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Abstract

Graphs are ubiquitous in various domains, such as social networks and biological
systems. Despite the great successes of graph neural networks (GNNs) in modeling
and analyzing complex graph data, the inductive bias of locality assumption, which
involves exchanging information only within neighboring connected nodes, restricts
GNNs in capturing long-range dependencies and global patterns in graphs. Inspired
by the classic Brachistochrone problem, we seek how to devise a new inductive
bias for cutting-edge graph application and present a general framework through
the lens of variational analysis. The backbone of our framework is a two-way
mapping between the discrete GNN model and continuous diffusion functional,
which allows us to design application-specific objective function in the continuous
domain and engineer discrete deep model with mathematical guarantees. First, we
address over-smoothing in current GNNs. Specifically, our inference reveals that
the existing layer-by-layer models of graph embedding learning are equivalent to a
ℓ2-norm integral functional of graph gradients, which is the underlying cause of
the over-smoothing problem. Similar to edge-preserving filters in image denoising,
we introduce the total variation (TV) to promote alignment of the graph diffusion
pattern with the global information present in community topologies. On top of this,
we devise a new selective mechanism for inductive bias that can be easily integrated
into existing GNNs and effectively address the trade-off between model depth and
over-smoothing. Second, we devise a novel generative adversarial network (GAN)
to predict the spreading flows in the graph through a neural transport equation.
To avoid the potential issue of vanishing flows, we tailor the objective function
to minimize the transportation within each community while maximizing the
inter-community flows. Our new GNN models achieve state-of-the-art (SOTA)
performance on graph learning benchmarks such as Cora, Citeseer, and Pubmed.
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1 Introduction

Graph is a fundamental data structure that arises in various domains, including social network
analysis [42], natural language processing [36], computer vision [30], recommender systems [37],
and knowledge graphs [21] among others. Tremendous efforts have been made to operate machine
learning on graph data (called graph neural networks, or GNNs) at the node [23], link [41], and graph
level [27]. The common inductive bias used in GNNs is the homophily assumption that nodes that
are connected in a graph are more likely to have similar features or labels. In this context, most GNN
models deploy a collection of fully-connected layers to progressively learn graph embeddings by
aggregating the nodal feature representations from its topologically-connected neighbors throughout
the graph [19].

group 1 group 2group 3

node #2
node #1

unlabeled

Figure 1: Demonstration of the root cause of over-smoothing in
GNNs. Nodes #1 and #2 are located along the boundary of two com-
munities. The locality assumption in GNNs steers the learning of the
graph representations by constraining the information exchange via
node-to-node connections. However, such link-wise inductive bias
opts to neutralize the contrast of node embeddings between nodes #1
and #2, which might undermine the node classification accuracy. Our
research framework yields the solution for the over-smoothing issue
by enabling heat-kernel diffusion within each community while penal-
izing the excessive community-to-community information exchanges
(highlighted in red).

Under the hood of GNNs, the graph representation learning process is achieved by various learnable
operations, such as message passing [5] or graph convolution [23]. Due to the nature of exchanging
information in a local graph neighborhood, however, it is challenging to capture global graph
representations, which go beyond node-to-node relationship, by leveraging the deep architecture in
GNNs while being free of overly smoothing the feature representations for the closely-connected
nodes. Fig. 1 demonstrates the root cause of over-smoothing issue in current GNNs, where node color
denotes the group label (no color means unlabeled) and edge thickness indicates connection strength.
It is clear that nodes #1 and #2 are located at the boundary of two communities. The inductive bias of
GNNs (i.e., locality assumption) enforces the node embedding vectors on node #1 and #2 becoming
similar due to being strongly connected (highlighted in red), even though the insight of global
topology suggests that their node embeddings should be distinct. As additional layers are added to
GNNs, the node embeddings become capable of capturing global feature representations that underlie
the entire graph topology. However, this comes at the cost of over-smoothing node embeddings
across graph nodes due to (1) an increased number of node-to-node information exchanges, and (2) a
greater degree of common topology within larger graph neighborhoods. In this regard, current GNNs
only deploy a few layers (typically two or three) [26], which might be insufficient to characterize the
complex feature representations on the graph.

It is evident that mitigating the over-smoothing problem in GNNs will enable training deeper models.
From a network architecture perspective, skip connections [16; 39], residual connections [25; 18], and
graph attention mechanisms [34; 33] have been proposed to alleviate the information loss in GNNs,
by either preserving the local feature representation or making information exchange adaptive to the
importance of nodes in the graph. Although these techniques are effective to patch the over-smoothing
issue in some applications, the lack of an in-depth understanding of the root cause of the problem
poses the challenge of finding a generalized solution that can be scaled up to current graph learning
applications.

