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Abstract
We consider an average reward reinforcement
learning (RL) problem and work with asymptotic
variance as a risk measure to model safety-critical
applications. We design a temporal-difference
(TD) type algorithm tailored for policy evalua-
tion in this context. Our algorithm is based on
linear stochastic approximation of an equivalent
formulation of the asymptotic variance in terms of
the solution of the Poisson equation. We consider
both the tabular and linear function approximation
settings, and establish Õ(1/k) finite time conver-
gence rate, where k is the number of steps of the
algorithm. Our work paves the way for devel-
oping actor-critic style algorithms for variance-
constrained RL. To the best of our knowledge,
our result provides the first sequential estimator
for asymptotic variance of a Markov chain with
provable finite sample guarantees, which is of
independent interest.

1. Introduction
We consider an average reward Markov decision process
(MDP) (Bertsekas, 2012; Puterman, 1994). We operate
in a reinforcement learning (RL) (Bertsekas & Tsitsiklis,
1996; Sutton & Barto, 2018) framework, where the transi-
tion dynamics of the underlying MDP are unknown. The RL
algorithm can obtain a sample of the MDP under any given
policy, which specifies how actions are chosen in a given
state. The traditional goal in an average reward RL prob-
lem is to find a policy that maximizes the long run average
reward. While the need to optimize over average reward is
well motivated, applications in safety-critical domains, for
example, healthcare or finance, it is also crucial to control
adverse outcomes. As an example in the financial domain,
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one can consider the portfolio optimization problem, where
the objective is to find an investment strategy that maximizes
the return (expected value), while keeping the variability
under control through a constraint. This motivates the study
of risk-sensitive RL, where a risk measure is incorporated
either in the objective or as a constraint, see L.A. & Fu
(2022) for a recent survey.

Within the domain of risk-sensitive MDPs, several risk
measures have been considered, namely variance (Sobel,
1982; Filar et al., 1989), conditional value-at-risk (Chow &
Ghavamzadeh, 2014), exponential utility (Whittle, 1990),
the general class of coherent risk measures (Tamar et al.,
2015), and cumulative prospect theory (Prashanth et al.,
2016), which is not coherent. The choice of the risk measure
largely depends on the application at hand. Nevertheless,
variance is a popular risk measure that has been studied
extensively in the literature.

Several previous works incorporate variance as a risk mea-
sure in a constrained setting, where the goal is to maximize
the average reward (which is an expectation), while ensur-
ing a certain bound on the variance. This is the so-called
“mean-variance tradeoff”, considered in the seminal work
of Markowitz (Markowitz, 1952), and later in MDP con-
texts, cf. (Mandl, 1971; Sobel, 1982; Filar et al., 1989). An
alternative to such a formulation is to consider the expo-
nential utility formulation, see (Arrow, 1971; Howard &
Matheson, 1972), where one optimizes the exponential. The
constrained formulation is preferred over the exponential
utility for two reasons. First, the mean-variance tradeoff can
be controlled directly through a parameter that is a bound
on the variance, while this trade-off is implicit in an expo-
nential utility formulation. Second, the algorithms for the
latter formulation do not extend easily when one considers
feature-based representations and function approximation,
see L.A. & Fu (2022, Section 7.2) for a detailed discussion.

We consider variance as the risk measure in a average reward
RL framework. Broadly, for a given policy, two different no-
tions of variance are suggested for an average reward MDP
in (Filar et al., 1989). The first notion is the asymptotic
variance, while the second one is the per-period stationary
variance. The latter has been studied in an RL setting in
(Prashanth & Ghavamzadeh, 2016), while the former has
hardly been investigated in the literature, to the best of our
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knowledge. We use the asymptotic variance as a measure of
the risk associated with a given policy, which is the variance
of the random variable whose mean is typically optimized.
This asymptotic variance can be decomposed into two ad-
ditive terms, where the first term coincides with per-step
variance, while the other term involves correlations between
states across time periods. In a setting where the state se-
quence is independent, the second term is zero, while it is
not in any non-trivial MDP. A mean-variance optimization
formulation would consider maximizing the expectation of
a random variable which represents the long-run average
reward, and it is natural to consider the variance of this ran-
dom variable. This motivates our study of the asymptotic
variance in a RL framework. Also see Section 3.2.

In this work, we consider the problem of policy evaluation
for asymptotic variance, where the goal is to estimate the
asymptotic variance associated with the Markov chain in-
duced by a given stationary policy. Note that this goal is
very different from studying the variance of iterates of any
particular learning algorithm like temporal-difference (TD),
or designing algorithms with minimum variance of the it-
erates of the algorithm, studied extensively in (Devraj &
Meyn, 2017; Yin & Wang, 2020; Chen et al., 2020; Hao
et al., 2021). To further elaborate on this distinction, for
concreteness, consider the setting of MDPs, where the tran-
sition probabilities are known. Here, for evaluating a given
policy, one can use value iteration (VI). Since the MDP is
known, there is no variance associated with the iterates of
VI. However, the asymptotic variance that we consider in
this work (formally defined in Section 3) is still well-defined,
and exists due to inherent randomness associated with the
probabilistic transitions of the MDP. This work focuses on
estimating this asymptotic variance.

The problem of estimating the asymptotic variance is a
vital sub-problem in mean-variance policy optimization,
for instance, as a critic in an actor-critic framework, cf.
(Prashanth & Ghavamzadeh, 2016). For the discounted RL
setting, a TD type algorithm for estimating variance has
been proposed/analyzed in (Tamar et al., 2013), while a TD
algorithm with provable finite sample guarantees, which
caters to the variance risk measure in an average reward
RL setting, is not present in the literature to the best of our
knowledge.

1.1. Contributions

We now briefly describe the main contributions of this work.

1. We design a novel TD like linear stochastic approxi-
mation (SA) algorithm in both tabular and linear func-
tion approximation settings for estimating the asymptotic
variance associated with the Markov Chain induced by
a given stationary policy. Our algorithms are based on
an equivalent formulation of the asymptotic variance of

a given stationary policy in terms of the corresponding
solution of the Poisson equation.

2. We develop the first finite sample error bounds for the
policy evaluation problem for asymptotic variance in a
tabular setting, proving Õ(1/k) rate of convergence for
the mean-squared error, where k is the time step. Here,
Õ(·) notation hides log k and lower order dependencies.

3. We provide the first finite sample error bounds for the
policy evaluation problem for asymptotic variance with
linear function approximation. Again, we demonstrate
Õ(1/k) rate of convergence for the proposed algorithm.
However, in this setting, our estimate for asymptotic
variance suffers from an approximation error, which we
characterize.

4. Estimating asymptotic variance of functions defined on
state space of a Markov chain is a classical problem
in statistics as it is useful in statistical inference of the
mean (Wu, 2009). To the best of our knowledge, we
develop the first fully-sequential estimator with finite
sample guarantees on estimation error. Our contributions
may be of independent interest to statistics community.

1.2. Related Literature

MDPs: Average Reward and Risk-sensitivity. MDPs
have a long history. We refer the reader to classical books
(Puterman, 1994; Bertsekas, 2012) for a textbook introduc-
tion to MDPs in general, and to (Howard, 1960; Blackwell,
1962; Brown, 1965; Veinott, 1966; Arapostathis et al., 1993)
for an introduction to average-reward MDPs, in particular.
Risk-sensitive objectives have also been well-studied in the
MDP setting. For instance, see (Sobel, 1982; Filar et al.,
1995; Mannor & Tsitsiklis, 2013) for variance in discounted
and average reward MDPs, (Borkar & Meyn, 2002; Borkar
& Jain, 2010; Whittle, 1990) for the exponential utility for-
mulation, (Ruszczyński, 2010) for Markov risk measures,
(Chow & Ghavamzadeh, 2014) for conditional value-at-risk
(CVaR). However, in a MDP setting, algorithms require
complete knowledge of the underlying model, which may
not be feasible in many practical applications.

Risk-neutral RL. In the risk-neutral RL setting, expected
value is the sole objective. TD type algorithms have been
proposed for policy evaluation in discounted as well as av-
erage reward settings, and their asymptotic convergence is
shown in (Tsitsiklis & Van Roy, 1996; 1999), respectively.
TD algorithms have also been used in actor-critic style al-
gorithms for solving the problem of control, cf. (Konda &
Tsitsiklis, 2003; Bhatnagar et al., 2009). Asymptotic conver-
gence of the classical Q-learning algorithm was established
in (Borkar & Meyn, 2000; Tsitsiklis, 1994). In the non-
asymptotic regime, finite-sample mean-square convergence
bounds for classical discounted setting algorithms such as
TD, TD(λ), n-step TD, and Q-learning, have been developed
in (Chen et al., 2021). On the other hand, in the average
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reward setting, finite-sample bounds for TD are derived in
(Zhang et al., 2021).

Risk-sensitivity in RL. In a risk-sensitive optimization set-
ting, the goal is either to optimize the usual expected value
objective, while factoring a risk measure in a constraint,
or optimize a risk measure in the objective. Tail-based
risk measures such as variance, CVaR are meaningful to
consider as a constraint, while risk measures such as ex-
ponential utility and prospect theory can be considered as
the optimization objective, since they consider the entire
distribution. In the context of RL, variance as a risk mea-
sure has been studied earlier in a discounted reward MDP
setting in (Mihatsch & Neuneier, 2002; La & Ghavamzadeh,
2013), in a stochastic shortest path setting (Tamar et al.,
2013; 2012; 2016), and in an average reward MDP setting
in (Prashanth & Ghavamzadeh, 2016). Exponential utility
has been explored in an average reward RL setting ear-
lier, see (Borkar, 2010) for a survey and (Moharrami et al.,
2022) for a recent contribution. Other risk measures such as
CVaR, coherent risk measures, cumulative prospect theory
have been explored in an RL setting in the literature, and
some representative works include (Prashanth, 2014; Köse
& Ruszczyński, 2021; Prashanth et al., 2016; Markowitz
et al., 2023).

Variance Estimation of Markov Chain in Statistics. The
estimators for the asymptotic variance are well studied in
the statistics literature. (Wu, 2009; Flegal & Jones, 2010;
Atchadé, 2011; Chien et al., 1997; Robert, 1995) develop
efficient Monte-Carlo (MC) based batched or sequential
estimators, but do not provide any finite sample guarantees.
Benton (2022) proposes a TD like algorithm for estimat-
ing the asymptotic variance, with asymptotic convergence
guarantees.

2. Average Reward RL
In this section, we formally introduce the problem. We
begin by describing the underlying dynamics.

2.1. Markov Decision Process

Consider an infinite-horizon, average-reward MDP specified
by (S,A, r, p), where S = {1, . . . , |S|} denotes the finite
state-space, and A = {1, . . . , |A|} denotes the action space.
At each time t, the agent is in state St ∈ S , takes an action
At ∈ A, receives a reward r(St, At), and transitions to state
St+1. Here, r : S × A → R, and the next state St+1 is
sampled according to p(St, ·, At), where, p : S ×S ×A →
[0, 1], is the map that for states s, s′ and action a associates
probability p(s, s′, a) with the transition from state s to s′,
when action a is taken.

A stationary policy µ : S → Σ|A| is a map from state
space to a probability-simplex in R|A|, i.e., it maps each

state to a distribution over the actions. Given a station-
ary policy µ and a state x, the associated probability of
transitioning from state x to x′ is given by Pµ(x, x

′) =∑
a∈A µ(a|x)p(x, x′, a).

Assumption 2.1. The sets S and A are finite. Under the
stationary policy µ, the induced Markov chain M1 with
state space in S and transition probabilities given by Pµ is
irreducible and aperiodic.

This is a standard assumption in literature (see Tsitsiklis
& Van Roy (1999); Bertsekas (2012)), and guarantees that
each state is visited infinitely often. As a consequence of
Assumption 2.1, we have a unique stationary distribution
associated withM1, and the Markov chain starting from any
initial distribution, converges to the stationary distribution
geometrically-fast (Levin & Peres, 2017, Section 4.3). In
particular, let πµ denote the unique stationary distribution
on S that satisfies πT

µPµ = πT
µ .

Next, let Xt := (St, At). Observe that the processM2 :=
{Xt} is also a Markov chain with finite states. Let its state
space be denoted by X ⊂ S × A. For any two states
x1 := (s1, a1) and x2 := (s2, a2) in X , the probability of
transitioning from x1 to x2 underM2 is given by

P2(x1, x2) := p(s1, s2, a1)µ(a2|s2). (1)

For s ∈ S and a ∈ A, define

dµ(s, a) := πµ(s)µ(a|s).

Remark 2.2. Under Assumption 2.1, M2 has a unique
stationary distribution dµ defined above, and it mixes
geometrically-fast.

Remark 2.2 follows from Bhatnagar & Lakshmanan (2016,
Proposition 1).

Notation. Let Dµ ∈ R|S||A| × R|S||A| be the diagonal
array of stationary distribution dµ, i.e., Dµ((s, a), (s, a)) =
dµ(s, a) for all (s, a) ∈ S × A. For vectors x and y in
R|S||A|, let < x, y >Dµ := xTDµy, and ∥x∥Dµ := xTDµx
denote the Dµ weighted inner product and the induced
norm, respectively. For a vector v, let vT denote its
transpose, and let ∥v∥2 and ∥v∥∞ denote the ℓ2-norm
and ℓ∞-norm, respectively. These norms are by ∥v∥2 =√∑

i v
2(i), and ∥v∥∞ = maxi |v(i)| . Additionally,

let e denote the vector of all 1s in R|S||A|.

