demand
to a TOPOLOGYFINDER algorithm. The updated topology is
then fed back into the parallelization strategy search algorithm.
This alternating process repeats until the system converges to
an optimized parallelization strategy and topology.

We demonstrate that finding an optimized network topol-
ogy for DNNs is challenging because the ideal network topol-
ogy needs to meet two goals simultaneously: (i) to complete
large AllReduce transfers efficiently, and (if) to ensure a small



hop-count for Model Parallel transfers. To meet these goals,
we propose a novel group theory-based technique, called To-
tientPerms, that exploits the mutability of AllReduce transfers.
Our TotientPerms approach builds a series of AllReduce per-
mutations that not only carry AllReduce transfers efficiently,
but are also well-positioned to carry Model Parallel transfers
and, hence, improve the overall training performance.

Optical circuit-switched networks traditionally support
point-to-point traffic across hosts with direct circuits between
them. As a result, for a given set of circuits, only directly
connected hosts can communicate leaving the rest of the hosts
wait for new circuits to be established. To support arbitrary
communication across all hosts participating in a job, we en-
able TOPOOPT’s hosts to act as relays and forward the traffic
that does not belong to them. Host-based forwarding intro-
duces a new challenge for RDMA flows since RDMA NICs
drop packets that do not belong to them. To enable host-based
RDMA forwarding, we exploit the network partition (NPAR)
function of modern NICs, creating an efficient logical overlay
network for RDMA packet forwarding (§6).

To evaluate TOPOOPT, we build a 12-server prototype with
NVIDIA A100 GPUs [37], 100 Gbps NICs and a Telescent re-
configurable optical patch panel [43]. Moreover, we integrate
our TotientPerms AllReduce permutations into NCCL and
enable it to load-balance parameter synchronization across
multiple ring-AllReduce sub-topologies. Our evaluations with
six representative DNN models (DLRM [20], CANDLE [4],
BERT [134], NCF [75], ResNet50 [74], and VGG [126])
show that TOPOOPT reduces the training iteration time by
up to 3.4x compared to a similar-cost Fat-tree. Moreover,
we demonstrate that TOPOOPT is, on average, 3.2 cheaper
than an ideal full bisection bandwidth Fat-tree. TOPOOPT is
the first system that co-optimizes topology and parallelization
strategy for ML workloads and is currently being evaluated for
deployment at Meta. The source code and scripts of TOPOOPT
are available at https://topoopt.csail.mit.edu.

2 Motivation

Prior research has illustrated that demand-aware network fab-
rics are flexible and cost-efficient solutions for building effi-
cient datacenter-scale networks [64, 68, 113]. However, pre-
dicting the upcoming traffic distribution is challenging in a
traditional datacenter setting. This section demonstrates that
DNN training workloads present a unique opportunity for
demand-aware networks, as the jobs are long-lasting, and the
traffic distribution can be pre-computed before the jobs start
to run. First, we provide the necessary background to under-
stand distributed DNN training and introduce three types of
data dependencies between accelerator nodes in training jobs
(§2.1). Then, we present measurements from production clus-
ters in Meta (§2.2), and discuss the important properties of
DNN training traffic.

2.1 Background on Distributed DNN training

Training iteration. A common approach to training DNNs
is stochastic gradient descent (SGD) [90]. Each SGD ifer-
ation involves selecting a random batch of labeled training
data, computing the error of the model with respect to the la-
beled data, and calculating gradients for the model’s weights
through backpropagation. The SGD algorithm seeks to up-
date the model weights so that the next evaluation reduces the
error [55]. Training iterations are repeated with new batch of
data until the model converges to the target accuracy.

Data parallelism. Data parallelism is a popular paralleliza-
tion strategy, whereby a batch of training samples is dis-
tributed across training accelerators. Each accelerator holds a
replica of the DNN model and executes the forward and back-
propagation steps locally. In data parallelism, all accelerators
synchronize their model weights during each training iteration.
This step is commonly referred to as AllReduce and can be per-
formed using various techniques, such as broadcasting [141],
parameter servers [93], ring-AllReduce [3, 83, 130], tree-
AllReduce [116], or hierarchical ring-AllReduce [131, 133].

Hybrid data and model parallelism. Large DNN mod-
els cannot fit in the memory of a single accelerator or even
a single server with multiple accelerators. As a result, the
model needs to be divided across multiple accelerators using
model parallelism [84,92]. Moreover, pure data parallelism
is becoming suboptimal for large training jobs because of the
increasing cost of synchronizing model parameters across ac-
celerators [20, 78,85, 104, 106, 125]. As a result, large DNNs
are distributed using a hybrid of data and model parallelism,
where different parts of a DNN and its dataset are processed
on different accelerators in parallel.

Types of data dependencies in DNN training. Each train-
ing iteration includes two major types of data dependencies.
Type (1) refers to activations and gradients computed during
the Forward and Backpropagation steps. This data depen-
dency is required for each input sample. Type (2) refers to
synchronizing the model weights across accelerators through
the AllReduce step once a batch of samples is processed. De-
pending on the parallelization strategy, these data dependen-
cies may result in local memory accesses or cross-accelerator
traffic. For instance, in a hybrid data and model paralleliza-
tion strategy, type (1) and (2) both result in cross-accelerator
traffic, depending on how the model is distributed across ac-
celerators. Given that type (1) is related to model parallelism,
we refer to the network traffic created by type (1) as MP trans-
fers. Similarly, we refer to the network traffic created by type
(2) as AllReduce transfers. Note that AllReduce transfers do
not strictly mean data parallelism traffic, as model parallelism
can also create AllReduce transfers across a subset of nodes.

Example: DLRM traffic pattern. Deep Learning Rec-
ommendation Models (DLRMs) are a family of personaliza-
tion and recommendation models based on embedding table
lookups that capitalize on categorical user data [107]. DLRMs
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Figure 1: DLRM traffic heatmaps for different parallelization
strategies.

are large, typically with 100s of billions of parameters, primar-
ily because of their large embedding tables. Using pure data
parallelism to distribute a DLRM results in massive AllRe-
duce transfers. For instance, consider a DLRM architecture
with four embedding tables Ey, - - - , E3, each with embedding
dimensions of 512 columns and 107 rows (total size 22 GB
for the model) distributed across 16 servers Sp, - - - ,S15 with
data parallelism. We compute the resulting traffic distribu-
tion, and Figure 1a illustrates the traffic pattern for a single
training iteration. The rows and columns indicate source and
destination servers, while the color encodes the amount of
traffic between server pairs. The heatmap shows that using
ring-AllReduce for synchronization, a pure data parallelism
strategy results in 44 GB of AllReduce transfers.

Hence, a common parallelization strategy for DLRMs is
to use a hybrid of data and model parallelism where the em-
bedding tables are divided across nodes, while the rest of the
model is replicated on all nodes [102]. Following the paral-
lelization strategy used at Meta, we place Ey on Sy, E| on S3,
E> on Sg, and E3 on S13, and replicate the rest of the model
on all servers. This parallelization strategy creates a mix of
MP and AllReduce traffic, shown in Figure 1b. It reduces the
maximum transfer size from 44 GB to 4 GB.

Note that MP transfers in DLRM form one-to-many broad-
cast and many-to-one incast patterns to transfer the activation
and gradients to all nodes because the servers handling embed-
ding tables must communicate with all other servers. In this
example, the size of each AllReduce transfer is 4 GB, whereas
the size of MP transfers is 32 MB, as shown by darker green
elements in the heatmap.

2.2 Production Measurements

We study traffic traces from hundreds of production DNN
training jobs running on multiple clusters at Meta. We instru-
ment each job to log its training duration, number of workers,
and the total amount of data transferred across its workers
during training.

Number of workers and job duration. Figure 2a shows
the cumulative distribution function (CDF) of the number of
workers for different models in Meta’s clusters. Most jobs are
distributed across 32 to 700 workers, agreeing with recent an-
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Figure 2: Profiling distributed DNN training jobs in Meta.

nouncements by other major players in the industry [45, 104],
where each worker is a single GPU. Figure 2b demonstrates
the CDF of total training job duration; as the figure shows,
most jobs last over 10 hours. In fact, the top 10% of jobs take
more than 96 hours (four days) to finish. This measurement
shows production DNN jobs at Meta are long-lasting, and
take up to weeks to finish.

Network overhead. Figure 3 illustrates the percentage of
network overhead as the number of GPUs is increased from
8 to 128 for six DNN jobs in production. We use RDMA to
transmit packets between servers and measure the percentage
of time consumed by communication during training as net-
work overhead. The figure shows that as the number of GPUs
increases, the network quickly takes up a significant portion of
training iteration time. In fact, the network overhead accounts
for up to 60% of a DNN training iteration time in Meta’s pro-
duction environment. Similar observations have been made
in prior work [59,77, 89,105, 110, 123]. Such bottleneck sug-
gests the existing datacenter networks are insufficient for the
emerging DNN training workloads.

Traffic heatmaps. Figure 4 shows the heatmap of server-to-
server traffic for four training jobs running in Meta’s produc-
tion GPU clusters. The values on the colormap and the exact
names of DNN models are not shown for confidentiality rea-
sons. All heatmaps in the figure contain diagonal squares (in
dark blue), indicating a ring communication pattern between
servers. This is expected, as ring-AllReduce is the common
AllReduce communication collective at Meta. But the MP
transfers (light blue and green squares) are model-dependent
because MP transfers depend on the parallelization strategy
and device placement of a training job. Moreover, we find that
the traffic patterns of training jobs do not change between it-
erations for the entire training duration, resulting in the same
per-iteration heatmap throughout the training. Once a training
job starts, the same parallelization strategy and synchroniza-
tion method are used across training iterations, resulting in a
periodic and predictable traffic pattern. Similar observations
have been made in previous work [140]. In particular, the traf-
fic heatmap is identical across training iterations. Note that
the traffic pattern changes within a training iteration during
forward, backward, and AllReduce phases.
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Figure 3: Network overhead
measurements in Meta.

3 ToproOPT System Design

The observations in the previous section suggest that demand-
aware fabrics are excellent candidates for a DNN training
cluster. In this section, we seek to answer the following ques-
tion: “Can we build a demand-aware network to best support
distributed training?" To answer this question, we propose
ToPOOPT, a novel system based on optical devices that jointly
optimizes DNN parallelization strategy and topology to ac-
celerate today’s training jobs.

ToPOOPT interconnect. A TOPOOPT cluster is a shard-
able direct-connect fabric where each server has d interfaces
connected to a core layer of d optical switches, as shown in
Figure 5. The optical switches enable TOPOOPT to shard the
cluster into dedicated partitions for each training job. The
size of each shard depends on the number of servers the
job requests. Given a DNN training job and a set of servers,
ToPOOPT first finds the best parallelization strategy and topol-
ogy between the servers off-line (§4.1). Then, it reconfigures
the optical switches to realize the target topology for the
job. Appendix C provides details on how TOPOOPT achieves
sharding and dynamic job arrivals in shared clusters.

Degree of each server. We denote the number of interfaces
on each server (i.e., the degree of the server) by d. Typically,
d is the same as the number of NICs installed on the server.
In cases where the number of NICs is limited, the degree can
be increased using NICs that support break-out cables or the
next generation of co-packaged optical NVLinks [11]. In our
testbed, we use one 100 Gbps HPE NIC [29] with 4x25 Gbps
interfaces to build a system with degree four (d = 4).

Direct-connect topology. In TOPOOPT, optical switches
connect the servers directly, forming a direct-connect topol-
ogy. To further scale a TOPOOPT cluster, we create a hierar-
chical interconnect by placing the servers under Top-of-Rack
(ToR) switches and connecting ToR switches to the optical
layer, creating a direct-connect topology at the ToR or spine
layers, similar to previous work [53,71,72,100, 114].

Host-based forwarding. In DNN training workloads, the
degree of each server is typically smaller than the total num-
ber of neighbors with whom the server communicates during
training. To ensure traffic is not blocked when there is no
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Figure 4: Traffic heatmaps of production jobs in Meta.
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Figure 5: Illustration of TOPOOPT’s interconnect.

direct link between two servers, we use a technique called
host-based forwarding, where hosts act as switches and for-
ward incoming traffic toward the destination. Previous work
used similar technique at the ToR switch level [53,99, 100].

Optical switching technologies. A wide range of optical
switches is suitable for TOPOOPT, including commodity avail-
able optical patch panels [43] and 3D-MEMS [6,41], as well
as futuristic designs such as Mordia [113], MegaSwitch [57],
and Sirius [53,60]. Table | lists the characteristics of these de-
vices. TOPOOPT is compatible with any of these technologies.
Appendix B provides details about these devices.

One-shot reconfiguration. Patch panel and OCS are both
applicable for an immediate deployment of TOPOOPT, as
shown in Table 1. The choice of which technology to use
depends on several factors, including scale of the cluster, iter-
ation time of jobs, and frequency of job arrivals. For instance,
OCSs can potentially be used to reconfigure the topology of
a job within training iterations, whereas patch panels are only
suitable when the topology remains intact throughout the en-
tire training of a particular job. Our evaluations demonstrate
that the reconfiguration latency of today’s OCSs is too high
for today’s DNNGs, leading to sub-optimal performance when
the topology is reconfigured within iterations (§5). As a result,
given that faster technologies are not yet available, TOPOOPT
uses a one-shot reconfiguration technique based on an offline
co-optimization framework (§4) that jointly optimizes the
parallelization strategy and topology. TOPOOPT then recon-
figures the interconnection between training servers of each
job before the job starts and keeps the topology intact until
the training is complete (or to recover from failures).



Technology Port- | Reconfig. | Insertion | Cost /port

count | latency Loss (dB)
Optical Patch Panels [43] 1008 | minutes | 0.5 $100
3D MEMS [6,41] 384 10 ms 1.5-2.7 $520
2D MEMS [57,113] 300 11.5 us 10-20 Not commercial
Silicon Photonics [89, 122] | 256 900 ns 3.7 Not commercial
Tunable Lasers [53,60] 128 3.8 ns 7-13 Not commercial
RotorNet [99, 100] 64 10 us 2 Not commercial

Table 1: Comparison of optical switching technologies.

4 Co-optimizing Parallelization Strategy and
Network Topology

This section describes TOPOOPT’s co-optimization frame-
work for finding a network topology and parallelization strat-
egy for a given DNN training job.

4.1 Alternating Optimization

The search space is too large. Finding the optimal paral-
lelization strategy alone is an NP-complete problem [85], and
adding network topology and routing makes the problem even
harder. An extreme solution is to jointly optimize compute,
communication, and topology dimensions using a cross-layer
optimization formulation. Theoretically, this approach finds
the optimal solution, but the search space quickly explodes,
even at modest scales (e.g., six nodes [129]).

Naive approach. The other extreme is to optimize the net-
work topology sequentially after the parallelization strategy
has been found. While this approach is able to reconfigure
the network to match its traffic demand better, the eventual
combination of topology and parallelization strategy is likely
to be sub-optimal in the global configuration space.