Inspired by the success of neural ordinary differential equations in computer vision [10], research
focus has recently shifted to link the discrete model in GNNs with partial differential equation
(PDE) based numerical recipes [38; 29; 6; 14]. For example, graph neural diffusion (GRAND)
formulates GNNs as a continuous diffusion process [6]. In their framework, the layer structure of
GNNs corresponds to a specific discretization choice of temporal operators. Since PDE-based model
does not revolutionize the underlying inductive bias in current GNNs, it is still unable to prevent
the excessive information change between adjacent nodes as in nodes #1 and #2 in Fig. 1. In this
regard, using more advanced PDE solvers only can provide marginal improvements in terms of
numerical stability over the corresponding discrete GNN models, while the additional computational
cost, even in the feed-forward scenario, could limit the practical applicability of PDE-based methods
for large-scale graph learning tasks.
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Figure 2: Top: The Brachistochrone problem played a pivotal role in the development of classical mechanics
and the powerful mathematical tool known as the calculus of variations. Bottom: We introduce a general
framework to answer "Brachistochrone" problems regarding diffusion patterns on graphs that allow us to re-think
and re-design application-specific deep model of GNNs with enhanced mathematical interpretability.

In this regard, pioneering work on continuous approaches has prompted to re-think GNN as a graph
diffusion process governed by the Euler-Lagrange (E-L) equation of the heat kernel. This formulation
is reminiscent of the Brachistochrone problem 2, which emerged over 400 years ago and established
the mathematical framework of classical mechanics. The powerful calculus of variations allows us to
generate solutions for various mechanics questions (e.g., the slope that yields the fastest ball sliding
down the curve is given by a cycloid) through the lens of E-L equation, as shown in Fig. 2 (top).

In a similar vein, the question that arises in the context of community detection is: What graph
diffusion pattern is best suited for preserving community organizations? The question for graph
classification would be: What graph diffusion pattern works best for capturing the system-level
characteristics of graph topology? Following the spirit of Brachistochrone problem, we present a
general research framework to customize application-specific GNNs in a continuous space of graph
diffusion functionals. As shown in Fig. 2 (bottom), we have established a fundamental structure for
our framework that involves a two-way mapping between a discrete GNN model and a continuous
graph diffusion functional. This allows us to develop application-specific objective functions (with an
explainable regularization term) in the continuous domain and construct a discrete deep model with
mathematical guarantee. We demonstrate two novel GNN models, one for addressing over-smoothing
and one for predicting the flows from longitudinal nodal features, both achieving state-of-the-art
performance (Cora: 85.6%, Citeseer: 73.9%, Pubmed: 80.10%, even in 128 network layers).

We have made four major contributions. (1) We establish a connection between the discrete model of
GNNs and the continuous functional of inductive bias in graph learning by using the E-L equation
as a stepping stone to bridge the discrete and continuous domains. (2) We introduce a general
framework to re-think and re-design new GNNs that is less “black-box”. (3) We devise a novel
selective mechanism upon inductive bias to address the over-smoothing issue in current GNNs and
achieve state-of-the-art performance on graph learning benchmarks. (4) We construct a novel GNN
in the form of a generative adversarial network (GAN) to predict the flow dynamics in the graph by a
neural transport equation.

2 Methods

In the following, we first elucidate the relationship between GNN, PDE, and calculus of variations
(COV), which sets the stage for the GNN-PDE-COV framework for new GNN models in Section 2.2.

2.1 Re-think GNNs: Connecting dots across graph neural networks, graph diffusion process,
Euler-Lagrange equation, and Lagrangian mechanics

Graph diffusion process. Given graph data G = (V,W ) with N nodes V = {vi|i = 1, . . . , N}, the
adjacency matrix W = [wij ]

N
i,j=1 ∈ RN×N describes connectivity strength between any two nodes.

For each node vi, we have a graph embedding vector xi ∈ Rm. In the context of graph topology, the
graph gradient (∇Gx)ij = wij (xi − xj) indicates the feature difference between vi and vj weighted

2The Brachistochrone problem is a classic physics problem that involves finding the curve down which a
bead sliding under the influence of gravity will travel in the least amount of time between two points.
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by the connectivity strength wij , where ∇G is a RN → RN×N operator. Thus, the graph diffusion
process can be formulated as ∂x(t)

∂t = div (∇Gx(t)), where the evolution of embedding vectors
x = [xi]

N
i=1 is steered by the graph divergence operator.

Connecting GNN to graph diffusion. In the regime of GNN, the regularization in the loss function
often measures the smoothness of embeddings x over the graph by xT∆x, where ∆ = div(∇G) is the
graph Laplacian operator [23]. To that end, the graph smoothness penalty encourages two connected
nodes to have similar embeddings by information exchange in each GNN layer. Specifically, the new
graph embedding xl in the lth layer is essentially a linear combination of the graph embedding xl−1

in the previous layer, i.e., xl = AW,Θx
l−1, where the matrix A depends on graph adjacency matrix

W and trainable GNN parameter Θ. After rewriting xl = Axl−1 into xl − xl−1 = (A − I)xl−1,
updating graph embeddings x in GNN falls into a discrete graph diffusion process, where the time
parameter t acts as a continuous analog of the layers in the spirit of Neural ODEs [10]. It has been
shown in [6] that running the graph diffusion process for multiple iterations is equivalent to applying
a GNN layer multiple times.

GNN is a discrete model of Lagrangian mechanics via E-L equation. The diffusion process
∂x(t)
∂t = div (∇Gx(t)) has been heavily studied in image processing for decades ago, which is the

E-L equation of the functional min
x

∫
Ω
|∇x|2dx. By replacing the 1D gradient operator defined

in the Euclidean space Ω with the graph gradient (∇Gx)ij , it is straightforward to find that the
equation governing the graph diffusion process ∂x(t)

∂t = div (∇Gx(t)) is the E-L equation of the
functional min

x

∫
G |∇Gx|2dx over the graph topology. Since the heat kernel diffusion is essentially

the mathematical description of the inductive bias in current GNNs [6; 14], we have established a
mapping between the mechanics of GNN models and the functional of graph diffusion patterns in a
continuous domain.

