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Abstract

The quality of training data impacts the performance of pre-trained large language
models (LMs). Given a fixed budget of tokens, we study how to best select data
that leads to good downstream model performance across tasks. We develop a new
framework based on a simple hypothesis: just as humans acquire interdependent
skills in a deliberate order, language models also follow a natural order when
learning a set of skills from their training data. If such an order exists, it can be
utilized for improved understanding of LMs and for data-efficient training. Using
this intuition, our framework formalizes the notion of a skill and of an ordered set
of skills in terms of the associated data. First, using both synthetic and real data,
we demonstrate that these ordered skill sets exist, and that their existence enables
more advanced skills to be learned with less data when we train on their prerequisite
skills. Second, using our proposed framework, we introduce an online data sampling
algorithm, SKILL-IT, over mixtures of skills for both continual pre-training and
fine-tuning regimes, where the objective is to efficiently learn multiple skills in
the former and an individual skill in the latter. On the LEGO synthetic in the
continual pre-training setting, SKILL-IT obtains 37.5 points higher accuracy than
random sampling. On the Natural Instructions dataset in the fine-tuning setting,
SKILL-IT reduces the validation loss on the target skill by 13.6% versus training
on data associated with the target skill itself. We apply our skills framework on the
RedPajama dataset to continually pre-train a 3B-parameter LM, achieving higher
accuracy on the LM Evaluation Harness with 1B tokens than the baseline approach
of sampling uniformly over data sources with 3B tokens.

1 Introduction

Large language models (LMs) exhibit remarkable capabilities, including producing creative
content [55], writing source code [9], and chatting with users [8]. A key ingredient in enabling models
to perform such tasks is the data on which the models are trained [18, 20, 59]. A natural way to
unlock particular capabilities is to improve this training data. However, it is unclear how to select
data from a large corpus for these capabilities given a fixed budget of training tokens, as data selection
methods for current state-of-the-art LMs mostly rely on heuristics for filtering and mixing together
different datasets [33, 59]. We lack a formal framework for capturing how data influences the model’s
capabilities and how to utilize this data effectively for improving LM performance.
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Figure 1: Inspired by how humans acquire knowledge, we hypothesize that LMs best learn skills in
a particular order and that this can help improve our understanding and training of LMs. We show
that these ordered skill sets exist in real data, which enables skills to be learned with less data given
that we train on their prerequisite skills. We then propose SKILL-IT, an online data selection algorithm
that learns skills quickly by exploiting their ordering.

To develop such a framework, we take inspiration from how humans acquire knowledge. A classic
idea in education literature is the concept of skills that form a learning hierarchy [65]. For example,
one study found that students learned mathematical and scientific skills most quickly when these skills
were presented in a particular order [12]. We seek to understand the extent that similar skill-based
orderings characterize LM training. Such orderings, if they exist, may provide a better understanding
of LMs as well as a mechanism for data-efficient training. For instance, to train an LM for Spanish
question generation, we wish to know if training first on related but simpler tasks, such as Spanish
grammar and English question generation, helps.

We study if the idea of skill orderings can help us build a framework that relates data to LM training and
behavior. This requires addressing two challenges revolving around the connection between skills and
data. First, in order to show that there exist sets of skills that the LM learns most efficiently in some par-
ticular order, an operational definition of LM skill and skill ordering must be developed and validated on
data. In initial experiments, we investigated if semantic groupings of data, such as metadata attributes or
embedding clusters, were sufficient to represent a skill and characterize how models learn. For instance,
we partitioned the Alpaca dataset [56] by instruction type—a technique used to capture dataset diver-
sity [62]—but we found that sampling based on instruction types and random sampling resulted in simi-
lar model performance, suggesting that not just any existing notion of data groups can characterize skills.

Second, these definitions of skills must be used to construct sampling distributions to actually improve
model training. To develop criteria for a data selection algorithm that learns skills efficiently, we
identify challenges that naive selection approaches face. The standard approach of random uniform
sampling over data fails to learn skills optimally due to not accounting for skill imbalance and
ordering. Skills can be distributed unevenly in the data, with more complex skills being rare—for
instance, Spanish and question generation (QG) are 5% and 4% of the Natural Instructions dataset [63],
respectively, but Spanish QG is only 0.2%. Random sampling also provides no mechanism for
taking into account a particular training order and dependency structure on skills. More sophisticated
techniques like curriculum learning account for sample-level ordering, but not skills or their
dependencies. Our goal framework must account for these issues of imbalance and ordering.

Skill-based framework We define a skill as a unit of behavior that a model can learn using an
associated slice of data (Definition 1). An ordered skill set is a collection of skills with a directed skills
graph that is neither complete nor empty, where an edge from a prerequisite skill to a skill exists if
the amount of training it takes to learn the skill can be reduced if the prerequisite skill is also learned
(Definition 2, Figure 1 left, center). We show that ordered skill sets exist in synthetic and real datasets
using this operational definition. Interestingly, the existence of these ordered skill sets unveils that one
can learn a skill quickly not by training solely on that skill, but on a mixture of that skill and prerequisite
skills. For instance, in Figure 3 we observe that Spanish QG can be learned more efficiently when
the model also learns English QG and Spanish—we can achieve 4% lower validation loss than training
on only Spanish QG over a fixed budget of overall training steps.

Next, given an ordered skill set to train on, we use our framework to propose methods for how to select
data so that the LM learn skills faster: skill-stratified sampling and an online generalization, SKILL-IT.
We address the issue of unevenly distributed skills in datasets by proposing skill-stratified sampling, a
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simple approach that allows us to explicitly optimize for learning skills by uniformly sampling relevant
skills (such as a target skill and its prerequisite skills in fine-tuning). Skill-stratified sampling uses
the construction of the ordered skill set but is static, which does not incorporate the ordering as training
proceeds and results in oversampling skills that may be already learned early on in training. We address
this issue by proposing an online data selection algorithm, SKILL-IT, for selecting mixtures of training
skills that allocates more weight towards learning skills that are not yet learned or towards prerequisite
influential skills (Figure 1 right). SKILL-IT is derived from an online optimization problem over the
training skills for minimizing loss on a set of evaluation skills given a fixed budget of data and the skills
graph. SKILL-IT is inspired by online mirror descent and can be adapted for continual pre-training,
fine-tuning, or out-of-domain evaluation depending on the relationship between the evaluation skill
set and the training skill set.

We evaluate SKILL-IT on synthetic and real datasets at two model scales, 125M and 1.3B parameters.
For the continual pre-training setting, we show on the LEGO synthetic [72] that we obtain a 37.2
point improvement in accuracy over randomly selecting training data and a 9.7 point improvement
over curriculum learning [4]. For the fine-tuning setting, we show that on the widely-used Natural
Instructions dataset [41, 64], our algorithm over a mixture of skills is able to achieve up to 13.6% lower
loss on that skill than solely training on that skill, given the same overall training budget. For the out-of-
domain setting when our training skills do not align perfectly with evaluation skills, our algorithm is able
to achieve the lowest loss on 11 out of 12 evaluation skills corresponding to task categories in the Natural
Instructions test tasks dataset over random and skill-stratified sampling on the training data. We finally
apply our framework to a case study on the recent RedPajama 1.2 trillion token dataset [57]. We use the
data mixture produced by SKILL-IT to continually pre-train a 3B parameter model. We find that SKILL-
IT achieves higher accuracy with 1B tokens than uniform sampling over data sources with 3B tokens.

2 Related work
An extended related work can be found in Appendix B. Existing work on data selection for LMs has
generally ranged from more computationally expensive methods for dataset condensation on smaller
datasets [47, 58, 48] to broader deduplication and filtering techniques for web-scale datasets [1, 33, 69].
Another way of improving model performance through choice of data is via curriculum learning [4],
which also draws inspiration from how humans learn and arranges data in order from easiest to hardest
over samples or groups [60]. In contrast to existing works in both curriculum learning and data selection,
our work focuses on selecting data for learning an ordered set of skills more efficiently. How LMs learn
is also a topic of growing interest; one framework posits that models learn over quanta, discrete units of
computation [38], and another proposes that scaling laws for LMs can be understood in terms of learning
combinations of skills [2]. Lastly, the notion of skill has been studied in education, ranging from clas-
sical research on learning hierarchies [66] to methods for decision-making over lesson sequences [49].

3 Skills framework
First, we propose definitions of skills and ordered skill sets in order to formalize our intuition around
how models learn skills, and we demonstrate that not just any existing notion of data groups can
characterize an ordered skill set in the dataset. Then, we demonstrate the existence of ordered skill sets
on synthetic and real data, which show how viewing data through a skills-based framework can help
with training and understanding model performance. Finally, we explore unsupervised skill recovery
from data, finding that embedding-based approaches do not adequately recover synthetic skills.

3.1 Definitions

We first present a definition of an individual skill. Let the input space of all possible text data be X ,
where x2X is an individual text sample that a next-token-prediction LM f 2F :X!X is trained
on. We quantify learning via a metric L :F⇥X!R, which maps from a model and evaluation data
to a scalar quantity. In our setup, we use the cross-entropy validation loss applied over next-token
predictions as our metric L.

Definition 1 (Skill) A skill s is a unit of behavior with associated data Xs✓X such that if f is trained
on an datasetDs⇢Xs, f has improved metricL afterwards on samples belonging toXs\Ds on average.

This definition of a skill is flexible—it simply means that given a training dataset associated with the
skill, a model f has an improved metric (e.g., decreasing validation loss) when evaluated on validation
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Figure 2: Heatmaps of adjacency matrices we compute for skill graphs for Alpaca, Pile of Law,
and Natural Instructions. Negative elements and diagonals are thresholded to 0 for clarity. See
Appendix D.2 for descriptions of how they were constructed and larger versions.

data associated with this skill. Under this definition, a skill could be a granular task, such as Spanish
question generation for a subset of Wikipedia articles, or can be defined over a data source, such as next-
token prediction of legal data from tax court rulings. However, our next definition, the ordered skill set,
has a more specific construction and provides a framework for how models learn across dependent skills.

Definition 2 (Ordered skill set, skills graph) An ordered skill set for f is a collection of skills
S = {s1,...,sk} over which there is a directed skills graph G=(S,E) on the skill set that is neither
complete or empty, where (si,sj)2E if the amount of data needed to learn sj when uniformly sampling
from Dsi[Dsj is no more than the amount of data needed when sampling only from Dsj . We equate
learning a skill sj to f attaining a certain value of L or lower on average over Xsj\Dsj .

This definition isolates complete and empty graphs as extrema that do not capture meaningful sets
of skills. We discuss the three types of skill graphs—complete, empty, intermediate—and their
implications for data selection. In particular, we discuss how several initial attempts of defining skills
over datasets via semantic groupings resulted in the extrema cases (see Appendix D.2 for full results):

• The complete graph demonstrates that all skills influence each other. A random partition is an example
of a skill set that yields a complete graph. This graph suggests that the best approach for learning any
skill or set of skills is random sampling on the dataset. This is not a setting where we can gain much
with skill-based sampling. For example, using instruction types as skills on the Alpaca dataset results
in a nearly complete estimated skills graph (97.4% dense), and we find that stratified sampling on
these skills only improves validation loss per skill by 0.007 points over random sampling on average
(Figure 2 left), suggesting that utilizing skills does not improve model performance in this case.

