Policy Evaluation for Variance in Average Reward Reinforcement Learning

Shubhada Agrawal ! Prashanth L. A.? Siva Theja Maguluri !

Abstract

We consider an average reward reinforcement
learning (RL) problem and work with asymptotic
variance as a risk measure to model safety-critical
applications. We design a temporal-difference
(TD) type algorithm tailored for policy evalua-
tion in this context. Our algorithm is based on
linear stochastic approximation of an equivalent
formulation of the asymptotic variance in terms of
the solution of the Poisson equation. We consider
both the tabular and linear function approximation
settings, and establish O(1/k) finite time conver-
gence rate, where k is the number of steps of the
algorithm. Our work paves the way for devel-
oping actor-critic style algorithms for variance-
constrained RL. To the best of our knowledge,
our result provides the first sequential estimator
for asymptotic variance of a Markov chain with
provable finite sample guarantees, which is of
independent interest.

1. Introduction

We consider an average reward Markov decision process
(MDP) (Bertsekas, 2012; Puterman, 1994). We operate
in a reinforcement learning (RL) (Bertsekas & Tsitsiklis,
1996; Sutton & Barto, 2018) framework, where the transi-
tion dynamics of the underlying MDP are unknown. The RL
algorithm can obtain a sample of the MDP under any given
policy, which specifies how actions are chosen in a given
state. The traditional goal in an average reward RL prob-
lem is to find a policy that maximizes the long run average
reward. While the need to optimize over average reward is
well motivated, applications in safety-critical domains, for
example, healthcare or finance, it is also crucial to control
adverse outcomes. As an example in the financial domain,
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one can consider the portfolio optimization problem, where
the objective is to find an investment strategy that maximizes
the return (expected value), while keeping the variability
under control through a constraint. This motivates the study
of risk-sensitive RL, where a risk measure is incorporated
either in the objective or as a constraint, see L.A. & Fu
(2022) for a recent survey.

Within the domain of risk-sensitive MDPs, several risk
measures have been considered, namely variance (Sobel,
1982; Filar et al., 1989), conditional value-at-risk (Chow &
Ghavamzadeh, 2014), exponential utility (Whittle, 1990),
the general class of coherent risk measures (Tamar et al.,
2015), and cumulative prospect theory (Prashanth et al.,
2016), which is not coherent. The choice of the risk measure
largely depends on the application at hand. Nevertheless,
variance is a popular risk measure that has been studied
extensively in the literature.

Several previous works incorporate variance as a risk mea-
sure in a constrained setting, where the goal is to maximize
the average reward (which is an expectation), while ensur-
ing a certain bound on the variance. This is the so-called
“mean-variance tradeoff”, considered in the seminal work
of Markowitz (Markowitz, 1952), and later in MDP con-
texts, cf. (Mandl, 1971; Sobel, 1982; Filar et al., 1989). An
alternative to such a formulation is to consider the expo-
nential utility formulation, see (Arrow, 1971; Howard &
Matheson, 1972), where one optimizes the exponential. The
constrained formulation is preferred over the exponential
utility for two reasons. First, the mean-variance tradeoff can
be controlled directly through a parameter that is a bound
on the variance, while this trade-off is implicit in an expo-
nential utility formulation. Second, the algorithms for the
latter formulation do not extend easily when one considers
feature-based representations and function approximation,
see L.A. & Fu (2022, Section 7.2) for a detailed discussion.

We consider variance as the risk measure in a average reward
RL framework. Broadly, for a given policy, two different no-
tions of variance are suggested for an average reward MDP
in (Filar et al., 1989). The first notion is the asymptotic
variance, while the second one is the per-period stationary
variance. The latter has been studied in an RL setting in
(Prashanth & Ghavamzadeh, 2016), while the former has
hardly been investigated in the literature, to the best of our
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knowledge. We use the asymptotic variance as a measure of
the risk associated with a given policy, which is the variance
of the random variable whose mean is typically optimized.
This asymptotic variance can be decomposed into two ad-
ditive terms, where the first term coincides with per-step
variance, while the other term involves correlations between
states across time periods. In a setting where the state se-
quence is independent, the second term is zero, while it is
not in any non-trivial MDP. A mean-variance optimization
formulation would consider maximizing the expectation of
a random variable which represents the long-run average
reward, and it is natural to consider the variance of this ran-
dom variable. This motivates our study of the asymptotic
variance in a RL framework. Also see Section 3.2.