TOPOOPT’s approach: alternating optimization. In
TorPOOPT, we seek to combine the best of both worlds. To
make the problem tractable, we divide the search space into
two planes: Comp. x Comm. and Comm. X Topo. We use an
alternating optimization technique to iteratively search in one
plane while keeping the result of the other plane constant.
Figure 6 illustrates our alternating optimization framework.
We use FlexFlow’s MCMC (Markov Chain Monte Carlo)
search algorithm [85] to find the best parallelization strategy
for a given network topology while considering the com-
munication cost. If the parallelization strategy improves the
training iteration time, we feed it to the Comm. x Topo. plane
to find the efficient network topology and routing using our
TOPOLOGYFINDER algorithm. The discovered topology is
then fed back into the Comp. x Comm. plane, which further
optimizes the parallelization strategy and device placement
based on the new topology. This optimization loop repeats un-
til convergence or after k iterations, where k is a configurable
hyper-parameter.

Comm. x Topo. plane

TopologyFinder Algorithm (Section 4.2
Comp.x Comm. plane e g ¢ )

Parallelization strategy Find Allreduce Use coin-change
i topols i
FlexFlow’s MCMC Device placement P 30 Rt (CHIGEn)
Parallelization Strategy Search maximum weight shortest path

matchings routing

Topology and routing

Figure 6: TOPOOPT searches for the best parallelization strat-
egy, jointly with routing, and topology.

4.2 TOPOLOGYFINDER Algorithm

TOPOLOGYFINDER steps. Algorithm | presents the pseu-
docode of our TOPOLOGYFINDER procedure. The algorithm
takes the following inputs: n dedicated servers for the train-
ing job, each with degree d, as well a list of AllReduce
and MP transfers (Tx/irequce and Tyzp) based on the paral-
lelization strategy and device placement obtained from the
Comp. x Comm. plane. The algorithm then finds the best
topology (G) and routing rules (R) and returns them to the
Comp. x Comm. plane for the next round of alternating opti-
mization. Our algorithm consists of the following four steps.

Step 1: Distribute the degree. This step distributes the
degree d between AllReduce and MP sub-topologies propor-
tionally, based on their share of total traffic. We specifically
start with AllReduce transfers and allocate at least one de-
gree to the AllReduce sub-topology to ensure the network
remains connected (line 2). The remaining degrees, if any, are
allocated to the MP sub-topology (line 3).

Step 2: Construct the AllReduce sub-topology. To find
the AllReduce sub-topology, the algorithm iterates over every
AllReduce group k and allocates degree dj, to each group pro-
portionally based on the amount of traffic (line 6). Note that
in hybrid data and model parallelism strategies, the AllRe-
duce step can be performed across a subset of servers when
a DNN layer is replicated across a few servers instead of all
servers. To efficiency serve both AllReduce and MP trans-
fers, TOPOOPT constructs the AllReduce sub-topology such
that the diameter of the cluster is minimized. Section 4.3
explains two algorithms, called TotientPerms (line 8) and
SelectPermutations (line 9) to construct the AllReduce
sub-topology.

Step 3: Construct the MP sub-topology. We use the Blos-
som maximum weight matching algorithm [63] to find the
best connectivity between servers with MP transfers (line 14).
We repeat the matching algorithm until we run out of degrees.
To increase the likelihood of more diverse connectivity across
server pairs, we divide the magnitude of Tysp for pairs that
already have an edge between them by two (line 17). In gen-
eral, division by two can be replaced by a more sophisticated
function with a diminishing return.

Step 4: Final topology and routing. Finally, we combine
the MP and AllReduce sub-topologies to obtain the final
topology (line 18). We then use a modified version of the
coin-change algorithm [52] (details in Appendix E.1) to route



Algorithm 1 TOPOLOGYFINDER pseudocode

1: procedure TOPOLOGYFINDER(n, d, Taiireduce> Tup)

> Input n: Number of dedicated training servers for the job.

> Input d: Degree of each server.

> Input Ty ireduce: AllReduce transfers.

> Input 7jsp: MP transfers.

> Output G: Topology to give back to the Comp. x Comm. plane.

> Output R: Routing rules to give back to the Comp. x Comm. plane.
> Distribute degree d between AllReduce and MP sub-topologies

2: dy=max(l, [dx WWYWD
31 dup =d—dauReduce
> Construct the AllReduce sub-topology Gajireduce

4: Galireduce = {}
5: for each AllReduce group k with set of transfers 7; do

> Assign degree dj. to group k according to its total traffic

sum(Tj

6 =[x gl
7: dy =ds —dy

> Find all the permutations between servers in group k
8: Py = TotientPerms (n, k) © (Detailsin §4.3)

> Select dy permutations from Py
9: Galireduce = GAliReduce SelectPermutations (n, di, P) ©>(§4.3)
10: if danigeduce == 0 then
11: break

> Construct the MP sub-topology Gyp

12: Gur={}
13: fori:i<dypdo

> Find a maximum weight matching according to Typ
14: g = BlossomMaximumWeightMatching (Typ)
15: Gup =GupUg

> Reduce the amount of demand for each link [ in graph g
16: for [ € g do
17: TMP[Z] = TMP[I]/ 2

> Combine the AllReduce and MP topologies
18: G = Galireduce Y Gup
> Compute routes on Gajireduce Using the coin change algorithm [52]
19: R = CoinChangeMod (n, Gangeduce) = (Appendix SE.1)
> Compute routes on Gyp with shortest path
20: R += ShortestPath (G, Typ)
21: return G,R

AllReduce on the AllReduce sub-topology (line 19). Further,
we use k-shortest path routing for the MP transfers to take
advantage of the final combined topology (line 20).

4.3 Traffic Mutability and AllReduce Topology

Finding an efficient AllReduce sub-topology. At first blush,
finding an AllReduce sub-topology for a given DNN seems
straightforward: we just need to translate the parallelization
strategy and device placement from the Comp. x Comm.
plane into a traffic matrix and map the traffic matrix into
circuit schedules. Several papers have used this technique
for datacenter networks [57,64,68,72,89,95-97,113, 137].
However, the conventional wisdom in prior work is to allocate
as many direct parallel links as possible to elephant flows and
leave mice flows to take multiple hops across the network.
In principle, this approach works well for datacenters but it
leads to sub-optimal topologies for distributed DNN training.
While the size of AllReduce transfers is larger than MP trans-
fers, MP transfers have a higher communication degree than
AllReduce (Appendix D). Hence, the conventional approach
creates parallel direct links for carrying AllReduce traffic and
forces MP flows to have a large hop-count, thereby degrading
the training performance.

(a) “+1” Permutation

(b) “+3” Permutation (c) “+7” Permutation

Figure 7: Ring-AllReduce permutations.
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Figure 8: DLRM traffic heatmaps.

ToPOOPT’s novel technique. In TOPOOPT, we seek to
meet two goals simultaneously: (i) allocate ample bandwidth
for AllReduce transfers, as the bulk of the traffic belongs to
them, but (if) ensure a small hop-count for MP transfers. We
meet both goals by demonstrating a unique property of DNN
training traffic — the AllReduce traffic is mutable.

Mutability of AllReduce transfers. We define traffic mu-
tability as the ability to change the traffic pattern without alter-
ing parallelization strategy or device placement while main-
taining correctness, and demonstrate that AllReduce transfers
are mutable whereas MP transfers are not. Intuitively, this
is because MP traffic is composed of network flows among
nodes that contain different parts of a DNN model thus creat-
ing immutable data dependencies, while AllReduce transfers
contain network flows among nodes that handle the same
part of the model, providing flexibility in the order of nodes
participating in AllReduce. For instance, consider a DLRM
distributed across 16 servers each with three NICs. The com-
mon AllReduce pattern is shown as a ring with consecutive
node IDs, as shown in Figure 7a. However, this is not the only
possible permutation. Each heatmap in 8a, 8b, and 8c corre-
sponds to a different ring-AllReduce permutation, shown in
Figures 7a, 7b, and 7c. We denote each of these permutations
as +p, where server §; connects to server S g, and n is
the number of servers, as shown in Figure 7. Although all
three heatmaps correspond to the exact same parallelization
strategy and device placement, the blue diagonal lines appear
at different parts of the heatmaps, depending on the order of
servers in the ring-AllReduce permutation. But MP transfers
(green vertical and horizontal lines in each heatmap) are dic-
tated by the parallelization strategy and device placement;
thus, they remain at the same spot in all three heatmaps.



Algorithm 2 TotientPerms pseudocode

1: procedure TOTIENTPERMS(n, k)
> Input n: Total number of nodes
> Input k: AllReduce group size
> Output P;: Set of permutations for AllReduce group of size k
> Initially, Py is empty

2: P, = {}
> This loop runs O(p) times, where
> O is the Euler’s totient function, ¢(p) = [{k < p: gcd(k,p) =1}
> one can also restrict p to be prime only

3 for p <k, ged(p,k)== 1do

4 one_perm =[]

5 for i in 0 to N/k do

6: one_perm += [i+ jx p for j in0to k]

7 Py += one_perm

8 return Py

Algorithm 3 SelectPermutations pseudocode

1: procedure SELECTPERMUTATIONS(n, dy, Py)
> Input n: Total number of nodes
> Input dj: Degree allocated for group this AllIReduce group of size k
> Input P;: Candidate permutations for this AllReduce group of size k
> Output G: Parameter synchronization topology, given as a set of

permutations
> Initially, Gy is empty
2: Gk = {}
> g now is the minimum candidate in Py
3: q= Pk [0]

> GetConn(q) gives the connection described
> by the permutation corresponding to q

4: Gy = GrUGetConn(q)
> Ratio of the geometric sequence to fit

5: x= dW

6: forie {l,---,d,—1} do

> Select the next candidate based on the ratio

7: qd =xxgq
> Project ¢ onto P, \ Gy with minimal distance (L1-norm)
8: q' = argmin,p g, |r — ¢'|
> Add this candidate to final topology
9: Gy = GyUGetConn(q)
10: q=4q
11: return G,

Leveraging AllReduce traffic mutability. Traffic mutabil-
ity implies that if a group of servers is connected in a certain
order, simply permuting the label of the servers gives another
ordering that will finish the AllReduce operation with the
same latency while potentially providing a smaller hop-count
for MP transfers. Instead of selecting just one AllReduce
order, TOPOOPT finds multiple permutations for each AllRe-
duce group and overlaps their corresponding sub-topologies.
In doing so, TOPOOPT efficiently serves the AllReduce traffic
while decreasing the hop-count for MP transfers.

TotientPerms algorithm. While overlapping multiple per-
mutations sounds straightforward, navigating through the set
of all possible AllReduce orderings is non-trivial since the
number of possible permutations is O(n!). To reduce the
search space of all possible permutations, we design the To-
tientPerms algorithm to find the ring generation rule for all
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Figure 9: TOPOOPT’s topology and traffic matrix.

regular rings, based on group theory. Regular rings are those
where the distance between indices of consecutive servers is
equal; i.e., server S; is connected to server S(;, ), for some
p. Algorithm 2 presents the pseudocode of TotientPerms.
Inspired by Euler’s totient function [25], we find all integer
numbers p < n, where p is co-prime with n (i.e. ged(p,n) =1,
line 3, Algorithm 2), represent a valid ring-AllReduce per-
mutation (§E.1). For instance, for n = 12 servers, the ring
generation rule for p =1,5,7, 11 will lead to four distinct ring-
AllReduce permutations between the servers. Note that each p
describes a unique regular permutation. To handle large-scale
clusters, we restrict p to be a prime number, thereby reduc-
ing the search space size to only O(), as per the Prime
Number Theorem [66].

SelectPermutations algorithm. For a group of n servers
participating in AllReduce, TotientPerms finds a set of reg-
ular permutations Py = U,.gcq(p.n)—1{P} across them. TOPOL-
OGYFINDER then selects dj, permutations using a module
called SelectPermutations, where d; is the number of
degree allocated to the group of nodes running AllReduce
(line 6, Algorithm 1). Algorithm 3 presents the pseudocode
of SelectPermutations. Several metrics can be used in
the SelectPermutations module. In our implementation,
SelectPermutations aims to reduce the cluster diameter to
benefit the MP transfers. To this end, SelectPermutations
chooses {p1,---,pa.} C Pk, such that {py,---,pg,} is close
(in L1-norm) to a geometric sequence (line 7, Algorithm 3).

Theorem 1. TOPOOPT’s SelectPermutations algo-
rithm bounds the diameter of the AllReduce sub-topology to
O(dy -n'/), under certain assumptions.

We list the assumptions and proof of Theorem | in Ap-
pendix E.2. Intuitively, each server in the topology is able to
reach a set of servers with a geometrically distributed hop-
count distance (line 5, Algorithm 3), creating a topology sim-
ilar to Chord [128].

Example. Consider the DLRM model in Figure 8. Instead
of choosing one of the AllReduce permutations in Figure 7,
ToPOOPT combines the three ring-AllReduce permutations to
load-balance the AllReduce transfers while providing a short
hop-count for MP transfers. Figure 9 illustrates TOPOOPT’s



topology and traffic matrix and shows a more balanced traffic
matrix than Figure 8.

5 Large Scale Simulations

This section evaluates the performance of a large-scale
ToPOOPT interconnect. First, we explain our simulation soft-
ware and methodology (§5.1). Then, we provide a cost analy-
sis of TOPOOPT to inform our simulations when comparing
different interconnects (§5.2). Next, we demonstrate the per-
formance of TOPOOPT when a cluster is dedicated to a single
distributed DNN training job (§5.3). We perform a sensitivity
analysis to quantify the impact of all-to-all traffic (§5.4) and
host-based forwarding (§5.5). We extend this setting to a case
where a training cluster is shared among multiple jobs (§5.6).
Finally, we evaluate the impact of reconfiguration latency
(§5.7) on ToPOOPT’s performance.

5.1 Methodology & Setup

We implement two simulators to evaluate TOPOOPT.

FlexNet simulator. We augment FlexFlow’s simulator [27]
to be network-aware and call it FlexNet. Given a DNN model
and a batch size, FlexFlow’s simulator explores different par-
allelization strategies and device placements to minimize it-
eration training time. The output of this simulator is a fask
graph describing the set of computation and communication
tasks on each GPU and their dependencies. The current im-
plementation of FlexFlow ignores the network topology by
assuming servers are connected in a full-mesh interconnect.
Our FlexNet simulator extends the FlexFlow simulator and
enables it to consider multiple networks, including Fat-trees,
ToPOOPT, and expander networks. Moreover, FlexNet imple-
ments our alternating optimization framework (§4) to find an
optimized network topology and routing rules for TOPOOPT.

FlexNetPacket simulator. FlexFlow’s simulator only pro-
vides course-grind estimation of training iteration time,
because it does not simulate individual packets travers-
ing through a network. Extending FlexNet to become a
packet-level simulator is computationally infeasible, because
FlexFlow generally requires thousands of MCMC iterations
to converge. To faithfully simulate per-packet behavior of
network switches, buffers, and multiple jobs sharing the same
fabric, we build a second event-based packet simulator, called
FlexNetPacket, on top of htsim [7]. FlexNetPacket takes the
output of FlexNet (i.e., the optimized parallelization strategy,
device placement of each operator, network topology, and
routing rules) and simulates several training iterations. The
link propagation delay is set to 1 us throughout this section.