• The empty graph demonstrates that each skill is independent. This can occur if skills are too granular;
for instance, learning Spanish math problems is unlikely to help with English poem generation. This
graph suggests that the best approach for learning an individual skill is to train on the skill itself.
We see that empty graphs exist in real data; in Figure 2 (center), using data sources as skills on the
Pile of Law [22] results in a nearly empty skills graph (3.9% dense).

• Graphs that are neither empty nor complete thus suggest a nontrivial order of how skill influence
each other. This is the setting in which we expect that identifying skills and exploiting their ordering
will help the most. In Figure 2 right, we use task categories, which capture broader reasoning
patterns, as skills on Natural Instructions and find that the estimated graph has intermediate density
(42.7% dense). We show concrete examples of how skills can be learned more efficiently on Natural
Instructions in Section 3.2.

While these intuitive groupings result in ordered skill sets on some datasets (e.g., task categories on NI),
this is not always the case (e.g., instruction types on Alpaca and sources on Pile of Law). Even though
these groupings capture some notion of diversity in the dataset, our findings suggest that not just any
semantic grouping induces an ordered skill set. We now empirically demonstrate that our definition
of ordered skill sets aligns with how models learn and can be exploited for more data-efficient training.

3.2 Examples of skills and ordered skill sets

We provide examples of ordered skill sets on the LEGO synthetic dataset, an addition synthetic dataset,
and subsets of the Natural Instructions dataset. On these datasets, we find that certain skills are better
learned when trained along with their prerequisite skills rather than in isolation.
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Figure 3: On the LEGO synthetic, 3-digit addition, and Natural Instructions, we identify examples
of ordered skill sets in which training on a mixture of skills helps learn an individual skill faster than
just training on that skill itself, given a fixed training budget.

LEGO skills The LEGO synthetic, first introduced in [72], can evaluate a model’s ability to follow
a chain of reasoning. In this synthetic, the letters of the alphabet, A, are variables each with some
binary label in {0,1}. An individual sample consists of k clauses for some fixed k across the dataset,
each of the form a=gx where a,x2A and g is either a negation (“not”) or assertion (“val”), e.g. we
assign a to the value of x, or we assign a to the opposite label. At the end of the sentence, we prompt
the model for what the value of one of these variables is. Two samples x2X are given below for k=5:

Input: b = not y, r = val 1, m = val b, q = val m, y = not r. Output: b = 1.
Input: c = val x, p = val f, x = val k, f = not c, k = val 0. Output: k = 0.

These samples each correspond to a chain of reasoning; for instance the first sample has the chain
r,y,b,m,q, where knowing q’s label requires the most reasoning steps. We define the ith skill si as
the model’s ability to know the ith variable of the chain. From our example above, the first sample
belongs to Xs3 and the second sample belongs to Xs1 . To demonstrate the existence of ordered skill
sets, we continually pre-train the 125M parameter GPT-Neo model [14, 6] over various mixtures of
LEGO skills with k=5. In Figure 3 (left), we find that in 35.9% fewer training steps, training on a
balanced mixture of Xs1 ,Xs2 , and Xs3 resulted in the same validation loss of 0.01 as training solely
on Xs3 . This suggests that s1,s2 helped unlock performance on s3 and that there exist edges from
s1 or s2 to s3 in the skill graph. Additional observations are available in Appendix E.1, where we
examine other edges as well as more complex reasoning chains, and the full skills graph corresponding
to the ordered skill set for LEGO with k=5 is in Figure 11.

Addition skills We consider a variant of a synthetic 5-digit addition dataset analyzed in [45]. We show
the existence of ordered skill sets for a simplified 3-digit addition dataset where we treat each digit predic-
tion as a skill—the outputs, in this case, are the integers {0,1,...,9}. Examples are of the following form:

Input: A = 1 0 6 + 0 7 1 , A 0 = ? Output: 7 Input: A = 6 0 6 + 8 7 9 , A 2 = ? Output: 4

where ‘A 0’ refers to the ones digit of the output (s1) and ‘A 2’ refers to the hundreds digit (s3). In
Figure 3 (center), we find that in 32% fewer training steps, training on a balanced mixture of Xs1 ,
and Xs2 resulted in the same validation loss of 0.01 as training solely on Xs1 . That is, the ones digit
addition skill can be improved by simultaneously learning the tens digit addition skill, even though the
former should not require information from the latter—this is in line with observations from prior work
that models do not always learn the ones digit addition first [45]. The full skills graph corresponding
to the ordered skill set over 3-digit addition is in Figure 12.

Natural Instructions (NI) skills We show that ordered skill sets exist in NI [63] when we treat task
categories as skills.

• In Figure 3 (top right), we show that ordered skill sets exist over crosslingual task categories.
Training on Spanish question generation (QG) along with equal parts of English QG, Spanish
question answering (QA), and English QA results in 4.1% lower validation loss than training only on
Spanish QG. Remarkably, the former only uses 25% of the latter’s Spanish QG data. This suggests
that there are edges from Spanish QA, English QA, and English QG to Spanish QG.

• In Figure 3 (bottom right), we see that training on the task category Text Matching along with Stance
Detection helps decrease the loss on Stance Detection by 11%. This suggests that these categories,
which both involve understanding the relationship between two input texts, share an edge.
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Table 1: Summary of three settings—continual pre-training, fine-tuning, and out-of-domain. These
settings are determined by how Seval is defined and result in different skills graphs used for our
sampling methods.

Setting Seval Skills graph

Continual pre-training Seval =Strain A2Rk⇥k, edges among all Strain

Fine-tuning Seval ⇢Strain A2Rk⇥m, edges from training skills to target subset
Out-of-domain Seval\Strain =; A2Rk⇥m, edges from training skills to evaluation skill set

The full skills graphs corresponding to the ordered skill sets over these task categories are in Figure 14.
While equating task categories to skills may be noisy, these examples suggest that there is signal within
real data that suggests that ordered skill sets can improve data efficiency.

3.3 Skill recovery
A final component of characterizing skills is unsupervised recovery of ordered skill sets. We consider
embedding-based clustering approaches and a loss-based clustering approach for recovering LEGO
skills. When clustering data using various trained and pre-trained embeddings, we find that they were
unable to achieve above 39% accuracy on LEGO. Instead, we find that taking 10 random training runs
and clustering data by their loss per timestep per run recovers the skills with 61% accuracy (Table 3).
The intuition behind this method is that the validation losses on points from the same skill have similar
trajectories as models learn. We discuss this approach more in Appendix E.2.

4 Skills-based data selection
Now that we have established the existence of ordered skill sets, we discuss how to use them for data
selection. We state the data selection problem for learning across skills in Section 4.1. We discuss
how to learn the skills graph that will be exploited in our data selection methods in Section 4.2. We
then introduce two sampling methods that utilize the graph, a simple skill-stratified sampling method
and the online sampling method SKILL-IT, in Section 4.3.

4.1 Problem statement

We are given an ordered training skill set Strain = {strain,1,...,strain,k} on the training data, each with
associated support set Xstrain,1 ,...Xstrain,k , and an ordered evaluation skill set Seval={seval,1,...,seval,m}

of m evaluation skills on a separate evaluation dataset. We aim to select n samples from Strain via a
mixture of training skills, p2�k�1, to achieve three goals depending on how Seval is constructed:

• Continual pre-training: when Seval =Strain, our goal is select a mixture of training skills to learn
all of them.

• Fine-tuning: whenSeval⇢Strain, our goal is to select a mixture of training skills to learn an individual
target skill or subset of these skills.

• Out-of-domain: when Seval\Strain = ;, our goal is to select a mixture of training skills to learn
a disjoint set of evaluation skills we cannot train on. This can arise when we have a separate
downstream validation dataset or the skills identified in the training dataset are noisy.

Furthermore, we have a skills graph G=(Strain[Seval,E), where E✓Strain⇥Seval and A2Rk⇥m is
a weighted adjacency submatrix, where Aij describes the strength of the edge from strain,i to seval,j .
In Table 1, we summarize how the three different settings are constructed and how A varies across
them. Next, we discuss how A can be estimated from the data.

4.2 Skills graph learning

The skills graph is important for determining how to sample from the ordered skill set for training
efficiently. We present two approaches for learning the skills graph—brute-force and linear
approximation. Algorithms are provided in Appendix C.2. By definition 2, the brute-force way of
identifying edges involves fixing an overall training budget of H steps and 1) training and evaluating
the model on each strain,i and 2) training the model on each pair of (strain,i,seval,j) and evaluating on
strain,i and seval,j . If the loss on seval,j when trained on both strain,i and seval,j is lower, there exists an
edge from strain,i to seval,j with edge weight proportional to the difference in loss. This approach has
runtime O(Hkm) and is only feasible when k is small and when we have access to Seval at training
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Algorithm 1 SKILL-IT Online Data Selection Algorithm
1: Input: Ordered training skill set Strain, ordered evaluation skill set Seval. Learning rate ⌘, T rounds,

n samples, H training steps per run for graph learning, model f1, window parameter w.
2: A LEARNGRAPH(Strain,Seval,H,f1) (Alg. 2, 3).
3: Initialize pi1=exp(⌘

P
m

j=1Aij) for all i2 [k], the softmax over A.
4: for t=1,...,T�1 do
5: Observe losses Leval,j(ft) for all seval,j 2Seval.
6: Train model ft with n/T samples from mixture pt over Strain. Update model ft+1=�(ft,pt).
7: Set pi

t+1=exp(⌘
P

t

⌧=t�w+1

P
m

j=1AijLeval,j(f⌧ )).
8: end for

time. Otherwise, we can approximate this approach in linear time by training on each si for h<H

steps and setting Aij >0 if the loss on sj decreases over h steps for a runtime of O(hk). This linear
approach is necessary in the out-of-domain setting, since it does not require training on Seval. In
addition, both graph learning approaches can be performed on a smaller model, and the learned graph
can be used for data selection for training a larger model (Appendix E.4).

4.3 Skills graph-aware sampling

We present two approaches for sampling over the mixture of training skills according to the skills graph:
skill-stratified sampling, which samples uniformly over relevant training skills according to A, and
SKILL-IT, an online generalization that incorporates feedback of how skills are being learned so far.

4.3.1 Skill-stratified sampling

A straightforward sampling approach is to discard training skills that do not benefit the evaluation skills
and sample uniformly over the set of relevant training skills, which we call skill-stratified sampling.
For continual pre-training, the relevant skills are the entire training skill set; for each strain,i 2Strain,
Pr(strain,i)=

1
k

. This enables each skill to have sufficient training data. For fine-tuning, the relevant
skills are the target skills and prerequisite skills, which can be identified via positive entries of the
ith column of A with Sprereq = {strain,i : 9 seval,j s.t. Aij > 0}. We then set Pr(s) = 1

|Sprereq[Seval| for
s2Sprereq[Seval. For the out-of-domain setting, skill-stratified sampling is over the set of prerequisite
skills. For each s2Sprereq, we set Pr(s)= 1

|Sprereq| . Next, we propose our online algorithm that exploits
the graph dynamically for more efficient training.