In this work, we consider the problem of policy evaluation
for asymptotic variance, where the goal is to estimate the
asymptotic variance associated with the Markov chain in-
duced by a given stationary policy. Note that this goal is
very different from studying the variance of iterates of any
particular learning algorithm like temporal-difference (TD),
or designing algorithms with minimum variance of the it-
erates of the algorithm, studied extensively in (Devraj &
Meyn, 2017; Yin & Wang, 2020; Chen et al., 2020; Hao
et al., 2021). To further elaborate on this distinction, for
concreteness, consider the setting of MDPs, where the tran-
sition probabilities are known. Here, for evaluating a given
policy, one can use value iteration (VI). Since the MDP is
known, there is no variance associated with the iterates of
VI. However, the asymptotic variance that we consider in
this work (formally defined in Section 3) is still well-defined,
and exists due to inherent randomness associated with the
probabilistic transitions of the MDP. This work focuses on
estimating this asymptotic variance.

The problem of estimating the asymptotic variance is a
vital sub-problem in mean-variance policy optimization,
for instance, as a critic in an actor-critic framework, cf.
(Prashanth & Ghavamzadeh, 2016). For the discounted RL.
setting, a TD type algorithm for estimating variance has
been proposed/analyzed in (Tamar et al., 2013), while a TD
algorithm with provable finite sample guarantees, which
caters to the variance risk measure in an average reward
RL setting, is not present in the literature to the best of our
knowledge.

1.1. Contributions
We now briefly describe the main contributions of this work.

1. We design a novel TD like linear stochastic approxi-
mation (SA) algorithm in both tabular and linear func-
tion approximation settings for estimating the asymptotic
variance associated with the Markov Chain induced by
a given stationary policy. Our algorithms are based on
an equivalent formulation of the asymptotic variance of

a given stationary policy in terms of the corresponding
solution of the Poisson equation.

2. We develop the first finite sample error bounds for the
policy evaluation problem for asymptotic variance in a
tabular setting, proving O(1/k) rate of convergence for
the mean-squared error, where k is the time step. Here,
O() notation hides log k and lower order dependencies.

3. We provide the first finite sample error bounds for the
policy evaluation problem for asymptotic variance with
linear function approximation. Again, we demonstrate
O(1/k) rate of convergence for the proposed algorithm.
However, in this setting, our estimate for asymptotic
variance suffers from an approximation error, which we
characterize.

4. Estimating asymptotic variance of functions defined on
state space of a Markov chain is a classical problem
in statistics as it is useful in statistical inference of the
mean (Wu, 2009). To the best of our knowledge, we
develop the first fully-sequential estimator with finite
sample guarantees on estimation error. Our contributions
may be of independent interest to statistics community.

1.2. Related Literature

MDPs: Average Reward and Risk-sensitivity. MDPs
have a long history. We refer the reader to classical books
(Puterman, 1994; Bertsekas, 2012) for a textbook introduc-
tion to MDPs in general, and to (Howard, 1960; Blackwell,
1962; Brown, 1965; Veinott, 1966; Arapostathis et al., 1993)
for an introduction to average-reward MDPs, in particular.
Risk-sensitive objectives have also been well-studied in the
MDP setting. For instance, see (Sobel, 1982; Filar et al.,
1995; Mannor & Tsitsiklis, 2013) for variance in discounted
and average reward MDPs, (Borkar & Meyn, 2002; Borkar
& Jain, 2010; Whittle, 1990) for the exponential utility for-
mulation, (Ruszczynski, 2010) for Markov risk measures,
(Chow & Ghavamzadeh, 2014) for conditional value-at-risk
(CVaR). However, in a MDP setting, algorithms require
complete knowledge of the underlying model, which may
not be feasible in many practical applications.

Risk-neutral RL. In the risk-neutral RL setting, expected
value is the sole objective. TD type algorithms have been
proposed for policy evaluation in discounted as well as av-
erage reward settings, and their asymptotic convergence is
shown in (Tsitsiklis & Van Roy, 1996; 1999), respectively.
TD algorithms have also been used in actor-critic style al-
gorithms for solving the problem of control, cf. (Konda &
Tsitsiklis, 2003; Bhatnagar et al., 2009). Asymptotic conver-
gence of the classical Q-learning algorithm was established
in (Borkar & Meyn, 2000; Tsitsiklis, 1994). In the non-
asymptotic regime, finite-sample mean-square convergence
bounds for classical discounted setting algorithms such as
TD, TD()), n-step TD, and Q-learning, have been developed
in (Chen et al., 2021). On the other hand, in the average
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reward setting, finite-sample bounds for TD are derived in
(Zhang et al., 2021).