2.2. Average Reward Model

Average Reward. The long-term per-step expected re-
ward accumulated by a stationary policy µ starting from
state s is given by

lim
T→∞

1

T
E

[
T−1∑
t=0

r(St, At)|S0 = s

]
. (2)
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Here, the expectation is with respect to both the transition
dynamics of the environment, as well as the randomness in
the policy µ. It is well known that under Assumption 2.1,
this per-step expected reward in (2) is a constant that is
independent of the starting state (Bertsekas, 2012). We
denote this quantity by Jµ. It can be shown that

Jµ = Edµ
[r(S,A)] =

∑
x∈S,a∈A

πµ(x)µ(a|x)r(x, a). (3)

Here, Edµ
[·] denotes the expectation when (S,A) is sampled

according to the distribution dµ, which is defined after (1).

Q Function. Since Jµ = Edµ
[r(S,A)], there exists a solu-

tion of the following Poisson equation or Bellman equation
(see, Douc et al. (2018, Section 21.2)) Qµ : X → R such
that for each (s, a) ∈ X , and for P2 given in (1),

r(s,a)−Jµ = Qµ(s, a) (4)

−
∑

(s′,a′)∈X

P2((s, a)),(s
′, a′))Qµ(s

′, a′).

Let Qµ be a solution to (4). Then, Qµ + ce for any constant
c ∈ R is also a solution. Let Q∗

µ denote the solution normal-
ized so that it is orthogonal to e, i.e., Q∗T

µ e = 0. It is well
known that the set of solutions of (4) takes the following
form (Puterman, 1994):

Sµ := {Q∗
µ + ce|c ∈ R}.

3. Asymptotic Variance
Similar to the (per-step) average reward of the stationary pol-
icy defined in (2), a natural notion of the (per-step) asymp-
totic variance of the rewards accumulated by the policy µ
starting from state s is

lim
T→∞

1

T
Var

[
T−1∑
t=0

r(St, At)

∣∣∣∣S0 = s

]
. (5)

As earlier, this asymptotic variance is also computed with
respect to randomness of both the dynamics of the MDP,
and the policy µ.

3.1. Equivalent Expressions

In this work, we consider the problem of estimating the
asymptotic variance of a given policy µ. To this end, we first
present more tractable formulations for it, before presenting
the proposed algorithm and its analysis.

In the proposition below, we show that like the per-step re-
ward, the asymptotic variance is also a constant independent
of the starting state. This follows from geometric mixing
ofM2 (Remark 2.2). Further, we also present equivalent
formulations for the asymptotic variance defined in (5).

Proposition 3.1. Given a stationary policy satisfying As-
sumption 2.1, asymptotic variance defined in (5) is a con-
stant independent of the starting state, and is given by

κµ = lim
T→∞

1

T
Var

[
T−1∑
t=0

r(St, At)

∣∣∣∣(S0, A0) ∼ dµ

]
.

Furthermore, given any solution Qµ ∈ Sµ to (4),

κµ = Edµ

[
(r(S,A)− Jµ)

2
]

(6)

+ 2 lim
T→∞

T−1∑
j=1

Edµ[(r(S0, A0)− Jµ)(r(Sj , Aj)− Jµ)]

= 2Edµ
[(r(S,A)−Jµ)Qµ(S,A)]

− Edµ

[
(r(S,A)− Jµ)

2
]

(7)

= Edµ

[
Q2

µ(S,A)
]
− Edµ

[
(P2Qµ)

2(S,A)
]
. (8)

It is worth noting that the first term in equation (6) accounts
for the per-step variance, while the second term encom-
passes the temporal correlation introduced by the Markov
chain structure. These different representations for asymp-
totic variance are well known in literature. For example, see
Douc et al. (2018, Theorem 21.2.6) for a similar formula-
tion. For completeness, we give a proof of the proposition
in Section A.1.

Continuing, the second representation in equation (7) for-
mulates the variance of r(·, ·) in terms of the corresponding
solution of the Poisson equation (4). This follows from
Lemma A.1, which formulates the asymptotic variance of
functions defined on the states of a Markov chain in terms of
the solutions to the corresponding Poisson equation, and by
noticing that r(·, ·) is the function of states X of the Markov
chainM2 under consideration, and Qµ is the correspond-
ing solution to the Poisson equation (also see Douc et al.
(2018, Theorem 21.2.5)). Note that this representation isn’t
affected by choice of Qµ (any constant shift in Qµ doesn’t
affect κµ). We will use the form in (7) to design a TD-type
algorithm to estimate κµ for a given stationary policy µ.

Finally, the third equality follows by using the Poisson equa-
tion to replace (r(S,A)− Jµ) terms in (7) by Qµ(S,A)−
P2Qµ(S,A).

3.2. Motivation for Asymptotic Variance

As discussed in Section 1, different notions of variance have
been considered in the literature. We now motivate the
choice of asymptotic variance in a risk-sensitive setting.

First, in the average reward setting, a classical goal is
to optimize the long-term expected cumulative reward,
which corresponds to expectation of the random variable∑

t r(St, At). The asymptotic variance considered in this
work, corresponds to the variance of the same random vari-
able. Since both the mean and variance of

∑
t r(St, At)
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summed up to T terms are O(T ), we equivalently consider
1
T scaling of both the mean and variance to arrive at Jµ and
κµ, respectively.

Second, since κµ corresponds to the variance in the cen-
tral limit theorem for

∑
t r(St, At) (see, Douc et al. (2018,

Theorem 21.2.5)), we use the nomenclature “asymptotic
variance”.

Finally, consider an investor receiving return r(St, At) on
an investment at each time t. The total return of the investor
in T steps is

∑T
t=1 r(St, At). A risk-averse investor would

aim to maximize the average cumulative return subject to its
variance being small. Now, if the sequence {r(St, At)}t≥1

were i.i.d. according to dµ, the variance constraint would
reduce to a bound on TEdµ

[
(r(S,A)− Jµ)

2
]
. This corre-

sponds to the first term in (6). However, in in a Markov
sequence, this term alone does not capture the covariance
across time. This is captured by the second term in (6).

It is important to emphasize that prior research on
variance-constrained average reward RL, cf. (Prashanth
& Ghavamzadeh, 2016), treats the first term in (6) as a sur-
rogate for variance. However, in a Markovian context, the
correlation between time steps is non-negligible, and should
not be overlooked.

In what follows, we use linear SA for estimating κµ. We
develop a TD-like linear SA algorithm for estimating the
asymptotic variance associated with the Markov chain in-
duced by the given stationary policy µ, i.e., κµ. In contrast
to prior literature on TD such as (Devraj & Meyn, 2017; Yin
& Wang, 2020), which focus on studying the variance of
TD learning and its variants, we do not study the variance
of a linear SA algorithm itself. We use linear SA simply as
a tool for solving the variance estimation problem.

4. Variance Estimation: Tabular Setting
With the expressions for asymptotic variance derived in
Proposition 3.1, in this section, we design a TD type al-
gorithm for estimating κµ for a given stationary policy µ.
While κµ is non-linear function of Jµ and Qµ which need
to be estimated from the samples, the proposed Algorithm 1
is a linear SA update. We simulate two independent trajec-
tories under µ, which enables us to eliminate correlations
at a minor expense of doubling the total number of samples
required to ensure a given estimation error.

The following lemma expresses κµ in terms of averages
computed from two independent trajectories evolving ac-
cording to the specified policy µ.

Lemma 4.1. Given a stationary policy µ satisfying Assump-
tion 2.1, let (S,A), (S′, A′) be iid samples from dµ. Then,

κµ = 2Edµ[(r(S,A)− r(S′, A′))Qµ(S,A)]

− 1

2
Edµ

[
(r(S,A)− r(S′, A′))2

]
.

The above lemma immediately follows from (7) and the
observation that for a random variable X , Var[X] =
E
[
(X − E[X])2

]
can equivalently be expressed as

2Var[X] = E
[
(X −X ′)2

]
,

where X ′ is an independent copy of X , and a similar expres-
sion for covariance. We refer the reader to Appendix B.1
for a proof.

4.1. Algorithm Design

For T ≥ 1, and time steps k = 1, 2, . . . , T , let (Sk, Ak)
and (S′

k, A
′
k) represent the states and actions chosen ac-

cording to µ(·|Sk) and µ(·|S′
k) along the two independently

simulated trajectories. To estimate κµ, we use SA for the
expression in Lemma 4.1. This corresponds to (14) in Al-
gorithm 1. To this end, we need to estimate Qµ, which
necessitates estimating Jµ along the same sample path. Esti-
mating Jµ corresponds to the mean estimation update in (9).
For estimating Qµ, we again use SA to find a fixed point
of (4). δk in (10) represents the SA adjustment term for
Qµ estimation. However, since the fixed points for (4) may
not be unique, we particularly consider the one orthogonal
to e in ℓ2-norm. Thus, at each step, we project the δk up-
date to the orthogonal subspace. This corresponds to the
adjustments made in (11) and (12).

4.2. Convergence Rates

In this section, we bound the estimation error of the pro-
posed algorithm. Let Yk := (Sk, Ak, Sk+1, Ak+1, S

′
k, A

′
k).

Observe thatM3 := {Yk}k≥1 is a Markov chain. Let its
state space be denoted by Y , which is a finite set. As ear-
lier, under Assumption 2.1, M3 has a unique stationary
distribution. Let us denote it by π̃µ. Further, M3 mixes
geometrically fast (Bhatnagar & Lakshmanan, 2016, Propo-
sition 1). This guarantees that there exist constants C > 1
and ρ ∈ (0, 1) such that,

sup
y∈Y

dTV (P(Yk|Y0 = y), π̃µ) ≤ Cρk, for all k ≥ 1 ,

where P(Yk|Y0 = y) denotes the probability ofM3 being in
state Yk at time k, starting from state y, and for probability
measures P and Q, dTV (P,Q) denotes the total variation
distance between P and Q.

Definition 4.2. Given δ > 0, the mixing time τ(δ) of the
Markov chainM3 with precision δ is defined to be τ(δ) :=
min{t ≥ 0 | supy∈Y dTV (P(Yt|Y0 = y), π̃µ) ≤ δ}.
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Algorithm 1: Policy Evaluation: Tabular Setting
Input: Time horizon T > 0, constants c1 > 0, c2 > 0,

and step-size sequence {αk}.
Initialization: J0 = 0, Q0 = 0⃗, and κ0 = 0.
for k ← 1 to T do

On first trajectory, take actions Ak ∼ µ(·|Sk) and
Ak+1 ∼ µ(·|Sk+1) to observe
(Sk, Ak, r(Sk, Ak), Sk+1, Ak+1).

On second trajectory, take action A′
k ∼ µ(·|S′

k) and
observe (S′

k, A
′
k, r(S

′
k, A

′
k)).

// Average reward estimation

Jk+1 = Jk + c1αk(r(Sk, Ak)− Jk). (9)

// Q-value estimation

Define δk as

δk := r(Sk, Ak)− Jk

+ (Qk(Sk+1, Ak+1)−Qk(Sk,Ak)). (10)

For (s, a) ̸= (Sk, Ak),

Qk+1(s, a) = Qk(s, a)− αkδk/|S| |A|. (11)

For (s, a) = (Sk, Ak),

Qk+1(s, a) = Qk(s, a) + αkδk (1− 1/|S| |A|) .
(12)

// Variance estimation

T1 := 2(r(Sk, Ak)−r(S′
k, A

′
k))Qk(Sk, Ak),

(13)

T2 :=
1

2
(r(Sk, Ak)−r(S′

k, A
′
k))

2
,

κk+1 = κk + c2αk (T1 − T2 − κk) . (14)

end
Output :Variance estimate κT

From geometric mixing, we have for any δ > 0 that

τ(δ) ≤ logC

log(1/ρ)
log

1

δ
+ 1 ≤ L log

1

δ
, (15)

where L := 1 + logC
log(1/ρ) . LetR ∈ R|S||A| be the vector of

rewards and rmax := ∥R∥∞. Recall that Q∗
µ was defined

after (4). Next, define ∆1 to be

min
{
vTDµ(I−P2)v | v∈R|S||A|, ∥v∥2 = 1,vTe = 0

}
.

Clearly, feasible vectors v in ∆1 are non-constant vectors.
Then, from Tsitsiklis & Van Roy (1997, Lemma 7), we have
that vTDµ(I − P2)v > 0. Since the feasible region in ∆1

is non-empty and compact, we get ∆1 > 0.

Next, let ∆̃1 > 0 be defined as ∆̃1 := ∆1/(1 + 32r2max).

Finally, for the step-size constants c1 and c2 (inputs to Al-
gorithm 1), define

η := max{(c21 + 5 + 16c22r
2
max + c22)

1
2,

rmax(c
2
1+1+2c22)

1
2 }. (16)

The following theorem bounds the estimation error of Al-
gorithm 1, which immediately implies Õ(1/k) convergence
rate for the mean-squared estimation error of κµ to 0.

Theorem 4.3. Consider Algorithm 1 with c1 and c2 satisfy-
ing: c1 ≥ 1

2

(
1
∆1

+∆1

)
, and

c2 ∈
[
2∆̃1

(
1− 1√

2

)
, 2∆̃1

(
1 +

1√
2

)]
.