4.3.2 SKILL-IT online data selection algorithm

Despite accounting for prerequisite skills, one shortcoming of skill-stratified sampling is that even
if a skill has already obtained sufficiently low validation loss early during training, we will continue
to allocate the same weight to that skill throughout training. Therefore, we formulate our data selection
problem as an online learning problem and propose SKILL-IT, which both prioritizes prerequisite
skills and skills that are not yet learned.

We are given a budget of T rounds and n total samples to train on. At round t, we select a mixture pt2
�k�1 from the k-dimensional unit simplex, and for each training skill strain,i2Strain, we sample from
Xstrain,i with proportion p

i

t
for a total of n

T
samples per round. Let ft be the model at at the start of round

t. We can define ft recursively as a function of the previous round’s model ft�1 and mixture pt�1 via a
dynamics function � :F⇥�k�1

!F ; that is, ft=�(ft�1,pt�1). Let Leval,j(ft) be the validation loss
of ft on seval,j . Our goal is to select p1,...,pT to minimize loss per evaluation skill at the end of training:

minimize
p1,...,pT2�k�1

1

m

mX

j=1

Leval,j(fT ). (1)

This optimization problem is challenging to solve without additional assumptions. In order to make the
problem tractable, we impose an explicit dynamics rule for the each evaluation skill’s lossLeval,j in terms
of the current loss and data mixture. Assuming for simplicity that Seval✓Strain, a simple rule would be
Leval,j(ft)=Leval,j(�(ft�1,pt�1)) :=Leval,j(ft�1)(1�↵p

j

t�1) for ↵2 [0,1]. That is, we expect that
allocating more data to skill j should result in the validation loss on skill j decreasing. However, such
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an expression assumes that only training on the jth skill will help learn the jth skill. Instead, Section 3.2
suggests that there are other skills that may help with the jth skill. We propose the following dynamics:

Leval,j(ft)=Leval,j(ft�1)(1�A
>
:,jpt�1), (2)

where A:,j is the column with weights of all skills that influence seval,j , and we absorb the scalar ↵
into A. The optimization problem in (1) can thus be simplified as follows:

minimize
p1,...,pT2�k�1

1

m

mX

j=1

Leval,j(fT ) (3)

s.t ft=�(ft�1,pt�1)8t=1,...T

Leval,j(ft)=Leval,j(ft�1)(1�A
>
:,jpt�1)8j2 [m]

In Appendix C, we derive the following update rule via online mirror descent [46] for learning rate ⌘>0:

p
i

t+1=p
i

t
exp

✓
⌘

mX

j=1

AijLeval,j(ft)

◆
. (4)

In addition, when equation 4 is expanded, we have that pi
t+1=p

i

1exp
⇣
⌘
P

t

⌧=1

P
m

j=1AijLeval,j(f⌧ )
⌘

.
Since this summation over ⌧ results in diminishing strength of updates, we change it to a moving
window of size w. Our full method is in Algorithm 1.

Intuitively, at each step we adjust the weight on skill i based on the losses of skills that i influences,
with the assumption that more training data helps decrease loss. Note that when we use our algorithm
with a complete graph or empty graph, we achieve expected behavior discussed in Section 3.1. For
the complete graph, our algorithm reduces to stratified sampling. When we have a skill set with an
empty graph, the update rule reduces to sampling proportional to each skill’s validation loss.

5 Experimental results

Given an ordered skill set, we aim to validate SKILL-IT’s ability to select data for efficiently learning
skills in the continual pre-training, fine-tuning, and out-of-domain settings. We provide full tables
of results in Appendix E.3.1 and results where we learn the skills graph on the 125M model and use it
for the 1.3B parameter model in Appendix E.4. Skills graphs are in Appendix D.2, weight trajectories
for SKILL-IT are in Appendix E.3.2, and ablations on the graph and online components of SKILL-IT
are in Appendix E.5.

5.1 Continual pre-training

Setup We evaluate the ability of SKILL-IT to select data for efficiently learning over all skills. We
measure average validation loss per skill after a fixed number of training steps. We construct the LEGO
synthetic and addition synthetic with k=5 and 3, respectively, and an imbalanced dataset over the
skills. On the Natural Instructions dataset, we use 23 of the task categories as skills.

Baselines We compare SKILL-IT against three baselines that do not account for skills: random
sampling, curriculum learning, and anticurriculum learning. Random sampling is a standard procedure
for selecting samples given no additional information. Curriculum learning [4] and anticurriculum
learning [67] score the samples from easiest to hardest and vice versa, respectively, and sample over
an expanding set of the lowest scored samples at every epoch; we use the pre-trained model’s loss to
rank points. We evaluate skill-stratified sampling, which uses knowledge of the skills but is not online,
and include an additional skills curriculum and anticurriculum baseline from [60], which samples
from skills in order of average loss per skill.

Analysis Across our experiments we find that SKILL-IT outperforms baselines that do not use skills
as well as skill-stratified sampling and skill curriculum learning. Our results on the LEGO dataset are
shown in Figure 4. SKILL-IT and skill-stratified sampling attain lower loss than other approaches on
skills 2, 3, 4 and on average, and while curriculum and anticurriculum learning attain lower loss on skill
5, they fail to learn other skills, resulting in at most 68 points accuracy on skill 3. SKILL-IT reaches
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Figure 4: Performance of SKILL-IT on each skill in the continual pre-training setting (learning over
all skills in the ordered training skill set) on the LEGO synthetic .

Figure 5: Performance of SKILL-IT in the continual pre-training setting on the addition synthetic.

a high average accuracy earlier in training than other approaches; halfway through training, SKILL-IT
obtains between 8.3 and 33.5 points higher average accuracy than other approaches, reaching a final
accuracy of 99.3 (Figure 20). SKILL-IT initially allocates more weight to prerequisite skills such as
skill 2 as suggested by Figure 11 and later on allocates more weights to the skills that are learned more
slowly, such as skills 4 and 5 (Figure 22). On the addition synthetic with k=3, SKILL-IT obtains lower
validation loss than the baselines on skills 1 and 2 in Figure 5. While most approaches aside from skill
curriculum learning eventually obtain 100% accuracy on all skills, SKILL-IT requires less training
to reach sufficiently high accuracy; halfway through training, SKILL-IT has accuracy between 8.7
and 73.1 points higher than other approaches (Figure 21). Finally on Natural Instructions, the average
validation loss from SKILL-IT is 3.2% lower than from random sampling (Table 7). Our results suggest
that exploiting the construction and ordering of skills is critical to learning skills quickly.

5.2 Fine-tuning

Figure 6: Performance of SKILL-IT in the fine-tuning setting on LEGO, addition, and NI.
Setup We evaluate the ability of SKILL-IT to select data from an ordered training skill set for learning
a target skill. Mirroring Figure 3, we evaluate on LEGO target skill 3 (third in reasoning chain), on the
addition synthetic’s skill 1 (ones place digit addition), and on NI’s Spanish QG and Stance Detection.

Baselines We compare SKILL-IT against training on the target skill only and skill-stratified sampling
over prerequisite skills and the target skill. The skill-stratified sampling approach uses the ordered
skill set to identify prerequisite skills, but does not exploit them dynamically.

Analysis Our results are shown in Figure 6. On LEGO, SKILL-IT results in the same validation loss of
0.01 as training only on the target skill in38.1% fewer steps. We observe a similar trend on addition, with
SKILL-IT converging to a validation loss of 0.01 in 59% fewer steps required to do so when training only
on the target skill. Finally, on NI, SKILL-IT improves validation loss on Spanish question generation by
5.3% and Stance Detection by 13.6% over just training on the respective target skill only. In this setting,
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Figure 7: Performance of SKILL-IT in the out-of-domain setting for the NI test task split. SKILL-IT uses
the graph between the train and evaluation skills to produce an online mixture on the training dataset.

RedPajama source SKILL-IT mixture

ArXiv 0.1370
Books 0.0437

C4 0.4195
CommonCrawl 0.0732

GitHub 0.1890
StackExchange 0.0892

Wikipedia 0.0484

Figure 8: Left: Accuracy on LM Evaluation Harness for continual pre-training of a 3B parameter
model using SKILL-IT on the RedPajama dataset. We achieve higher accuracy at 1B additional tokens
than uniform at 3B tokens. Right: SKILL-IT mixture over RedPajama sources.

a significant portion of the improvement over training only on the target skill comes from identification
of prerequisite skills through the learned graph in the skill-stratified sampling method. SKILL-IT is
further able to improve performance with finer-grained dynamic weighting on prerequisite skills.

5.3 Out-of-domain setting

Natural Instructions We evaluate the ability of SKILL-IT to select data from a set of training skills
for learning a disjoint set of evaluation skills that we cannot train on. We use all 59 task categories in the
NI train tasks split as the training skills and the 12 task categories in the test tasks split as our evaluation
skills. We compare SKILL-IT against random and skill-stratified sampling, both of which do not exploit
the relationships between training skills and evaluation skills. SKILL-IT achieves the lowest loss on
11 out of 12 task categories over random and skill-stratified sampling (Figure 7, tables in Appendix).

RedPajama We use SKILL-IT to produce a data mixture on the RedPajama dataset. The training
skills are the data sources comprising the dataset, and the evaluation skills are several tasks from the
Language Model Evaluation Harness [15]. SKILL-IT with T =1 yields the mixture in Figure 8 (right).
We continually pre-train a 3B parameter model trained on 1T tokens for 3B additional tokens using this
mixture, and see that it outperforms uniform sampling over the data sources (Figure 8 left). In particular,
SKILL-IT achieves higher accuracy with 1B additional tokens than uniform with 3B additional tokens.

6 Conclusion

Given a fixed budget of data, knowing what data to train on to induce various capabilities in an LM
is challenging. As LMs continue to improve, it will become increasingly important to extract as
much signal as possible from the data and to direct that signal towards acquiring a broad variety of
capabilities. In this paper, we introduce a skills-based framework for understanding how LMs learn
and for selecting training data. We hope our study invites others to build on such a notion of skill and
further explore how to align skills with data.
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A Broader Impacts and Limitations

Broader Impacts As more LMs are developed, a key criteria for their adoption and utility is if they
exhibit a wide array of useful capabilities, such as generating harmless content, summarizing essays,
and being conversational with the user. While improvements in other parts of the LM development
pipeline such as training and architecture are important, many recent advances in building LMs with
a wide array of useful capabilities have come from the data itself [18, 56, 10, 16, 43]. Our work is
fundamental in investigating how LMs learn and how to select data to learn skills more efficiently.
However, we recognize that data selection methods can always be utilized to optimize for particular
skills that may be considered malicious or negatively target or exclude specific groups [3]. Furthermore,
pre-trained LMs have been found to have various biases [26, 44, 36, 7].