Simulated network architectures. We simulate dis-
tributed training clusters with n servers equipped with four
NVIDIA A100 GPUs [37]. We vary n in different experiments
and simulate the following network architectures:

* ToPOOPT. A TOPOOPT interconnect where each server
is equipped with d NICs, each with bandwidth B connected
via a flat layer of optical devices. At the beginning of each
job, a shard of the network is selected, and the topology of the
shard is reconfigured based on the output of our alternating
optimization framework (§4) and remains unchanged through-
out the entire training job. Both OCS and patch panels are
suitable for this architecture.

* OCS-reconfig. To study the impact of changing the net-
work topology within training iterations, we simulate a recon-
figurable TOPOOPT interconnect. We rely on commercially
available Optical Circuit Switches (OCSs) for this design
and assume the reconfiguration latency is 10 ms. Given that
FlexFlow’s parallelization strategy search is not aware of dy-
namically reconfigurable networks, following prior work [89],
we measure the traffic demand every 50 ms and adjust the
circuits based on a heuristic algorithm to satisfy the current
traffic demand as much as possible. We also enable host-based
forwarding such that the communication is not blocked even
when a direct link is not available (Appendix E.4).

* Ideal Switch. An ideal electrical switch that scales to any
number of servers, where each server is connected to the
switch via a link with d x B bandwidth. For any pair of d
and B, no network can communicate faster than this ideal
case. In practice, the Ideal Switch can be approximated with
a full-bisection bandwidth Fat-tree where the bandwidth of
each link is d x B.

 Fat-tree. To compare the performance of TOPOOPT to
that of a similar-cost Fat-tree architecture, we simulate a full
bisection bandwidth Fat-tree where each server has one NIC
and the bandwidth of each link is d x B/, where B’ is lower
than B and is selected such that Fat-tree’s cost is similar to
TorPOOPT (§5.2).

* Oversub. Fat-tree. This is a 2:1 oversubscribed Fat-tree
interconnect, where the bandwidth of each link is d x B but
half of the links in the ToR uplink layer are omitted.

e SiP-ML [89]. SiP-ML is a futuristic DNN training clus-
ter with Tbps of bandwidth per GPU. While having a Tbps
network is beneficial, our goal is to compare the algorithmic
contributions of TOPOOPT and SiP-ML. Hence, to make a fair
comparison, we allocate d wavelengths, each with bandwidth
B, to each SiP-ML GPU and follow its SiP-Ring algorithm
to find a topology with a reconfiguration latency of 25 us.
Appendix F elaborates on our modifications to SiP-ML.

* Expander [127,135]. Finally, we simulate a fabric where
each server has d NICs with bandwidth B interconnected via
an Expander topology.

DNN Workloads. We simulate six real-world DNN mod-
els: DLRM [20], CANDLE [4], BERT [62], NCF [75],
ResNet50 [74] , and VGG [126]. List | (Appendix D) pro-
vides details about model configurations and batch sizes used
in this paper.

Parallelization strategy. We use FlexNet’s topology-aware
parallelization strategy search for Ideal Switch, Fat-tree, Over-
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Figure 10: Interconnect cost comparison.

sub. Fat-tree, SiP-ML, and Expander networks. For TOPOOPT,
we use FlexNet’s alternating optimization framework to find
the best parallelization strategy jointly with topology, where
the final parallelization strategy is either hybrid or pure data-
parallel. We use ring-AllReduce and distributed parameter
server [93] as default AllReduce communication collectives
between servers and within servers, respectively. Each data
point averages 5—10 simulation runs.

5.2 Cost Analysis

We begin our evaluations by comparing the cost of various net-
work architectures. Details about the cost of each component
used in each architecture are given in Appendix G.

Figure 10 compares the interconnect cost across various
network architectures as the number of servers is increased.
We estimate the cost of Ideal Switch with a full-bisection
Fat-tree of the same bandwidth. We make the following obser-
vations. First, using OCSs for TOPOOPT is more expensive
(1.33x, on average) than patch panels. Note that OCSs can be
used in both TOPOOPT and OCS-reconfig interconnects. Sec-
ond, the cost of TOPOOPT overlaps with that of the Fat-tree.
This is intentional, because having a cost-equivalent archi-
tecture enables us to compare the performance of TOPOOPT
to a cluster at the same price point. Third, the ratio of Ideal
Switch’s cost to TOPOOPT’s cost is 3.2x on average. Fi-
nally, the most and least expensive fabrics are SiP-ML and
Expander, respectively, and as this section shows, they both
perform worse than TOPOOPT for certain workloads.

We acknowledge that estimating the cost of networking
hardware is challenging because prices are subject to signifi-
cant discounts with bulk orders. Assuming all components in
this analysis are subject to similar bulk order discounts, the
relative comparison across architectures remains valid. As a
point of comparison, we compute the cost of a cluster with
4,394 servers (k = 26 Fat-tree) by following the discounted
cost trends in Sirius [53] and with 50% discounts for patch
panels. For a cluster at this scale, the cost of full-bisection
bandwidth Fat-tree (which approximates our Ideal Switch
baseline) relative to the cost of TOPOOPT changes from 3.0x
to 3.6 x, indicating our estimates are reasonable. Moreover, a

TOPOOPT cluster incurs lower energy cost than Fat-trees, as
optical switches are passive.

5.3 Performance Comparison on Dedicated
Clusters

This section compares the training iteration time of TOPOOPT
with that of other network architectures when the cluster is
dedicated to serving one DNN training job.

Figure | 1a compares the training iteration times of various
architectures for CANDLE distributed on a dedicated cluster
of 128 servers with a server degree of four (d = 4). We vary
the link bandwidth (B) on the x-axis. The figure shows that
Ideal Switch, TOPOOPT, and SiP-ML architectures achieve
similar performance because the best parallelization strategy
for CANDLE at this scale is mostly data parallel, with few
MP transfers. The OCS-reconfig architecture performs poorly
because it uses the instantaneous demand as the baseline to
estimate the future traffic to schedule circuits. This estima-
tion becomes inaccurate during training, in particular when
the current AllReduce traffic is about to finish but the next
round of AllReduce has not started. The Expander architecture
has the worst performance, as its topology is not optimized
for DNN workloads. Averaging across all link bandwidths,
compared to Fat-tree interconnect, TOPOOPT improves the
training iteration time of CANDLE by 2.8x; i.e., the ratio
of CANDLE’s iteration time on Fat-tree to TOPOOPT is 2.8.
TOPOOPT’s servers have more raw bandwidth, resulting in
faster completion time.'

Figures 11b and [ Ic show the training iteration times for
VGG and BERT. The trends are similar to CANDLE, as these
models have similar degree requirements. Compared to Fat-
tree, on average, TOPOOPT improves the iteration time of
VGG and BERT by 2.8 and 3 x, respectively.

The cases of DLRM and NCF are more interesting, as they
have more MP transfers than the other DNNs. As shown in
Figures 11d and 11e, TOPOOPT’s performance starts to de-
viate from Ideal Switch, especially for NCF, because it uses
host-based forwarding for the many-to-many MP transfers
(§5.4 and §5.5). For DLRM (and NCF), TOPOOPT is 2.8 x
(and 2.1x) faster than Fat-tree, while Ideal Switch further
improves the training iteration time by 1.3x (and 1.7x) com-
pared to TOPOOPT. SiP-ML performs poorly, and even when
we increase the link bandwidth, its training iteration time
stays flat. This happens because MP transfers in DLRM and
NCEF require several circuit reconfigurations to meet the traffic
demand.

Finally, Figure 1 1f shows most architectures achieve sim-
ilar training iteration times for ResNet50 since it is not a
communication-heavy model. The Expander architecture per-
forms poorly when the link bandwidth is lower than 100 Gbps,
as the topology does not match the AllReduce traffic pattern.

't is possible to improve the performance of the Expander fabric by
augmenting Blink’s approach [136] to a cluster-level solution.
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Figure 11: Dedicated cluster of 128 servers (d = 4).

We repeat this simulation with d = 8 and observe a similar
performance trend (Appendix H).

5.4 Impact of All-to-all Traffic

This section evaluates the impact of all-to-all traffic patterns
on TOPOOPT’s performance. In particular, TOPOOPT’s host-
based forwarding approach incurs bandwidth tax [99] exacer-
bated by all-to-all and many-to-many communication patterns.
This tax is defined as the ratio of the traffic volume in the
network (including forwarded traffic) to the volume of logical
communication demand. Hence, the bandwidth tax for a full
bisection bandwidth Fat-tree topology is always one, because
hosts do not act as relays for each other.

Consider a DNN model with R bytes of AllReduce traffic
and A bytes of all-to-all traffic, distributed on a full bisection
bandwidth topology with total network bandwidth N - Br (i.e.,
number of servers multiplied by the bisection bandwidth). The
training iteration time of this DNN is: Ty = N,R%BF + N_A—BF ~+ Cps,
where Cp; is the computation time of the model with batch
size bs.”

Now suppose the same DNN is distributed on a TOPOOPT
topology with total network bandwidth NBr. In this case,
assuming the entire AllReduce traffic is carried on Totient-
Perms with direct links, the training iteration time becomes
Tr = N%’T + % + Cps (Eq. 1), where o represents the slow-
down factor that all-to-all transfers create in the network, due
to host-based forwarding. The value of o depends on the
amount of bandwidth tax and routing strategy (§5.5).

Increasing the amount of all-to-all traffic (A) increases the
iteration time for both Tr and Tr. But when N - Br and N - By

2For clarify of presentation, this formulation assumes no overlap between
communication and computation stages and no competing traffic.

are equal, TOPOOPT’s performance degrades faster because
of the o factor in the numerator. To quantify this behavior
concretely, we distribute a DLRM training task with 128 em-
bedding tables on a cluster with 128 servers. We choose large
embedding tables and distribute each table on each server,
creating worst-case all-to-all traffic.

Figure 12 compares the training iteration times of
ToprPoOPT, Ideal Switch, and Fat-tree as the batch size is
increased. The top x-axis lists the ratio of all-to-all to AllRe-
duce traffic for each batch size value given on the bottom
x-axis. As shown in Figure 12a, when the batch size is 128
and d = 4, TOPOOPT’s performance matches that of Ideal
Switch, while Fat-tree is a factor of 2.7 slower. This result
agrees with the performance gains in Figure 11d, as the batch
sizes are the same.

Increasing the batch size increases A, and this, in turn, in-
creases the training iteration times in all three architectures.
As predicted by Eq. (1), TOPOOPT’s iteration time increases
faster. Specifically, when the batch size is 2048 and all-to-
all traffic is 80% of AllReduce traffic, TOPOOPT performs
poorly, and the iteration time is a factor of 1.1 higher than
that of the Fat-tree architecture. Increasing the server degree
d mitigates the problem, as shown in Figure 12b. Note that in-
creasing the batch size does not always result in faster training
time [89, 109, 124]. Moreover, publicly available data suggest
2048 is the largest batch size for training DLRM [102]. The
number of columns in the embedding tables and the number
of servers are smaller in their workload: (92, 16) vs. (128,
128), respectively. Hence, the DLRM workload we evaluate
contains more all-to-all traffic than the state-of-the-art model
used in industry.
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5.5 Impact of Host-based Forwarding

Two factors impact the performance of host-based forwarding
in TOPOOPT: bandwidth tax and routing strategy.

Bandwidth tax. Figure 13 shows the amount of bandwidth
tax experienced by the DLRM job in the previous section.
Each bar represents a different batch size. At batch size 64
with d = 4, TOPOOPT experiences a bandwidth tax of 1.11,
indicating that host-based forwarding creates 11% extra traf-
fic in the network. Increasing the degree to d = 8 further
improves this number to 1.05. In the worst-case scenario with
batch size 2048, TOPOOPT pays a bandwidth tax of 3.03 when
d =4, causing it to perform worse than Fat-tree, as shown
in Figure 12a. Determining the value of tolerable bandwidth
tax is challenging for a TOPOOPT cluster, as it depends on
the compute time and the amount of compute-communication
overlap, and this varies for different DNN models.

Impact of path length. Intuitively, the amount of band-
width tax grows with the path length [99]. Figure 14 shows
the CDF of path length across all server pairs. When d = 4,
the average path length is 5.7, resulting in at least 5.7 x over-
head of host-based forwarding relative to Ideal Switch for
all-to-all traffic. Based on Eq. (1), and since the total network
bandwidth in TOPOOPT is higher than Fat-tree (NBr > NBF),
the overhead of host-based forwarding becomes at least 1.4 x
for the Fat-tree architecture. Increasing the server degree to
8 reduces the average path length to 3, thereby reducing the
overhead bound. Appendix H evaluates the impact of increas-
ing node degree on performance for other models.

Routing strategy. Building a topology with a small path
length is necessary but not sufficient to reduce the impact
of host-based forwarding. To handle forwarded traffic with
minimum performance impact, the routing strategy also needs
to be efficient. The best routing strategy minimizes the max-
imum link utilization for a given network topology, similar
to WAN traffic engineering solutions [91]. However, finding
the optimal routing strategy requires solving a set of linear
equations with a centralized controller [76,81]. To quantify
the load imbalance in TOPOOPT, Figure 15 illustrates the
CDF of the amount of traffic carried by each physical link
for an all-to-all traffic matrix. When the batch size is 128
(Figure 15a), the link with the least traffic carries 39% and
59% less traffic than the link with the most traffic, for d = 4
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Figure 15: Traffic distribution.

and d = 8, respectively. This imbalance in load suggests fur-
ther opportunities to improve the performance of TOPOOPT.
Achieving optimal routing makes o (Eq. (1)) equal to the aver-
age path length. Without a centralized controller, however, the
link utilization becomes non-uniform, and the average path
length only serves as a lower bound. We leave optimizing the
routing strategy in TOPOOPT to future work.

5.6 Performance on Shared Clusters

We now compare the performance of different network archi-
tectures when the cluster is shared across multiple DNN jobs.
Following prior work [98,115], we run a series of simulations
where 40% of the jobs are DLRM, 30% are BERT, 20% are
CANDLE, and 10% are VGG16. We change the number of
active jobs to represent the load on the cluster. Assuming each
job requests 16 servers (64 GPUs), we execute 5, 10, 15, 20,
and 27 jobs on the cluster to represent 20%, 40%, 60%, 80%
and 100% load, respectively.