Let
ξ1 :=

(
1 + (J2

µ + κ2
µ + ∥Q∗

µ∥22)
1
2

)2
and

ξ2 := 520η2
(
1 + (J2

µ + κ2
µ + ∥Q∗

µ∥22)
1
2

)2
,

where η is defined in (16).

(a) Let αi = α for all i, such that ∆̃α < 2, and

ατ(α) ≤ min

{
1

4η
,

∆̃1

260η2

}
.

Then, for all k ≥ τ(α),

E
[
(κk − κµ)

2
]
≤ ξ1

(
1− α∆̃1

2

)k−τ(α)

+
ξ2ατ(α)

∆̃1

.

(b) Let αi = α
i+h for all i, with α and h chosen so that

2 < α∆̃1 < 2h. Let k∗ be the smallest positive integer
such that

∑k∗−1
i=0 αi ≤ 1

2η , and for all k ≥ k∗,

k−1∑
i=k−τ(αk)

αi ≤ min

{
1

4η
,

∆̃1

260η2

}
.

Then, for all k ≥ k∗, and L defined after (15),

E
[
(κk − κµ)

2
]
≤ ξ1

(
k∗ + h

k + h

)α∆̃1/2

+

(
4α2ξ2eL

∆̃1α− 2

)
ln (k + h)− lnα

k + h+ 1
.

The above theorem follows from a more general result
presented in the next section. We refer the reader to Ap-
pendix B.2 for a proof.
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Theorem 4.3(a) bounds the mean-squared estimation error
of the proposed algorithm in case of constant step size.
Though the first term in this bound decays exponentially
fast as the number of iterations k increase, the second term is
constant and becomes a bottleneck after sufficiently large k.
This is a well-known behavior of SA with constant step size.
In fact, it suffers similar drawback of being non-adaptive
as the vanilla Monte Carlo (Flegal & Jones, 2010; Chien
et al., 1997). Specifically, in order to ensure the mean-
squared error smaller than ϵ2 for ϵ > 0 (or mean absolute
error smaller than ϵ), one needs to pick the step size α as a
function of ϵ (see Corollary 4.5). This drawback of being
non-adaptive is overcome by choosing a diminishing step
size (as in Theorem 4.3(b)).

Second, it has been shown recently that linear SA with
constant step size, in presence of Markov noise, suffers
from an asymptotic bias (as k →∞), see Huo et al. (2023);
Nagaraj et al. (2020). This is in contrast to the iid noise
setting, where the asymptotic bias is shown to be zero (Mou
et al., 2020; Lakshminarayanan & Szepesvari, 2018). This
motivates us to study SA with a diminishing step size.
Remark 4.4. For diminishing step sizes, Algorithm 1
achieves Õ(1/k) rate of convergence (Theorem 4.3(b)). As
earlier, the first term in the bound decays faster, and the sec-
ond term is the rate-determining Õ(1/k) term. We believe
that the rate of convergence of Ω(1/k) for MSE is tight. In
the special setting of iid noise with parametric distributions,
this follows from the Cramér-Rao lower bound. We discuss
a simple estimator that achieves this rate in iid setting in
Appendix E.

Using bounds in Theorem 4.3, the corollary below presents
the number of iterations of Algorithm 1 needed to have the
mean estimation error bounded by ϵ. It follows from setting
the mean-squared estimation error bounds in Theorem 4.3
to at most ϵ2. We refer the reader to Section B.3 for a proof
of Corollary 4.5.

Corollary 4.5. To estimate κµ using iterates κk generated
by Algorithm 1 up to mean estimation error E[|κk − κµ|] ≤
ϵ, we require

k = O

(
log2 1

ϵ

ϵ2

)
Õ

(
L∥Q∗

µ∥22
∆4

1

)
.

The sample complexity in Corollary 4.5 depends on |S||A|
via ∆1, L, and ∥Q∗

µ∥22. Here, Q∗
µ ∈ R|S||A|, and hence,

∥Q∗
µ∥22 = O(|S|2|A|2). The dependence of L and ∆1 on

|S||A| is more implicit, and relates to the mixing properties
of the Markov chain induced by the policy. Below we make
this dependence explicit in two specific examples.

If the underlying Markov chain is a random walk on a
complete graph (with |S||A| vertices), then ∆1 = O(1),
L = O(1), and hence we get Õ(|S|2|A|2) dependence. On

the other hand, if the underlying Markov chain is a ran-
dom walk on a cycle graph (Levin & Peres, 2017, Section
12.3.1), then ∆1 = O(1/|S|2|A|2), L = O(|S|2|A|2), and
hence, we get a dependence of Õ(|S|12|A|12) in the sample
complexity.
Remark 4.6. Using Jensen’s inequality, we have

E[|κk − κµ|] ≤ E
1
2

[
(κk − κµ)

2
]
,

which then gives a bound on the mean estimation error. In
particular, for the diminishing step-sizes of the form αi =
α

i+h for all i ≥ 1, Theorem 4.3(b) gives E[|κk − κµ|] ≤
Õ(1/

√
k).

Remark 4.7. Consider the problem of estimating the stan-
dard deviation, √κµ. Mean-squared error for the estimator
√
κk satisfies E

[
(
√
κk −

√
κµ)

2
]
≤ 1

κµ
E
[
(κk − κµ)

2
]
,

which is at most Õ(1/k) for αk = O(1/k).

5. Variance Estimation: Linear Function
Approximation

When the underlying state and action spaces are large, esti-
mating the Qµ function for each state-action pair requires a
lot of memory, and may be intractable. To address this, we
consider evaluating an approximation of Qµ that is its pro-
jection onto a linear subspace spanned by a given fixed set
of d vectors {ϕ̃1, . . . , ϕ̃d}, where ϕ̃i ∈ R|S||A| for i ∈ [d].
In particular, for (s, a) ∈ S ×A, and θ ∈ Rd, we consider
a linear function approximation Qθ(s, a) = ϕ(s, a)T θ of
Qµ(s, a), where ϕT (s, a) := [ϕ̃1(s, a) . . . ϕ̃d(s, a)] is the
feature vector for state-action pair (s, a) and ϕ(s, a) ∈ Rd.
With this notation, let Φ be a |S| |A| × d matrix with ϕ̃i be-
ing the ith column, and let WΦ = {Φθ : θ ∈ Rd} denote the
column space of Φ. Then, Qθ = Φθ, where Qθ ∈ R|S||A|×1

is an approximation for Qµ using θ.
Assumption 5.1. The matrix Φ is full rank, i.e., the set
of feature vectors {ϕ̃1, . . . , ϕ̃d} are linearly independent.
Additionally, ∥ϕ(s, a)∥2 ≤ 1, for each (s, a) ∈ S ×A.

This is a standard assumption in literature, and can
be achieved by feature normalization, see (Tsitsiklis &
Van Roy, 1999; Bertsekas & Tsitsiklis, 1996).

We now introduce some notation that will be used in
this section. Define subspace SΦ,e of Rd as SΦ,e :=
span ({θ|Φθ = e}). It equals {cθe|c ∈ R} if e ∈ WΦ, and
θe is such that Φθe = e. Otherwise, SΦ,e = {0}. Let E be
the subspace of Rd that is orthogonal complement (in ℓ2-
norm) of SΦ,e, i.e., E = {θ ∈ Rd : θT θe = 0} if e ∈WΦ.
It equals Rd, otherwise. Additionally, let Π2,E denote the
orthogonal projection of vectors in Rd (in 2-norm) on the
subspace E.

Observe that for θ ∈ E, Φθ is a non-constant vector. This
follows since there does not exist θ ∈ E such that Φθ = e.
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In particular, if e ∈WΦ, then the unique vector θe such that
Φθe = e does not belong to E. Similarly, if e /∈WΦ, then
there does not exist a vector θ ∈ Rd, hence in E, such that
Φθ = e.

5.1. Algorithm

We now propose an algorithm for estimating the asymptotic
variance of a given stationary policy µ with linear function
approximation. Here, we estimate a good θ at each step.
Call this estimate θk. The corresponding estimate for Qµ is
then Φθk. The algorithm in this setting is a modification of
Algorithm 1, with (10), (11) and (12), and (13) replaced
by (17), (18), and (19), respectively.

δk := r(Sk, Ak)− Jk

+ (ϕ(Sk+1, Ak+1)− ϕ(Sk, Ak))
T θk, (17)

θk+1 = θk + αkΠ2,Eϕ(Sk, Ak)δk, (18)

T1 := 2(r(Sk, Ak)− r(S′
k, A

′
k))ϕ

T (Sk, Ak)θk. (19)

Here, updates in (17) and (18) correspond to TD for estimat-
ing Qµ with linear function approximation, adjusted with
projection on subspace E. Note that Algorithm 1 for the
tabular setting is a special case with d = |S| |A| and Φ = I ,
the identity matrix in |S| |A| dimensions.

5.2. Convergence Rates

In this section, we present a finite-sample bound on the esti-
mation error of the proposed algorithm with linear function
approximation. Recall the Markov chainM3 introduced in
Section 4.2, along with its mixing time τ(·). For E defined
below Assumption 5.1, define

∆2 := min
∥θ∥2=1,θ∈E

θTΦTDµ(I − P2)Φθ.

As before, this can be shown to be strictly positive since
for θ ∈ E, Φθ is a non-constant vector. Let ∆̃2 > 0 be
defined as ∆̃2 := ∆2/(1 + 32r2max). Finally, let Θ∗T :=
[Jµ θ∗T κ∗], where

κ∗ = 2Edµ
[(r(S,A)− r(S′, A′)) [Φθ∗] (S,A)]

− 1

2
Edµ

[
(r(S,A)− r(S′, A′))2

]
, (20)

and θ∗ is the unique vector in E that is also a solution for

Φθ = ΠDµ,WΦ
TµΦθ,

where ΠDµ,WΦ
is the projection matrix onto WΦ :={

Φθ|θ ∈ Rd
}

with respect to Dµ norm. Specifically,
ΠDµ,WΦ

= Φ(ΦTDµΦ)
−1ΦTDµ. Further, Tµ is an op-

erator that for a vector V ∈ R|S||A|, satisfies TµV =
R−Jµe+P2V . Observe that κ∗ differs from κµ in that Qµ

in the formulation in Lemma 4.1 is replaced by its estimate
in the subspace spanned by Φ.

The following theorem bounds the mean-squared distance
between the estimate at time k and the limit point κ∗ under
constant as well as diminishing step sizes.
Theorem 5.2. Consider estimates κk generated by the al-
gorithm with c1 and c2 satisfying: c1 ≥ 1

2

(
1
∆2

+∆2

)
,

and

c2 ∈
[
2∆̃2

(
1− 1√

2

)
, 2∆̃2

(
1 +

1√
2

)]
.

Let ξ1 = (1 + ∥Θ∗∥2)2 and ξ2 = 520η2 (∥Θ∗∥2 + 1)
2,

where η is defined in (16), and Θ∗ before (20).

(a) Let αi = α for all i, such that ∆̃2α < 2, and

ατ(α) ≤ min

{
1

4η
,

∆̃2

260η2

}
.

Then, for all k ≥ τ(α),

E
[
(κk − κ∗)2

]
≤ ξ1

(
1− α∆̃2

2

)k−τ(α)

+
ξ2ατ(α)

∆̃2

.

(b) Let αi = α
i+h for all i, with α and h chosen so that

2 < α∆̃2 < 2h. Let k∗ be the smallest positive integer
such that

∑k∗−1
i=0 αi ≤ 1

2η , and for all k ≥ k∗,

k−1∑
i=k−τ(αk)

αi ≤ min

{
1

4η
,

∆̃2

260η2

}
.

Then, for all k ≥ k∗, and L defined after (15),

E
[
(κk − κ∗)2

]
≤ ξ1

(
k∗ + h

k + h

)α∆̃2/2

+

(
4α2ξ2eL

∆̃2α− 2

)
ln (k + h)− lnα

k + h+ 1
.

To prove Theorem 5.2, we view the proposed algorithm as a
linear SA update, and prove appropriate contraction prop-
erties for the associated matrices. Unlike in the discounted
setting of RL, the operators in the average reward RL setting
are not contractive under any norm. In fact, as in (Zhang
et al., 2021), we establish semi-norm contraction, and es-
tablish convergence in an appropriate subspace (orthogonal
to all 1s vector). This turns out to be sufficient since the
formulation of asymptotic variance in (7) is unaffected by
constant shifts in estimation of Qµ.

Finally, we prove a much stronger statement where the
above bounds hold for mean squared difference between
the iterates of the algorithm [Jk θTk κk] and Θ∗ (see Theo-
rem C.1). We refer the reader to Section 5.4 for a sketch of
the proof, and to Section C.4 for a complete proof the the
theorem.
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5.3. Approximation Error

Since we approximate elements of the set Sµ of Qµ func-
tions (defined after (4)) by a linear combination of basis
vectors, we incur an approximation error in estimating κµ

using (7). In particular, κ∗ may differ from κµ, depending
on the approximation architecture. In this section, we bound
the squared error: (κµ − κ∗)2.

To this end, we first define the approximation error associ-
ated with Qµ approximation. Since each element of Sµ is
a valid Qµ function, for any θ ∈ Rd, we define the error of
approximation by Φθ as the minimum weighted distance (in
Dµ-norm) of Φθ from points in Sµ (Tsitsiklis & Van Roy
(1999)), i.e., infQ∈Sµ

∥Φθ−Q∥Dµ
. The minimum possible

approximation error due to the chosen architecture is given
by

E := inf
θ∈Rd

inf
Q∈Sµ

∥Φθ −Q∥Dµ .