Limitations The skills graph can either be provided (e.g., using a knowledge graph) or learned. Our
work learns the skills graph using Algorithm 2 or Algorithm 3, which requires initial training runs on
pairs of skills or each skill, respectively. This can be made more efficient by performing these training
runs on a smaller model and for fewer number of steps, but tradeoffs here have yet to be thoroughly
investigated. SKILL-IT also assumes that the ordered skill set is provided; as discussed in sections 3.1
and 3.3, it is challenging to recover ordered skill sets simply via metadata attributes or embedding
clustering. Otherwise, the best way to sample over collections of skills that form a complete or empty
graph is random or stratified sampling with no ordering to exploit. Our loss-based clustering approach
presented in section 3.3 demonstrates that grouping by losses can provide an explanation for how skills
are defined over data. An important direction for future work is to use such a clustering approach or
other unsupervised algorithms in an end-to-end pipeline for skill discovery, skill graph learning, and
data selection based on such skills.

Code release The code for SKILL-IT is available at https://github.com/HazyResearch/
skill-it.

B Extended related work
Data selection for LMs There have been several studies of large-scale data selection for LMs. Data
deduplication [33, 1, 23], in which identical or nearly identical samples are removed, is a method
that enables LMs to be trained on smaller, cleaned datasets and has been increasingly used as a
pre-processing step for training data [59, 5, 71]. Other methods applied at scale involve ensuring
high quality of data by explicitly filtering out samples or comparing the training dataset with a
cleaned reference dataset [8, 59, 32]. Importance reweighting approaches have also been proposed for
identifying training data from a large corpus that best approximates a smaller target distribution [69],
and influence functions have been used to select a subset of training data to improve performance on
downstream tasks [61]. These approaches can identify data pertaining to a particular target distribution
or filter out low quality data according to some heuristic, while our work aims to understand how the
choice of data is related to the numerous skills that LMs learn.

Recent development of LMs has shifted focus from emphasizing the scale of the model to prioritizing the
training data utilized. For example, models like Alpaca [56], Vicuna [10], and Koala [16] are all based
on the LLaMA model combined with instruction data generated by an existing LM. Palm 2’s technical
report states that the data mixture was a critical component of the final model [18], and Mosaic ML’s
recent MPT model was trained on a hand-engineered mixture of the RedPajama dataset [43]. However,
these works lack rigorous explanation for why their training datasets were constructed in this way.

Finally, perhaps most related to our approach is the contemporary work DoReMi [68], which uses
group distributionally robust optimization on a smaller LM to select data source mixtures for training
a larger LM. Their approach focuses on selecting data at the data source level for optimizing worst-case
performance across the training data sources, rather than at the more general skills level for a variety
of target skill sets. Furthermore, we focus on understanding how skills are related to each other and
induce some order in how LMs learn by explicitly modeling skill graph structure, which we find to
be important for data-efficient LM training (see ablations in Appendix E.5).

Data selection methods Many data selection methods have been proposed for supervised, task-
specific settings. In this setting, the most typical objective is dataset condensation, which aims to
identify a small subset of data that captures the larger dataset’s properties with respect to the model.
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Some approaches include constructing coresets [31, 48], identifying samples that the model forgets
during training [58]; identifying samples with the largest gradients [47] or gradients that approximate
the overall gradient [40]; clustering in embedding space and selecting points farthest from cluster cen-
ters [53]; and selecting samples with the highest uncertainty or entropy [34]. These approaches have also
been shown to transfer from smaller models to larger models [11]. Unlike these methods, we study how
to select data for learning one or many skills at the mixture level for LMs instead of the instance level.

Another area of interest is data selection for domain adaptation and multitask learning. For domain
adaptation, there are a wide range of methods that select data to best match the target distribution.
For example, the Moore-Lewis method matches data based on the difference in cross-entropy using
a model trained on the target versus a model trained on the source data [42]. Several other approaches
suggest training a model to distinguish between source and target and selecting points with high
uncertainty [50], or selecting points based on some divergence in an embedding space [51]. In
comparison to these approaches, our work focuses on learning one or many skills and also finds that
embedding-based heuristics do not fully identify skills.

Data attribution Another perspective on understanding training data is data attribution, which
seeks to identify what data is responsible for particular model behaviors. Influence functions [29]
and shapley values [17] are two ways to quantify the role of individual samples. Datamodels [24]
fit a model to predict behavior given a subset of training data, providing a framework for understanding
individual samples as well as dataset counterfactuals. Simfluence [21] fits a Markov process to a set
of training trajectories for finer-grained understanding of how data impacts training. We focus on
understanding how groups of data associated with skills elicit broader model capabilities, and utilize
this understanding to select data for more efficient training.

Curriculum learning Curriculum learning [4] proposes to show the model data in order from easy
samples to hard ones. Various criteria have been used to determine hardness, and anticurriculum as
well as various pacing functions and mixing rates have been explored [54]. Curriculum learning can
also be performed at the group level [60]. More sophisticated approaches include parametrizing each
sample with a dynamic importance [52], and also accounting for irrelevant and noisy data [39]. Our
approach similarly utilizes a curriculum, but it is defined over a skills graph and does not necessarily
align with training on easiest to hardest skills.

How LMs learn Many different explanations for how LMs learn from data have been proposed. One
hypothesis is that there exist discrete, universal building blocks of LM knowledge called quanta, and
power law scaling emerges from a learning over a particular distribution of quanta in the right order [38].
Another work proposes that scaling laws for LMs can be understood in terms of learning combinations
of skills [2]. Others have provided theoretical analysis of how transformers learn topics by studying
co-occurrences of words in the training data [35]. Empirically, how models learn is still a mystery—for
instance, models trained on code are found to perform fairly well at commensense reasoning [37]. Our
work initiates a study on how LMs learn various skills and how to exploit this for better data selection.

Task selection In multitask auxiliary learning, the goal is to train a model to perform well on a
target task(s) by selecting the most beneficial source tasks to train on. One can use feature similarity to
select tasks [30], but we find in our synthetics that feature similarity does not always recover skills. In
Taskonomy [70], a hypergraph over a set of tasks is learned and used to select tasks. The methods used
to develop the taxonomy can be applied to further expand our graph learning (e.g., studying transitive
and higher-order properties). However, their focus is on task selection in computer vision rather than
data selection for LMs to learn skills. Lastly, the contemporary work of TaskWeb [25] builds a graph
among 22 common NLP tasks in order to determine what the best source tasks are for a target task.
Their definition of an edge in the task graph is less strict than ours (their comparison is on if training
on additional data from si helps with sj , while we fix the overall amount of training data over both si

and sj). Overall, our approach is similar in use of the skills graph, but we incorporate it into a dynamic
sampling algorithm. Furthermore, we look more broadly at skills, rather than tasks, and characterize
when we expect using the skills graph to improve model performance.

Education The notion of skill has been studied in education. Classical research on learning
hierarchies [66] identify sets of skills that make up subordinate capabilities for students. For
instance, [13] identified that in order for students to solve linear equations, there were many prerequisite
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skills, ranging from the simplest being symbol recognition to the most complex being the ability to
add, subtract, multiple, and divide from both sides of the equation. More recently, decision-making
over lesson sequences based on skills, e.g., what the student already knows versus what the lesson
teaches, has become an area of interest in personalized learning [49].

C Additional Algorithmic Details

C.1 Derivation of SKILL-IT Update Rule

First, we provide the derivation of our update rule from online mirror descent using the proximal point
view [19]. We restate our optimization problem from (3):

minimize
p1,...,pT2�k�1

1

m

mX

j=1

Leval,j(fT ) (5)

s.t Leval,j(ft)=Leval,j(ft�1)(1�↵A
>
:,jpt�1)8j2 [m],t=1,...,T

ft=�(ft�1,pt�1)8t=1,...T

Let L̄t(p)=
1
m

P
m

i=j
Leval,j(ft+1)=

1
m

P
m

i=j
Leval,j(�(ft,p)); that is, p is the mixture we must choose

at time t and L̄t is the average loss per skill of the model after it is trained on p at round t. A greedy
approximation of (5) is minimize

p2�k�1
L̄t(p), given the model and mixtures at previous rounds. A linear

approximation of L̄t(p) is
L̄t(p)⇡ L̄t(pt�1)+hOL̄t�1(pt�1),p�pt�1i (6)

Then, the problem of minimizing L̄t(p) becomes
argmin

p2�k�1h⌘OL̄t�1(pt�1),pi (7)

after we drop terms from (6) that do not depend on p. Note that the ⌘ is a constant and does not impact
the solution. The optimal solution to this problem is selecting the p that has the most weight on the
slice with the largest gradient. To improve stability and prevent overfitting, we introduce regularization
via a Bregman divergence Dh(p||pt�1) = h(p)�h(pt�1)�hOh(pt�1),p�pt�1i. After dropping
terms that do not contain p, our problem is now

argmin
p2�k�1h⌘OL̄t�1(pt�1),pi+h(p)�hOh(pt�1),pi (8)

Taking the gradient and setting it equal to 0 gives us
⌘OL̄t�1(pt�1)+Oh(p)�Oh(pt�1)=0 (9)

Similar to in standard multiplicative weights, we set h(p)=
P

i
pilnpi and Oh(p)=[lnpi+1]i. Then,

lnpi=lnpi
t�1�⌘OiLt�1(pt�1)

)p
i

t+1=p
i

t
exp(�⌘OiL̄t(pt)) (10)

where Oi is the ith element of the gradient. Now we wish to compute OiL̄t(pt) =
1
m

P
m

j=1Oi[Leval,j(ft+1)]=
1
m

P
m

j=1Oi[Leval,j(�(ft,pt))]. Recall the dynamics model for Leval:

Leval,j(ft+1)=Leval,j(ft)(1�A
>
:,jpt), (11)

The gradient of this model with respect to each training skill si is
OiLeval,j(ft+1)=�AijLeval,j(ft) (12)

)OiL̄t(pt)=
1

m

mX

j=1

�AijLeval,j(ft)

Plugging this back into (10),

p
i

t+1=p
i

t
exp

✓
⌘

mX

j=1

AijLeval,j(ft)

◆
, (13)

where we can absorb the 1
m

into ⌘.
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Algorithm 2 Brute-Force Graph Learning
1: Input: Ordered skill set S={s1,...,sk}. Number of training steps K, base model f0.
2: for j2 [k] do
3: Train f0 on samples from Xsj for K steps and denote fK,j to be the model after training.
4: Observe change in loss, �j

j
=Leval,j(f0)�Leval,j(fK,j).

5: end for
6: for i,j2 [k] do
7: Train f0 on samples fromXsi[Xsj forK steps and denote fK,i,j to be the model after training.
8: Observe change in loss, �i,j

j
=Leval,j(f0)�Leval,j(fK,i,j).

9: if �ij
j
>�

j

j
then

10: Draw edge si!sj and set Aij>0.
11: end if
12: end for
13: return Adjacency Matrix A2Rk⇥k

Algorithm 3 Approximate Graph Learning
1: Input: Ordered skill sets Strain and Seval. Number of training steps K, base model f0.
2: for i2 [k] do
3: Train f0 on samples from Xstrain,i for K steps and denote fK,i to be the model after training.
4: for j2 [m] do
5: Observe change in loss, �i

j
=Leval,j(f0)�Leval,j(fK,i).