Figure 16 compares the average and 99%-tile iteration time
at different loads for a cluster with 432 servers where d = 8
and B = 100 Gbps. SiP-ML does not support multiple jobs;
hence, we omit it in this experiment. We omit OCS-reconfig
and Expander networks, as they both show poor performance
in this setting. Instead, we add the Oversub. Fat-tree inter-
connect to demonstrate the impact of congestion on Fat-tree
topologies. Figure 16a shows that TOPOOPT improves the
average iteration time by 1.7x and 1.15x, compared to the
Fat-tree and Oversub. Fat-tree architectures, respectively. We
observe a similar trend for the tail iteration completion times,
depicted in Figure 16b. At the extreme case when all servers
are loaded, TOPOOPT’s tail training iteration time is 3.4 x



—@- TopoOpt Fat-tree =3~ |deal Switch == Oversub Fat-tree

Z0.15 205
5 £
= F0.4
S S
® 01 0.3
8 £
2005 S0.1
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
Load Load

(a) Average Iteration Time (b) 99%-ile Iteration Time
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faster compared to Fat-tree architecture. Averaging across all
load values on the x-axis, TOPOOPT improves the tail train-
ing iteration time by 3x and 1.4x compared to Fat-tree and
Oversub. Fat-tree architectures.

5.7 Impact of Reconfiguration Latency

Figure 17 shows the training iteration time of DLRM and
BERT in the same setting as Figure 11, while sweeping the
reconfiguration latency of OCSs in OCS-reconfig from 1 us
to 10 ms. The horizontal blue line corresponds to TOPOOPT’s
iteration time; it remains constant as it does not reconfig-
ure the network topology. We find host-based forwarding
is challenging when the network is reconfigurable, as the
circuit schedules need to account for forwarding the traffic
while the topology reconfigures. Therefore, we evaluate the
performance of OCS-reconfig with and without host-based
forwarding. The purple line corresponds to OCS-reconfig
with host-based forwarding (same as OCS-reconfig evaluated
in Figure 11), denoted by OCS-reconfig-FW. For the orange
line, we disable host-based forwarding (similar to SiP-ML)
and call it OCS-reconfig-noFW.

We find enabling host-based forwarding when the topolo-
gies reconfigures within a training iteration is not always ben-
eficial. For DLRM (Figure 17a), OCS-reconfig-FW achieves
better performance than OCS-reconfig-noFW, as DLRM has
all-to-all MP transfers which benefit from host-based forward-
ing. However, for BERT (Figure 17b), enabling forwarding
increases the chance of inaccurate demand estimation and
imposes extra bandwidth tax, therefore increasing the itera-
tion time of OCS-reconfig-FW by a factor of 1.4 compared to
OCS-reconfig-noFW.

Reducing the reconfiguration latency all the way to 1 us
enables OCS-reconfig-noFW to match the performance of
TorPoOPT. However, OCS-reconfig-FW still suffers from in-
accurate demand estimations. Although fast reconfigurable
switches are not yet commercially available, they are go-
ing to be essential in elastic scenarios where the cluster is
shared across multiple jobs and servers join and leave different
jobs unexpectedly, or when large, high-degree communication
dominates the workload. We believe futuristic fast reconfig-
urable switches, such as Sirius [53], are well-suited for this
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Figure 17: Impact of reconfiguration latency (d=S8,
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setting. Finding a parallelization algorithm that is aware of
reconfigurability within training iterations is a challenging
and exciting future research problem.

6 Prototype

Testbed setup. We build a prototype to demonstrate the
feasibility of TOPOOPT. Our prototype includes 12 ASUS
ESC4000A-E10 servers and a G4 NMT patch panel [43].
Each server is equipped with one A100 Nvidia GPU [37]
(40 GB of HBM2 memory), one 100 Gbps HP NIC [29], and
one 100 Gbps Mellanox ConnectX5 NIC. Our HP NICs are
capable of supporting 4 x25 Gbps interfaces using a PSM4
transceiver with four breakout fibers [8], enabling us to build
a TorOOPT system with degree d = 4 and B = 25 Gbps. We
use RoCEv2 for communication, and enable DCB [19] and
PFC on these interfaces to support a lossless fabric for RDMA.
We build a completely functional TOPOOPT prototype with
our patch panel (Figure 18). We compare TOPOOPT’s per-
formance with two baselines: (i) Switch 100Gbps, where the
servers are connected via 100 Gbps links to a switch, and (if)
Switch 25Gbps, where the servers are connected via 25 Gbps
links to a switch. The Switch 100Gbps baseline corresponds
to the Ideal Switch case in our simulations.

Distributed training framework. We use FlexFlow’s
training engine [26], based on Legion’s parallel program-
ming system [30], to train four DNN models: ResNet50 [74],
BERT [62], VGG16 [126], and CANDLE [4]. For DLRM,
we use Facebook’s implementation from [20]. Since our pro-
totype is an order of magnitude smaller in scale than our
simulation setup, we use smaller model and batch sizes.

Modifications to NCCL. By default, the NCCL com-
munication library [36] assumes all network interfaces are
routable from other interfaces. This assumption is not ideal
for TOPOOPT because we have a specific routing strategy
to optimize training time. We modify NCCL to understand
ToprPOOPT’s topology and respect its routing preferences.
Moreover, we integrate our TotientPerms AllReduce permuta-
tions into NCCL and enable it to load-balance parameter syn-
chronization across multiple ring-AllReduce permutations.
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RDMA forwarding. Implementing TOPOOPT with today’s
RDMA NICs requires solving an engineering challenge, be-
cause the RDMA protocol assumes a switch-based network.
Packet processing and memory access in RDMA protocol are
offloaded to the NIC, and a RoCEv2 packet whose destination
IP address is different from that of the host is assumed to
be corrupted. Therefore, the NIC silently drops forwarded
packets. To address this issue, we collaborated with engineers
at Marvell who developed the firmware and driver of our HP
NICs. Our solution uses a feature called network partitioning
(NPAR) which enables the NIC to separate host-based for-
warding traffic from direct traffic, and uses the Linux kernel
to route them (details in Appendix ). Our conversations with
Marvell indicate that updating the firmware and the driver
enables the NIC to route forwarded RoCEv2 packets, thereby
bypassing the kernel entirely.

Training performance. Figure 19 demonstrates that
ToPOOPT’s training throughput (samples/second) is simi-
lar to our Switch 100 Gbps baseline for all models. The
performance of Switch 25Gbps baseline is lower because
its available bandwidth is lower than TOPOOPT. Figure 20
shows the time-to-accuracy plot of training VGG19 on the
ImageNet [61] dataset. As the figure indicates, TOPOOPT
reaches the target accuracy of 90% 2.0x faster than the
Switch 25Gbps baseline. TOPOOPT achieves similar perfor-
mance to the Switch 100Gbps baseline, as the blue and red
lines overlap in Figure 20.

Impact of all-to-all traffic. Similar to Section 5.4, we
evaluate the impact of all-to-all MP traffic on our RDMA-
forwarding enabled testbed by measuring the average iteration
time across 320 iterations of a DLRM job distributed in our
testbed. We vary the amount of all-to-all traffic by changing
the batch size. To create worst-case traffic, we increase the
embedding dimensions by 128 x relative to the state-of-the-
art [20] (model details are in List |, Appendix D). Figure 21
shows the training iteration time for various batch sizes. The
results are consistent with Figure 12, but since the bandwidth
tax in our 12-server testbed is much smaller than a 128-server
cluster in simulations, TOPOOPT performs better relative to
the switch-based architectures for a given all-to-all to AllRe-
duce traffic ratio. For instance, for batch size 512, the ratio of

all-to-all traffic to AllReduce is 78%, and the training iteration
time with TOPOOPT is 1.6 better than the Switch 25Gbps
baseline.

7 Discussion

Target workload. The most suitable workload for a
ToPOOPT cluster is a set of large DNN training jobs with hy-
brid data and model parallelism (or simply data parallelism).
We assume the set of servers assigned to each job remains the
same throughout the lifetime of the job, and the GPUs are not
shared across multiple jobs.

Storage and control plane traffic. Meta’s training clus-
ters consist of custom-designed servers, each with eight
GPUs, eight dedicated NICs for training traffic (GPU NICs),
and four additional NICs for storage and other traffic (CPU
NICs) [102]. Other companies, such as NVIDIA, have similar
architectures [10]. TOPOOPT only considers GPU NICs as
server degree and partitions the network dedicated for training
traffic. The CPU NICs are connected through a separate fabric
to carry storage and other control plane traffic.

Supporting dynamic scheduling and elasticity. Others
have demonstrated the benefits of dynamically choosing the
training servers for elastic training jobs [98, 115]. Our tar-
get use case in Meta is to leverage TOPOOPT for the vast
number of long-lasting training jobs that do not change dy-
namically. In cases where elasticity is required, instead of
using patch panels, we use OCSs (or other fast reconfigurable
optical switches) to change the servers participating in a job
quickly. Note that dynamically changing the set of servers
participating in a job while keeping both the topology and
the parallelization strategy optimal requires augmenting the
optimization space with an additional dimension, making the
problem even more challenging. We leave this to future work.

Handling failures. Unlike SiP-ML’s single ring topol-
ogy [89], a single link failure does not disconnect the graph
in ToPOOPT. When a fiber fails, TOPOOPT can temporarily
use a link dedicated to MP traffic to recover an AllReduce
ring. In case of permanent failures, TOPOOPT reconfigures to
swap ports and recover the failed connection.

Supporting multi-tenancy. To support multi-tenancy [142,



143], TOPOOPT can leverage NVIDIA’s MIG [39] to treat
one physical server as multiple logical servers in its topology.

TotientPerms in Fat-trees. Although our TotientPerms
technique is well-suited for reconfigurable optical intercon-
nects, it may be of independent interest for Fat-tree intercon-
nects as well since load-balancing the AllReduce traffic across
multiple permutations can help with network congestion.

ToPOOPT’s limitations. TOPOOPT’s approach assumes
the traffic pattern does not change between iterations. How-
ever, this assumption may not hold for Graphic Neural Net-
work (GNN) models [121] or Mixture-of-Expert (MoE) mod-
els [80]. In addition, we plan to extend TOPOOPT by bringing
its demand-awareness design within training iterations. This
is an open research question, and as shown in Section 5.7,
we will need fast-reconfigurable optical switches, as well as a
more sophisticated scheduling algorithm. Another limitation
of TOPOOPT is that a single link failure within a AllReduce
ring causes the full ring to become inefficient for AllReduce
traffic. A fast optical switch addresses this problem by quickly
reconfiguring the topology.

8 Related Work

Optimizing DNN training. To address the increasing compu-
tation and network bandwidth requirements of large training
jobs, a plethora of frameworks have been proposed [5, 46,58,
69,77,79,85,86,105,108,111,117,118,123,129,136, 146].
These frameworks distribute the dataset and/or DNN model
across accelerators while considering the available network
bandwidth, but unlike TOPOOPT, they do not consider opti-
mizing the physical layer topology. Specifically, Blink [136]
builds collectives for distributed ML, but it needs a physi-
cal topology to generate spanning trees. Zhao et al. [147]
study the optimal topology for collective communication op-
erations, but this does not apply for general MP traffic. In
addition, several methods have been proposed to quantize
and compress the gradients to reduce the amount of com-
munication data across servers [48, 56, 144]. While these
approaches are effective, they are designed for data parallel
strategies and do not consider the large amount of data trans-
fers caused by model parallel training. Wang et al. [138] com-
pare the performance of Fat-trees and BCube topologies for
distributed training workloads and highlight several inefficien-
cies in Fat-trees. SiP-ML [89] demonstrates the benefits of
8 Tbps silicon photonics-based networks for distributed train-
ing. However, unlike TOPOOPT, these proposed approaches
do not co-optimize topology and parallelization strategy.
DNN parallelization strategies. Data and model paral-
lelism are widely used by today’s DNN frameworks (e.g., Ten-
sorFlow [44], PyTorch [42], MXNet [17]) to parallelize train-
ing across multiple devices. Recent work has also proposed
automated frameworks (e.g., FlexFlow [85], ColocRL [101],
MERLIN [38]) that find efficient parallelization strategies
by searching over a comprehensive space of potential strate-

gies. These frameworks rely on and are optimized for the
conventional Fat-tree interconnects. TOPOOPT proposes a
new approach to building DNN training systems by jointly
optimizing network topology and parallelization strategy.

DNN training infrastructures and schedulers. Several
training infrastructures have been proposed recently, in-
cluding NVIDIA DGX SuperPOD [10], TPU cluster [9],
and supercomputers [1]. All these systems assume non-
reconfigurable network topologies, such as Fat-tree, Torus,
and other traffic-oblivious interconnects. TOPOOPT is the first
DNN system to use commodity reconfigurable interconnects
to accelerate DNN jobs.Gandiva [140], Themis [98], Tire-
sias [70], BytePS [86, 111], and Pollux [115] seek to improve
the utilization of GPU clusters through scheduling algorithms.
These approaches are complementary to ours, and many of
their techniques can be applied to a TOPOOPT cluster.

Optical Interconnects. Several papers have demonstrated
the benefits of optically reconfigurable interconnects for dat-
acenters [51,53,57, 60, 64, 68,95-97,99, 100, 113]. These
designs lead to sub-optimal topologies for distributed DNN
traffic. Similarly, fraffic oblivious interconnects, such as Ro-
torNet [99, 100], are a great fit for datacenter workloads, but
they are not suitable for DNN training jobs characterized
by repetitive traffic demands. Hybrid electrical/optical dat-
acenter proposals [64, 137] can be used to route AllReduce
traffic through the optical fabric and MP flows through a stan-
dard electrical Fat-tree network. But hybrid clusters are not
cost effective and suffer from many problems, including TCP
ramp-up inefficiencies [103], segregated routing issues [65],
and uncertainty in terms of how to divide the cluster between
electrical and optical fabrics [68,72].

9 Conclusion

We present TOPOOPT, a novel system based on optical de-
vices that jointly optimizes DNN parallelization strategy and
topology to accelerate training jobs. We design an alternating
optimization algorithm to explore the large space of Compu-
tation x Communication x Topology strategies for a DNN
workload, and demonstrate TOPOOPT obtains up to 3.4x
faster training iteration time than Fat-tree.

10 Acknowledgments

We thank our shepherd Sangeetha Abdu Jyothi and anony-
mous reviewers for their valuable feedback. We also acknowl-
edge Meta for supporting this research. In particular, we thank
Omar Baldonado, Gaya Pradeep Sindhu, and Jahangir Hasan.
In addition, we thank Alan Gibbemeyer, Bob Shine, Karl
Kuhn and Ramiro Voicu from Telescent for their support on
the Telescent NTM-G4. We also thank Arial Elior, Karl Er-
ickson, and Nishant Lodha from Marvell for their help on
RDMA forwarding. The MIT-affiliated authors are supported



by ARPA-E ENLITENED PINE DE-AR0000843, DARPA
FastNICs 4202290027, NSF grants CNS-2008624, SHF-
2107244, ASCENT-2023468, CAREER-2144766, PPoSS-
2217099, CNS-2211382, Meta faculty award, Google faculty
award, and Sloan fellowship FG-2022-18504.

References

[1] Summit Supercomputer, 2014. https:
//www.olcf.ornl.gov/summit/.

[2] Datasheet for Single Mode Network Op-
tical Switch up to 384x384 ports, 2016.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

https://www.hubersuhner.com/en/documents-
repository/technologies/pdf/data-sheets-
optical-switches/polatis—-series-7000n.