Tracing the smoking gun of over-smoothing in GNNs. In Fig. 1, we observed that the inductive
bias of link-wise propagation is the major reason for excessive information exchange, which is
attributed to the over-smoothing problem in GNNs. An intuitive approach is to align the diffusion
process with high-level properties associated with graph topology, such as network communities.
After connecting the GNN inductive bias to the functional of graph diffusion process, we postulate
that the root cause of over-smoothing is the isotropic regularization mechanism encoded by the
ℓ2-norm. More importantly, connecting GNN to the calculus of variations offers a more principled
way to design new deep models with mathematics guarantees and model mechanistic explainability.

2.2 Re-design GNNs: Revolutionize inductive bias, derive new E-L equation, and construct
deeper GNN

The general roadmap for re-designing GNNs typically involves three major steps: (1) formulating
inductive bias into the functional of graph diffusion patterns; (2) deriving the corresponding E-L
equation; and then (3) developing a new deep model of GNN based on the finite difference solution
of E-L equation. Since the graph diffusion functional is application-specific, we demonstrate the
construction of new GNN models in the following two graph learning applications.

2.2.1 Develop VERY deep GNNs with a selective mechanism for link-adaptive inductive bias

Problem formulation. Taking the feature learning component (learnable parameters Θ) out of
GNNs, the graph embeddings xL (output of an L-layer GNN) can be regarded as the output of
an iterative smoothing process (L times) underlying the graph topology G, constrained by the data
fidelity

∥∥xL − x0
∥∥2
2

(w.r.t. the initial graph embeddings x0) and graph smoothness term
∫
G |∇Gx|2dx.

Inspired by the great success of total variation (TV) for preserving edges in image denoising [31],
reconstruction [35] and restoration [8], we proposed to address the over-smoothing issue in current
GNN by replacing the quadratic Laplacian regularizer with TV on graph gradients, i.e., JTV (x) =∫
|∇Gx|dx. Thus, the TV-based objective function for graph diffusion becomes: min

x
(
∥∥x− x0

∥∥2
2
+

JTV (x)).

However, the ℓ1-norm function, denoted by | · | in the definition of the total variation functional JTV ,
is not differentiable at zero. Following the dual-optimization schema [4; 7], we introduce the latent
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Figure 3: Our new deep model integrates a novel diffusion-gathering (DG) layer (for selective graph diffusion)
after the conventional fully-connected (FC) layer (for graph representation learning).

auxiliary matrix z ∈ RN×N and reformulate the TV-based functional as min
x

max
z

JTV (x, z) =

max
z

min
x

∫
(z ⊗ ∇Gx)dx, subject to |z| ≤ 1N×N , where ⊗ is Hadamard operation between two

matrices. Furthermore, we use an engineering trick of element-wise operation zij(∇Gx)ij to keep the
degree always non-negative (same as we take the absolute value), which makes the problem solvable.
In the end, we reformulate the minimization of JTV (x) into a dual min-max functional as JTV (x, z),
where we maximize z (z → 1N×N ) such that JTV (x, z) is close enough to JTV (x). Therefore, the
new objective function is reformulated as:

J (x, z) = max
z

min
x

∥∥x− x0
∥∥2
2
+ λ

∫
(z∇Gx)dx, (1)

where λ is a scalar balancing the data fidelity term and regularization term. Essentially, Eq. 1 is the
dual formulation with min-max property for the TV distillation problem [44].

Constructing E-L equations. To solve Eq. 1, we present the following two-step alternating
optimization schema. First, the inner minimization problem (solving for xi) in Eq. 1 can be solved
by letting ∂

∂xi
J (xi, zi) = 0:

∂
∂xi

J (xi, zi) = 2(xi − x0
i ) + λzi∇Gxi = 0 ⇒ x̂i = x0

i − λ
2 zi∇Gxi (2)

Replacing (∇Gx)ij with wij (xi − xj), the intuition of Eq. 2 is that each element in x̂i is essen-
tially the combination between the corresponding initial value in x0

i and the overall graph gradients
zi∇Gxi =

∑
j∈Ni

wij(xi − xj)zi within its graph neighborhood Ni. In this regard, Eq. 2 character-
izes the dynamic information exchange on the graph, which is not only steered by graph topology but
also moderated by the attenuation factor zi at each node.

Second, by substituting Eq. 2 back into Eq. 1, the objective function of zi becomes J (zi) =

max
|zi|≤1

∥∥λ
2 zi∇Gxi

∥∥2
2
+ λzi∇G(x

0
i − λ

2 zi∇Gxi). With simplification (in Eq. S1 to Eq. S3 of Supple-

mentary), the optimization of each zi is achieved by argmin
|zi|≤1

zi∇Gxizi∇Gxi − 4
λzi∇Gx

0
i .