6: If �i
j
>0, draw edge strain,i!strain,j and set Aij>0.

7: end for
8: end for
9: return Bipartite Adjacency Matrix A2Rk⇥m

C.2 Graph Learning Method

We provide algorithms for learning the graph over an ordered skill set. In Algorithm 2, we discuss the
brute-force approach for learning the adjacency matrix. This approach only works when Seval✓Strain
(e.g. pre-training and fine-tuning cases), so we denote S=Strain in the algorithm box. In Algorithm 3,
we discuss the linear approach for learning the adjacency matrix. This approach works even in the
out-of-domain case when Seval and Strain are disjoint.

In both approaches, the exact value of Aij can vary, but we can typically set it proportional to �
i,j

j
��

j

j

in the brute-force case or �i
j

in the approximate case. The exact constructions and methods for learning
each A in our experiments are in Appendix D.2.

D Additional Experimental Details

D.1 Datasets

We present details about each dataset used, including information on the skills and the validation
dataset. A summary is presented in Table 2.

• Alpaca dataset [56]: the Alpaca dataset consists of 52K instruction examples that were generated
from text-davinci-003. We applied the Berkeley Neural Parser [27, 28] to each instruction, keeping
40777 samples it was able to parse successfully. If the sample began with a question, we annotated it
with the skill “question”, and otherwise we annotated it with the verb identified from the parser. We
grouped the data into a total of 38 skills, such as "list", "edit", "calculate", "describe" and "identify".

• Pile of Law [22]: the Pile of Law dataset consists of various sources of legal and administrative
data, ranging from tax rulings to the world’s constitutions. We evaluate on a subset of the Pile of Law
validation dataset consisting of 13883 samples, where we selected max(645, source size) samples
per source. We truncated each sample to be no more than 100K characters.

• LEGO [72]: for the LEGO synthetic, we set k=5 and sample 192000 points across the skills. Our
validation dataset consisted of 100 samples per skill.
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Table 2: We list each dataset used as well as its corresponding skill. We include the number of skills
in the training dataset, as well as details on how the validation dataset is constructed.

Dataset Skill # skills Validation data

Alpaca Instruction type 38 50 samples per skill
Pile of Law Legal data source 31 645 samples per skill

LEGO Reasoning chain depth 5 100 samples per skill
Addition Digit 3 100 samples per skill

NI (pre-training) Task category 23 50 samples per task
NI (Spanish QG) Task category ⇥ language 4 100 samples per task

NI (stance detection) Task category 2 50 samples per task
NI (out-of-domain) Task category 59,12 400 samples per task

RedPajama Data source 7 LM eval harness

• Addition: for the 3-digit addition synthetic, we set k=3 and sample 192000 points across the skills.
We use a validation dataset of 100 samples per skill.

• Natural Instructions [63, 41]: the Natural Instructions dataset is a large collection of tasks and their
definitions in natural language. For the pre-training setting, we used a set of 23 task categories that
had the largest degree (in-degree + out-degree) in the learned skills graph, for a total of 1,232,437
samples and 425 tasks to select from. We evaluated on 50 samples per task.
For the fine-tuning setting with Spanish question generation, we select data over4 skills (Spanish ques-
tion generation, Spanish question answering, English question generation, English question answer-
ing) for a total of 513210 samples and 212 tasks to select from. We evaluated on 100 samples per task.
For the fine-tuning setting with stance detection, we select data over 2 skills (stance detection, text
matching) for a total of 50990 samples and 19 tasks to select from. We evaluated on 50 samples
per task.
For the out-of-domain setting, we select data over all 59 task categories for a total of 2,417,867
samples and 753 tasks to select from. The test split consisted of 12 task categories and 119 tasks,
and we evaluated on min(400, task size) samples per task.

• RedPajama [57]: the RedPajama dataset is a 1-trillion token dataset that aims to reproduce the
LLaMA [59] training dataset. We select over the 7 data sources and evaluate using the LM evaluation
harness [15].

D.2 Graph Learning Details

We describe how the skills graph was learned on each dataset.

• Alpaca (Figure 9): we use Algorithm 3 and train for K=150 steps per skill. Each edge i! j has
a weight of �i

j
, the difference in loss on skill j before and after training on i. Next, we compare

the average validation loss of skill-stratified sampling versus random sampling when we train for
K=1000 steps. We find that skill-stratified sampling only does 0.007 better than random sampling,
confirming that Alpaca’s dense skills graph suggests that random sampling is the best we can do.

• Pile of Law (Figure 10): we use Algorithm 3 and train for K =150 steps. Each edge i! j has a
weight of �i

j
, the difference in loss on skill j before and after training on i.

• LEGO (Figure 11): we use both Algorithm 2 and Algorithm 3 and train for K=6000 steps each.
Each edge i! j has a weight of 0.5 if the amount of data associated with skill j that is needed to
reach 0.01 validation loss is less when training on (i,j) than on j (edges are set to 0 if 0.01 validation
loss is not reached, even if loss is decreasing). Each edge i! j is also set to 0.5 if training on i

decreases loss directly on j. We set each diagonal entry of A to be 1.
• Addition (Figure 12): we use Algorithm 2 and train for K = 6000 steps. Each edge i! j has a

weight of 0.5 if the amount of data associated with skill j that is needed to reach 0.01 validation
loss is less when training on (i,j) than on j (edges are set to 0 if 0.01 validation loss is not reached,
even if loss is decreasing). We set each diagonal entry of A to be 1.

• Natural Instructions (Figure 13, 14, 15): we use Algorithm 3. For the pre-training setting, we train
for K=600 steps and assign each edge i!j a weight �i

j
equal to the change in loss on j in the first

100 steps for all i,j2 [k], including diagonal entries. For the fine-tuning setting, we train for K=600
steps and assign each edge i! j a weight �i

j
equal to the change in loss before and after training.

For the out-of-domain setting, we train for K=600 steps and assign each edge i! j a weight �i
j

equal to the change in loss before and after training in the first 100 steps.
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Figure 9: Alpaca heatmap where i,jth entry is max(0,�i
j
) (the change in loss on sj after training on

si for 150 steps). Diagonal entries are set to 0 for clearer visualization.

• RedPajama (Figure 16): we use Algorithm 3 and train for 1 billion tokens per data source. We assign
each edge i!j a weight �i

j
equal to the change in perplexity on the validation datalsoa before and

after training.

D.3 Training Details

We describe the parameters used for SKILL-IT.

SKILL-IT pre-training
• LEGO: ⌘=0.5,T =6,w=3. We train for 6000 steps.
• Addition: ⌘=0.1,T =5,w=3. We train for 6000 steps.
• Natural Instructions (pre-training): ⌘=0.2,T =1. We train for 5000 steps.

For the LEGO random baseline, when we selected points at random, we used an imbalanced training
dataset with proportions 1:1:1:3:5. For the addition random baseline, we used an imbalanced dataset
with randomly selected proportions: 13:14:18. For the curriculum learning baselines, the pacing
function, g(i), denotes the size of the subset of the highest scoring samples that we uniformly select
from in the ith epoch. We define our pacing function as g(i)= iH

M
, where H is the number of steps

and M is 5 epochs for LEGO and NI, and 3 for addition.

SKILL-IT fine-tuning
• LEGO: ⌘=0.5,T =10,w=3. We train for 6000 steps.
• Addition: ⌘=0.1,T =5,w=3. We train for 6000 steps.
• Natural Instructions (Spanish QG): ⌘=0.8,T =6,w=3. We train for 600 steps.
• Natural Instructions (stance detection): ⌘=0.2,T =6,w=3. We train for 600 steps.

SKILL-IT out-of-domain
• Natural Instructions: ⌘=0.2,T =10,w=3. We train for 5000 steps.
• RedPajama: ⌘=100,T =1. We train for 3 billion tokens.

All results are computed over 5 random seeds.
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Figure 10: Pile of Law heatmap where i,jth entry is max(0,�i
j
) (the change in loss on sj after training

on si for 150 steps). Diagonal entries are set to 0 for clearer visualization.

Figure 11: LEGO heatmap with k=5 where i,jth entry is set to 0.5 if the number of steps needed
to reach 0.01 loss on skill j when training on a balanced mixture of skills i and j is less than when
training on skill j only.
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Figure 12: Addition heatmap with k=3 where i,jth entry is set to 0.5 if the number of steps needed
to reach 0.01 loss on skill j when training on a balanced mixture of skills i and j is less than when
training on skill j only.

Figure 13: Natural Instructions heatmap where i,jth entry is max(0,�i
j
) (the change in loss on sj after

training on si for 100 steps). Diagonal entries are set to 0 for clearer visualization.
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Figure 14: Spanish question generation and stance detection heatmaps where i,jth entry is max(0,�i
j
)

(the change in loss on sj after training on si for 100 steps).

Figure 15: Natural Instructions heatmap for out-of-domain setting where rows are for the training
skills and columns are for the evaluation skills. The i,jth entry is max(0,�i

j
) (the change in loss on

sj after training on si for 100 steps).
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Figure 16: RedPajama heatmap for out-of-domain setting where rows are for the training skills and
columns are for the evaluation skills. The i,jth entry is max(0,�i

j
) (the change in perplexity on sj

after training on si for 1B tokens).

Batch sizes of 32 and 64 were used for the LEGO and addition synthetic on the 125M and 1.3B
parameter model, respectively. Batch sizes of 4 and 16 were used for the Natural Instructions
experiments on the 125M and 1.3B parameter model.

For the out-of-domain Natural Instructions experiment and Alpaca graph learning experiments, a
learning rate of 5e-6 with linear scheduler and 50 warmup steps was used. All other experiments used
a learning rate of 5e-5. All experiments used AdamW with betas = 0.9, 0.999, eps = 1e-8, and weight
decay = 0.01. A context window of 512 was used for all experiments except LEGO and addition,
which used a window of 128.

Experiments with the Addition dataset were run using an Nvidia RTX A6000. Other experiments
using the GPT-Neo 125M parameter model were run on an Nvidia Tesla P100. Experiments using
the GPT-Neo 1.3B parameter model were run on an Nvidia Tesla A100.

E Additional Experimental Results

E.1 Additional examples of LEGO ordered skill sets

For the LEGO synthetic, it may appear obvious that the skills graph is equivalent to the reasoning chain
over the variables. However, in Figure 17 we see that this is not the case. Training on skills 2 and 4
together results in lower loss on skill 4 than when trained on skill 4 alone. However, training on skills 3
and 4 together results in roughly the same loss on skill 4 as when training on skill 4 alone, even though
skill 3 and skill 4 share an edge in the LEGO synthetic’s underlying reasoning chain. This suggests
that our intuition for how skills influence each other does not always match how the model learns skills.

Next, we consider a slightly more complex reasoning pattern on the LEGO synthetic. Instead of a
chain, we construct a tree, where two variables in the LEGO synthetic are both defined in terms of
the same parent variable. For example,

Input: c = val 1, y = not w, v = val c, w = not c. Output: y = 1.