This essentially captures the distance between the two sets,
Sµ and the column space of Φ.
Proposition 5.3. Given d basis vectors represented as
columns of Φ, there exists a constant λ ∈ (0, 1) such that

(κ∗ − κµ)
2 ≤ 16r2max

1− λ2
E2. (21)

Notice that E , and hence the RHS above, equals 0 if the
chosen basis functions are such that the span of these inter-
sects with Sµ. This is particularly true for the tabular setting,
where d = |S| |A| and the basis vectors are the standard
basis in this dimension.

To prove Proposition 5.3, we first bound the approximation
error in estimation of Qµ, similar to that for value func-
tion in (Tsitsiklis & Van Roy, 1999). Using this bound
in (7), we arrive at the bound in (21). We refer the reader to
Section C.5 for a proof of the proposition.

5.4. Proof Sketch for Theorem 5.2

To prove the bounds in Theorem 5.2, we view the proposed
algorithm as a linear SA update, and use an appropriate
Lyapunov drift argument. To this end, we first present the
corresponding linear SA algorithm.

For (s, a) ∈ S ×A, k ∈ N+, define

rk = r(Sk, Ak), r
′
k = r(S′

k, A
′
k), ϕk = ϕ(Sk, Ak). (22)

Let 0⃗ be the 0 vector in Rd. Define A(Yk) ∈ Rd+2 ×Rd+2,

A(Yk) :=

 −c1 0⃗T 0

−Π2,Eϕk Π2,Eϕk(ϕ
T
k+1 − ϕT

k ) 0⃗

0 2c2(rk − r′k)ϕ
T
k −c2

 ,

and b(Yk) ∈ Rd+2 as

b(Yk)
T :=

[
c1rk rk [Π2,Eϕk]

T − c2
2 (rk − r′k)

2
]
.

Let A = Edµ
[A(Yk)] and b = Edµ

[b(Yk)] denote the sta-
tionary averages of A(Yk) and b(Yk), respectively (see Ap-
pendix C.1 for exact form of A and b), and let ΘT :=
[J θT κ] with θ ∈ E. Observe that Θ = Θ∗ (defined be-
fore (20)) is the unique solution to AΘ+ b = 0 with θ ∈ E
(see Appendix C.2 for a detailed justification). Since the
algorithm doesn’t have access to matrices A and b, we use
SA to solve for Θ∗, which corresponds to the following
update rule at step k + 1 with step size αk:

Θk+1 = Θk + αk (A(Yk)Θk + b(Yk)) . (23)

In fact, the above equation coincides with the update for the
proposed algorithm, with ΘT

k := [Jk θTk κk].

The lemma below establishes that A is contractive when
restricted to an appropriate subspace, for appropriate choices
for the step-size constants c1 and c2. This result is crucial
in establishing the convergence of the iterates in (23).

Lemma 5.4. Under Assumption 2.1, and conditions on c1
and c2 from Theorem 5.2, the matrix A satisfies

min
Θ∈R×E×R,∥Θ∥2

2=1
−ΘTAΘ > ∆̃2/2.

Finally, as in Zhang et al. (2021), we use a Lyapunov-drift
argument along with Lemma 5.4 to arrive at the finite-time
bounds in Theorem 5.2. We refer the reader to Section C.3
for a proof of Lemma 5.4, and to Section C.4 for a complete
proof of Theorem 5.2.

6. Conclusions and Future Work
We proposed a TD-like algorithm to estimate the asymptotic
variance of a given stationary policy, and developed the first
finite sample bounds on the estimation error in the mean-
squared sense. We established Õ(1/k) rate of convergence
of the proposed algorithm in both the tabular, as well as lin-
ear function approximation settings. We also characterized
the approximation error in the latter setting. Notably, using
sampling along two independent trajectories, the proposed
algorithm can be viewed as a version of a linear SA algo-
rithm. Using Lyapunov drift arguments, we arrived at finite
sample guarantees.

As future research, it would be interesting to design an
algorithm that uses a single trajectory instead of two, to
estimate the asymptotic variance with good finite sample
guarantees. Additionally, our policy-evaluation algorithm
can serve as a building block for designing sample-efficient
actor-critic algorithms for identifying a policy that maxi-
mizes the long-run average reward subject to an asymptotic
variance constraint.
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A. Proofs for Results in Section 3
A.1. Proof of Proposition 3.1

Consider the induced Markov chainM2 with the corresponding probabilities of transition given by (1) and having a unique
stationary distribution dµ (Remark 2.2). Observe that r(·, ·) is a function defined on X , states of the discrete time Markov
chainM2, with stationary expectation Jµ. Further, we have from (4) that Qµ is a solution for the corresponding Poisson
Equation. Then, from Lemma A.4 we get that the asymptotic variance is constant independent of the starting state.

Further, from Lemma A.1, we get the two formulations for κµ, the asymptotic variance for function f = r(·, ·).

Finally, as discussed in the main text, the third formulation follows by replacing (r(S,A)− Jµ) terms in (7) by Qµ(S,A)−
P2Qµ(S,A), which follows from the Poisson Equation (4).

A.2. Variance of Functions of a Discrete Time Markov Chain (DTMC)

Lemma A.1. Let X = (Xk : k ≥ 0) be an irreducible and aperiodic DTMC on a finite-state space S with transition
probability matrix P and a unique stationary distribution π. Let f : S → R be any function, and let f̄ :=

∑
x∈S π(x)f(x)

denote its stationary expectation. Let V denote the solution to the Poisson equation for f − f̄ , i.e., for each x ∈ S, V
satisfies

V (x)−
∑

x′∈S
P (x, x′)V (x′) = f(x)− f̄ .

Then, for j ∈ N and γ(k) := Eπ

[(
f(Xk)− f̄

) (
f(X0)− f̄

)]
, the asymptotic variance of f is given by

lim
n→∞

1

n
Var

[
n−1∑
k=0

f(Xk)|X0 ∼ π0

]
= γ(0) + 2 lim

n→∞

n−1∑
k=1

γ(k)

= 2
∑
x∈S

π(x)(f(x)− f̄)V (x)−
∑
x∈S

π(x)(f(x)− f̄)2.

Proof. From Lemma A.4, we have

lim
n→∞

1

n
Var

[
n−1∑
k=0

f(Xk)|X0 ∼ π0

]
= lim

n→∞

1

n
Var

[
n−1∑
k=0

f(Xk)|X0 ∼ π

]
.

We show that the r.h.s. in the above equation is same as the expression in the lemma. Recall that for any k ≥ 1,
E[f(Xk)|X0 ∼ π] = f̄ . For simplicity of notation, we denote EX0∼π0

[·] by Eπ0
[·]. Then,

Var

[
n−1∑
k=0

f(Xk)|X0 ∼ π

]
= Eπ

(n−1∑
k=0

(
f(Xk)− f̄

))2


= Eπ

[
n−1∑
k=0

(f(Xk)− f̄)2

]
+ 2

n−1∑
k=0

∑
i<k

Eπ

[(
f(Xi)− f̄

) (
f(Xk)− f̄

)]
(a)
= Eπ

[
n−1∑
k=0

(f(Xk)− f̄)2

]
+ 2

n−1∑
k=1

(n− k)Eπ

[(
f(Xk)− f̄

) (
f(X0)− f̄

)]
= nγ(0) + 2

n−1∑
k=1

(n− k)γ(k),

13
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where (a) follows from Markov property. Dividing by n and taking limits, we get

lim
n→∞

1

n
Var

[
n−1∑
k=0

f(Xk)|X0 ∼ π

]
= γ(0) + lim

n→∞
2
n−1∑
k=1

n− k

n
γ(k)

(a)
= γ(0) + lim

n→∞
2
n−1∑
k=1

γ(k) (24)

= lim
n→∞

2
n−1∑
k=0

n− k

n
γ(k)− γ(0)

(b)
= lim

n→∞
2
n−1∑
k=0

γ(k)− γ(0), (25)

where (a) and (b) follow from Lemma A.2. Expression in (24) corresponds to the first expression in the lemma.

Next, we show that the expression in (25) is same as the second expression in the lemma.

Since V is the solution of the Poisson Equation, we have the following form for V Douc et al. (2018, Proposition 21.2.3,
Lemma 21.2.2)

V (x) =

∞∑
k=0

E
[
f(Xk)− f̄ |X0 = x

]
+ c,

for any constant c. Substituting this in the expression in the lemma statement gives:

2
∑
x∈S

π(x)(f(x)− f̄)V (x)− γ(0) = 2
∑
x∈S

π(x)(f(x)− f̄)

( ∞∑
k=0

E
[
f(Xk)− f̄ |X0 = x

])
− γ(0)

(a)
= 2

∞∑
k=0

Eπ

[
(f(X0)− f̄)

(
f(Xk)− f̄

)]
− γ(0)

= 2 lim
n→∞

n−1∑
k=1

γ(k)− γ(0),

which is same as (25). Here, to change the limits and expectation in (a), we used the bounded convergence theorem since f
is bounded (underlying Markov chain is on a finite state space).

Lemma A.2. Let X = (Xk : k ≥ 0) be an irreducible and aperiodic DTMC on a finite state space S with transition
probability matrix P and a unique stationary distribution π. Let f : S → R be any function, and let f̄ :=

∑
x∈S π(x)f(x)

denote its stationary expectation. Then,

lim
n→∞

n−1∑
k=0

n− k

n
γ(k) = lim

n→∞

n−1∑
k=0

γ(k),

where
γ(k) := Eπ

[
(f(Xk)− f̄)(f(X0)− f̄)

]
.

Proof. The proof of this lemma follows along the lines of the proof of Mou & Maguluri (2020, Lemma 3). However, we
give the proof for completeness. Let fmax := max

s∈S
f(x). Since X is an irreducible and aperiodic Markov chain on a finite

state space, it mixes geometrically fast (Levin & Peres, 2017), i.e., there exist constants C > 0 and α ∈ (0, 1) such that for
all k ∈ N+,

sup
x∈X

dTV (P (Xk|X0 = x), π) ≤ Cαk,
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where dTV (·, ·) represents the total variation distance between the two input distributions. Below, we first show that γ(k) is
bounded.

|γ(k)| =
∣∣Eπ

[(
f(Xk)− f̄

) (
f(X0)− f̄

)]∣∣
=
∣∣Eπ

[
E
[(
f(Xk)− f̄

) (
f(X0)− f̄

)]
|X0 = x

]∣∣
=
∣∣Ex∼π

[
E
[(
f(Xk)− f̄

)
|X0 = x

] (
f(x)− f̄

)]∣∣
≤ Ex∼π

[∣∣E[(f(Xk)− f̄
)
|X0 = x

]∣∣ ∣∣f(x)− f̄
∣∣]

≤ 4f2
maxCαk,

where we used Lemma A.3 to get the last inequality above.

Next, define

V1 := lim
n→∞

n−1∑
k=0

γ(k), and V2 := lim
n→∞

n−1∑
k=0

n− k

n
γ(k).

Consider the following:

|V1 − V2| = lim
n→∞

∣∣∣∣∣
n−1∑
k=0

k

n
γ(k)

∣∣∣∣∣
≤ lim

n→∞

n−1∑
k=0

k

n
|γ(k)|

(a)

≤ 4f2
maxC lim

n→∞

1

n

n−1∑
k=1

kαk

≤ 0,

since α < 1. This implies V1 = V2.

Lemma A.3 (Mou & Maguluri (2020, Lemma 2)). Let X = (Xk : k ≥ 0) be DTMC on a finite-state space S with a unique
stationary distribution π. Let f : S → R be any function, and let f̄ :=

∑
x∈S π(x)f(x) denote its stationary expectation.

Then, for any k ∈ N+, there exist constants α ∈ (0, 1) and C > 0, such that for any initial distribution X0 ∼ π0, we have∣∣E[f(Xk)− f̄ |X0 ∼ π0

]∣∣ ≤ 2fmaxCαk,

where fmax := maxx∈S f(x).

Proof. Consider the following inequalities:

∣∣E[f(Xk)− f̄ |X0 ∼ π0

]∣∣ = ∣∣∣∣∣∑
x′∈S

π0(x
′)
∑
x∈S

f(x) (P (Xk = x|X0 = x′)− π(x))

∣∣∣∣∣
≤
∑
x′∈S

π0(x
′)
∑
x∈S
|f(x)| |P (Xk = x|X0 = x′)− π(x)|

≤ fmax

∑
x′∈S

π0(x
′)
∑
x∈S
|P (Xk = x|X0 = x′)− π(x)|

≤ fmax sup
x′∈S

∑
x∈S
|P (Xk = x|X0 = x′)− π(x)|

≤ 2fmaxCαk,

where the last inequality follows from the definition of total variation distance and geometric mixing of the underlying
Markov chain.
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Lemma A.4. Let X = (Xk : k ≥ 0) be an irreducible and aperiodic DTMC on a finite-state space S with transition
probability matrix P and a unique stationary distribution π. Let f : S → R be any function, and let f̄ :=

∑
x∈S π(x)f(x)

denote its stationary expectation. Then,

lim
n→∞

1

n
Var

[
n−1∑
k=0

f(Xk)|X0 ∼ π0

]
= lim

n→∞

1

n
Var

[
n−1∑
k=0

f(Xk)|X0 ∼ π

]
.