Baidu, 2017. https://github.com/baidu-
research/baidu-allreduce.

CANDLE Uno: Predicting Tumor Dose Re-
sponse across Multiple Data Sources, 2017.
https://github.com/ECP-CANDLE/Benchmarks/
tree/master/Pilotl/Uno.

Meet Horovod: Uber’s Open Source Distributed Deep
Learning Framework for TensorFlow, 2017. https:
//eng.uber.com/horovod.

CALIENT Edge 640™ Optical Circuit Switch, 2018.
https://www.calient.net/2018/03/calient—
edgeb40-optical-circuit-switch-offers-
industrys-highest-density-fiber-optic-
cross-connect/.

htsim packet simulator, 2018. https://github.com/
nets-cs-pub-ro/NDP/wiki/NDP-Simulator.

AOI 100G PSM4 Transceiver, 2020.
/ /www.ebay.com/itm/234092018446?hash=
item3680£8bble:qg:WoMAAOSWLFJg8dKE.

https:

Google TPU, 2020.
tpu.

https://cloud.google.com/

Nvidia DGX SuperPOD, 2020. https:
//www.nvidia.com/en-us/data-center/dgx-
superpod/.

NVIDIA is  Preparing Co-Packaged Pho-
tonics for NVLink, Dec. 2020. https:
/ /www.techpowerup.com/276139/nvidia-is-
preparing-co-packaged-photonics-for-
nvlink.

100GBASE-SR4 QSFP28 850nm 100m DOM
MTP/MPO MMF Optical Transceiver Module, 2022.
https://www.fs.com/products/48354.html.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

10GBASE-SR SFP+ 850nm 300m DOM LC MMF
Transceiver Module, 2022. https://www.fs.com/
products/11552.html.

1x2 PLC Fiber Splitter, Splice/Pigtailed ABS Mod-
ule, 2.0mm, SC/APC, Singlemode, 2022. https://
www.fs.com/products/11615.html.

25GBASE-SR SFP28 850nm 100m DOM LC MMF
Optical Transceiver Module, 2022. https://
www.fs.com/products/67991.html.

40GBASE-SR4 QSFP+ 850nm 150m DOM
MTP/MPO MMF Optical Transceiver Module, 2022.
https://www.fs.com/products/36143.html.

Apache MXNet,
mxnet.apache.org/.

2022. https://

Colfax Direct, HPC and Date Center Gear, 2022.
https://www.colfaxdirect.com/.

Data Center Bridging eXchange (DCBX), 2022.
https://man7.org/linux/man-pages/man8/dcb-
dcbx.8.html.

Deep Learning Recommendation Model for Personal-
ization and Recommendation Systems, 2022. https:
//github.com/facebookresearch/dlrm.

Edgecore AS5812-54X 48-Port 10GbE Bare Metal
Switch with ONIE - Part ID: 5812-54X-0O-12V-F,
2022. https://www.colfaxdirect.com/store/pc/
viewPrd.asp?idproduct=3614.

Edgecore AS6812-32X 32-Port 40GbE Bare Metal
Switch with ONIE - Part ID: 6812-32X-O-AC-F-US,
2022. https://www.colfaxdirect.com/store/pc/
viewPrd.asp?idproduct=3078.

Edgecore AS7312-54XS 48-Port 25GbE + 6-
Port 100GbE Bare Metal Switch with ONIE
- Part ID: 7312-54XS-0-AC-F-US, 2022.
https://www.colfaxdirect.com/store/pc/
viewPrd.asp?idproduct=3598.

Edgecore AS7816-64X 64-Port 100GbE Bare Metal
Switch with ONIE - Part ID: 7816-64X-O-AC-B-US,
2022. https://www.colfaxdirect.com/store/pc/
viewPrd.asp?idproduct=3483.

Euler’s totient function, 2022. https:
//en.wikipedia.org/wiki/Euler$%
27s_totient_function.

Flex Flow’s Training Engine, 2022. https://

flexflow.ai/.



(27]

(28]
[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

FlexFlow source code, 2022. https://github.com/
flexflow/FlexFlow.

FS.COM, 2022. https://www.fs.com/.

HPE Ethernet 4x25Gb 1-port 620QSFP28 Adapter,
2022. https://support.hpe.com/hpesc/public/
docDisplay?docId=emr_na-c05220334.

Legion Programming System, 2022.  https://

legion.stanford.edu/overview/.

Managing edge data centers through au-
tomation and remote diagnostics, 2022.
https://www.telescent.com/blog/2021/11/
11/managing-edge-data-centers-through-
automation-and-remote-diagnostics.

Mellanox ConnectX-4 Single Port 25 Gigabit Ethernet
Adapter Card, PCle 3.0 x8 - Part ID: MCX4111A-
ACAT, 2022. https://www.colfaxdirect.com/
store/pc/viewPrd.asp?idproduct=2814.

Mellanox ConnectX-4 Single Port 40 Gigabit Ethernet
Adapter Card, PCIe 3.0 x8 - Part ID: MCX4131A-
BCAT, 2022.  https://www.colfaxdirect.com/
store/pc/viewPrd.asp?idproduct=2817.

Mellanox ConnectX-5 EN Single Port 100 Gigabit Eth-
ernet Adapter Card, PCle 3.0 x16 - Part ID: MCX515A-
CCAT, 2022. https://www.colfaxdirect.com/
store/pc/viewPrd.asp?idproduct=3150.

Mellanox ConnectX-5 VPI Adapter Card with
Multi-Host  Socket Direct, Dual PCle 3.0
x8 - Part ID: MCXS556M-ECAT-S25, 2022.
https://www.colfaxdirect.com/store/pc/
viewPrd.asp?idproduct=3209.

NCCL, 2022. https://github.com/NVIDIA/nccl-
tests.

NVIDIA A100 Tensor Core GPU, 2022. https://
www.nvidia.com/en-us/data-center/al00/.

NVIDIA  MERLIN, 2022. https://
developer.nvidia.com/nvidia-merlin.
NVIDIA MULTI-INSTANCE GPU, 2022.

https://www.nvidia.com/en-us/technologies/
multi-instance-gpu/.

Patch Panel Wiki, 2022. https://
en.wikipedia.org/wiki/Patch_panel.
Polatis Optical Circuit Switch, 2022. https:

//www.polatis.com/series-7000-384x384~
port-software-controlled-optical-circuit-
switch-sdn-enabled.asp.

[42]
[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

PyTorch, 2022. https://pytorch.org.

Telescent G4 Network Topology Manager, 2022.
https://www.telescent.com/products.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqgiang Zheng. Tensorflow: A system
for large-scale machine learning. In /2th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 265-283, Savannah, GA,
November 2016. USENIX Association.

Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade
Nie, Carole-Jean Wu, and Kim Hazelwood. Under-
standing training efficiency of deep learning recom-
mendation models at scale, 2020.

Ravichandra Addanki, Shaileshh Bojja Venkatakrish-
nan, Shreyan Gupta, Hongzi Mao, and Mohammad
Alizadeh. Learning generalizable device placement al-
gorithms for distributed machine learning. In Advances

in Neural Information Processing Systems, volume 32,
pages 3981-3991. Curran Associates, Inc., 2019.

Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. SIGCOMM Comput. Commun. Rev.,
38(4):63-74, August 2008.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,
and Milan Vojnovic. Qsgd: Communication-efficient
sgd via gradient quantization and encoding. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, vol-
ume 30, pages 1709-1720. Curran Associates, Inc.,
2017.

Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan. Data
Center TCP (DCTCP). In Proceedings of the ACM
SIGCOMM 2010 Conference, SIGCOMM 10, pages
63-74, New York, NY, USA, 2010. ACM.

Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pfabric: Minimal near-optimal data-
center transport. In Proceedings of the ACM SIG-
COMM 2013 Conference on SIGCOMM, SIGCOMM
’13, pages 435-446, New York, NY, USA, 2013. ACM.



[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59

—

(60]

Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim
Weatherspoon, Robert Kleinberg, and Rachit Agarwal.
Optimal oblivious reconfigurable networks, 2021.

Javed A. Aslam. Dynamic Programming So-
lution to the Coin Changing Problem, 2004.
https://www.ccs.neu.edu/home/jaa/CSG713.04F/
Information/Handouts/dyn_prog.pdf.

Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel
Cletheroe, Istvan Haller, Krzysztof Jozwik, Fotini Kari-
nou, Sophie Lange, Kai Shi, Benn Thomsen, and Hugh
Williams.  Sirius: A flat datacenter network with
nanosecond optical switching. In Proceedings of the
Annual Conference of the ACM Special Interest Group
on Data Communication on the Applications, Tech-
nologies, Architectures, and Protocols for Computer
Communication, SIGCOMM °20, page 782-797, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

Theophilus Benson, Aditya Akella, and David A.
Maltz. Network traffic characteristics of data centers in
the wild. In Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, IMC ’ 10, pages
267-280, New York, NY, USA, 2010. ACM.

J. Brownlee. Better Deep Learning: Train Faster, Re-
duce Overfitting, and Make Better Predictions. Ma-
chine Learning Mastery, 2018.

Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur
Agrawal, Wei Zhang, and Kailash Gopalakrishnan.
Adacomp : Adaptive residual gradient compression
for data-parallel distributed training. Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

Li Chen, Kai Chen, Zhonghua Zhu, Minlan Yu, George
Porter, Chunming Qiao, and Shan Zhong. Enabling
wide-spread communications on optical fabric with
megaswitch. In /4th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
17), pages 577-593, Boston, MA, 2017. USENIX As-
sociation.

Minsik Cho, Ulrich Finkler, David Kung, and Hillery
Hunter. Blueconnect: Decomposing all-reduce for
deep learning on heterogeneous network hierarchy.
SysML Conference, 2019.

Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael
Papamichael, Adrian Caulfield, Todd Massengil, Ming
Liu, Daniel Lo, Shlomi Alkalay, and Michael Hasel-
man. Accelerating persistent neural networks at data-
center scale. In Hot Chips, volume 29, 2017.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Ger-
ard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts,

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

H. Williams, G. Zervas, P. Costa, and Z. Liu. Sub-
nanosecond clock and data recovery in an optically-
switched data centre network. In 2018 European Con-

ference on Optical Communication (ECOC), pages
1-3, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In IEEE conference on computer
vision and pattern recognition, pages 248-255. leee,
2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding.
CoRR, abs/1810.04805, 2018.

Jack Edmonds. Paths, trees, and flowers. Canadian
Journal of Mathematics, 17:449-467, 1965.

Nathan Farrington, George Porter, Sivasankar Rad-
hakrishnan, Hamid Hajabdolali Bazzaz, Vikram Subra-
manya, Yeshaiahu Fainman, George Papen, and Amin
Vahdat. Helios: A hybrid electrical/optical switch ar-
chitecture for modular data centers. SIGCOMM'’10,
pages 339-350.

K. Foerster, M. Ghobadi, and S. Schmid. Characteriz-
ing the algorithmic complexity of reconfigurable data
center architectures. In Proc. ANCS ’18, pages 89-96,
2018.

Everest G. and Ward Thomas.
number theory, 2005.

An introduction to

Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao
Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for
resource disaggregation. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’ 16, pages 249-264, Berkeley,
CA, USA, 2016. USENIX Association.

Monia Ghobadi, Ratul Mahajan, Amar Phanishayee,
Nikhil Devanur, Janardhan Kulkarni, Gireeja Ranade,
Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper.  Projector:
Agile reconfigurable data center interconnect. In
Proceedings of the 2016 ACM SIGCOMM Conference,
SIGCOMM ’16, pages 216-229, New York, NY, USA,
2016. Association for Computing Machinery.

Priya Goyal, Piotr Dollar, Ross B. Girshick, Pieter No-
ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate,
large minibatch SGD: training imagenet in 1 hour.
CoRR, abs/1706.02677, 2017.



[70]

(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Honggiang
Liu, and Chuanxiong Guo. Tiresias: A GPU cluster
manager for distributed deep learning. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 485-500, Boston, MA,
February 2019. USENIX Association.

Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu,
Xuan Zhang, Yunfeng Shi, Chen Tian, Yongguang
Zhang, and Songwu Lu. Bcube: A high performance,
server-centric network architecture for modular data
centers. In Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication, SIGCOMM ’09,
page 63-74, New York, NY, USA, 2009. Association
for Computing Machinery.

Navid Hamedazimi, Zafar Qazi, Himanshu Gupta,
Vyas Sekar, Samir R. Das, Jon P. Longtin, Himanshu
Shah, and Ashish Tanwer. Firefly: A reconfigurable
wireless data center fabric using free-space optics. SIG-
COMM’14, pages 319-330.

Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy
Campbell. Tictac: Accelerating distributed deep learn-
ing with communication scheduling. In A. Talwalkar,
V. Smith, and M. Zaharia, editors, Proceedings of Ma-
chine Learning and Systems, volume 1, pages 418-430,
2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770778, 2016.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie,
Xia Hu, and Tat-Seng Chua. Neural collaborative fil-
tering, 2017.

Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, Vijay Gill, Mohan Nanduri, and Roger
Wattenhofer. Achieving high utilization with software-
driven wan. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, page
15-26, New York, NY, USA, 2013. Association for
Computing Machinery.

Yanping Huang, Yonglong Cheng, Dehao Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V. Le, and Zhifeng
Chen. Gpipe: Efficient training of giant neural net-
works using pipeline parallelism. NeurIPS, 2019.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee,
Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. Gpipe: Efficient training of giant neural net-
works using pipeline parallelism, 2019.

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

(87]

Forrest N. Iandola, Khalid Ashraf, Matthew W.
Moskewicz, and Kurt Keutzer. Firecaffe: near-linear
acceleration of deep neural network training on com-
pute clusters. CoRR, abs/1511.00175, 2015.

Robert A. Jacobs, Michael 1. Jordan, Steven J. Nowlan,
and Geoffrey E. Hinton. Adaptive mixtures of local
experts. Neural Computation, 3(1):79-87, 1991.

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Expe-
rience with a globally-deployed software defined wan.
ACM SIGCOMM Computer Communication Review,
43(4):3-14, 2013.

Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexan-
dra Fedorova, and Gennady Pekhimenko. Priority-
based parameter propagation for distributed DNN train-
ing. CoRR, abs/1905.03960, 2019.

Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang,
Haidong Rong, Feihu Zhou, Ligiang Xie, Zhenyu Guo,
Yuanzhou Yang, Liwei Yu, Tiegang Chen, Guangx-
iao Hu, Shaohuai Shi, and Xiaowen Chu. Highly
scalable deep learning training system with mixed-
precision: Training imagenet in four minutes. CoRR,
abs/1807.11205, 2018.

Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken.
Exploring hidden dimensions in accelerating convolu-
tional neural networks. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pages 2274—
2283, Stockholmsmaéssan, Stockholm Sweden, 10-15
Jul 2018. PMLR.

Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond
data and model parallelism for deep neural networks.
SysML, 2019.

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture
for accelerating distributed DNN training in hetero-
geneous gpu/cpu clusters. In /4th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 463—479. USENIX Association,
November 2020.

Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu,
Guangzhi Li, Wei Xu, and Jennifer Rexford. Optimiz-
ing bulk transfers with software-defined optical wan.
In Proceedings of the 2016 ACM SIGCOMM Confer-
ence, SIGCOMM ’16, page 87-100, New York, NY,
USA, 2016. Association for Computing Machinery.



[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

A. S. Kewitsch. Large scale, all-fiber optical cross-
connect switches for automated patch-panels. Journal
of Lightwave Technology, 27(15):3107-3115, 2009.

Mehrdad Khani, Manya Ghobadi, Mohammad Al-
izadeh, Ziyi Zhu, Madeleine Glick, Keren Bergman,
Amin Vahdat, Benjamin Klenk, and Eiman Ebrahimi.
Sip-ml: High-bandwidth optical network interconnects
for machine learning training. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, SIGCOMM
’21, pages 657-675, New York, NY, USA, 2021. Asso-
ciation for Computing Machinery.

J. Kiefer and J. Wolfowitz. Stochastic estimation of the
maximum of a regression function. Ann. Math. Statist.,
23(3):462-466, 09 1952.

Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster,
Robert Kleinberg, Petr Lapukhov, Chiun Lin Lim, and
Robert Soulé. Semi-oblivious traffic engineering with
smore. In Proceedings of the Applied Networking Re-
search Workshop, ANRW 18, page 21, New York, NY,
USA, 2018. Association for Computing Machinery.

Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho,
Garth A Gibson, and Eric P Xing. On model paralleliza-
tion and scheduling strategies for distributed machine
learning. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 27,
pages 2834-2842. Curran Associates, Inc., 2014.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J.
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-
gene J. Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. OSDI’ 14,
pages 583-598. USENIX Association, 2014.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and
William J Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training.
arXiv preprint arXiv:1712.01887, 2017.

He Liu, Feng Lu, Alex Forencich, Rishi Kapoor,
Malveeka Tewari, Geoffrey M. Voelker, George Papen,
Alex C. Snoeren, and George Porter. Circuit switching
under the radar with REACToR. NSDI’14, pages 1-15.

He Liu, Matthew K. Mukerjee, Conglong Li, Nico-
las Feltman, George Papen, Stefan Savage, Srinivasan
Seshan, Geoffrey M. Voelker, David G. Andersen,
Michael Kaminsky, George Porter, and Alex C. Sno-
eren. Scheduling techniques for hybrid circuit/packet
networks. In Proceedings of the 11th ACM Confer-
ence on Emerging Networking Experiments and Tech-
nologies, CONEXT ’15, New York, NY, USA, 2015.
Association for Computing Machinery.

[97]

(98]

[99]

[100]

[101]

[102]

Yunpeng James Liu, Peter Xiang Gao, Bernard Wong,
and Srinivasan Keshav. Quartz: A new design element
for low-latency dcns. SIGCOMM’ 14, pages 283-294.

Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella,
Amar Phanishayee, and Shuchi Chawla. Themis: Fair
and efficient GPU cluster scheduling. In /7th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 289-304, Santa Clara, CA,
February 2020. USENIX Association.

William M. Mellette, Rajdeep Das, Yibo Guo, Rob
McGuinness, Alex C. Snoeren, and George Porter. Ex-
panding across time to deliver bandwidth efficiency
and low latency. NSDI’20, 2020.

William M. Mellette, Rob McGuinness, Arjun Roy,
Alex Forencich, George Papen, Alex C. Snoeren, and
George Porter. Rotornet: A scalable, low-complexity,
optical datacenter network. SIGCOMM ’17, pages
267-280, 2017.

Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit
Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Ku-
mar, Mohammad Norouzi, Samy Bengio, and Jeff Dean.
Device placement optimization with reinforcement
learning. In Doina Precup and Yee Whye Teh, edi-
tors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 2430-2439, Inter-
national Convention Centre, Sydney, Australia, 06—11
Aug 2017. PMLR.

Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,
Jie Amy Yang, Leon Gao, Dmytro Ivchenko, Aarti
Basant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani,
Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang
Chu, Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo
Feng, Yinbin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin
Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts,
Krishna Dhulipala, KR Kishore, Tyler Graf, Assaf
Eisenman, Kiran Kumar Matam, Adi Gangidi, Guo-
giang Jerry Chen, Manoj Krishnan, Avinash Nayak,
Krishnakumar Nair, Bharath Muthiah, Mahmoud kho-
rashadi, Pallab Bhattacharya, Petr Lapukhov, Maxim
Naumov, Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and
Vijay Rao. Software-hardware co-design for fast and
scalable training of deep learning recommendation
models, 2021.



[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Matthew K. Mukerjee, Christopher Canel, Weiyang
Wang, Daehyeok Kim, Srinivasan Seshan, and Alex C.
Snoeren. Adapting TCP for reconfigurable datacenter
networks. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
651-666, Santa Clara, CA, February 2020. USENIX
Association.

Shar Narasimhan. NVIDIA Clocks World’s Fastest
BERT Training Time and Largest Transformer Based
Model, Paving Path For Advanced Conversational
Al, Aug. 2019. https://devblogs.nvidia.com/
training-bert-with-gpus/.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. Pipedream:
Generalized pipeline parallelism for dnn training. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP’ 19, pages 1-15, New York,
NY, USA, 2019. Association for Computing Machin-
ery.

Maxim Naumov, John Kim, Dheevatsa Mudigere, Srini-
vas Sridharan, Xiaodong Wang, Whitney Zhao, Serhat
Yilmaz, Changkyu Kim, Hector Yuen, Mustafa Ozdal,
Krishnakumar Nair, Isabel Gao, Bor-Yiing Su, Jiyan
Yang, and Mikhail Smelyanskiy. Deep learning train-
ing in facebook data centers: Design of scale-up and
scale-out systems, 2020.

Maxim  Naumov, Dheevatsa Mudigere, Hao-
Jun Michael Shi, Jianyu Huang, Narayanan Sundara-
man, Jongsoo Park, Xiaodong Wang, Udit Gupta,
Carole-Jean Wu, Alisson G. Azzolini, Dmytro
Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii,
Yinghai Lu, Raghuraman Krishnamoorthi, Ansha
Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia,
Liang Xiong, and Misha Smelyanskiy. Deep learning
recommendation model for personalization and
recommendation systems, 2019.

T. T. Nguyen, M. Wahib, and R. Takano. Topology-
aware sparse allreduce for large-scale deep learning. In
2019 IEEE 38th International Performance Computing
and Communications Conference (IPCCC), pages 1-8,
2019.

Yosuke Oyama, Naoya Maruyama, Nikoli Dryden, Erin
McCarthy, Peter Harrington, Jan Balewski, Satoshi
Matsuoka, Peter Nugent, and Brian Van Essen. The
case for strong scaling in deep learning: Training large
3d cnns with hybrid parallelism. IEEE Transactions
on Farallel and Distributed Systems, 2020.

Heng Pan, Zhenyu Li, JianBo Dong, Zheng Cao, Tao
Lan, Di Zhang, Gareth Tyson, and Gaogang Xie. Dis-
secting the communication latency in distributed deep

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

sparse learning. In Proceedings of the ACM Inter-
net Measurement Conference, IMC °20, page 528-534,
New York, NY, USA, 2020. Association for Computing
Machinery.

Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong
Guo. A generic communication scheduler for dis-
tributed dnn training acceleration. In Proceedings of
the 27th ACM Symposium on Operating Systems Prin-
ciples, SOSP ’19, page 16-29, New York, NY, USA,
2019. Association for Computing Machinery.

Genzhi Photonics. 1x2 Mechanical Optical Switch,
2022. https://www.gezhiphotonics.com/1x2-
optical-switch.html.

George Porter, Richard Strong, Nathan Farrington,
Alex Forencich, Pang Chen-Sun, Tajana Rosing, Yesha-
iahu Fainman, George Papen, and Amin Vahdat. In-
tegrating microsecond circuit switching into the data
center. SIGCOMM’13, pages 447-458.

Leon Poutievski, Omid Mashayekhi, Joon Ong, Ar-
jun Singh, Mukarram Tariq, Rui Wang, Jianan Zhang,
Virginia Beauregard, Patrick Conner, Steve Gribble,
Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu,
Karthik Nagaraj, Jason Ornstein, Samir Sawhney, Ry-
ohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shi-
dong Zhang, Junlan Zhou, and Amin Vahdat. Jupiter
evolving: Transforming google’s datacenter network
via optical circuit switches and software-defined net-
working. In Proceedings of ACM SIGCOMM 2022,
2022.

Aurick Qiao, Sang Keun Choe, Suhas Jayaram Sub-
ramanya, Willie Neiswanger, Qirong Ho, Hao Zhang,
Gregory R. Ganger, and Eric P. Xing. Pollux: Co-
adaptive cluster scheduling for goodput-optimized
deep learning. In 15th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI
21), pages 1-18. USENIX Association, July 2021.

J. R. Quinlan. Induction of decision trees. Mach.
Learn., 1(1):81-106, March 1986.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Min-
jia Zhang, Reza Yazdani Aminabadi, Ammar Ahmad
Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe:
Advancing mixture-of-experts inference and training
to power next-generation ai scale, 2022.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. Zero-infinity: Break-
ing the gpu memory wall for extreme scale deep learn-
ing, 2021.



[119]

[120]

[121]

[122]

[123]

[124

[}

[125]

[126]

[127]

[128]

[129]

Leslie Reid. MOX Announces New
cent Automation Technology on Its
Hillsboro to Portland Fiber Route, Sept.
https://www.businesswire.com/news/home/
20200915005391/en/MOX-Announces—New-
Telescent-Automation-Technology-on-Its—
Latest-Hillsboro-to-Portland-Fiber-Route.

Teles-
Latest
2020.

Peter Sanders, Jochen Speck, and Jesper Larsson Tréff.
Two-tree algorithms for full bandwidth broadcast, re-
duction and scan. Parallel Computing, 35(12):581—
594, 2009.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE Transactions on Neural
Networks, 20(1):61-80, 2009.

Tae Joon Seok, Niels Quack, Sangyoon Han, Richard S.
Muller, and Ming C. Wu. Large-scale broadband dig-
ital silicon photonic switches with vertical adiabatic
couplers. Optica, 3(1):64-70, Jan 2016.

Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. CoRR,
abs/1802.05799, 2018.

Christopher J. Shallue, Jaechoon Lee, Joseph Antognini,
Jascha Sohl-Dickstein, Roy Frostig, and George E.
Dahl. Measuring the effects of data parallelism on
neural network training. Journal of Machine Learning
Research, 20(112):1-49, 2019.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism, 2020.

Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion, 2015.

Ankit Singla, Chi-Yao Hong, Lucian Popa, and
P. Brighten Godfrey. Jellyfish: Networking data cen-
ters randomly. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Imple-
mentation, NSDI’ 12, pages 17-17, Berkeley, CA, USA,
2012. USENIX Association.

Ion Stoica, Robert Morris, David Karger, M Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications.
ACM SIGCOMM Computer Communication Review,
31(4):149-160, 2001.

Jakub Tarnawski, Amar Phanishayee, Nikhil R. Deva-
nur, Divya Mahajan, and Fanny Nina Paravecino. Effi-
cient algorithms for device placement of DNN graph

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

operators. In Hugo Larochelle, Marc’ Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin, editors, Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Infor-
mation Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual, 2020.

Rajeev Thakur, Rolf Rabenseifner, and William Gropp.
Optimization of collective communication operations
in mpich. [Int. J. High Perform. Comput. Appl.,
19(1):49-66, February 2005.

Rajeev Thakur, Rolf Rabenseifner, and William Gropp.
Optimization of collective communication operations
in mpich. Int. J. High Perform. Comput. Appl.,
19(1):49-66, February 2005.

Rajeev Thakur, Rolf Rabenseifner, and William Gropp.
Optimization of collective communication operations
in mpich. The International Journal of High Perfor-
mance Computing Applications, 19(1):49-66, 2005.

Yuichiro Ueno and Rio Yokota. Exhaustive study of
hierarchical allreduce patterns for large messages be-
tween gpus. In 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pages 430439, 2019.

Jakob Uszkorei.  Transformer: A Novel Neural
Network Architecture for Language Understanding,
Aug. 2017. https://ai.googleblog.com/2017/08/
transformer-novel-neural-network.html.

Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and
Michael Schapira.  Xpander: Towards optimal-
performance datacenters. In Proceedings of the 12th
International on Conference on Emerging Networking
EXperiments and Technologies, CONEXT ’16, pages
205-219, New York, NY, USA, 2016. ACM.

Guanhua Wang, Shivaram Venkataraman, Amar Phan-
ishayee, Jorgen Thelin, Nikhil Devanur, and Ion Stoica.
Blink: Fast and generic collectives for distributed ml.
In Conference on Machine Learning and Systems (ML-
Sys 2020), March 2020.

Guohui Wang, David G. Andersen, Michael Kaminsky,
Konstantina Papagiannaki, T.S. Eugene Ng, Michael
Kozuch, and Michael Ryan. c-Through: Part-time op-
tics in data centers. SIGCOMM'’10, pages 327-338.

S. Wang, D. Li, J. Geng, Y. Gu, and Y. Cheng. Impact
of Network Topology on the Performance of DML.:
Theoretical Analysis and Practical Factors. In IEEE IN-
FOCOM 2019 - IEEE Conference on Computer Com-
munications, pages 1729-1737, 2019.



[139]

[140]

[141

—

[142]

[143]

Pijika Watcharapichat, Victoria Lopez Morales,
Raul Castro Fernandez, and Peter Pietzuch. Ako:
Decentralised deep learning with partial gradient ex-
change. SoCC ’16, 2016.

Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, Fan Yang, and Lidong Zhou. Gandiva: Intro-
spective cluster scheduling for deep learning. In /3th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 595-610, Carlsbad,
CA, October 2018. USENIX Association.

Pengtao Xie, Jin Kyu Kim, Yi Zhou, Qirong Ho, Ab-
himanu Kumar, Yaoliang Yu, and Eric Xing. Lighter-
communication distributed machine learning via suffi-
cient factor broadcasting. In Proceedings of the Thirty-
Second Conference on Uncertainty in Artificial Intelli-
gence, pages 795-804, Arlington, Virginia, USA, 2016.
AUAI Press.

Peifeng Yu and Mosharaf Chowdhury. Fine-grained
GPU sharing primitives for deep learning applications.
In Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and
Vivienne Sze, editors, Proceedings of Machine Learn-
ing and Systems 2020, MLSys 2020, Austin, TX, USA,
March 2-4, 2020. mlsys.org, 2020.

Peifeng Yu, Jiachen Liu, and Mosharaf Chowdhury.
Fluid: Resource-aware hyperparameter tuning engine.
In A. Smola, A. Dimakis, and I. Stoica, editors, Pro-
ceedings of Machine Learning and Systems, volume 3,
pages 502-516, 2021.

[144]

[145]

[146]

[147]

[148]

Yue Yu, Jiaxiang Wu, and Longbo Huang. Double
quantization for communication-efficient distributed
optimization. In Advances in Neural Information Pro-
cessing Systems, volume 32, pages 4438-4449. Curran
Associates, Inc., 2019.