In this example, k=4 and both v and w are written in terms of c, and the reasoning graph has edges
1!2, 1!3, 2!4. In this case, we see that training on skill 2 or skill 3 both improve losses on skills
2 and 3 (Figure 18). However, unlike the previous figures, training on skills 2 and 4 or skills 3 and
4 do not significantly help reduce loss on skill 4 (Figure 19). Again, these measurements demonstrate
that the reasoning graph does not necessarily equal the skills graph.

E.2 Unsupervised skill recovery

We explore several clustering techniques for recovering the skills in the LEGO synthetic on the
validation dataset. Our results are shown in Table 3.

We first cluster based on the pre-trained model embeddings of the last token and the average token. We
also report accuracies of clustering based on the trained model embedding’s last token, where we train
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Figure 17: Performance on LEGO skill 4 when training on skill 4, skills 2 and 4, and skills 3 and 4.
Even though skill 3 and skill 4 share an edge in the LEGO synthetic’s underlying reasoning chain
(i.e. a model predicting correct for the fourth variable is one extra step beyond predicting correct for
the third variable), we find that training on skills 2 and 4 helps improve performance on skill 4 more.

Figure 18: Performance on LEGO skill 2 and 3 when training on skills 2 and 3. The reasoning pattern
is a tree rather than a chain over k=4 variables. Skills 2 and 3 are at the same “depth” in the graph
and both depend on skill 1, so there is positive influence between the skills despite there being no edge
between 2 and 3 in the LEGO reasoning graph.

Figure 19: Performance on LEGO skill 4 when training on skills 2,4 and skills 3,4. We find that in
both cases, the benefit from training on additional skills is minor. For instance, training on 2 and 4
reaches 0.01 loss in 2700 steps, while training on 4 only reaches it in 2100 steps.
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Table 3: Clustering-based skill recovery methods on the LEGO dataset. The validation dataset we
cluster consists of 500 points with k=5, and results are reported over 10 runs of k-means.

Cluster method Accuracy
Pretrained embedding of last token 24.8±0.5

Pretrained embedding of average token 25.2±1.1
Trained model embedding of last token 38.4±0.8

Sentence-BERT embedding 23.9±0.7
Losses over multiple runs 61.0±1.6

the model using random sampling for 6000 steps, and clustering based on Sentence-BERT embeddings.
Among these four methods, using the trained model embeddings has the highest accuracy of 38.4 points.

Next, we cluster points based on losses. In particular, we do 10 runs, each for 6000 steps and with
a randomly sampled mixture of skills. For each run, we evaluate the model on the validation dataset
at 120 checkpoints. Then, each sample in the validation dataset has 1200 losses associated with it,
comprising a feature vector for that sample. We perform k-means clustering on these features, which
has an accuracy of 61.0 points, significantly higher than the second best accuracy of 38.4.

E.3 Full results for Section 5

E.3.1 Per-skill performance

In this section, we provide tables containing the per skill break-down of our results from Section 5.

Continual Pre-training In the continual pre-training setting, we report two additional baselines
that combine curriculum learning with skills. Curriculum learning has been proposed for multitask
learning [60], in which groups of data are ranked by their average score and then trained in order
of this ranking (with mixing of previously seen groups to avoid forgetting). We construct two
baselines, Skill-curriculum and Skill-anticurriculum, using Algorithm 1 from [60]. In contrast to
the random baseline which has imbalanced skills, this approach has knowledge of skills and thus
uses a skill-stratified training dataset to sample from. We set the fraction of the previous group to be
frac=0.4, as we found that setting frac=0.0 resulted in forgetting.

We report loss per skill for the LEGO synthetic in Table 4, which corresponds to the results in Figure 4.
We report accuracy per skill in Table 5 and Figure 20. We report the loss per skill for the Addition
synthetic in Table 6, which also correspond to to the results in Figure 4, and we provide the accuracy
per skill in Figure 21 (we omit a table of accuracies since most methods attained 100% accuracy by
the end of training). Finally, we report validation loss per task category for the Natural Instructions
continual pre-training experiment in Table 7, where we find that SKILL-IT outperforms random
sampling by 3.2% on average across skills.

Table 4: Results on validation loss per skill for LEGO pre-training experiment, averaged over 5 random
seeds.

Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Average

Random 0±0.000 0.669±0.051 0.686±0.013 0.676±0.046 0.678±0.032 0.542±0.028

Curriculum 0.003±0.002 0.431±0.028 0.875±0.051 0.140±0.022 0.001±0.000 0.290±0.008

Anticurriculum 0.047±0.012 0.351±0.011 0.601±0.128 0.121±0.017 0.003±0.001 0.225±0.026

Skill-stratified 0±0.000 0.045±0.036 0.056±0.029 0.080±0.044 0.050±0.025 0.046±0.022

Skill-curriculum 0±0.000 0.639±0.101 0.701±0.012 0.697±0.002 0.693±0.002 0.546±0.018

Skill-anticurriculum 0.001±0.001 0.306±0.218 0.541±0.252 0.596±0.201 0.611±0.172 0.411±0.144

SKILL-IT 0.004±0.005 0.009±0.011 0.029±0.016 0.043±0.020 0.019±0.006 0.021±0.009
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Table 5: Results on accuracy per skill for LEGO pre-training experiment, averaged over 5 random seeds.

Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Average

Random 100.0±0.0 53.8±6.8 57.4±5.5 48.2±6.1 51.2±4.3 62.1±3.5

Curriculum 100.0±0.0 80.2±1.3 49.6±3.0 97.0±2.3 100.0±0.0 85.4±0.7

Anticurriculum 98.8±1.3 84.6±3.0 68.0±6.9 96.8±1.3 100.0±0.0 89.6±1.9

Skill-stratified 100.0±0.0 98.2±1.8 98.2±1.3 97.8±1.6 98.2±1.3 98.5±0.9

Skill-curriculum 100.0±0.0 57.4±15.7 50.4±3.6 46.8±7.4 51.8±3.7 61.3±4.8

Skill-anticurriculum 100.0±0.0 86.8±19.8 65.4±19.7 61.2±16.6 62.0±13.4 75.1±11.5

SKILL-IT 99.8±0.4 99.6±0.9 99.0±0.7 98.6±0.9 99.6±0.9 99.3±0.4

Figure 20: Accuracy of SKILL-IT on each skill on the LEGO synthetic (if the desired variable has
the correct value out of 0 or 1) in the continual pre-training setting. SKILL-IT attains higher accuracy
more quickly than baselines that both do and do not utilize the notion of skills.

Table 6: Results on validation loss per skill for Addition pre-training experiment, averaged over 5
random seeds.

Skill 1 Skill 2 Skill 3 Average

Random 0.008±0.006 0.016±0.004 0.006±0.001 0.010±0.003

Curriculum 0.009±0.005 0.024±0.006 0.018±0.007 0.017±0.006

Anticurriculum 0.004±0.001 0.011±0.002 0.016±0.003 0.011±0.002

Skill-stratified 0.015±0.012 0.017±0.004 0.010±0.004 0.014±0.006

Skill-curriculum 0.027±0.046 0.700±1.018 0.661±0.884 0.463±0.630

Skill-anticurriculum 0.478±1.037 0.194±0.269 0.188±0.256 0.287±0.451

SKILL-IT 0.003±0.001 0.008±0.003 0.009±0.005 0.007±0.002
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Figure 21: Accuracy of SKILL-IT on each skill on the addition synthetic (10-way accuracy if the
predicted digit is correct) in the continual-pretraining setting. On average, SKILL-IT attains higher
accuracy more quickly than baselines that both do and do not utilize the notion of skills.
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Table 7: Validation loss per skill for data selection in continual pre-training setting on a subset of the Natural Instructions Dataset.

Skill Random Curriculum Anticurriculum Skill-stratified Skill-curriculum Skill-anticurriculum SKILL-IT

Answer Verification 2.297±0.058 2.368±0.055 2.391±0.061 2.180±0.059 2.249±0.116 2.325±0.085 2.158±0.059

Code to Text 0.246±0.021 0.203±0.019 1.099±0.115 0.178±0.016 0.126±0.009 1.232±0.070 0.223±0.017

Discourse Connective Identification 2.927±0.069 3.084±0.067 2.932±0.058 2.805±0.071 2.891±0.001 2.925±0.011 2.784±0.068

Entity Generation 2.033±0.421 2.012±0.437 2.363±0.234 1.803±0.384 1.853±0.483 2.068±0.719 1.863±0.418

Entity Relation Classification 1.020±0.147 1.014±0.140 1.533±0.138 0.859±0.131 0.825±0.022 0.959±0.009 0.908±0.146

Information Extraction 2.154±0.040 2.247±0.037 2.352±0.042 2.140±0.037 2.286±0.022 2.338±0.025 2.073±0.042

Irony Detection 3.024±0.154 3.798±0.095 2.942±0.158 2.680±0.146 3.889±0.066 2.099±0.152 2.797±0.155

Preposition Prediction 0.979±0.124 0.887±0.147 1.488±0.213 0.845±0.152 0.941±0.019 1.044±0.029 0.876±0.173

Punctuation Error Detection 2.950±0.065 3.120±0.052 2.961±0.064 3.264±0.061 3.019±0.010 3.360±0.013 3.216±0.055

Question Answering 2.277±0.005 2.367±0.006 2.398±0.006 2.542±0.004 2.689±0.001 2.707±0.016 2.448±0.008

Question Generation 2.617±0.005 2.777±0.015 2.695±0.008 2.783±0.021 3.062±0.006 2.876±0.032 2.666±0.012

Question Understanding 1.965±0.051 2.199±0.059 2.060±0.033 1.958±0.051 2.385±0.022 2.100±0.054 1.895±0.043

Sentence Expansion 2.501±0.095 2.598±0.097 2.583±0.074 2.225±0.095 2.311±0.076 2.408±0.074 2.236±0.083

Sentiment Analysis 3.203±0.012 3.415±0.016 3.209±0.010 3.278±0.014 3.607±0.012 3.308±0.015 3.213±0.012

Stance Detection 1.810±0.100 1.775±0.120 2.231±0.128 1.385±0.070 1.361±0.114 1.823±0.189 1.556±0.125

Summarization 2.961±0.015 3.149±0.023 3.041±0.014 2.960±0.019 3.323±0.028 3.021±0.013 2.907±0.012

Text Categorization 2.488±0.023 2.692±0.029 2.553±0.006 2.570±0.015 3.001±0.007 2.635±0.014 2.448±0.017

Text Matching 2.177±0.059 2.232±0.055 2.316±0.048 2.152±0.061 2.324±0.004 2.304±0.035 2.093±0.054

Text Simplification 2.155±0.023 2.193±0.039 2.325±0.033 1.926±0.026 2.037±0.005 2.156±0.011 1.952±0.026

Text to Code 0.560±0.037 0.495±0.036 1.215±0.052 0.490±0.029 0.433±0.014 1.455±0.086 0.553±0.042

Toxic Language Detection 3.106±0.027 3.496±0.017 3.058±0.029 3.199±0.024 3.758±0.025 3.155±0.050 3.129±0.020

Word Semantics 2.092±0.027 2.334±0.034 2.156±0.064 1.916±0.043 1.784±0.048 2.424±0.038 1.952±0.019

Wrong Candidate Generation 2.438±0.021 2.606±0.039 2.519±0.027 2.506±0.026 2.849±0.029 2.574±0.018 2.432±0.025

Average 2.173±0.028 2.307±0.025 2.366±0.026 2.115±0.027 2.304±0.031 2.317±0.052 2.103±0.032
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Out-of-domain In Table 8, we provide a breakdown of validation loss per evaluation skill under
random sampling on the training data, skill-stratified sampling over prerequisite skills (e.g., the
nonzero rows in Figure 15), and SKILL-IT.
Table 8: Validation loss per skill for data selection in out-of-domain setting over Natural Instructions
train task split and test task split.