Proof. For k ∈ N+, let f̄k := Eπ0
[f(Xk)]. Then,

1

n
Var

[
n−1∑
k=0

f(Xk)|X0 ∼ π0

]
=

1

n
Eπ0

(n−1∑
k=0

(
f(Xk)− f̄k

))2


=
1

n

n−1∑
k=0

Eπ0

[
(f(Xk)− f̄k)

2
]
+

2

n

n−1∑
k=0

∑
i<k

Eπ0

[(
f(Xi)− f̄i

) (
f(Xk)− f̄k

)]
. (26)

Clearly,

lim
n→∞

1

n

n−1∑
k=0

Eπ0

[
(f(Xk)− f̄k)

2
]
= lim

n→∞

1

n

n−1∑
t=0

Eπ

[
(f(Xt)− f̄)2

]
. (27)

This follows from the following:

lim
n→∞

1

n

n−1∑
k=0

Eπ0

[
(f(Xk)− f̄k)

2
]
= lim

n→∞

1

n

n−1∑
k=0

Eπ0

[
(f(Xk)− f̄)2

]
− lim

n→∞

1

n

n−1∑
k=0

(f̄ − f̄k)
2

= lim
n→∞

1

n

n−1∑
k=0

Eπ

[
(f(Xk)− f̄)2

]
,

where we used that

lim
n→∞

1

n

n−1∑
k=0

(f̄ − f̄k)
2 = 0,

which follows from geometric mixing of the underlying Markov chain.

Let us now show that the second term in (26) converges to the right limit. Towards this, we first re-write it as

B =
2

n

n−1∑
k=0

∑
i<k

(
Eπ0

[
(f(Xi)− f̄)(f(Xk)− f̄)

]
+ (f̄i − f̄)(f̄ − f̄k)

)
,

and let the corresponding term under π be

B′ = 2

n

n−1∑
k=0

∑
i<k

Eπ

[
(f(Xi)− f̄)(f(Xk)− f̄)

]
.

Let
T1 := Eπ0

[
(f(Xi)− f̄)(f(Xk)− f̄)

]
and T2 := Eπ

[
(f(Xi)− f̄)(f(Xk)− f̄)

]
.

Then,

|B − B′| =

∣∣∣∣∣ 2n
n−1∑
k=0

∑
i<k

(T1 − T2) +
2

n

n−1∑
k=0

∑
i<k

(f̄i − f̄)(f̄ − f̄k)

∣∣∣∣∣
≤ 2

n

n−1∑
k=0

∑
i<k

|T1 − T2|+
2

n

n−1∑
k=0

∑
i<k

∣∣f̄i − f̄
∣∣ ∣∣f̄ − f̄k

∣∣
(a)

≤ 2

n

n−1∑
k=0

∑
i<k

|T1 − T2|+
2

n

n−1∑
k=0

∑
i<k

4f2
maxCαk, (28)
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where we used Lemma A.3 to get the bound in (a) above, and recall that fmax := maxx f(x). Clearly, the second term
converges to 0 as n→∞. Let us now bound the first term.

|T1 − T2| =

∣∣∣∣∣∣
∑
x∈S

∑
y∈S

∑
z∈S

(π0(x)− π(x))P i(x, y)P k−i(y, z)(f(y)− f̄)(f(z)− f̄)

∣∣∣∣∣∣
≤ 4f2

max

∑
z∈S

∣∣∣∣∣∣
∑
x∈S

∑
y∈S

(π0(x)− π(x))P i(x, y)P k−i(y, z)

∣∣∣∣∣∣
= 4f2

max

∑
z∈S

∣∣∣∣∣∑
x∈S

(
π0(x)P

k(x, z)− π(x)P k(x, z)
)∣∣∣∣∣

=
∑
z∈S

∣∣∣∣∣∑
x∈S

π0(x)P
k(x, z)− π(z)

∣∣∣∣∣ f2
max

≤
∑
z∈S

∑
x∈S

π0(x)
∣∣P k(x, z)− π(z)

∣∣ f2
max

= 2L2
∑
x∈S

π0(x)∥P k(x, ·)− π∥T.V.

≤ 2f2
maxCαk.

Using the above bound in (28), we get that lim
n→∞

|B − B′| ≤ 0, proving the desired result.

B. Proof of Results in Section 4
B.1. Proof of Lemma 4.1

Clearly,

2Edµ
[(r(S,A)− r(S′, A′))Qµ(S,A)] = 2Edµ

[(r(S,A)− Jµ)Qµ(S,A)] .

This follows from linearity of expectation and the fact that (S,A) and (S′, A′) are independent samples.

Next, consider the second term in the expression in lemma.

1

2
Edµ

[
(r(S,A)− r(S′, A′))2

]
=

1

2
Edµ

[
r2(S,A) + r2(S′, A′)− 2r(S,A)r(S′, A′)

]
(a)
= Edµ

[
r2(S,A)

]
− J2

µ

= Edµ

[
(r(S,A)− Jµ)

2
]
,

where again (a) follows from linearity of expectation and independence.

Combining the two terms, we get that the rhs of expression in lemma is exactly κµ from (7).

B.2. Proof of Theorem 4.3

For (s, a) ∈ S × A, let 1(s, a) ∈ {0, 1}|S||A| be the indicator for (s, a), i.e., it equals 1 at the (s, a)th coordinate, and 0
otherwise. Furthermore, for k ∈ {1, 2, . . .}, define 1k := 1(Sk, Ak), indicator for (Sk, Ak). Then, setting d = |S| |A|,
basis vectors in the setup in Section 5 as standard basis, and for k ∈ {1, 2, . . .}, ϕk = 1k, we recover Algorithm 1 from
updates in (17), (18), and (19).

Further, since in this setting, the set of fixed points Qµ of (4) lies in the span of the basis vectors, κ∗ from (20) is same as
κµ. Hence, guarantees in Theorem 5.2 with these adjustments, reduce to those in Theorem 4.3, proving the result.

17



Policy Evaluation for Variance in Average Reward Reinforcement Learning

B.3. Proof of Corollary 4.5

We prove the sample complexity bound separately for the algorithm with a constant step size, and that with the diminishing
step size. But first, observe that c1 = O(1/∆1) implying that η = O(1/∆1). Furthermore, ξ1 = O(∥Q∗

µ∥22), and
ξ2 = O(∥Q∗

µ∥22/∆2
1).

(a) For Algorithm 1 with a constant step size α, to estimate κµ up to a mean estimation error of at most ϵ, we require

k ≥ L log
1

α
+O

(
log(ξ1/ϵ

2)

α∆1

)
= O

(
log2 1

ϵ

ϵ2

)
Õ

(
L∥Q∗

µ∥22
∆4

1

)
.

This follows from Theorem 4.3(a), where setting the second term to at most ϵ2 gives

α = O

(
ϵ2

log 1
ϵ

)
Õ

(
∆̃1

Lξ2

)
.

Choosing α to satisfy this condition, and setting the first term in the error bound to ϵ2, we get the required sample
complexity bound.

(b) Next, for Algorithm 1 with diminishing step size αi =
α

i+h for all i ≥ 1, for estimating κµ up to a mean estimation
error at most ϵ, we require

k = O

(
log2 1

ϵ

ϵ2

)
Õ

(
L∥Q∗

µ∥22
∆4

1

)
.

This follows from the mean-square estimation error bound in Theorem 4.3(b) by setting the rate-determining second
term to at most ϵ2, after optimizing over α. Note that α such that α∆̃1 = 2 (or α = O(1/∆̃1)) is the optimal choice.

C. Proofs for Results in Section 5.2
C.1. Stationary-Average Matrices

The average matrices A and b are given by

A =

 −c1 0⃗T 0

−Π2,EΦ
TDµ1⃗ Π2,EΦ

TDµ(P2 − I)Φ 0⃗

0 2c2(RT − Jµ1⃗
T )DµΦ −c2

 ,

and

b =


c1Edµ

[r(S,A)]

Π2,EΦ
TDµR

− c2
2 Edµ

[
(r(S,A)− r(S′, A′))

2
]
 ,

where P2 is the transition matrix defined in (1), and I is the identity matrix of the same dimensions. This follows from the
observation that the stationary expectation of each entry of matrix A(·) and b(·) is given by the corresponding entry of A
and b, respectively.

C.2. Algorithm’s Limit: A Discussion

Let Θ∗ = [Jµ θ∗ κ∗]T , where θ∗ is the unique vector in E that satisfies (uniqueness follows from Assumption 5.1)

Φθ∗ = ΠDµ,WΦ
(TµΦθ

∗),

where Tµ is an operator that for a vector V ∈ R|S||A|, satisfies TµV = R− Jµe+ P2V , and κ∗ is given by

κ∗ = 2Edµ
[(r(S,A)− Jµ)[Φθ

∗](S,A)]− 1

2
Edµ

[
(r(S,A)− Jµ)

2
]
,
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where [Φθ∗](S,A) denotes the (S,A)th entry of the vector Φθ∗, which corresponds to Qµ(S,A) in the tabular setting.

Here, ΠDµ,WΦ
is the projection in Dµ norm on the column space of Φ and is given by

ΠDµ,WΦ = Φ(ΦTDµΦ)
−1ΦTDµ.

Let Θ∞ := [J∞ θ∞ κ∞], where θ∞ ∈ E. We now show that Θ∞ = Θ∗ is the unique solution to AΘ∞ + b = 0. This
equation corresponds to

−c1J∞ + c1Edµ
[r(S,A)] = 0, (29)

−Π2,EΦ
TDµeJ∞ +Π2,EΦ

TDµ(P2 − I)Φθ∞ +Π2,EΦ
TDµR = 0, (30)

2c2(RT − Jµe
T )DµΦθ∞ − c2κ∞ −

c2
2
Edµ

[
(r(S,A)− r(S′, A′))2

]
= 0. (31)

Clearly, (29) implies J∞ = Jµ. Moreover, if θ∞ = θ∗ + aθe, for a ∈ R, where θe is the unique vector in Rd such that
Φθe = e, then (31) implies κ∞ = κ∗.

Next, we show that θ∞ = θ∗. Let’s use J∞ = Jµ, and re-write the LHS of (30) as below:

Π2,EΦ
TDµ ((R− Jµe) + (P2 − I)Φθ∞) .

Clearly, it equals 0 for θ∞ = θ∗. This follows from the definition of θ∗. Hence, θ∗ is a solution for (30). Furthermore,
θ ̸= θ∗ + cθe for any c ∈ R, since θ∗ + cθe /∈ E. We now show that there does not exist any θ ∈ E different from θ∗ that
satisfies (30). To this end, suppose such a θ′ ∈ E exists. Then, (30) evaluated at θ′ re-writes as

Π2,EΦ
TDµ (−J∞e+ (P2 − I)Φθ∗ +R)︸ ︷︷ ︸

=0

+Π2,EΦ
TDµ(P2 − I)Φ(θ′ − θ∗),

where the first term equals 0. Now, recall that Π2,E = I − θeθ
T
e , with the convention that θe = 0 if e /∈WΦ, the column

space of Φ. Further, θTe Φ
T = eT ∈ R|S||A|, which implies

θTe Φ
TDµ(P2 − I) = 0.

Using these, the second term above equals

ΦTDµ(P2 − I)Φ(θ′ − θ∗)− θe θ
T
e Φ

TDµ(P2 − I)Φ(θ′ − θ∗)︸ ︷︷ ︸
=0

.

Now, the first term above is non-zero since θ′ − θ∗ ∈ E, and hence, Φ(θ′ − θ∗) is non-constant vector that does not belong
to the null space of P2 − I . Thus, ∄θ′ ∈ E different from θ∗ that also satisfies (30).

C.3. Proof of Lemma 5.4

In this appendix, we will show that

min
Θ∈R×E×R
∥Θ∥2

2=1

−ΘTAΘ > 0. (32)

Recall that for θ ∈ E, Φθ is a non-constant vector in R|S||A|. Thus, θTΦTDµ(I − P2)Φθ > 0, for θ ∈ E (Tsitsiklis &
Van Roy, 1997, Lemma 7). Since the set

{
θ ∈ E : ∥θ∥22 = 1

}
is non-empty and compact, by extreme value theorem, we

have

∆2 := min
∥θ∥2=1,θ∈E

θTΦTDµ(I − P2)Φθ > 0.
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Next, expressing Θ ∈ R× E × R as ΘT = [J θT κ], we re-write the minimization problem in (32) as

min√
J2+∥θ∥2

2+κ2=1
J∈R,κ∈R,θ∈E

−ΘTAΘ

= min√
J2+∥θ∥2

2+κ2=1
J∈R,κ∈R,θ∈E

c1J
2 + c2κ

2 + JθTΠ2,EΦ
TDµe+ θTΠ2,EΦ

TDµ(I − P2)Φθ − 2c2κ(RT − Jµe
T )DµΦθ

(a)
= min√

J2+∥θ∥2
2+κ2=1

J∈R,κ∈R,θ∈E

c1J
2 + c2κ

2 + JθTΦTDµe+ θTΦTDµ(I − P2)Φθ − 2c2κ(RT − Jµe
T )DµΦθ

(b)

≥ min√
J2+∥θ∥2

2+κ2=1
J∈R,κ∈R,θ∈E

c1J
2 + c2κ

2 + JθTΦTDµe+∆2∥θ∥22 + 2c2θ
TΦTDµκ(Jµe−R), (33)

where (a) follows since θ ∈ E, and (b) follows since θTΦTDµ(I − P2)Φθ ≥ ∆2∥θ∥22.