Risk-sensitivity in RL. In a risk-sensitive optimization set-
ting, the goal is either to optimize the usual expected value
objective, while factoring a risk measure in a constraint,
or optimize a risk measure in the objective. Tail-based
risk measures such as variance, CVaR are meaningful to
consider as a constraint, while risk measures such as ex-
ponential utility and prospect theory can be considered as
the optimization objective, since they consider the entire
distribution. In the context of RL, variance as a risk mea-
sure has been studied earlier in a discounted reward MDP
setting in (Mihatsch & Neuneier, 2002; La & Ghavamzadeh,
2013), in a stochastic shortest path setting (Tamar et al.,
2013; 2012; 2016), and in an average reward MDP setting
in (Prashanth & Ghavamzadeh, 2016). Exponential utility
has been explored in an average reward RL setting ear-
lier, see (Borkar, 2010) for a survey and (Moharrami et al.,
2022) for a recent contribution. Other risk measures such as
CVaR, coherent risk measures, cumulative prospect theory
have been explored in an RL setting in the literature, and
some representative works include (Prashanth, 2014; Kose
& Ruszezynski, 2021; Prashanth et al., 2016; Markowitz
et al., 2023).

Variance Estimation of Markov Chain in Statistics. The
estimators for the asymptotic variance are well studied in
the statistics literature. (Wu, 2009; Flegal & Jones, 2010;
Atchadé, 2011; Chien et al., 1997; Robert, 1995) develop
efficient Monte-Carlo (MC) based batched or sequential
estimators, but do not provide any finite sample guarantees.
Benton (2022) proposes a TD like algorithm for estimat-
ing the asymptotic variance, with asymptotic convergence
guarantees.

2. Average Reward RL

In this section, we formally introduce the problem. We
begin by describing the underlying dynamics.

2.1. Markov Decision Process

Consider an infinite-horizon, average-reward MDP specified
by (S, A,r,p), where S = {1,...,]S|} denotes the finite
state-space, and A = {1,...,|A|} denotes the action space.
At each time ¢, the agent is in state S; € S, takes an action
Ay € A, receives areward (S, A;), and transitions to state
Si11. Here, 7 : § x A — R, and the next state Sy, 1 is
sampled according to p(S, -, A¢), where,p: S X S x A —
[0, 1], is the map that for states s, s’ and action a associates
probability p(s, s, a) with the transition from state s to s’,
when action a is taken.

A stationary policy p : & — X4 is a map from state
space to a probability-simplex in R4, i.e., it maps each

state to a distribution over the actions. Given a station-
ary policy p and a state x, the associated probability of
transitioning from state = to 2’ is given by P,(z,z') =
Y acatlalz)p(z, 2, a).

Assumption 2.1. The sets S and A are finite. Under the
stationary policy u, the induced Markov chain M; with
state space in S and transition probabilities given by P, is
irreducible and aperiodic.

This is a standard assumption in literature (see Tsitsiklis
& Van Roy (1999); Bertsekas (2012)), and guarantees that
each state is visited infinitely often. As a consequence of
Assumption 2.1, we have a unique stationary distribution
associated with M, and the Markov chain starting from any
initial distribution, converges to the stationary distribution
geometrically-fast (Levin & Peres, 2017, Section 4.3). In
particular, let 7, denote the unique stationary distribution

: Tp _ T
on § that satisfies 7, P, = 7.

Next, let X; := (S, A¢). Observe that the process My :=
{X.} is also a Markov chain with finite states. Let its state
space be denoted by X C S x A. For any two states
x1 = (81,a1) and z2 := (82, a2) in X, the probability of
transitioning from x; to x5 under My, is given by

Py(x1,22) := p(s1, s2,a1)p(az|s2). (1)
For s € S and a € A, define

dyu(s,a) = mu(s)u(als).

Remark 2.2. Under Assumption 2.1, M has a unique
stationary distribution d,, defined above, and it mixes
geometrically-fast.

Remark 2.2 follows from Bhatnagar & Lakshmanan (2016,
Proposition 1).