Skill Random Skill-stratified SKILL-IT

Answerability Classification 3.048±0.003 3.076±0.002 3.043±0.003

Cause Effect Classification 2.068±0.004 2.101±0.005 2.067±0.006

Coreference Resolution 3.101±0.003 3.142±0.004 3.099±0.004

Data to Text 2.363±0.004 2.388±0.005 2.359±0.005

Dialogue Act Recognition 2.329±0.009 2.364±0.010 2.320±0.009

Grammar Error Correction 2.399±0.008 2.418±0.009 2.389±0.007

Keyword Tagging 2.744±0.005 2.760±0.007 2.733±0.006

Overlap Extraction 2.749±0.011 2.763±0.012 2.733±0.010

Question Rewriting 2.591±0.009 2.628±0.011 2.586±0.010

Textual Entailment 2.472±0.002 2.503±0.003 2.468±0.002

Title Generation 3.027±0.002 3.037±0.002 3.015±0.002

Word Analogy 1.665±0.016 1.682±0.015 1.668±0.016

Average 2.546±0.003 2.572±0.003 2.540±0.003

In Table 9 we provide a breakdown of the RedPajama experiment’s accuracy per evaluation skill,
corresponding to the results in Figure 8.
Table 9: Performance of model trained on RedPajama with uniform sampling and SKILL-IT on LM
evaluation harness. Unless otherwise noted, accuracy is reported for each task.

1 Billion Tokens 2 Billion Tokens 3 Billion Tokens

Uniform SKILL-IT Uniform SKILL-IT Uniform SKILL-IT

ARC Challenge (acc norm) 35.4 34.6 35.3 34.9 34.6 34.8
ARC Easy (acc norm) 62.2 61.2 62.4 61.7 62.5 62.0
BoolQ 68.9 68.2 67.7 68.6 67.2 68.7
COPA 81.0 82.0 80.0 81.0 81.0 81.0
HellaSwag (acc norm) 63.9 63.7 63.8 63.9 64.0 63.9
LAMBADA OpenAI 64.4 67.0 65.9 66.7 66.8 66.0
PIQA (acc norm) 74.8 75.0 75.5 75.2 75.0 75.7
Winogrande 62.8 63.9 63.9 63.2 63.4 63.1

Average accuracy 64.2 64.4 64.3 64.4 64.3 64.4

E.3.2 Weight trajectories

We provide SKILL-IT’s weight trajectories for each result. The weight per skill across training steps
for the LEGO pre-training experiment corresponding to Figure 4 (left) is shown in Figure 22. We
see that SKILL-IT initially allocates more weight to skill 2 and less to 1,3,4,5. Since skill 1 is learned
quickly, the weight on skill 1 immediately drops to below 0.1 at 1000 steps. The weight on skills 3,4,
and 5 increase from around 0 to 3000 steps, during which their respective validation losses are higher
than those of skills 1 and 2. Near the end of training, all losses are converging to 0, and so the weight
per skill is roughly uniform.

The weight per skill across training steps for the addition pre-training experiment corresponding to
Figure 4 (right) is shown in Figure 23. SKILL-IT allocates more weight to skill 2, which has an edge
to skill 1 as shown in Figure 12. It also allocates very little weight to skill 3, which is learned faster than
the other two skills. Eventually, it puts more weight on skill 1, the hardest skill, and then converges
to uniform sampling as all validation losses approach 0.

The weight per skill across training steps for the LEGO fine-tuning experiment and the Spanish
question generation and stance detection experiments corresponding to Figure 6 is shown in Figure 24.
Since there is only one target skill in these experiments, the mixture of weights approaches uniform
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Figure 22: Weight per skill for LEGO pre-training experiment. SKILL-IT initially allocates more
weight to skill 2, but eventually puts more weight on harder skills (3,4,5) before converging to uniform
sampling when all losses converge roughly to 0.

Figure 23: Weight per skill for addition pre-training experiment. SKILL-IT initially allocates more
weight to skill 2, which has an edge to skill 1, while allocating little weight to skill 3 which is learned
quickly. Eventually, SKILL-IT puts more weight on the harder skill 1 before converging to uniform
sampling when all losses roughly approach 0.

as the loss on the target skill approaches 0. It is interesting to explore how to reduce edge weights and
regularization so that the mixture approaches the target skill instead, although preliminary experiments
where we decayed the edge weight and the strength of the Bregman divergence term did not appear
better. We hypothesize that since training on a uniform mixture (as in Figure 3) did strictly better than
training on the target skill and their loss curves did not intersect during the training run, it is better
to allocate non-negligible weight on all skills throughout the training run.

The weight per skill across training steps for the Natural Instructions out-of-domain experiment corre-
sponding to Figure 7 is shown in Figure 25, where the legend is provided for the top 10 task categories
with the largest weights. While the initial weights based on the skills graph roughly establishes the order
of weight magnitude, the differences among the losses on the evaluation skills increases the range of
weights as training continues. As validation losses saturate, the weights also converge to fixed values.
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Figure 24: Weight per skill for fine-tuning experiments. Left: LEGO; Center: Spanish question
generation; Right: stance detection.

Figure 25: Weight per skill for Natural Instructions out-of-domain experiment. The legend shows
the top 10 skills with the largest weight. While the relative order of weight magnitude does not change
significantly across training, the incorporation of loss dramatically increases the range of the weights,
showing the importance of an online algorithm.

E.4 Experiments on 1.3B parameter model

We demonstrate that the skills graph learned on the 125M parameter model, as described in section D.2
can be used for data selection with the GPT-Neo-1.3B model across all three evaluation settings. All
results are reported over 3 random seeds.

Continual pre-training We report results for the LEGO continual pre-training experiment and the
Natural Instructions continual pre-training experiment.

For the LEGO experiment, we use the skills graph learned on the 125M parameter model and train the
1.3B parameter model with SKILL-IT for 1500 steps with ⌘=0.5,T =30,w=3. In Figure 26, SKILL-IT
still outperforms random and skill-stratified sampling on average. In particular, while performance
across sampling methods is similar for early skills, the discrepancy is larger for skill 5, for which SKILL-
IT allocates more weight to dynamically. In Figure 27, we provide the weight trajectories of SKILL-IT.
We observe that the weight trajectories are similar to that on the 125M parameter model, where initial
weight is allocated towards skill 2. Later on, more weight is allocated towards skills 4 and 5, whose
losses are higher, and eventually the weight mixture converges to uniform as all losses converge to near 0.

For the Natural Instructions experiment, we use the skills graph learned on the 125M parameter model
and train the 1.3B parameter model with SKILL-IT for 5000 steps with ⌘=0.2, T =1, and learning
rate 1e�6. In Table 10, we report performance of SKILL-IT on the Natural Instructions skills and
find that the trends from the smaller model hold—SKILL-IT outperforms random and skill-stratified
sampling on average.

Fine-tuning We use the skills graph from the 125M parameter model to train the 1.3B parameter
model with SKILL-IT for Spanish Question Generation fine-tuning. For 300 steps with learning rate
5e�6, ⌘=0.8, and T =12, we find in Figure 28 that SKILL-IT outperforms both skill-stratified and
random sampling.

Out-of-domain We evaluate if the skills graph learned using the 125M parameter model can be used
in SKILL-IT on a 1.3B parameter model for the out-of-domain setting on Natural Instructions. Our
results are shown in Figure 29, where we trained for 1000 steps, learning rate 1e�6, ⌘=0.5, and T =2.
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Figure 26: Performance of SKILL-IT for LEGO pre-training setting when skills graph is learned on
a 125M parameter model and used for data selection with a 1.3B model. SKILL-IT on average still
outperforms random and skill-stratified sampling, suggesting that findings on ordered skill sets can
transfer from small models to large models.

Figure 27: Weight per skill for LEGO pre-training experiment on 1.3B parameter model. The
trajectories are similar to those of the 125M parameter model in Figure 22. SKILL-IT initially allocates
more weight to skill 2, but eventually puts more weight on skills 4 and 5 before converging to uniform
sampling when all losses converge to near 0.

Out of 12 evaluation skills, SKILL-IT outperforms random and skill-stratified sampling on 10 skills
(compared to 11 skills when we used the same size model for both skills graph learning and training).

E.5 Ablations

We report ablations on components of the skills graph learning algorithm and on other components
of SKILL-IT. First, we study how the performance of SKILL-IT is robust to changes in the skills
graph—learning the graph with fewer steps, using the approximate algorithm, and adding noise to
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Table 10: Results when skills graph for Natural Instructions learned on 125M parameter model is used
for data selection with a 1.3B model. We see that SKILL-IT on average still outperforms random and
skill-stratified sampling, even though the edges used by SKILL-IT are not derived from the larger model.

Skill Random Skill-stratified SKILL-IT

Answer Verification 2.005±0.059 1.903±0.069 1.890±0.072

Code to Text 0.302±0.032 0.204±0.022 0.269±0.032

Discourse Connective Identification 2.529±0.046 2.372±0.054 2.393±0.056

Entity Generation 2.108±0.328 1.788±0.429 1.885±0.461

Entity Relation Classification 1.130±0.048 0.836±0.006 0.841±0.010

Information Extraction 2.032±0.013 1.992±0.006 1.933±0.013

Irony Detection 2.802±0.125 2.528±0.146 2.585±0.149

Preposition Prediction 1.095±0.040 0.686±0.041 0.774±0.029

Punctuation Error Detection 2.633±0.027 3.188±0.055 2.726±0.025

Question Answering 1.947±0.003 2.119±0.003 2.073±0.001

Question Generation 2.214±0.007 2.345±0.008 2.263±0.010

Question Understanding 1.928±0.020 1.837±0.031 1.700±0.042

Sentence Expansion 2.054±0.018 1.828±0.060 1.853±0.058

Sentiment Analysis 2.771±0.009 2.818±0.006 2.774±0.007

Stance Detection 1.814±0.151 1.500±0.117 1.628±0.149

Summarization 2.531±0.009 2.472±0.012 2.440±0.013

Text Categorization 2.289±0.016 2.341±0.021 2.231±0.022

Text Matching 1.967±0.008 1.913±0.005 1.872±0.005

Text Simplification 1.861±0.003 1.692±0.023 1.698±0.022

Text to Code 0.614±0.030 0.518±0.030 0.585±0.022

Toxic Language Detection 2.853±0.020 2.911±0.019 2.862±0.018

Word Semantics 1.999±0.023 1.870±0.039 1.902±0.024

Wrong Candidate Generation 2.187±0.028 2.192±0.023 2.140±0.020

Average 1.985±0.022 1.907±0.027 1.883±0.032

Figure 28: Performance of SKILL-IT for Spanish Question Generation fine-tuning setting when skills
graph is learned on a 125M parameter model and used for data selection with a 1.3B model. SKILL-IT
outperforms random and skill-stratified sampling, suggesting that findings on ordered skill sets can
transfer from small models to large models.

the adjacency matrix. Second, we study the effect of removing the skills graph, using a static skills
mixture, and varying the ⌘ in SKILL-IT.