Specifically, we employ the majorization-minimization (MM) method [15] to optimize zi by solving
this constrained minimization problem (the detailed derivation process is given in Eq. S4 to S12 of
Section S1.1 of Supplementary), where zi can be iteratively refined by:

zli = g(zl−1
i +

2

βλ
∇Gxi︸ ︷︷ ︸

b

, 1) =

{
b
1
−1

|b| ≤ 1
b > 1
b < −1

(3)

β is a hyper-parameter that is required to be no less than the largest eigenvalue of (∇Gxi)(∇Gxi)
⊺.

Develop new GNN network architecture with a selective inductive bias. The building block in
vanilla GNN [23] is a FC (fully-connected) layer where the input is the embedding vectors after
isotropic graph diffusion (in ℓ2-norm). Since the estimation of graph embeddings x in Eq. 2 depends
on the latest estimation of z(l), such recursive min-max solution for Eq. 1 allows us to devise
a new network architecture that disentangles the building block in vanilla GNN into the feature
representation learning and graph diffusion underlying TV. As shown in Fig. 3, we first deploy a FC
layer to update the graph embeddings x(l). After that, we concatenate a diffusion-gathering (DG)
layer for selective graph diffusion, which sequentially applies (1) node-adaptive graph diffusion (blue
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Figure 4: (a) The illustration of the computational challenge for estimating the spreading flow. (b) The GAN
architecture for min-max optimization in the network.

arrow in Fig. 3) on x(l) by Eq. 2 3, and (2) gathering operation g(·) (purple arrow in Fig. 3) to each
x
(l)
i by Eq. 3.

Remarks. Eq. 3 indicates that larger connective degree results in larger value of z. Thus, the DG
layer shifts the diffusion patterns by penalizing the inter-community information exchange (due to
strong connections) while remaining the heat-kernel diffusion within the community. The preference
of such link-adaptive diffusion can be adjusted by the hyper-parameter λ 4 in Eq. 1. Recall our
intuitive solution for over-smoothing problem in Fig. 1, the DG layer offers the exact global insight
of graph topology to keep the node embeddings distinct between nodes #1 and #2. We demonstrate
the effect of DG layer on the real-world graph data in Fig. S3 of Supplementary document.

2.2.2 Predict flow dynamics through graph neural transport equation

Problem formulation. We live in a world of complex systems, where everything is intricately
connected in multiple ways. A holistic insight of how the system’s components interact with each
other and how changes in one part of the system can affect the behavior of the whole sheds new
light on the dynamic behaviors of these complex systems over time. However, oftentimes it is an
ill-posed problem. Taking the toy system in Fig. 4(a) as an example, while it is simple to calculate the
future focal patterns based on the focal patterns at the current time point and the node-to-node flow
information, determining flow dynamics based on longitudinal nodal observations is computationally
hard since the solution is not unique.

The naïve solution to predict the spreading flow is to (1) train a GNN to learn the intrinsic node
embeddings and (2) predict the flow based on the difference of learned embeddings. However, this
two-step approach might suffer from vanishing flow due to over-smoothing in GNNs. Following
the spirit of Brachistochrone problem, we ask the question "What flow field f(t) = [fij(t)]

N
i,j=1

underlines the system mechanics to the extent that it is able to predict the behaviors in the future?"

In this paper, we focus on the conservative system of energy transportation [2]. The system mechanics
is formulated as:

dx

dt
+ div(q) = 0 (4)

where q = [qij ]
N
i,j=1 is the flux field which propagates the potential energy u(t) = [ui(t)]

N
i=1

(conserved quantity) over time. Similar to a gravity field driving water flow, the intuition of Eq. 4
is that the change of energy density u (we assume there is a non-linear mapping ϕ from external
force x to u, i.e., ui = ϕ(xi)) leads to energy transport throughout the entire graph. As flux is
closely related to the difference of energy ∇Gu underlying the graph topology, we assume the energy
flux q is regulated by the potential energy field ∇Gu, i.e., q = α ⊗ ∇Gu, where α = [αij ]

N
i,j=1 is

a learnable matrix characterizing the link-wise contribution of each energy potential ∇Guij to the
potential energy flux qij .

By plugging q = α⊗∇Gu into Eq. 4, the energy transport process can be reformulated as:

∂u

∂t
= −ϕ−1(α⊗ div(∇Gu)) = −ϕ−1(α⊗∆u), (5)

where ∆ = div(∇G) is the graph Laplacian operator. Since the PDE in Eq. 5 is equivalent
to the E-L equation of the quadratic functional J (u) = min

u

∫
G α ⊗ |∇Gu|2du (after taking ϕ

3Since the optimization schema has been switched to the layer-by-layer manner, the initialization x0 becomes
x(l−1) from the previous layer.

4λ can be either pre-defined or learned from the data.

6



away), a major issue is the over-smoothness in u that might result in vanishing flows. In this
context, we propose to replace the ℓ2-norm integral functional J (u) with TV-based counterpart
JTV (u) = min

u

∫
G α⊗ |∇Gu|du.