Next, consider∣∣θTΦTDµ(Je+ 2c2κ(Jµe−R))
∣∣ = ∣∣JθTΦTDµe+ 2c2κθ

TΦTDµ(Jµe−R)
∣∣

≤ |J |
∣∣θTΦTDµe

∣∣+ 2c2 |κ|
∣∣θTΦTDµ(Jµe−R)

∣∣
≤ |J | ∥Φθ∥∞∥Dµe∥1 + 2c2 |κ| ∥Φθ∥∞∥Dµ(Jµe−R)∥1.

Next, let rmax := ∥R∥∞. Since ∥Dµe∥1 = 1, and ∥Dµ(Jµe − R)∥1 ≤ 2rmax, continuing the above inequalities, we
further get ∣∣θTΦTDµ(Je+ 2c2κ(Je−R))

∣∣ ≤ |J | ∥Φθ∥∞ + 4c2 |κ| ∥Φθ∥∞rmax.

Next, observe that
∥Φθ∥∞ ≤ max

(s,a)∈S×A
∥ϕ(s, a)∥2∥θ∥2 ≤ ∥θ∥2,

where the first inequality above follows from the definition of ∥ · ∥∞ and Holder’s inequality, and the second from
Assumption 5.1, giving ∣∣θTΦTDµ(Je+ 2c2κ(Je−R))

∣∣ ≤ |J | ∥θ∥2 + 4c2 |κ| ∥θ∥2rmax.

Using this in (33), we have

min√
J2+∥θ∥2

2+κ2=1
J∈R,κ∈R,θ∈E

−ΘTAΘ ≥ min√
J2+∥θ∥2

2+κ2=1
J∈R,κ∈R,θ∈E

c1J
2 + c2κ

2 +∆2∥θ∥22 − |J | ∥θ∥2 − 4c2 |κ| ∥θ∥2rmax.

The above minimization problem can be re-written as

min
κ∈[−1,1]

min
θ∈E,J∈R

∥θ∥2
2+J2=1−κ2

c2κ
2 + c1J

2 − (|J |+ 4c2 |κ| rmax) ∥θ∥2 +∆2∥θ∥22.

Now, consider the following bounds on the above minimization problem:

min
κ∈[−1,1]

c2κ
2 + min

θ∈E,J∈R
∥θ∥2

2+J2=1−κ2

{
c1J

2 − (|J |+ 4c2 |κ| rmax) ∥θ∥2 +∆2∥θ∥22
}

= min
κ∈[−1,1]

{
c2κ

2+ min
J∈[−

√
1−κ2,

√
1−κ2]

{
c1J

2 − (|J |+ 4c2 |κ| rmax)
√

1− κ2 − J2 +∆2

(
1− κ2 − J2

)}}

= min
κ∈[−1,1]

{
(c2 −∆2)κ

2 +∆2 + min
J∈[0,

√
1−κ2]

{
(c1 −∆2)J

2 − (J + 4c2 |κ| rmax)
√
1− κ2 − J2

}}

≥∆2 + min
κ∈[−1,1]

{
(c2 −∆2)κ

2 − 4c2 |κ| rmax

√
1− κ2 + min

J∈[0,
√
1−κ2]

{
(c1 −∆2)J

2 − J
√
1− κ2 − J2

}}
. (34)
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Let’s first solve the inner minimization problem. Let y1 ∈ R be such that

c1 −∆2 ≥ y1. (35)

Then, for c1 ≥ 0 and ≥ 0,

min
J∈[0,

√
1−κ2]

{
(c1 −∆2)J

2 − J
√
1− κ2 − J2

}
= min

x∈[0,1−κ2]

{
(c1 −∆2)x−

√
x (1− κ2)− x2

}
≥ min

x∈[0,1−κ2]

{
y1x−

√
x (1− κ2)− x2

}
=

1− κ2

2

(
y1 −

√
y21 + 1

)
,

where we used Lemma D.1 to get the last equality. Using this in (34), we have the required minimum is at least

∆2 + min
κ∈[−1,1]

{
(c2 −∆2)κ

2 − 4c2 |κ| rmax

√
1− κ2 +

1− κ2

2

(
y1 −

√
y21 + 1

)}
= ∆2 +

y1 −
√
y21 + 1

2
+ min

κ∈[−1,1]

{(
c2 −∆2 −

y1 −
√
y21 + 1

2

)
κ2 − 4c2 |κ| rmax

√
1− κ2

}

= ∆2 +
y1 −

√
y21 + 1

2
+ min

x∈[0,1]

{(
c2 −∆2 −

y1 −
√
y21 + 1

2

)
x− 4c2rmax

√
x− x2

}
.

Next, let y2 ∈ R such that

c2 −∆2 −
y1 −

√
y21 + 1

2
≥ y2. (36)

Then the previous expression is lower bounded by

∆2 +
y1 −

√
y21 + 1

2
+ min

x∈[0,1]

{
y2x− 4c2rmax

√
x− x2

}
,

which equals (using Lemma D.1)

∆2 +
y1 −

√
y21 + 1

2
+

y2 −
√

y22 + 16c22r
2
max

2
. (37)

Choosing

y1 =
1

2∆2
− ∆2

2
, and y2 =

c22
4∆2

(1 + 32r2max)−
16∆2r

2
max

1 + 32r2max

ensures that (37) is at least
∆2

2(1 + 32r2max)
,

which is strictly positive. Choosing

c1 ≥
1

2

(
1

∆2
+∆2

)
,

and

c2 ∈
[

2∆2

1 + 32r2max

(
1− 1√

2

)
,

2∆2

1 + 32r2max

(
1 +

1√
2

)]
satisfies (35) and (36).
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C.4. Proof of Theorem 5.2

Results in Theorem 5.2 follow from much stronger results stated in Theorem C.1 below, which we will prove in this section.

Theorem C.1. Consider the iterates ΘT
k = [Jk θTk κk] of the proposed algorithm in Section 5.1 with c1 and c2 satisfying:

c1 ≥
1

2

(
1

∆2
+∆2

)
, and c2 ∈

[
2∆̃2

(
1− 1√

2

)
, 2∆̃2

(
1 +

1√
2

)]
.

Let ξ1 = (1 + ∥Θ∗∥2)2 and ξ2 = 520η2 (∥Θ∗∥2 + 1)
2, where η is defined in (16), and Θ∗ before (20).

(a) Let αi = α for all i, such that ∆̃2α < 2, and

ατ(α) ≤ min

{
1

4η
,

∆̃2

260η2

}
.

Then, for all k ≥ τ(α),

E
[
(Jk − Jµ)

2 + ∥θk − θ∗∥22 + (κk − κ∗)2
]
≤ ξ1

(
1− α∆̃2

2

)k−τ(α)

+
ξ2ατ(α)

∆̃2

.

(b) Let αi =
α

i+h for all i, with α and h chosen so that 2 < α∆̃2 < 2h. Let k∗ be the smallest positive integer such that∑k∗−1
i=0 αi ≤ 1

2η , and for all k ≥ k∗,

k−1∑
i=k−τ(αk)

αi ≤ min

{
1

4η
,

∆̃2

260η2

}
.

Then, for all k ≥ k∗, and L defined after (15),

E
[
(Jk − Jµ)

2 + ∥θk − θ∗∥22 + (κk − κ∗)2
]
≤ ξ1

(
k∗ + h

k + h

)α∆̃2/2

+

(
4α2ξ2eL

∆̃2α− 2

)
ln (k + h)− lnα

k + h+ 1
.

Notation. Recall that Π2,E denotes the orthogonal projection of vectors in Rd (in 2-norm) on the subspace E ∈ Rd.
Consider the sequence of iterates Θk := [Jk θTk κk] generated by the proposed algorithm in Section 5.1 with Θ0 = 0⃗ and
θk ∈ E. Recall from Section 5.4 that these iterates can be rewritten as a linear stochastic-approximation update given below:

Θk+1 = Θk + αk (A(Yk)Θk + b(Yk)) ,

where Yk := (Sk, Ak, Sk+1, Ak+1, S
′
k, A

′
k),

A(Yk) :=

 −c1 0⃗T 0

−Π2,Eϕk Π2,Eϕk(ϕ
T
k+1 − ϕT

k ) 0⃗

0 2c2(rk − r′k)ϕ
T
k −c2

 , b(Yk) :=

 c1rk

rkΠ2,Eϕk

− c2
2 (rk − r′k)

2

 ,

and recall that ϕT
k := ϕT (Sk, Ak) = [ϕ̃1(Sk, Ak) . . . ϕ̃d(Sk, Ak)]. Moreover, recall that

A =

 −c1 0⃗T 0

−Π2,EΦ
TDµ1⃗ Π2,EΦ

TDµ(P2 − I)Φ 0⃗

0 2c2(RT − Jµ1⃗
T )DµΦ −c2

 , and b =


c1Edµ

[r(S,A)]

Π2,EΦ
TDµR

− c2
2 Edµ

[
(r(S,A)− r(S′, A′))

2
]
 ,

where P2 is a transition probability matrix defined in (1), and I is the identity matrix of the same dimensions.
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Next, define Ã(Yk) and b̃(Yk) so that A(Yk) = ΠÃ(Yk) and b(Yk) = Πb̃(Yk), where

Π :=

1 0⃗T 0

0⃗ Π2,E 0⃗

0 0⃗T 1

 ,

that is,

Ã(Yk) =

−c1 0⃗T 0

−ϕk ϕk(ϕ
T
k+1 − ϕT

k ) 0⃗

0 2c2(rk − r′k)ϕ
T
k −c2

 , b̃(Yk)=

 c1rk

rkϕk

− c2
2 (rk − r′k)

2

 .

Similarly, define Ã and b̃ so that A = ΠÃ and b = Πb̃, i.e.,

Ã :=

 −c1 0⃗T 0

−ΦTDµ1⃗ ΦTDµ(P2 − I)Φ 0⃗

0 2c2(RT − Jµ1⃗
T )DµΦ −c2

 , and b̃ =


c1Edµ

[r(S,A)]

ΦTDµR
− c2

2 Edµ

[
(r(S,A)− r(S′, A′))

2
]
 ,

We now bound ∥Θk+1 −Θ∗∥22. Towards this, we first establish the properties of the associated matrices.

Bounds on A(Yt) and b(Yt). For a matrix M , let ∥M∥2 and ∥M∥F denote its induced 2-norm and Frobenius norm,
respectively. Then, recall that ∥M∥2 ≤ ∥M∥F .

∥A(Yt)∥2 = ∥ΠÃ(Yt)∥2
≤ ∥Π∥2∥ ˜A(Yt)∥2,

where the above inequality follows from sub-multiplicativity of the induced 2-norm. Now, since Π is an orthogonal
projection matrix, ∥Π∥2 = 1. Thus, we have

∥A(Yt)∥2 ≤ ∥Ã(Yt)∥2
(a)

≤ ∥Ã(Yt)∥F

=
√

c21 + 1 + ∥ϕk(ϕT
k+1 − ϕT

k )∥2F + 16c22r
2
max + c22

(b)

≤
√
c21 + 1 + (∥ϕkϕT

k+1∥F + ∥ϕkϕT
k ∥F )2 + 16c22r

2
max + c22

(c)
=
√
c21 + 1 + (∥ϕk∥2∥ϕk+1∥2 + ∥ϕk∥2∥ϕk∥2)2 + 16c22r

2
max + c22

(d)

≤
√
c21 + 5 + 16c22r

2
max + c22,

where (a) follows since for a matrix M , ∥M∥2 ≤ ∥M∥F , (b) uses triangle inequality for ∥·∥F , and (d) uses Assumption 5.1.
To conclude (c), let x1 ∈ Rd and x2 ∈ Rd. Observe the following equalities for ∥x1x

T
2 ∥F .

∥x1x
T
2 ∥F =

√
Trace(x1xT

2 x2xT
1 ) =

√
Trace(x1xT

1 ∥x2∥22) = ∥x2∥2(xT
1 x1) = ∥x1∥2∥x2∥2.

Next, to bound b(Yt),

∥b(Yt)∥2 = ∥Π b̃(Yt)∥2 ≤ ∥b̃(Yt)∥2 = rmax

√
c21 + 1 + 2c22.

General finite-time bound. Let ΘT
k :=

[
Jk θTk κk

]
, denote the kth iterate of the proposed algorithm in Section 5.1, and

let Θ∗T := [Jµ θ∗T κ∗], where θ∗ ∈ E ⊂ Rd and κ∗ ∈ R are such that AΘ∗ + b = 0. For simplicity of notation, let

Ek−τk [·] := E
[
·|Θk−τ(αk), Yk−τ(αk)

]
,
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where for δ > 0, τ(δ) is the mixing time of the Markov chainM3, and is introduced in Definition 4.2. Also, for 0 < k1 < k2,
let

αk1,k2
:=

k2∑
i=k1

αi.

Define Ak := A(Yk), bk := b(Yk), and let

Amax :=
√
c21 + 5 + 16c22r

2
max + c22, bmax := rmax

√
c21 + 1 + 2c22, η := max {Amax, bmax} .