E.5.1 Skills Graph Ablations

We explore the effect of changing how the skills graph is learned and adding noise to the graph on
SKILL-IT.

First, in Appendix C.2 we propose a brute-force graph learning algorithm and an approximate graph
learning algorithm. We find that these algorithms exhibit little difference in performance. For the
LEGO continual pre-training experiment, we find that replacing the brute-force skills graph with an
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Figure 29: Performance of SKILL-IT for Natural Instructions out-of-domain setting when skills graph
is learned on a 125M parameter model and used for data selection with a 1.3B model. SKILL-IT
outperforms random and skill-stratified sampling on 10 out of 12 skills.

approximate skills graph yields an average validation loss of 0.017±0.005 compared to 0.021±0.009.
For the Spanish question generation fine-tuning experiment, we find that using the brute-force
algorithm yields a validation loss of 2.339±0.028 compared to 2.328±0.029. In both experiments, there
was no more than a 0.011 gap in validation loss from using one skills graph learning algorithm over
the other, and both algorithms resulted in SKILL-IT outperforming baselines.

We next show that we can reduce H , the number of steps for learning each edge in the skills graph,
without significantly compromising SKILL-IT’s performance. In Table 11, we are able to reduce H by
at least 50% without changing the downstream average validation loss of SKILL-IT by more than 0.01.
Results are shown for three experiments: LEGO continual pre-training, Spanish question generation
fine-tuning, and Natural Instructions out-of-domain.

Table 11: Average validation loss of SKILL-IT with graph learned using original steps versus reduced
steps.

Experiment Original steps Reduced steps Skill-It (original) Skill-It (reduced)

LEGO PT 6000 1500 0.021±0.009 0.019±0.007

Spanish QG FT 600 300 2.328±0.029 2.338±0.024

NI OOD 600 50 2.540±0.003 2.538±0.001

We also show that perturbations in the values of A do not significantly impact the performance of
SKILL-IT. We learn each individual skills graph using one out of 5 random seeds. We then use each
skills graph as input to SKILL-IT and measure the per-element variance in the A adjacency matrix
as well as the variance in the average validation loss from using SKILL-IT. In Table 12, we see that
the skills graph has O(1e�3) variance while SKILL-IT’s loss has O(1e�4) variance. We further
study the effect of perturbations by applying Gaussian noise to each element of A and measuring the
performance of SKILL-IT (Figure 30). We find that SKILL-IT becomes worse than baselines only after
perturbing A by a standard deviation of roughly 0.13 per element, which we never attain in Table 12.

Table 12: Variance in skill graph’s adjacency matrix A over 5 random seeds compared with variance
in SKILL-IT’s performance from using different skills graphs.

Experiment Variance in A Variance in SKILL-IT’s average validation loss

LEGO PT 2.40⇥10�3 4.93⇥10�5

Spanish QG FT 1.31⇥10�4 3.76⇥10�4

NI OOD 9.22⇥10�5 6.35⇥10�5

Lastly, one may wonder if it is better to allocate theO(Hk) training steps needed for skills graph learning
towards just training a model longer using a naive baseline that does not utilize skills. Let h be the re-
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Figure 30: Skill-It on LEGO continual pre-training, Spanish question generation fine-tuning, and
Natural Instructions out-of-domain when Gaussian noise is added to each element of adjacency matrix
A. We use standard deviation ={0.01,0.05,0.1,0.2}.

duced overall number of steps for skills graph learning from Table 11, and letn be the number of steps for
training the LM. We consider a random sampling baseline onn+h steps and compare it to SKILL-IT on
n steps, with the skills graph learned over h steps. In Table 13, the random baseline does not outperform
SKILL-IT, suggesting that the improvement in model performance outweighs the graph learning cost.

Table 13: Comparison of SKILL-IT versus allocating skills graph learning budget to extend training
with random sampling.

Experiment n+h n Random (n+h) Skill-It (n)

LEGO PT 21000 6000 0.510±0.229 0.019±0.007

Spanish QG FT 1800 600 2.430±0.019 2.338±0.024

NI OOD 8950 6000 2.541±0.001 2.538±0.001

E.5.2 SKILL-IT ablations

We report ablations on removing the skills graph, using a static skills mixture, and varying the ⌘ in
SKILL-IT.

First, instead of using A in Algorithm 1, we study the performance when the identity matrix is used
instead; intuitively, this corresponds to a misspecified skills graph where no skill influences another
skill. We refer this approach as “No graph”. Note that the opposite case of a complete graph recovers
skill-stratified sampling, which we already have as a baseline.

Second, instead of sampling over multiple rounds and weighting according to the loss of each skill, we
study the effect of settingT =1, which only uses a softmax onA to yield static weights on the skills. We
refer to this approach as “Static”. We omit results on Natural Instructions continual pre-training, since
SKILL-IT uses T =1 and using no graph with T =1 recovers skill-stratified sampling. Intuitively, we
expect the static version of SKILL-IT to perform somewhat well unless there is significant discrepancy
among the losses (e.g. in synthetics where the loss on one skill can be close to 0 while the other is not,
versus in Natural Instructions where all losses decrease consistently). For both ablations, we sweep
over values of ⌘=[0.1,0.2,0.5,0.8].

Figure 31 shows the comparison between SKILL-IT and no graph on the continual pre-training LEGO
experiment, and Figure 32 shows the comparison between SKILL-IT and a static approach. We see that
both the graph and the online dynamics of SKILL-IT are important for its performance. In particular,
using no graph results in allocating significant weight to harder skills early on, even though many of them
have easier prerequisite skills (such as skill 3 having edges to skills 1 and 2). Using a static graph results
in consistent allocation of significant weight to prerequisite skills even after their validation losses
converge to near 0, and thus the harder skills that have higher loss are not learned quickly afterwards.

We perform the same ablation on the Addition dataset—the results for this are shown in Figures 33
and Figure 34. We find that these simple baselines, including using a static graph and no graph perform
similarly to SKILL-IT on average across all skills—while SKILL-IT performs the best on skill 2
compared to vanilla multiplicative weights, and SKILL-IT performs the best on skill 1 compared to
a static graph. This suggests that Addition is somewhat easier than the other datasets that we consider,
as SKILL-IT still outperforms other baselines, as shown in Figure 4.

Figure 35 compares SKILL-IT, no graph, and static data selection for the LEGO fine-tuning experiment.
No graph can be interpreted as allocating equal weight to all training skills not equal to the target skill,
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Figure 31: Comparison of SKILL-IT versus using the identity adjacency matrix (no skills graph) with
⌘=0.1,0.2,0.5,0.8 on the LEGO continual pre-training experiment. The latter does not capture the
relationship between skills, and we find that SKILL-IT attains lower loss on all skills.

Figure 32: Comparison of SKILL-IT versus using static data selection (T =1) with ⌘=0.1,0.2,0.5,0.8
on the LEGO continual pre-training experiment. While SKILL-IT eventually allocates more weights
to skills 3, 4, 5, which have higher loss, the static approach is not able to do this. We find that SKILL-IT
attains lower loss on all skills.

and varying this weight versus the weight on the target skill. While SKILL-IT and setting T =1 behave
similarly, we see that SKILL-IT is slightly better than using no graph. For instance, SKILL-IT obtains
a validation loss of 0.05 in 2000 steps, compared to 2050-2200 steps when using no graph.

Figure 36 and 37 compare SKILL-IT, no graph, and static data selection for the Natural Instructions
fine-tuning experiments. For both Spanish QG and stance detection, SKILL-IT attains lower loss than
using no graph or using T =1 round.
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Figure 33: Comparison of SKILL-IT versus using the identity adjacency matrix (no skills graph) with
⌘=0.1,0.2,0.5,0.8 on the Addition continual pre-training experiment. The latter does not capture
the relationship between skills, and we find that SKILL-IT attains lower loss on skill 2, but attains
similar performance to methods that do not use the skills graph.

Figure 34: Comparison of SKILL-IT versus using static data selection (T =1) with ⌘=0.1,0.2,0.5,0.8
on the Addition continual pre-training experiment. We find that SKILL-IT attains lower loss on skill
1, but attains similar performance to the static methods.

Figure 38 compares SKILL-IT and static data selection for the Natural Instructions out-of-domain
experiment. SKILL-IT attains the lowest validation loss on 7 out of 12 evaluation skills. It has an
average loss of 2.540 compared to a range of 2.541-2.551 for static data selection.

Lastly, we study the effect of varying ⌘ in SKILL-IT. We use ⌘ 2 {0.1,0.2,0.5,0.8}. For LEGO
continual pre-training and Spanish question generation fine-tuning (Figure 39), we find that SKILL-IT
with varying ⌘ outperforms skill-stratified and random sampling (with the exception of ⌘=0.1 and
skill-stratified being roughly the same for Spanish question generation). On the Natural Instructions
out-of-domain experiment, we find that for ⌘=0.1 and 0.2, we outperform baselines on 9 and 11 out
of 12 evaluation skills, respectively, while increasing ⌘=0.5 and 0.8 resulted in outperforming on 5
and 3 skills. These findings show that SKILL-IT is generally not hypersensitive to the choice of ⌘, and
we hope they provide some guidelines for a reasonable range of ⌘ without requiring significant tuning.
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Figure 35: Comparison of SKILL-IT versus using no graph (left) and static data selection (right) with
⌘=0.1,0.2,0.5,0.8 on the LEGO fine-tuning experiment. All approaches have roughly the same loss
trajectories, but SKILL-IT is slightly lower than using no graph.

Figure 36: Comparison of SKILL-IT versus using no graph (left) and static data selection (right) with
⌘=0.1,0.2,0.5,0.8 on the Natural Instructions Spanish QG fine-tuning experiment. SKILL-IT attains
lower validation loss than both no graph and static data selection.

Figure 37: Comparison of SKILL-IT versus using no graph (left) and static data selection (right) with
⌘=0.1,0.2,0.5,0.8 on the Natural Instructions stance detection fine-tuning experiment. SKILL-IT
attains lower validation loss than both no graph and static data selection.
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Figure 38: Comparison of SKILL-IT versus using static data selection with ⌘= 0.1,0.2,0.5,0.8 on
the Natural Instructions out-of-domain experiment. SKILL-IT attains the lowest validation loss on
7 out of 12 evaluation skills, and an average loss of 2.540 compared to a range of 2.541-2.551 for static
data selection.

Figure 39: Skill-It ablation of ⌘ 2 {0.1,0.2,0.5,0.8} for LEGO continual pre-training and Spanish
question generation fine-tuning.
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