Renovate new E-L equation – graph neural transport equations. Following the min-max
optimization schema in Eq. 1-3, we introduce an auxiliary matrix f to lift the undifferential-
able barrier. After that, the minimization of JTV (u) boils down into a dual min-max functional
JTV (u, f) = min

u
max
f

∫
G α ⊗ f(∇Gu)du. Since u(t) is a time series, it is difficult to derive the

deterministic solutions (as Eq. 2-3) by letting ∂
∂uJTV = 0 and ∂

∂fJTV = 0. Instead, we use
Gâteaux variations to optimize JTV (u, f) via the following two coupled time-dependent PDEs
(please see Section S1.2, Eq. S14 to Eq. S19, in Supplementary for details): max

f

df
dt = α⊗∇Gu

min
u

du
dt = α⊗ div(f)

(6)

Remarks. The solution to Eq. 6 is known as continuous max-flow and constitutes a continuous
version of a graph-cut [1]. Since α is a latent variable and potential energy u is given, the maximization
of f opts towards maximizing the spreading flow through the lens of α. In this regard, the mechanistic
role of auxiliary matrix f is essentially the latent (maximized) spreading flows that satisfy u(t+1)i =

u(t)i +
∑N

j=1 fij(t). The potential energy û can be solved via a wave equation (utt = div(ft) =

α2 ⊗ ∆u), where the system dynamics is predominated by the adjusted Lagrangian mechanics
α2 ⊗∆u. By determining α at a granularity of graph links, we devise a novel GAN model to predict
the spreading flows f which not only offers explainability underlying the min-max optimization
mechanism in Eq. 6 but also sets the stage to understand system dynamics through machine learning.
Develop a GAN model of flow prediction with TV-based Lagrangian Mechanics. The overall
network architecture is shown in Fig. 4 (b), which consists of a generator (red solid box) and
a discriminator module (blue solid box). Specifically, the generator (G) consists of (1) a GCN
component [14] to optimize û through the wave equation utt = α2 ⊗ ∆u and (2) a FC layer to
characterize the non-linear mapping function x̂(t+ 1) = ϕ−1(û(t)). In contrast, the discriminator
(D) is designed to (1) synthesize α and (2) construct the future ũt+1 based on the current ut and
current estimation of spreading flow f = α ⊗ ∇Gu (orange dash box). To make the network
architecture consistent between generator and discriminator modules, we include another GCN to
map the synthesized ũ(t + 1) to the external force x̃(t + 1). Note, since the working mechanism
of this adversarial model underlines the min-max optimization in the energy transport equation, the
nature of predicted spreading flows is carved by the characteristics of max-flow.

The driving force of our network is to minimize (1) the MSE (mean square error) between the output
of the generator x̂t+1 and the observed regional features, (2) the distance between the synthesized
regional features x̃t+1 (from the discriminator) and the output of generator x̂t+1 (from the generator).
In the spirit of probabilistic GAN [43], we use one loss function LD to train the discriminator (D)
and another one LG to train the generator (G):{

LD = D (xt+1) + [ξ −D (G (xt))]
+

LG = D (G (xt))
(7)

where ξ denotes the positive margin and the operator [·]+ = max(0, ·). Minimizing LG is similar to
maximizing the second term of LD except for the non-zero gradient when D(G(xt)) ≥ ξ.

3 Experiments

In this section, we evaluate the performance of the proposed GNN-PDE-COV framework with
comparison to six graph learning benchmark methods on a wide variety of open graph datasets [32],
as well as a proof-of-concept application of uncovering the propagation pathway of pathological
events in Alzheimer’s disease (AD) from the longitudinal neuroimages.

3.1 Datasets and experimental setup

Dataset and benchmark methods. We evaluate the new GNN models derived from our proposed
GNN framework in two different applications. First, we use three standard citation networks, namely
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Cora, Citeseer, and Pubmed [32] for node classification (the detailed data statistic is shown in Table
S2 of Supplementary). We adopt the public fixed split [40] to separate these datasets into training,
validation, and test sets. We follow the experimental setup of [9] for a fair comparison with six
benchmark GNN models (vanilla GCN [23], GAT [34], GCNII [9], ResGCN [25], DenseGCN [25],
GRAND [6]). Since our DG-layer can be seamlessly integrated into existing GNNs as a plug-in. The
corresponding new GNN models (with DG-layer) are denoted GCN+, GAT+, GCNII+, ResGCN+,
DenseGCN+, and GRAND+, respectively.

Second, we apply the GAN model in Section 2.2.2 to predict the concentration level of AD-related
pathological burdens and their spreading pathways from longitudinal neuroimages. Currently, there is
no in-vivo imaging technique that can directly measure the flow of information across brain regions.
Here, our computational approach holds great clinical value in understanding the pathophysiological
mechanism involved in disease progression [22]. Specifically, we parcellate each brain into 148
cortical surface regions and 12 sub-cortical regions using Destrieux atlas [12]. The wiring topology of
these 160 brain regions is measured by diffusion-weighted imaging [3] and tractography techniques
[17]. The regional concentration levels AD pathology including amyloid, tau, and fluorodeoxyglucose
(FDG) and cortical thickness (CoTh) are measured from PET (positron emission tomography) and
MRI (magnetic resonance imaging) scans [20]. We use a total of M = 1, 291 subjects from ADNI
[28], each having longitudinal imaging data (2-5 time points). The details of image statistics and
pre-processing are shown in Sec. S2.1.2. Since we apply the flow prediction model to each modality
separately, we differentiate them with X-FlowNet (X stands for amyloid, tau, FGD, and CoTh).