Mingyang Zhang, Radhika Niranjan Mysore, Sucha
Supittayapornpong, and Ramesh Govindan. Under-
standing lifecycle management complexity of datacen-
ter topologies. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 19),
pages 235-254, Boston, MA, February 2019. USENIX
Association.

H. Zhao and J. Canny. Kylix: A sparse allreduce for
commodity clusters. In 2014 43rd International Con-
ference on Parallel Processing, pages 273-282, 2014.

Liangyu Zhao, Siddharth Pal, Tapan Chugh, Weiyang
Wang, Prithwish Basu, Joud Khoury, and Arvind Kr-
ishnamurthy. Optimal direct-connect topologies for
collective communications, 2022.

Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Amar
Phanishayee, Xuan Kelvin Zou, Hang Guan, Arvind
Krishnamurthy, and Thomas Anderson. RAIL: A case
for redundant arrays of inexpensive links in data center
networks. In 74th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages
561-576, Boston, MA, March 2017. USENIX Associ-
ation.



A Tree-AllReduce and Other AllReduce Per-
mutations

Section 2 established that we can manipulate the traffic of
a ring-AllReduce collective by permuting the labeling of
servers in the AllReduce group. Here, we illustrate how to use
the same technique on another AllReduce algorithm, called
tree-AllReduce.

In the tree-AllReduce algorithm, the servers are connected
logically to form a tree topology. The AllReduce operation
starts by running a reduce operation to the root node with
recursive halving, followed by a broadcast to the rest of the
cluster with recursive doubling [132].

A common instantiation of tree-AllReduce is the
double binary tree (DBT) algorithm [120]. In this algorithm,
the first step is to create a balanced binary tree for the nodes.
The properties of balanced binary trees guarantee that one
half of the nodes will be leaf-nodes, and the other half will be
in-tree; thus, a second binary tree is constructed by flipping
the labeling of the leaf and in-tree nodes. This way, each node
(except the root in both trees) has the same communication
requirements for the AllReduce operation, as described in
the last paragraph, and bandwidth-optimally is achieved. Fig-
ure 23a shows an example where in the first binary tree, the
in-tree nodes are even, and the leaf nodes are odd, while the
second tree flips the labeling.

The DBT itself is essentially an example of permuting the
node labeling to achieve an AllReduce operation with bal-
anced communication load. We also note that we can permute
the labeling for the entire set of nodes for a pair of DBTs to
create a new pair of trees that can perform the AllReduce op-
eration at the same speed. Figures 23b and 23c illustrate two
other possible double binary trees, and their corresponding
traffic demand matrix for the DLRM and CANDLE exam-
ple shown in Figures 22 and 24 (§2). Arbitrary permutations
can be used, and to limit the cases, we could simply consider
the cyclic permutations in the modular space as described in
TotientPerms.

In general, all AllReduce operations can be described as
a directed graph G = (V,E) where V is the set of nodes in
the cluster, and E denotes data dependencies. The permutable
property says every graph G’ = (V,E') that is isomorphic to
G can perform the AllReduce operation equally well, where
the homomorphism between G and G’ is described by the
symmetric group on V (generally denoted by Sym (V) in group
theory).

B Commercially Available Patch Panels and
Optical Circuit Switches

Optical patch panels. A patch panel is a device to facilitate
connecting different parts of a system. For instance, electrical
patch panels are used in recording studios and concert sound
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Figure 22: DLRM traffic heatmaps with double binary tree
AllReduce.
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Figure 24: CANDLE traffic heatmaps with double binary tree
AllReduce.

systems to connect microphones and electronic instruments
on demand [40]. Fiber optic patch panels are commonly used
for cable management, and have been proposed in recent dat-
acenter topology designs [145]. Reconfigurable optical patch
panels are a new class of software-controlled patch panels
and are already commercialized at scale [119]. For instance,
Telescent offers 1008 duplex ports with insertion loss less than
0.5 dB and cost ~$100K ($100/port) [88, 119]. Reconfigura-
tion is performed using a robotic arm that grabs a fiber on the
transmit side and connects it to a fiber on the receive side [88].
However, the reconfiguration latency of optical patch panels is
several minutes [43]. Note that reliability is of utmost concern
for operation in unmanned locations; for example, Telescent
NTM patch panels have been certified to NEBS Level 3 and
have over 1 billion port hours in operation [31].

3D MEMS-based Optical Circuit Switches (OCSs). An
OCS uses tiny mirrors to change the direction of light, thereby



2d Patch Panels
A

N

-
Alctive port Loolk-ahead port

| Patch Panel,
v

‘i Patch Panely Patch Panely1 Patch Panelyq

%
o
1x2 optical switch
dinterfaces <f33:]> [oe] [oee] [oed]

Server; Server, Server, ; Server,

Figure 25: Active & Look-ahead ports for high reconfigura-
tion latency.

Optlcal SW|tch1 Optlcal Swntch

IVASTSY|

(Server1 (Serverzq (Servern { \Server

Job1 Job2

Optlcal SW|tchd 1 Optlcal Swnch\1

Figure 26: Sharding TOPOOPT cluster for two jobs.

reconfiguring optical links. The largest optical circuit switch
on the market has 384 duplex ports with ~10 ms reconfig-
uration latency and is available for $200K ($520/port) [41].
However, the optical loss of these switches is 1.5-2.7 dB [2].
Compared to patch panels, OCSs have the following disad-
vantages: (i) each port is five times more expensive; (if) their
insertion loss is higher; and (iii) their port-count is three times
lower. The main advantage of OCSs is that their reconfigu-
ration latency is four orders of magnitude faster than patch
panels.

C Handling Sharding and Dynamic Job Ar-
rivals in Shared Clusters

Section 3 explained how TOPOOPT can support multiple
job sharing the cluster through sharding; here we provide a
detailed explanation of how sharding works. Figure 26 shows
how a TOPOOPT cluster is sharded to train two jobs together.
In this scenario, the optical switches are configured in a way
such that the green part (Server 1, 2 and their corresponding
links) is completely disjointed from the red part (Server n — 1,
server n). The complete isolation ensures each job gets its
dedicated resources, and benefits the performance (especially
the tail latency) as shown in Section 5.6.

To start a job with k servers, we need to reconfigure the
interconnection between these k servers before the job starts.
This can be done quickly when OCSs are used, but when
patch panels are used, there could be several minutes of delay
before the job can start. To address this challenge, we use a
look-ahead approach to pre-provision the next topology while

current jobs are running. More specifically, we use a simple
1 x2 mechanical optical switch [112] at each server’s interface
to choose between Active and Look-ahead ports. These 1x2
switches are inexpensive ($25) and have 0.73 dB optical loss
measured in our prototype. Unlike optical splitters [14], that
incur 3 dB loss, these switches choose where to send light
between their two output ports. We then connect the two ends
of each 1x2 switch to different patch panels, as shown in
Figure 25. As aresult, a TOPOOPT cluster with n servers, each
with d interfaces, has 2d patch panels where each interface is
split into two parts: Active and Look-ahead. At any point in
time, only one end of each 1x2 switch is participating in the
active topology; the other end is pre-provisioning the topology
for the next job. Since the topology and parallelization strategy
are calculated off-line, we already know the sequence of job
arrivals and the number of servers required by each job. This
design allows each server to participate in two independent
topologies. Hence, when a set of servers uses one topology
for a training job, TOPOOPT pre-provisions the next topology,
optimized for the next task by reconfiguring Look-ahead ports.
Once all the servers for the new job are ready, TOPOOPT
immediately flips to the new topology by reconfiguring the
corresponding 1x?2 switches.

D Model Configurations and Transfer Sizes

List | summarizes the parameters we used in our simulation
and testbed. Model parameters and batch sizes are selected
based on common values used in Meta for simulations. For
the prototype, we reduce parameter values and batch sizes to
fit the models in our 12-node cluster.

In most workloads observed in Meta, the size of AlIReduce
transfers is larger than the size of MP transfers for each iter-
ation, because in most cases, it would not be worthwhile if
MP transfers were as large as AllReduce transfers. Consider
the DLRM example in Section 4.3 with 20 GB embedding
tables with double-precision floating parameters. If we were
to distribute this embedding table using data parallelism, each
server would need to send and receive 37.5 GB of data for the
AllReduce operation. On a 100 Gbps fabric, this would take 3
seconds by itself, but if we put it on one server, it would only
need to transfer 32 MB/server (assume we have a per-server
batch size of 8192; then, MP traffic is calculated as 16 servers
x 8192 samples/server x 512 activation per sample X 8 bytes
per activation / 16 servers = 32 MB). We note that adding
pipeline parallelism can increase the amount of MP traffic
as it overlaps forward and backward passes. Efficient ways
to pipeline batches remains an active research area [77, 105]
especially when hybrid parallelism is employed. Pure model
parallelism creates another type of sparse traffic pattern where
only accelerators with inter-layer dependencies need to com-
municate. Our TOPOLOGYFINDER algorithm can support
such communication patterns.

Conceptually, however, when the network bandwidth goes



VGG:

Batch/GPU: 64 (§5.3, §5.6), 32 (§6)

ResNet50:

Batch/GPU: 128(§5.3), 20 (§6)

BERT:

Batch/GPU: 16 (§5.3, §5.6), 2 (§6)

#Trans. blks: 12 (§5.3), 6 (§5.6, §6)

Hidden layer: 1024 (§5.3), 768 (§5.6), 1024(§6)
Seq. length: 64 (§5.3), 256 (§5.6), 1024(§6)
#Attn. heads: 16 (§5.3), 6 (§5.6), 16(§6)

Embed. size: 512 (§5.3, §5.6, §6)

DLRM:

Batch/GPU: 128 (§5.3),[32,--- ,2048] (§5.4), 256 (§5.6), [64,--- ,512]
(§6)

#Dense layer: 8 (§5.3, §5.6), 4 (§6)

Dense layer size: 2048 (§5.3), 1024 (§5.6, §6)
#Dense feat. layer: 16 (§5.3, §5.6), 8 (§6)

Feat. layer size: 4096 (§5.3), 2048 (§5.6, §6)
Embed.: 128 x 107 (§5.3), 256 x 107 (§5.6), 32768x10° (§6)
#Embed. tables: 64 (§5.3), 16 (§5.6), 128 (§5.4) , 12 (§6)
CANDLE:

Batch/GPU: 256 (§5.3, §5.6), 10 (§6)

#Dense layer: 8 (§5.3, §5.6), 4 (§6)

Dense layer size: 16384 (§5.3), 4096 (§5.6, §6)
#Dense feat. layer: 16 (§5.3, §5.6), 8 (§6)

Feat. layer size: 16384 (§5.3), 4096 (§5.6, §6)
NCF:

Batch/GPU: 128 (§5.3)

#Dense layer: 8 (§5.3)

Dense layer size: 4096 (§5.3)

#User embedding table (MF, MLP): 32, 32 (§5.3)
#User per table: 10° (§5.3)

#Item embedding table (MF, MLP): 32, 32 (§5.3)
#Item per table: 10° (§5.3)

MF embedding dimension: 64 (§5.3)

MLP embedding dimension: 128 (§5.3)

List 1: DNN models used in our simulations and testbed.

to infinity, other overheads in the system (e.g. CUDA kernel
launch) will dominate the latency. In such cases, it might
be beneficial to choose model parallelism instead of data
parallelism, to reduce the amount of system overheads. In
particular, prior work shows 10 Tbps Silicon Photonics links
enable more aggressive model parallelism where the size
of MP traffic is significant [89]. TOPOOPT’s approach to
distribute the degree between the MP and AllReduce sub-
topologies enables us to accommodate this case as well.

E Algorithm Details

E.1 TOPOLOGYFINDER

Using group theory to find AllReduce permutations. For
aring-AllReduce group with n servers labeled Sy, ...,S,—1, a
straightforward permutation is (So — S1 — S2-++ — Sp—1 —
So). We denote this permutation by a ring generation rule
as: Si = S(i41) mod n- Since the servers form a ring, the index
of the starting server does not matter. For instance, these

two rings are equivalent: (Sop — S| — S2 — S3 — Sp) and
(Sl -8 =853 =5 —>Sl).3

We first provide the mathematical foundation of the ring
permutation rule.

Theorem 2 (Ring Generation). For a cluster of n nodes V =
{80,81, - ,Sn—1}, all integer numbers p < n, where p is co-
prime with n (i.e. gcd(p,n) = 1) represent a unique ring-
AllReduce permutation rule.

Proof. Consider the integer modulo n group with addition
Z; ={0,1,---,(n—1)}. Z} is a cyclic group. By the funda-
mental theorem of cyclic groups, p is a generator of Z,F if and
only if gcd(p,n) = 1. Hence we can cover the entire Z; by
repeatedly adding p to itself.

Now consider the graph G+ , = (V;+, E),) where the set of
vertices V- = Z, and E, = {(ax p,(a+1) x p) € szz, ae
Z;}. The set E, forms a cycle on Gyt - Now denote our
cluster as G = (V,E) where V is defined as above and E
represents a set of directed links. Then G+ , is isomorphic
to G, hence following the rule in E,, we can define a valid
ring in G. Furthermore, since Vp; # p; we can guarantee that
(0,pi) € Ep, and (0,p;) ¢ Ep,, and each p; is guaranteed to
describe a unique ring. O

One way to extend our approach to other AllReduce algo-
rithms is to generalize TotientPerms (Algorithm 2) so that the
E, described in theorem 2 simply represents a permutation
which we apply to the original node labeling, while keeping
the edge relation, to create an isomorphic graph that describes
the new AllReduce topology.

E.2 Bounding maximum hop count with To-
tientPerms

In this section, we argue that fitting a geometric sequence
for choosing permutation provides an approximately O(d /n)
bound for the maximum diameter of a cluster with n nodes
and degree d. Denote x = /n. We simplify the question
to the following: given a contiguous set of numbers A =
{1,...,n} and a set of numbers from the geometric sequence
S ={x%x! ... x?71}, choose h numbers (allow repetition)
s1,+,8; from § so that m = fo:ls,- for some m € A[. Let
h = x(m), find min,,cq k(m).

Again for simplicity, assume x € Z. Then for a given m €
AL, we get the recursive relation k(m) = 1 +k(m — x') where
[ = argmax;—, i<,- m = N — 1 gives the maximum k(N —
1)=dx.

The problem above is simpler than the one in TOPOOPT.
In TOPOOPT, x is rarely an integer, and S is a projection
of the geometric sequence S = {x° x',....x?~!} onto the

3Given that ring-AllReduce is the dominant AllReduce collective, we
describe our algorithms based on ring-AllReduce. Appendix E.1 explains
how to extend our algorithm to other AllReduce communication collectives.