For any k ≥ 0, we have

Ek−τk

[
∥Θk+1 −Θ∗∥22 − ∥Θk −Θ∗∥22

]
=Ek−τk

[
∥Θk+1 −Θk +Θk −Θ∗∥22 − ∥Θk −Θ∗∥22

]
=Ek−τk

[
∥Θk+1 −Θk∥22 + 2(Θk −Θ∗)T (Θk+1 −Θk)

]
=α2

kEk−τk

[
∥AkΘk + bk∥22

]
+ 2αkEk−τk

[
(Θk −Θ∗)T (AkΘk + bk)

]
=α2

kEk−τk

[
∥AkΘk + bk∥22

]
+ 2αkEk−τk

[
(Θk −Θ∗)T (AkΘk + bk −AΘk − b)

]
+ 2αkEk−τk

[
(Θk −Θ∗)T (AΘk + b)

]
. (38)

We will now bound each of the three terms in the above expressions.

Bounding ∥AkΘk + bk∥22 in (38). Here we will use that the update matrices at each step are bounded, specifically that
∥Ak∥2 ≤ Amax and ∥bk∥2 ≤ bmax for all k ≥ 1.

∥AkΘk + bk∥22 ≤ (∥Ak∥2∥Θk∥2 + ∥bk∥2)2

≤ (Amax∥Θk∥2 + bmax)
2

≤ η2 (∥Θk∥2 + 1)
2

≤ η2 (∥Θk −Θ∗∥2 + ∥Θ∗∥2 + 1)
2

≤ 2η2
(
∥Θk −Θ∗∥22 + (∥Θ∗∥2 + 1)

2
)
.

Bounding (Θk − Θ∗)T (AΘk + b) in (38). To bound this term, we will use the fact that the limit point Θ∗ satisfies
AΘ∗ + b = 0. Using this, we have

(Θk −Θ∗)T (AΘk + b) = (Θk −Θ∗)T (AΘk −AΘ∗) = (Θk −Θ∗)TA(Θk −Θ∗)
(a)

≤ −∆̃2∥Θk −Θ∗∥22
2

,

where (a) follows from Lemma 5.4 since (Θk −Θ∗) ∈ R× E × R.

Bounding Ek−τk

[
(Θk −Θ∗)T (AkΘk + bk −AΘk − b)

]
in (38).

Ek−τk

[
(Θk −Θ∗)T (AkΘk + bk −AΘk − b)

]
= Ek−τk

[
(Θk −Θk−τ(αk) +Θk−τ(αk) −Θ∗)T (AkΘk + bk −AΘk − b)

]
= Ek−τk

[
(Θk −Θk−τ(αk))

T (AkΘk + bk −AΘk − b)
]

+ Ek−τk

[
(Θk−τ(αk) −Θ∗)T (AkΘk + bk −AΘk − b)

]
. (39)

24



Policy Evaluation for Variance in Average Reward Reinforcement Learning

Bounding the first term in (39),

Ek−τk

[
(Θk −Θk−τ(αk))

T (AkΘk + bk −AΘk − b)
]

≤ Ek−τk

[∣∣(Θk −Θk−τ(αt))
T (AkΘk + bk −AΘk − b)

∣∣]
≤ Ek−τk

[
∥Θk −Θk−τ(αk)∥2∥AkΘk + bk −AΘk − b∥2

]
≤ Ek−τk

[
∥Θk −Θk−τ(αk)∥2 (∥Ak −A∥2∥Θk∥2 + ∥bk − b∥2)

]
≤ 2ηEk−τk

[
∥Θk −Θk−τ(αk)∥2 (∥Θk∥2 + 1)

]
(a)

≤ 8η2αk−τ(αk),k−1Ek−τk

[
(∥Θk∥2 + 1)2

]
≤ 8η2αk−τ(αk),k−1Ek−τk

[
(∥Θk −Θ∗∥2 + ∥Θ∗∥2 + 1)2

]
≤ 16η2αk−τ(αk),k−1Ek−τk

[
∥Θk −Θ∗∥22 + (∥Θ∗∥2 + 1)

2
]
, (40)

where (a) follows since for any k1 > 0 and k2 > 0 such that

αk1,k2
≤ 1

4η
=⇒ ∥Θk2

−Θk1
∥ ≤ 4ηαk1,k2−1(∥Θk2

∥+ 1), (41)

and the assumption on αk that for k ≥ k∗, αk−τ(αk),k−1 ≤ 1
4η . This follows from Chen et al. (2022, Lemma 2.3).

Next, consider the second term in (39).

Ek−τk

[
(Θk−τ(αk) −Θ∗)T (AkΘk + bk −AΘk − b)

]
=Ek−τk

[
(Θk−τ(αk) −Θ∗)T

(
(Ak −A)Θk−τ(αk) + bk − b+ (Ak −A)(Θk −Θk−τ(αk))

)]
≤
∣∣(Θk−τ(αk) −Θ∗)TEk−τk

[
(Ak −A)Θk−τ(αk) + bk − b

]∣∣︸ ︷︷ ︸
A1

+
∣∣(Θk−τ(αk) −Θ∗)TEk−τk

[
(Ak −A)(Θk −Θk−τ(αk))

]∣∣︸ ︷︷ ︸
A2

. (42)

We further bound the two terms in (42) separately.

A1 ≤ ∥Θk−τ(αk) −Θ∗∥2
∥∥Ek−τk

[
(Ak −A)Θk−τ(αk) + bk − b

]∥∥
2

= ∥Θk−τ(αk) −Θ∗∥2
∥∥Ek−τk [Ak −A] Θk−τ(αk) + Ek−τk [bk − b]

∥∥
2

(a)

≤ ∥Θk−τ(αk) −Θ∗∥2
(
∥Ek−τk [Ak]−A∥2 ∥Θk−τ(αk)∥2 + ∥Ek−τk [bk]− b∥2

)
(b)

≤ 2ηαkEk−τk

[
∥Θk−τ(αk) −Θ∗∥2

(
1 + ∥Θk−τ(αk)∥2

)]
= 2ηαkEk−τk

[
∥Θk−τ(αk) −Θk +Θk −Θ∗∥2

(
1 + ∥Θk−τ(αk) −Θk +Θk −Θ∗ +Θ∗∥2

)]
≤ 2ηαkEk−τk

[(
∥Θk−τ(αk) −Θk∥2 + ∥Θk −Θ∗∥2

) (
1 + ∥Θk−τ(αk) −Θk∥2 + ∥Θk −Θ∗∥2 + ∥Θ∗∥2

)]
.

The inequality (a) follows since for any matrix M and a vector x, we have ∥Mx∥2 ≤ ∥M∥2∥x∥2, where ∥M∥2 is the
induced 2-norm (or operator 2-norm) for M . Inequality (b) follows since, from the definition of the mixing time, we have

∥Ek−τk [Ak]−A∥2 ≤ 2ηαk and ∥Ek−τk [bk]− b∥ ≤ 2ηαk, (43)

and Θk−τ(αk) is a constant with respect to the conditioning.
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To see (43), consider the following

∥Ek−τk [bk]− b∥2 ≤ sup
y′∈Y

∥∥∥∥∥∥
∑
y∈Y

(
P(Yk = y|Yk−τ(αk) = y′)− π̃µ(Yk = y)

)
b(y)

∥∥∥∥∥∥
2

≤ sup
y′∈Y

∑
y∈Y

∣∣P(Yk = y|Yk−τ(αk) = y′)− π̃µ(Yk = y)
∣∣ ∥b(y)∥2

≤ 2ηCρτ(αk)

≤ 2ηραk

≤ 2ηαk,

where the last inequality follows since ρ < 1. Similarly,

∥Ek−τk [Ak]−A∥2 ≤ sup
y′∈Y

∥∥∥∥∥∥
∑
y∈Y

(
P(Yk = y|Yk−τ(αk) = y′)− π̃µ(Yk = y)

)
A(y)

∥∥∥∥∥∥
2

≤ sup
y′∈Y

∑
y∈Y

∣∣P(Yk = y|Yk−τ(αk) = y′)− π̃µ(Yk = y)
∣∣ ∥A(y)∥2

≤ 2ηαk.

Next, since for 0 < k1 < k2,

αk1,k2−1 ≤
1

4η
=⇒ ∥Θk2

−Θk1
∥2 ≤ 1 + ∥Θk2

∥2,

from the assumption that αk−τ(αk),k−1 ≤ 1
4η , we have that

∥Θk −Θk−τ(αk)∥2 ≤ ∥Θk∥2 + 1.

This follows from Chen et al. (2022, Lemma 2.3). Using this to further bound A1, we have

A1 ≤ 2ηαkEk−τk [(1 + ∥Θk∥2 + ∥Θk −Θ∗∥2) (2 + ∥Θk∥2 + ∥Θk −Θ∗∥2 + ∥Θ∗∥2)] .

Continuing bounding the r.h.s. above,

A1 ≤ 2ηαtEk−τk [(1 + ∥Θk∥2 + ∥Θk −Θ∗∥2) (2 + ∥Θk∥2 + ∥Θk −Θ∗∥2 + ∥Θ∗∥2)]
≤ 4ηαkEk−τk [(1 + ∥Θ∗∥2 + 2∥Θk −Θ∗∥2) (1 + ∥Θk −Θ∗∥2 + ∥Θ∗∥2)]

≤ 8ηαkEk−τk

[
(1 + ∥Θ∗∥2 + ∥Θk −Θ∗∥2)2

]
≤ 16ηαkEk−τk

[
(1 + ∥Θ∗∥2)2 + ∥Θk −Θ∗∥22

]
≤ 16η2αk−τ(αk),k−1Ek−τk

[
(1 + ∥Θ∗∥2)2 + ∥Θk −Θ∗∥22

]
. (44)

The last inequality follows since by choice, η ≥ 1, and αk ≤ αk−1 ≤ αk−τ(αk),k−1. Hence, we have αk ≤ ηαk−τ(αk),k−1.
Let us now bound the other term in (42).

A2 =
∣∣(Θk−τ(αk) −Θ∗)TEk−τk

[
(Ak −A)(Θk −Θk−τ(αk))

]∣∣
≤ ∥Θk−τ(αk) −Θ∗∥2

∥∥Ek−τk

[
(Ak −A) (Θk −Θk−τ(αk))

]∥∥
2

≤ 2η∥Θk−τ(αk) −Θ∗∥2Ek−τk

[∥∥Θk −Θk−τ(αk)

∥∥
2

]
,

where the last inequality follows from convexity of ∥ · ∥2, sub-multiplicativity of the norm, and the definition of η. Again
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using (41),

A2 ≤ 8η2αk−τ(αk),k−1Ek−τk

[
∥Θk−τ(αk) −Θ∗∥2(∥Θk∥2 + 1)

]
≤ 8η2αk−τ(αk),k−1Ek−τk

[
(∥Θk −Θk−τ(αk)∥2 + ∥Θk −Θ∗∥2)(∥Θk∥2 + 1)

]
(a)

≤ 8η2αk−τ(αk),k−1Ek−τk [(1 + ∥Θk∥2 + ∥Θk −Θ∗∥2)(∥Θk∥2 + 1)]

≤ 8η2αk−τ(αk),k−1Ek−τk [(1 + ∥Θ∗∥2 + 2∥Θk −Θ∗∥2)(∥Θk −Θ∗∥2 + ∥Θ∗∥2 + 1)]

≤ 16η2αk−τ(αk),k−1Ek−τk

[
(1 + ∥Θ∗∥2 + ∥Θk −Θ∗∥2)2

]
≤ 32η2αk−τ(αk),k−1Ek−τk

[
(1 + ∥Θ∗∥2)2 + ∥Θk −Θ∗∥22)

]
, (45)

where (a) uses (41).

Combining bounds in (44) and (45) and substituting in (42), we have:

Ek−τk

[
(Θk−τ(αk) −Θ∗)T (AkΘk + bk −AΘk − b)

]
≤ 16η2αk−τ(αk),k−1Ek−τk

[
(1 + ∥Θ∗∥2)2 + ∥Θk −Θ∗∥22

]
+ 32η2αk−τ(αk),k−1Ek−τk

[
(1 + ∥Θ∗∥2)2 + ∥Θk −Θ∗∥22)

]
≤ 48η2αk−τ(αk),k−1Ek−τk

[
(1 + ∥Θ∗∥2)2 + ∥Θk −Θ∗∥22

]
. (46)

Combining the above with (40), and substituting in (39), we have

Ek−τk

[
(Θk −Θ∗)T (AkΘk + bk −AΘk − b)

]
≤ 64η2αk−τ(αk),k−1Ek−τk

[
(1 + ∥Θ∗∥2)2 + ∥Θk −Θ∗∥22

]
.

Putting everything together and substituting the bounds in (38), we have

Ek−τk

[
∥Θk+1 −Θ∗∥2 − ∥Θk −Θ∗∥22

]
≤ 2α2

kη
2Ek−τk

[
∥Θk −Θ∗∥22 + (1 + ∥Θ∗∥2)2

]
− 2αk

∆̃Ek−τk

[
∥Θk −Θ∗∥22

]
2

+ 128η2αk−τ(αk),k−1αkEk−τk

[
(1 + ∥Θ∗∥2)2 + ∥Θk −Θ∗∥22

]
≤ 2η2αk−τ(αk),k−1αkEk−τk

[
∥Θk −Θ∗∥22 + (1 + ∥Θ∗∥2)2

]
− αk∆̃Ek−τk

[
∥Θk −Θ∗∥22

]
+ 128η2αk−τ(αk),k−1αkEk−τk

[
(1 + ∥Θ∗∥2)2 + ∥Θk −Θ∗∥22

]
=
(
130η2αk−τ(αk),k−1αk − αK∆̃

)
Ek−τk

[
∥Θk −Θ∗∥22

]
+ 130η2αk−τ(αk),k−1αk(1 + ∥Θ∗∥2)2.