Experimental setup. In the node classification task, we verify the effectiveness and generality of
DG-layer in various number of layers (L = 2, 4, 8, 16, 32, 64, 128). All baselines use their default
parameter settings. Evaluation metrics include accuracy, precision and F1-score. To validate the
performance of X-FlowNet, we examine (1) prediction accuracy (MAE) of follow-up concentration
level, (2) prediction of the risk of developing AD using the baseline scan, and (3) understand the
propagation mechanism in AD by revealing the node-to-node spreading flows of neuropathologies.

The main results of graph node classification and flow prediction are demonstrated in Section 3.2 and
3.3, respectively. Other supporting results such as ablation study and hyper-parameter setting are
shown in Section S2 of the Supplementary document.

3.2 Experimental results on graph node classification

We postulate that by mitigating the over-smoothing issue, we can leverage the depth of GNN models
to effectively capture complex feature representations in graph data. As shown in Table 1, we
investigate the graph node classification accuracy as we increase the number of GNN layers by six
benchmark GNN models and their corresponding plug-in models (indicated by ’+’ at the end of
each GNN model name) with the DG-layer. The results demonstrate that: (1) the new GNN models
generated from the GNN-PDE-COV framework have achieved SOTA in Cora (86.30% by GCNII+),
Citeseer (75.65% by GRAND+), and Pubmed (80.10 % by GCNII+); (2) all of new GNN models
outperforms their original counterparts with significant improvement in accuracy; (3) the new GNN
models exhibit less sensitivity to the increase of model depth compared to current GNN models; (4)
the new GNN models are also effective in resolving the gradient explosion problem [26] (e.g, the
gradient explosion occurs when training GAT on all involved datasets with deeper than 16 layers,
while our GAT+ can maintain reasonable learning performance even reaching 128 layers.)

It is important to note that due to the nature of the graph diffusion process, graph embeddings from
all GNN models (including ours) will eventually become identical after a sufficiently large number of
layers [11]. However, the selective diffusion mechanism (i.e., penalizing excessive diffusion across
communities) provided by our GNN-PDE-COV framework allows us to control the diffusion patterns
and optimize them for specific graph learning applications.

3.3 Application for uncovering the propagation mechanism of pathological events in AD

First, we evaluate the prediction accuracy between the ground truth and the estimated concentration
values by our X-FlowNet and six benchmark GNN methods. The statistics of MAE (mean absolute
error) by X-FlowNet, GCN, GAT, GRAND, ResGCN, DenseGCN and GCNII, at different noise
levels on the observed concentration levels, are shown in Fig. 5 (a). It is clear that our X-FlowNet
consistently outperforms the other GCN-based models in all imaging modalities.
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Table 1: Test accuracies (%) on citation networks. We show the mean value, the quota of increase
(↑)/decrease(↓) after adding DG layer. Statistical significance is determined from 50 resampling tests.
‘∗’ means statistically significance with p ≤ 0.05, ‘∗∗’ denotes p ≤ 0.01. The missing results are
due to the huge consumption of GPU memory for large graphs (DenseGCN) or gradient explosions
(GAT) or non-convergence (GRAND). The best performance of baselines is denoted in blue, while
the best performance after adding the DG layer is denoted in red.

Dataset Model L = 2 L = 4 L = 8 L = 16 L = 32 L = 64 L = 128

Cora

GCN 81.30 79.90 75.70 25.20 20.00 31.80 20.80
GCN+ 82.70∗∗1.40↑82.70∗∗2.80↑82.30∗∗6.60↑70.60∗∗45.4↑67.80∗∗47.8↑66.60∗∗34.8↑ 59.90∗∗39.1↑
GAT 82.40 80.30 57,90 31.90 – – –
GAT+ 82.600.20↑80.500.20↑69.70∗∗11.8↑66.00∗∗34.1↑63.60∗∗63.6↑54.60∗∗54.6↑ 45.70∗∗45.7↑
GRAND 80.00 82.64 82.74 83.45 81.83 80.81 79.19
GRAND+ 81.93∗∗1.93↑83.45∗∗0.81↑82.950.20↑84.27∗∗1.32↑83.15∗0.71↑81.52∗∗0.71↑ 80.10∗∗0.91↑
ResGCN 76.30 77.30 76.20 77.60 73.30 31.90 31.90
ResGCN+ 77.80∗∗1.50↑78.70∗∗1.40↑78.80∗∗2.60↑78.60∗∗1.00↑76.90∗∗3.60↑76.80∗∗44.9↑ 33.60∗∗1.70↑
DenseGCN 76.60 78.50 76.00 – – – –
DenseGCN+78.00∗∗1.40↑78.700.20↑76.90∗∗1.40↑ – – – –

GCNII 76.40 81.90 81.50 84.80 84.60 85.50 85.30
GCNII+ 84.70∗∗8.30↑84.80∗∗2.90↑84.70∗∗3.20↑85.20∗∗0.40↑85.40∗∗0.80↑86.30∗0.80↑ 85.600.30↑