Algorithm 4 CoinChangeMod pseudocode

1: procedure COINCHANGEMOD(n, G)
> Input n: Total number of nodes
> Input G: Network Topology
> Output R: Routings
> R is the routing result
R={}
> Acquire the set of “coins" from the topology,
> which are the choices of Algorithm 3
C = GetCoins (G)
4: foric [I,N—1]do
> curr_dist denotes the “distance"” of a value

»

(98]

> (node distance) counted by number of “coins"
5 curr_dist[i] = oo
> curr_bt record a back-trace of “coins" to
> get to a value (node distance)
6: curr_bt|i] = oo
7: for cc Cdo
8: curr_dist[c] =0

9: curr_btlc] = ¢

10: while curr_dist has at least one o in it do

11: foric [I,N—1]do

12: new_dist[i] = curr_dist|i]

13: new_btli| = curr_bt[i]

14: for cc Cdo

15: if curr_dist[(i — ¢) mod N] < new_dist[i] then
16: new_dist[i] = cur_dist[(i — ¢) mod N| + 1
17: new_btli] = ¢

18: curr_dist = new_dist

19: curr_bt = new_bt

> Construct the routing for each node distance from the back-trace
20: R = GetRouteSeq (curr_bt)
21: return R

candidates (co-prime numbers with the size of a subset of
node participating in AllReduce). The intuition still holds.

Note that when /n < 2, it is advantageous to choose x = 2
and spend less degree to create a geometric sequence with a ra-
tio of at least 2. In this case, the d factor becomes the actually
used degree d = log, n, and the bound holds at O(log, n).

E.3 Coin Change Routing

Consider servers S; and S; that need to exchange AllReduce
transfers but do not have a direct edge between them. We use a
modified version of the classical coin change problem [52] to
find an efficient routing path (line 19). In classical coin change,
the goal is to find the minimum number of coins that would
sum to a certain fotal value. Our ring generation rules enable
us to treat the routing problem similarly. In particular, the
p values of AllReduce permutations that have been selected
in the AllReduce sub-topology are the coin values, and the
difference between server i and j indices ((j — i) mod n) is the
target total value that we want to achieve. The only difference
is that our problem runs with modulo n arithmetic, as the
server IDs wrap around in the ring structure. Algorithm 4 lists
the pseudocode of CoinChangeMod.

E.4 OCS-reconfig Heuristic

Algorithm 5 describes the heuristic we use for OCS-reconfig.
As mentioned in Section 4, our goals are (i) to have enough
bandwidth for large transfer demands, (ii) while also mini-
mizing the latency of indirect routing for nodes that do not
have a direct link between them.

To achieve this goal in a reconfigurable interconnect, we
propose a utility function that finds a balance between the two
goals by maximizing the number of parallel links between
high demand nodes but with a diminishing return. More for-
mally, assume a network topology is represented by graph
G = (V,E) and each node has degree d. We define L(i, j) to
be the number of parallel links between node-pair (i, j). Let
T (i, j) be the amount of unsatisfied traffic demand. We define
a topology G’s utility function as follows:

Utility(G) = Y T(i, j) x Discount(L(i, j)) )
{i,j}€E

The Discount function can be defined in different ways; in
Algorithm 5 and Algorithm 1’s MP construction, we use

!
Discount (1) = Z 27 2)

x=1

to reduce the utility of additional links exponentially. We can
also explore other discount scaling, such as linear or factorial
functions.

When the fabric is reconfigurable (as in OCS-reconfig),
we collect the unsatisfied traffic demand every 50 ms and
run Algorithm 5 to decide the new network topology. After
the new topology is computed, we pause all the flows for
10 ms representing the reconfiguration delay of the OCS,
apply the new topology, and then resume the flows with one
or more corresponding physical links across the flow source
and destination. The two-edge replacement algorithm from
OWAN [87] in line 21 ensures the topology is connected,
when we enable host-based forwarding.

F Modifications to SiP-ML

Since SiP-ML’s SiP-Ring proposal is based on a physical
ring topology, its reconfiguration algorithm has several con-
straints on wavelength allocation for adjacent nodes. Given
that TOPOOPT’s physical topology is not a ring, directly ap-
plying SiP-Ring’s optimization using the original C++ code
causes SiP-ML to perform extremely poorly in our setup. To
give SiP-ML a leg up, we observe that its formulation tries
to optimize a utility function very similar to Equation | with-
out the Discount part (i.e. Discount = 1), but with an integer
liner program (ILP). While an ILP gives the optimal solution,
its runtime makes it prohibitive for the amount of simula-
tion parameters we explore. Therefore, we substitute the ILP



Algorithm 5 OCS-reconfi seudocode Link Tran- NIC Electrical | Patch OCS 1x2
g gp band- sceiver | ($) switch panel port switch
1: procedure OCS-RECONFIG(V, T, d, L) width $) port ($) port ($) | ($) (%)

> Input V: Nodes in the network
> Input 7': Unsatisfied traffic demand matrix
> Input d: Node degree limit
> Input L: Number of links between ordered node-pair, initially zero
> Output E: Allocated links, initially empty
> Initially, E is empty

2: E={}
> Initially, each node has d available tx and rx interfaces
3: forveVdo
4: available[v] = d
5: available,[v] = d

> Create new links according to the demand list
6: while 3i, j < |V|:i % j,available,[v;] > 0,available[v;] > 0 do
> allocate a direct connection for the highest demand pair

7: (v1,v2) = node-pair with highest demand in T
8: e = NewLink(v, v»)
9: E =EU{e}
> Increment the number of parallel links from vy to v,
10: L(vi,m)+=1
> Scale the demand down by the number of links
11: T(vi,n2) x=1/2
> Update available interfaces
12: forv e (vi,v;) do
13: available,[vi] —= 1
14: availableyc[v2] —=1
> Stop considering nodes with zero available interfaces
15: if available,[vi] == 0 then
16: for u eV do
17: Remove (vi,u)’s entry from T
18: if available,.[v2] == 0 then
19: for ucV do
20: Remove (u,v2)’s entry from 7

> Ensure the network graph is connected
21: 2-EdgeReplacement(E, T)

> Updte route for host-based forwarding
22: UpdateRoute(E)
23: return £

with Algorithm 5 with Discount = 1, a heuristic that tries to
achieve a similar goal.

Note that the SiP-ML paper has another design called SiP-
OCS, which is similar architecturally to TOPOOPT. In the
paper, SiP-OCS is proposed as a one-shot reconfiguration ap-
proach due to the long reconfiguration latency of 3D-MEMS
based OCSs.

G Cost of Network Components

Table 2 lists the cost of network components we use in Sec-
tion 5.2, namely NICs, transceivers, fibers, electrical switches,
patch panels, and optical switches. The cost of transceivers,
NICs, and electrical switch ports is based on the lowest avail-
able prices in official retailer websites [18, 28]. Note that
for 200 Gbps, we use more 100 Gbps ports and fibers, be-
cause they were less expensive than high-end 200 Gbps and
400 Gbps components, or their price was not available. To esti-
mate the cost of electrical switch ports, we consider Edgecore

4200 G transceivers and switch ports are estimated as 2x 100G cost.

10 Gbps 20 [13] 185[32] | 94 [21] 100[43] | 520([41]| 25([112]
25 Gbps 39[15] 185[32] | 144[23] 100 [43] | 520[41]| 25[112]
40 Gbps 39[16] 354 [33] | 144[22] 100[43] | 520[41]| 25[112]
100 Gbps | 99 [12] 678 [34] | 187[24] 100[43] | 520([41]| 25([112]
200 Gbps™ | 198[12]| 815[35] | 374[24] 100[43] | 520([41]| 25([112]

Table 2: Cost of network components.

bare metal switches with L3 switching and maximum number
of ports to amortize the per port cost. The cost of NICs is
taken from the Mellanox ConnectX series, and we consider
two 2-port NICs as one 4-port NIC. We obtain the cost of the
patch panel, OCS, and 1x2 optical switch directly from their
suppliers, Telescent [43] and Polatis [41] (with 40% discount).
The cost of transceivers matches that reported in Sirius [53].
To compute the network cost of Fat-tree and Ideal Switch,
we consider number of nodes in a full bisection bandwidth Fat-
tree. For example, a standard k£ = 8 Fat-tree has 80 switches
with 64 ports, or 640 switch ports in total, in addition to 1
NIC per host and one transceiver per NIC and switch port. A
ToPOOPT system of 128 nodes with degree d uses 128 x d
NICs and transceivers, but 128 x 2 x d patch panel ports be-
cause of the look-ahead design. Note that the cost of optical
components stays constant as link bandwidth increases, an in-
herent advantage of optics. Following prior work, we estimate
the cost of fiber optics cables as 30 cents per meter [68] and
select each fiber’s length from a uniform distribution between
0 and 1000 meters [148]. We calculate the cost of TOPOOPT
based on 2d patch panels and 1x2 switches at each link to
support its look-ahead design (§C). OCS-reconfig’s cost is
based on d OCSs connected to all servers in a flat topology.

H Impact of Server Degree on TOPOOPT’s Per-
formance

Figure 27 shows the same setting as Figure 11 except that
each server has a degree of eight (d = 8). The results show a
similar trend: even though per server bandwidth has increased,
the behavior of different network architectures remains con-
sistent.

Next we do a sensitivity analysis of impact of server de-
gree d on TOPOOPT’s performance. Specifically, we vary
the degree of each server in TOPOOPT for two link band-
widths: 40 Gbps and 100 Gbps. Figure 28 shows the trend
for different DNN models. Both DLRM and CANDLE are
network-heavy; therefore, they benefit more from the addi-
tional bandwidth obtained by increasing d. CANDLE’s im-
provement is almost linear as degree goes up, as the strategy
is closer to data parallel and the amount of bandwidth avail-
able to AllReduce operation increases linearly as well. In the
case of DLRM, we observe a super-liner scaling when B =
100 Gbp because DLRM has one-to-many and many-to-one
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Figure 29: Host-based RDMA forwarding to create a logical
RDMA connection between end hosts.

MP transfers which require a low hop count in the topology.
As we increase d, TOPOLOGYFINDER is able to find network
topologies with much lower diameter, consequently benefiting
the performance by both increasing bandwidth and reducing
hop-count for MP transfers. Finally, BERT is mostly com-
pute bound at higher bandwidth; hence, increasing the server
degree and bandwidth per node has marginal impact on its
iteration time.

I Enabling Host-based Forwarding in RDMA

To support a multihop TOPOOPT interconnect using host-
based forwarding, we enable RDMA RoCEv2 forwarding on

all our HP NICs. RoCEv2 is an implementation of RDMA
on top of UDP/IP protocol, by utilizing a particular UDP
port (4791) and encapsulating an InfiniBand (IB) data packet.
Hence, each RoCEv2 packet can be routed with its source and
destination IP addresses. However, host-based forwarding is
challenging in RDMA protocol, as the packet processing and
memory access are offloaded to the NIC, and the host does
not have access to individual packets. More precisely, if a
packet’s IP destination IP address does not match the NIC’s
IP address, the RDMA engine silently drops the packet.

To address this issue, we collaborated with engineers from
Marvell, the provider of the firmware and driver for our HP
NICs. The solution that came out of our collaboration does
not require proprietary software or firmware, and is applicable
to commodity NICs with the same ASIC. We will release our
scripts publicly. At a high-level, we use a feature called NPAR,
or network partitioning. It allows us to split each 25 Gbps
physical interface into two logical interfaces in the hardware
level: if; and if>, as shown in the right-most port of server
A in Figure 29. if] is a normal RDMA interface, where the
RDMA engine of the NIC bypasses the kernel, and it has an
IP address. This enables the upper layer software to consider
if1 as a normal RDMA interface. However, i f> does not have
an IP address and RDMA is disabled. if; has a different MAC
address from if], and we use this address to split the traffic
across if] and if,. The traffic that needs to be forwarded uses
the MAC address of if; and hence is delivered to the host
networking stack instead of NIC’s RDMA engine.

Furthermore, we establish a set of iproute, arp, and tc
flower rules in Linux to enable the proper forwarding of
packets. If two servers are directly connected, such as the
third port of server A and the second port of Server B in
Figure 29, we only need to indicate the outgoing interface



on each of these servers. RDMA engines will handle the
communication. However, for the connection between server
A and D, we set the iproute and arp tables on server A
and server D to dictate which port the traffic should go out,
as well as the proper MAC address of the next server in the
forwarding chain. In this case, the packets are delivered to
the kernel. Then, on servers B and C, we set the tc flower
rules to forward the packets to the next server with the proper
MAC address. In these tc flower rules, we look-up the final
destination IP and assert the routing that was computed by
our algorithm.

Walk-through of an example of a packet going from
server A to server D. In Figure 29, the RDMA engine of

server A assumes server D is connected on the third port.

It uses the kernel’s routing tables for the destination MAC
address, which is set to the MAC address of if, of the second
port on server B. Therefore, a packet which starts as an RDMA
packet of server A is treated as an Ethernet packet when it
arrives at server B, and goes to server B’s kernel. In the kernel,
based on the packet’s final destination IP of server D, server B
redirects the packet to the fourth port, with destination MAC

address set to if> of server C. In this connection, the packet
is treated as a normal Ethernet packet. Finally, on server C,
the kernel rewrites the destination MAC address to that of if;
on the third port of server D, and redirects it to that port. In
this connection, the outgoing Ethernet packet is considered an
RDMA packet because of the destination MAC address. For
the reverse connection from server D to A, the same process
happens in reverse, to support a bidirectional connection.

With these forwarding rules, we construct logical RDMA
connections between all pairs of servers. Upper layer commu-
nication libraries such as NCCL requires all-to-all connectiv-
ity, and they will utilize these connections. We also modify
NCCL to be topology-aware, as certain pairs of servers are
only connected through specific ports.

Compared to native point-to-point RDMA, this approach
takes a performance penalty. Our experiments indicate the
overhead is negligible when the amount of forwarded traffic
is small. Our NICs currently support TCP forwarding offload.
With firmware and driver modifications or future versions of
the NICs, they will also support RDMA forwarding offload.
This will further reduce the overhead of our approach.



	Introduction
	Motivation
	Background on Distributed DNN training
	Production Measurements

	TopoOpt System Design
	Co-optimizing Parallelization Strategy and Network Topology
	Alternating Optimization
	TopologyFinder Algorithm
	Traffic Mutability and AllReduce Topology

	Large Scale Simulations
	Methodology & Setup
	Cost Analysis
	Performance Comparison on Dedicated Clusters
	Impact of All-to-all Traffic
	Impact of Host-based Forwarding
	Performance on Shared Clusters
	Impact of Reconfiguration Latency

	Prototype
	Discussion
	Related Work
	Conclusion
	Acknowledgments
	Tree-AllReduce and Other AllReduce Permutations
	Commercially Available Patch Panels and Optical Circuit Switches
	Handling Sharding and Dynamic Job Arrivals in Shared Clusters
	Model Configurations and Transfer Sizes
	Algorithm Details
	TopologyFinder
	Bounding maximum hop count with TotientPerms
	Coin Change Routing
	OCS-reconfig Heuristic

	Modifications to SiP-ML
	Cost of Network Components
	Impact of Server Degree on TopoOpt's Performance
	Enabling Host-based Forwarding in RDMA