On rearranging, we have

Ek−τk

[
∥Θk+1 −Θ∗∥22

]
≤
(
1 + 130η2αk−τ(αk),k−1αk − αk∆̃

)
Ek−τk

[
∥Θk −Θ∗∥22

]
+ 130η2αk−τ(αk),k−1αk(1 + ∥Θ∗∥2)2. (47)

From condition on k∗, for k ≥ k∗,

αk−τ(αk),k−1 ≤
∆̃2

260η2
, i.e., 260η2αk−τ(αk),k−1αk ≤ αk∆̃2,

and αk−τ(αk),k−1

τ(αk)αk
≤ 2, i.e., αk−τ(αk),k−1αk ≤ 2α2

kτ(αk).

The above follows since each of the αi for i ∈ [k − τ(αk), k − 1] are less than 2αk.
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Using these in (47),

Ek−τk

[
∥Θk+1 −Θ∗∥22

]
≤

(
1− αk∆̃2

2

)
Ek−τk

[
∥Θk −Θ∗∥22

]
+ 260η2α2

kτ(αk)(1 + ∥Θ∗∥2)2

≤

(
1− αk∆̃2

2

)
Ek−τk

[
∥Θk −Θ∗∥22

]
+

ξ2
2
α2
kτ(αk),

where we used that
ξ2
2
≥ 260η2(1 + ∥Θ∗∥2)2.

Now, recursively using this inequality, we have for k ≥ k∗,

E
[
∥Θk −Θ∗∥22

]
≤ E

[
∥Θk∗ −Θ∗∥22

] k−1∏
i=k∗

(
1− αt∆̃2

2

)
+

ξ2
2

k−1∑
i=k∗

τ(αi)α
2
i

k−1∏
j=i+1

(
1− αj∆̃2

2

)
.

Again, by assumption on k∗, α0,k∗−1 ≤ 1
2η . Using this,

E
[
∥Θk∗ −Θ∗∥22

]
≤ E

[
(∥Θk∗ −Θ0∥2 + ∥Θ0 −Θ∗∥2)2

]
(a)

≤ (1 + ∥Θ0∥2 + ∥Θ0 −Θ∗∥2)2

≤ (1 + 2∥Θ0∥2 + ∥Θ∗∥2)2

= (1 + ∥Θ∗∥2)2

= ξ1,

where we used that Θ0 = 0. To see (a), consider the following inequalities:

∥Θk∗ −Θ0∥2 = ∥(Θk∗ −Θk∗−1) + Θk∗−1 −Θ0∥2
= ∥αk∗−1 (Ak∗−1Θk∗−1 + bk∗−1) + Θk∗−1 −Θ0∥2
≤ αk∗−1 ∥Ak∗−1Θk∗−1 + bk∗−1∥+ ∥Θk∗−1 −Θ0∥2
≤ αk∗−1η(1 + ∥Θk∗−1 −Θ0∥2 + ∥Θ0∥2) + ∥Θk∗−1 −Θ0∥2
= (1 + ηαk∗−1)∥Θk∗−1 −Θ0∥2 + ηαk∗−1(1 + ∥Θ0∥2)

≤
k∗−1∏
j=1

(1 + ηαj)∥Θ1 −Θ0∥2 + η(1 + ∥Θ0∥2)
k∗−1∑
j=1

αj

k∗−1∏
i=j+1

(1 + ηαi)

≤ eηα1,k∗−1∥Θ1 −Θ0∥2 + η(1 + ∥Θ0∥2)
k∗−1∑
j=1

αje
ηα1,k∗−1

≤ eηα0,k∗−1∥Θ1 −Θ0∥2 + η(1 + ∥Θ0∥2)α1,k∗−1e
ηα0,k∗−1

≤ 2α0η(1 + ∥Θ0∥2) + 2η(1 + ∥Θ0∥2)α1,k∗−1

= 2η(1 + ∥Θ0∥2)α0,k∗−1

≤ (1 + ∥Θ0∥2).

This gives the desired bound:

E
[
∥Θk −Θ∗∥22

]
≤ ξ1

k−1∏
i=k∗

(
1− αi∆̃2

2

)
+

ξ2
2

k−1∑
i=k∗

τ(αi)α
2
i

k−1∏
j=i+1

(
1− αj∆̃2

2

)
. (48)
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Theorem C.1(a). Let’s now bound the terms in (48), when αi = α. In this case, k∗ = τ(α), and the bound in (48) holds
for all k ≥ τ(α). First, observe that

k−1∏
i=τ(α)

(
1− α∆̃2

2

)
=

(
1− α∆̃2

2

)k−τ(α)

,

and

k−1∑
i=τ(α)

τ(α)α2
k−1∏

j=i+1

(
1− ∆̃2α

2

)
= α2τ(α)

k−1∑
i=τ(α)

(
1− α∆̃2

2

)k−i−1

≤ α2τ(α)
∞∑
i=0

(
1− α∆̃2

2

)i

≤ 2ατ(α)

∆̃2

.

Using these, for T ≥ τ(α), we get the following bound:

E
[
∥Θk −Θ∗∥22

]
≤ ξ1

(
1− α∆̃

2

)k−τ(α)

+
ξ2ατ(α)

∆̃2

.

Theorem C.1 (b). Let’s now bound the terms in (48), when αi =
α

i+h . First, observe that

k−1∏
i=k∗

(
1− αi∆̃2

2

)
=

k−1∏
i=k∗

(
1− α∆̃2

2(i+ h)

)

≤
k−1∏
i=k∗

e−
α∆̃2

2(i+h)

= e
−α∆̃2

2

k−1∑
i=k∗

1
i+h

≤ e−
α∆̃2

2 ln k+h
k∗+h

=

(
k∗ + h

k + h

)α∆̃2
2

. (49)

Next, for the other term, since for k − 1 ≥ i ≥ k∗,

τ(αi) ≤ τ(αk) ≤ L ln
1

αk
= L (ln(k + h)− ln(α)) , (50)

we have

k−1∑
i=k∗

τ(αi)α
2
i

k−1∏
j=i+1

(
1− αj∆̃2

2

)
≤ L ln

(
k + h

α

) k−1∑
i=k∗

α2
k

k−1∏
j=i+1

(
1− αj∆̃2

2

)
. (51)

Here, inequalities in (50) follow from (15). Moreover,

k−1∏
j=i+1

(
1− ∆̃2α

2(j + h)

)
≤ e

− ∆̃2α
2

k−1∑
j=i+1

1
j+h

≤
(
i+ h+ 1

k + h

) ∆̃2α
2

.
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Then, using in (51),

k−1∑
i=k∗

τ(αi)α
2
i

k−1∏
j=i+1

(
1− αj∆̃2

2

)
≤ L ln

(
k + h

α

) k−1∑
i=k∗

α2
i

(
i+ h+ 1

k + h

) ∆̃2α
2

= L ln

(
k + h

α

) k−1∑
i=k∗

α2

(i+ h)
2

(
i+ h+ 1

k + h

) ∆̃2α
2

= L ln

(
k + h

α

)
α2

(k + h)
∆̃2α

2

k−1∑
i=k∗

(
i+ h+ 1

i+ h

)2

(i+ h+ 1)
∆̃2α

2 −2

≤ L ln

(
k + h

α

)
4α2

(k + h)
∆̃2α

2

k−1∑
i=k∗

(i+ h+ 1)
∆̃2α

2 −2
. (52)

Choosing
α∆̃2

2
> 1,

we have

k−1∑
i=k∗

(i+ h+ 1)
∆̃2α

2 −2 ≤
k∫

i=0

(i+ h+ 1)
∆̃2α

2 −2
dx

=
1

∆̃2α
2 − 1

(
(k + h+ 1)

∆̃2α
2 −1 − (h+ 1)

∆̃2α
2 −1

)
≤ 1

∆̃2α
2 − 1

(k + h+ 1)
∆̃2α

2 −1.

Substituting back in (52), we get

k−1∑
i=k∗

τ(αi)α
2
i

k−1∏
j=i+1

(
1− αj∆̃2

2

)
≤ L ln

(
k + h

α

)(
4α2

∆̃2α
2 − 1

)
1

k + h+ 1

(
k + h+ 1

k + h

) ∆̃2α
2

≤ L ln

(
k + h

α

)(
4α2

∆̃2α
2 − 1

)
e

∆̃2α

2(k+h)

k + h+ 1

= L ln

(
k + h

α

)(
4α2

∆̃2α
2 − 1

)
e

∆̃2αk
2

k + h+ 1
.

Choosing h so that
∆̃2αk

2
≤ ∆̃2α0

2
=

∆̃2α

2h
< 1,

i.e.,
∆̃2α

2
< h,

we have
k−1∑
i=k∗

τ(αi)α
2
i

k−1∏
j=i+1

(
1− αj∆̃2

2

)
≤ L ln

(
k + h

α

)(
4α2

∆̃2α
2 − 1

)
e

k + h+ 1
. (53)

Using (49) and (53) in (48), we have

E
[
∥Θk −Θ∗∥22

]
≤ ξ1

(
k∗ + h

k + h

)α∆̃2
2

+

(
2α2ξ2Le
∆̃2α
2 − 1

)
ln (k + h)− lnα

k + h+ 1
.
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C.5. Proof of Proposition 5.3

Since from Theorem 5.2 the proposed algorithm’s estimate converges to Φθ∗, the approximation error incurred is
EDµ,Sµ

[Φθ∗] . Following arguments similar to those in (Tsitsiklis & Van Roy, 1999), it can be shown that

EDµ,Sµ [Φθ∗] ≤ E√
1− λ2

,

where λ ∈ (0, 1) is a constant. The bound above is a blow-up of the minimum error possible due to the chosen architecture
for approximation.

With this, we get the following approximation error for the variance estimate of the proposed algorithm, for any c ∈ R.

|κµ − κ∗| = 2
∣∣Edµ

[
(r(S,A)−Jµ)

(
Q∗

µ(S,A) + c−[Φθ∗] (S,A)
)]∣∣

= 2
∣∣∣〈R− Jµe, Q

∗
µ + ce− Φθ∗

〉
Dµ

∣∣∣
= 2

∣∣∣〈D 1
2
µ (R− Jµe) , D

1
2
µ

(
Q∗

µ + ce− Φθ∗
)〉∣∣∣

≤ 2∥D
1
2
µ (R− Jµe) ∥2 ∥D

1
2
µ

(
Q∗

µ + ce− Φθ∗
)
∥2

≤ 4rmax ∥Q∗
µ + ce− Φθ∗∥Dµ

.

Since the above inequality is true for all c ∈ R, we have that the approximation error for κµ is bounded as below:

(κµ − κ∗)2 ≤ 16r2max inf
c∈R
∥Φθ∗ −Q∗

µ − ce∥2Dµ

= 16r2max inf
Q∈Sµ

∥Φθ∗ −Q∥2Dµ

= 16r2max

(
EDµ,Sµ

[Φθ∗]
)2

≤ inf
λ∈[0,1)

16r2max

1− λ2
E2.

D. Auxiliary Technical Lemmas
Lemma D.1. For b ≥ 0, and c ≥ 0,

min
x∈[0,c]

{
ax− b

√
cx− x2

}
=

c

2

(
a−

√
a2 + b2

)
.

Proof. Let f(x) := ax− b
√
cx− x2. Let f ′(x) denote the derivative of f(x) and f

′′
(x) denote the corresponding second

derivative, both evaluated at x. Then,

f ′(x) = a− b(c− 2x)

2
√
cx− x2

,

and f
′′
(x) > 0 for b ≥ 0. Solving for x such that f ′(x) = 0, we get x1 defined below as the optimizer.

x1 :=
c

2

(
1− a√

a2 + b2

)
,

and f(x1) is the desired optimal value.

E. Estimating Variance: IID Setting
Consider X1, X2, . . . , independent samples from a distribution with mean 0 and an unknown variance σ2. Further assume
that the sampling distribution has bounded 4th moment. The goal is to estimate σ2 using these samples.

Since, in this setting, Var[X] = E
[
X2
]
, let

σ̂2
n :=

1

n

n∑
j=1

X2
j
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denote the estimate for σ2 using n samples. Clearly, E
[
σ̂2
n

]
= σ2, i.e., σ̂2

n is an unbiased estimator.

Next, consider the following

E
[
(σ̂2

n − σ2)2
]
= E

[
(σ̂2

n)
2 + σ4 − 2σ2σ̂2

n

]
= E

[
(σ̂2

n)
2
]
− σ4

=
1

n2
E

 n∑
j=1

X4
j +

∑
i̸=j

X2
i X

2
j

− σ4

=
E
[
X4
]

n
+

n(n− 1)σ4

n2
− σ4

=
1

n

(
E
[
X4
]
− σ4

)
=

c1
n
,

where c1 = E
[
X4
]
− (E

[
X2
]
)2. Thus, we have that the mean-squared estimation error in this setting is exactly O( 1n ). In

fact, Cramér Rao lower bound (Nielsen, 2013) for the mean-squared error in estimating σ2 using an unbiased estimators is
O(1/n), establishing that this rate cannot be improved in certain settings.

For σ > 0, let N (0, σ2) denote the Gaussian distribution with variance σ2. If X ∼ N (0, σ2), c1 equals 3σ2, and in this
case we have that

E
[(
σ̂2
n − σ2

)2]
=

3σ2

n
, for c > 0.
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