Citeseer

GCN 70.20 62.50 62.90 21.00 17.90 22.90 19.80
GCN+ 72.90∗∗2.70↑67.30∗∗4.80↑72.00∗∗9.10↑54.70∗∗33.7↑50.30∗∗32.4↑48.40∗∗25.5↑ 46.60∗∗26.8↑
GAT 71.70 58.60 26.60 18.10 – – –
GAT+ 73.00∗∗1.30↑69.50∗∗10.9↑47.60∗∗21.0↑31.80∗∗13.7↑31.30∗∗31.3↑30.60∗∗30.6↑ 29.30∗∗29.3↑
GRAND 71.94 72.58 73.87 75.00 75.16 72.90 69.52
GRAND+ 72.26∗0.32↑73.55∗∗0.97↑75.16∗∗1.29↑75.65∗0.65↑75.52∗0.36↑74.52∗1.62↑ 72.26∗∗2.74↑
ResGCN 67.10 66.00 63.60 65.50 62.3 18.80 18.10
ResGCN+ 68.00∗∗0.90↑67.60∗∗1.60↑66.00∗∗2.40↑66.00∗0.50↑65.80∗∗3.50↑24.00∗∗5.20↑ 24.30∗∗6.20↑
DenseGCN 67.40 64.00 62.20 – – – –
DenseGCN+67.80∗0.40↑66.60∗∗2.60↑64.70∗∗2.50↑ – – – –

GCNII 66.50 67.80 69.30 71.60 73.10 71.40 70.20
GCNII+ 72.40∗∗5.90↑73.30∗∗5.5↑ 73.80∗∗4.50↑73.40∗∗1.80↑73.80∗∗0.70↑74.60∗∗3.20↑ 73.90∗∗3.70↑

Pubmed

GCN 78.50 76.50 77.30 40.90 38.20 38.10 38.70
GCN+ 79.80∗∗1.30↑79.10∗∗2.60↑78.20∗∗0.90↑77.40∗∗36.5↑76.20∗∗38.0↑75.10∗∗37.0↑ 73.00∗∗34.3↑
GAT 77.40 72.20 77.80 40.70 – – –
GAT+ 77.90∗0.50↑77.30∗∗5.10↑78.50∗0.70↑73.50∗∗32.8↑68.20∗∗68.2↑66.80∗∗66.8↑ 63.50∗∗63.5↑
GRAND 77.07 77.94 78.29 79.93 79.12 – –
GRAND+ 78.03∗∗0.96↑78.34∗0.40↑80.21∗∗1.92↑80.08∗∗0.15↑79.320.20↑ – –

ResGCN 76.30 77.30 76.20 77.60 73.30 31.90 31.90
ResGCN+ 77.80∗∗1.50↑78.70∗∗1.40↑78.80∗2.60↑78.60∗∗1.00↑76.90∗∗3.60↑76.80∗∗44.90↑32.000.10↑
DenseGCN 75.80 76.10 75.80 – – – –
DenseGCN+76.100.30↑76.70∗0.60↑77.50∗∗1.70↑ – – – –

GCNII 77.30 78.80 79.50 79.70 79.90 0.7980 79.70
GCNII+ 78.40∗∗1.10↑80.10∗∗1.30↑80.00∗0.60↑80.100.30↑80.000.20↑80.000.20↑ 80.10∗0.40↑

Second, we have evaluated the potential of disease risk prediction, which can be regarded as a graph
classification problem. We assume that we have baseline amyloid, tau, FDG, and CoTh scans, and
evaluate the prediction accuracy, precision and F1-score of various models in forecasting the risk
of developing AD. We consider two dichotomous cases: one included only AD vs. CN groups and
the other involved AD/LMCI vs. CN/EMCI. The results of the mean of 5-fold cross-validation are
shown in Table 2. Our GNN-PDE-COV model not only achieved the highest diagnostic accuracy
but also demonstrated a significant improvement (paired t-test p < 0.001) in disease risk prediction
compared to other methods. These results suggest that our approach holds great clinical value for
disease early diagnosis.

Third, we examine the spreading flows of tau aggregates in CN (cognitively normal) and AD groups.
As the inward and outward flows shown in Fig. 5(b), it is evident that there are significantly larger
amount of tau spreading between sub-cortical regions and entorhinal cortex in CN (early sign of AD
onset) while the volume of subcortical-entorhinal tau spreading is greatly reduced in the late stage
of AD. This is consistent with current clinical findings that tau pathology starts from sub-cortical
regions and then switches to cortical-cortical propagation as disease progresses [24]. However, our
Tau-FlowNet offers a fine-granularity brain mapping of region-to-region spreading flows over time,
which provides a new window to understand the tau propagation mechanism in AD etiology [13].
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Figure 5: (a) Prediction accuracy by X-FlowNet and six benchmark GNN models w.r.t. various noise levels. (b)
The subcortical�cortical tau flows are profound in CN. But in AD, there is a diminished extent of such flows.

Table 2: The performance of disease risk prediction. Note: RGCN denotes ResGCN, DGCN denotes
DenseGCN. ‘*’ denotes the significant improvement (paired t-test: p < 0.001). Blue: Tau, red:
amyloid, orange: FDG, green: CoTh.

Tau Unit (%) GCN GCN+ GAT GAT+ GCNII GCNII+ RGCN RGCN+ DGCN DGCN+ GRAND GRAND+
Precision 80.15 90.03(*) 69.91 86.18(*) 83.93 90.03(*) 84.64 89.46(*) 84.03 91.58(*) 87.95 88.22(*)
Accuracy 82.30 88.74(*) 81.05 87.50(*) 83.79 88.75(*) 86.03 90.00(*) 85.54 91.25(*) 88.75 90.12(*)

AD/LMCI
vs.

CN/EMCI F1-score 75.55 84.49(*) 72.87 84.72(*) 78.82 84.45(*) 83.15 88.54(*) 82.45 91.39(*) 88.14 89.44(*)
Precision 89.29 91.92(*) 87.26 90.13(*) 83.65 88.52(*) 92.61 95.72(*) 92.61 95.91(*) 91.77 95.76(*)
Accuracy 86.64 90.91(*) 84.86 88.41(*) 76.84 86.36(*) 91.07 95.45(*) 91.07 95.65(*) 90.91 95.45(*)

AD
vs.
CN F1-score 85.64 90.26(*) 83.99 87.16(*) 71.51 84.68(*) 90.45 95.32(*) 90.45 95.55(*) 88.86 95.38(*)

Amyloid Unit (%) GCN GCN+ GAT GAT+ GCNII GCNII+ RGCN RGCN+ DGCN DGCN+ GRAND GRAND+
Precision 76.36 83.78(*) 67.73 71.79(*) 60.87 60.01() 72.53 83.21(*) 74.92 60.17(*) 79.00 79.93(*)
Accuracy 76.40 79.44(*) 75.43 77.57(*) 74.31 76.64(*) 75.99 78.50(*) 76.92 77.57(*) 80.37 81.31(*)

AD/LMCI
vs.

CN/EMCI F1-score 70.33 72.58(*) 67.66 69.39(*) 63.57 67.31(*) 70.66 70.67(*) 72.68 67.77(*) 79.25 79.63(*)
Precision 81.58 88.37(*) 81.54 87.98(*) 70.59 79.98(*) 85.75 93.09(*) 83.87 90.56(*) 65.53 89.62(*)
Accuracy 80.77 88.10(*) 80.78 88.10(*) 75.02 81.24(*) 85.56 92.86(*) 85.29 90.48(*) 80.95 87.80(*)

AD
vs.
CN F1-score 78.14 87.68(*) 78.07 87.98(*) 65.87 77.42(*) 85.34 92.92(*) 82.30 90.27(*) 72.43 88.22(*)

FDG Unit (%) GCN GCN+ GAT GAT+ GCNII GCNII+ RGCN RGCN+ DGCN DGCN+ GRAND GRAND+
Precision 68.43 69.29(*) 55.86 59.29(*) 60.08 70.94(*) 50.45 55.14(*) 50.45 55.14(*) 51.38 56.25(*)
Accuracy 73.17 76.00(*) 72.17 77.00(*) 71.78 74.54(*) 70.98 74.26(*) 70.98 74.26(*) 71.10 75.00(*)

AD/LMCI
vs.

CN/EMCI F1-score 63.94 68.15(*) 62.15 66.99(*) 61.02 69.07(*) 58.96 63.29(*) 58.96 63.29(*) 59.42 64.29(*)
Precision 81.11 87.25(*) 61.90 62.33(*) 74.31 81.06(*) 59.77 80.57(*) 66.84 81.77(*) 70.91 72.24(*)
Accuracy 82.17 84.62(*) 72.82 78.95(*) 79.55 82.05(*) 73.35 79.58(*) 73.87 80.11(*) 84.21 86.32(*)

AD
vs.
CN F1-score 79.40 82.04(*) 64.23 69.66(*) 73.88 80.99(*) 62.77 75.98(*) 63.92 76.58(*) 76.99 78.06(*)

CoTh Unit (%) GCN GCN+ GAT GAT+ GCNII GCNII+ RGCN RGCN+ DGCN DGCN+ GRAND GRAND+
Precision 74.85 76.23(*) 62.63 67.15(*) 62.63 74.71(*) 62.63 68.77(*) 62.63 64.59(*) 63.81 68.77(*)
Accuracy 80.68 82.32(*) 79.10 79.34(*) 79.10 80.37(*) 79.10 82.93(*) 79.10 80.37(*) 79.88 82.93(*)

AD/LMCI
vs.

CN/EMCI F1-score 73.55 75.93(*) 69.89 70.44(*) 69.89 72.72(*) 69.89 75.19(*) 69.89 71.62(*) 70.94 75.19(*)
Precision 83.45 85.77(*) 71.24 72.80(*) 76.14 79.84(*) 65.04 80.62(*) 65.04 81.52(*) 71.24 74.37(*)
Accuracy 84.79 87.16(*) 81.50 85.32(*) 81.50 83.49(*) 80.59 83.52(*) 80.59 82.42(*) 84.40 86.24(*)

AD
vs.
CN F1-score 82.02 83.69(*) 75.06 78.56(*) 74.17 81.07(*) 71.95 78.48(*) 71.95 76.13(*) 77.27 79.87(*)

4 Conclusion

In this work, we present the GNN-PDE-COV framework to re-think and re-design GNN models
with great mathematical insight. On top of this, we devise the selective inductive bias to address the
over-smoothing problem in GNN and develop new GNN model to predict the pathology flows in-vivo
via longitudinal neuroimages. Future work may involve exploring innovative graph regularization
techniques and conducting further validation on a broader range of graph-based learning tasks.
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