Notation. Let D, € RISIAl x RISIAI be the diagonal
array of stationary distribution d,,, i.e., D, ((s,a), (s,a)) =
d,(s,a) for all (s,a) € S x A. For vectors = and y in
RISIAL Tet < z,y >p, =" Dyy,and ||z p, := 2" D,
denote the D, weighted inner product and the induced
norm, respectively. For a vector v, let vT denote its
transpose, and let ||v||2 and ||v|lo denote the ¢5-norm
and {,-norm, respectively. These norms are by ||v|js =

> v2(i), and |[|v]e = max;|v(i)|. Additionally,
let e denote the vector of all 1s in RIS/l

2.2. Average Reward Model

Average Reward. The long-term per-step expected re-
ward accumulated by a stationary policy p starting from
state s is given by

T-1

1
li —E
Tl—%o T

T(ShAt)‘SO = S‘| . (2)

t=
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Here, the expectation is with respect to both the transition
dynamics of the environment, as well as the randomness in
the policy . It is well known that under Assumption 2.1,
this per-step expected reward in (2) is a constant that is
independent of the starting state (Bertsekas, 2012). We
denote this quantity by J,. It can be shown that

Z mu(x)p(alz)r(z,a). (3)

z€S,ac A

Jy = Eq [r(S, A)] =

Here, Eq,[-] denotes the expectation when (S, A) is sampled
according to the distribution d,,, which is defined after (1).

Q Function. Since J, = Eq,[r(S, A)], there exists a solu-
tion of the following Poisson equation or Bellman equation
(see, Douc et al. (2018, Section 21.2)) @, : X — R such
that for each (s,a) € X, and for P, given in (1),

r(s,a)—J, = Qu(s,a) 4)
— > Pa((s,0),(s,d)Qu(s',d).

(s",aex

Let @, be a solution to (4). Then, @, + ce for any constant
c € R is also a solution. Let QZ denote the solution normal-
ized so that it is orthogonal to e, i.e., Q;Te = 0. Itis well
known that the set of solutions of (4) takes the following
form (Puterman, 1994):

Sy =A{Q;, + ce|c € R}.

3. Asymptotic Variance

Similar to the (per-step) average reward of the stationary pol-
icy defined in (2), a natural notion of the (per-step) asymp-
totic variance of the rewards accumulated by the policy p
starting from state s is

T—1

> r(Si. Ar)|So = s ©)
t=0

As earlier, this asymptotic variance is also computed with
respect to randomness of both the dynamics of the MDP,

and the policy .

. 1
pm g Var

3.1. Equivalent Expressions

In this work, we consider the problem of estimating the
asymptotic variance of a given policy p. To this end, we first
present more tractable formulations for it, before presenting
the proposed algorithm and its analysis.

In the proposition below, we show that like the per-step re-
ward, the asymptotic variance is also a constant independent
of the starting state. This follows from geometric mixing
of My (Remark 2.2). Further, we also present equivalent
formulations for the asymptotic variance defined in (5).

Proposition 3.1. Given a stationary policy satisfying As-
sumption 2.1, asymptotic variance defined in (5) is a con-
stant independent of the starting state, and is given by

T—1
1
iy = lim o Var ;T(St,At) (SO,AO)Ndu].

Furthermore, given any solution Q),, € S,, to (4),

Ry = Edu[( (S A) - )2] (6)
+ 2Th—r>n ZEd (S0, Ao) — u)(T(SJWAj) - JM)]

= 2E,[(r [( (s A)=J)Qu(S, A)]
—Eq,[(r( )2] @)
= Eq,[Q2(S,4)] —Eq,[( PQQ# A ®)

It is worth noting that the first term in equation (6) accounts
for the per-step variance, while the second term encom-
passes the temporal correlation introduced by the Markov
chain structure. These different representations for asymp-
totic variance are well known in literature. For example, see
Douc et al. (2018, Theorem 21.2.6) for a similar formula-
tion. For completeness, we give a proof of the proposition
in Section A.1.

Continuing, the second representation in equation (7) for-
mulates the variance of r(-, -) in terms of the corresponding
solution of the Poisson equation (4). This follows from
Lemma A.1, which formulates the asymptotic variance of
functions defined on the states of a Markov chain in terms of
the solutions to the corresponding Poisson equation, and by
noticing that r (-, -) is the function of states X of the Markov
chain My under consideration, and @), is the correspond-
ing solution to the Poisson equation (also see Douc et al.
(2018, Theorem 21.2.5)). Note that this representation isn’t
affected by choice of @), (any constant shift in (),, doesn’t
affect x,,). We will use the form in (7) to design a TD-type
algorithm to estimate ,, for a given stationary policy p.

Finally, the third equality follows by using the Poisson equa-
tion to replace (r(S, A) — J,,) terms in (7) by @, (S, A) —
PQ.u(S, A).

3.2. Motivation for Asymptotic Variance

As discussed in Section 1, different notions of variance have
been considered in the literature. We now motivate the
choice of asymptotic variance in a risk-sensitive setting.

First, in the average reward setting, a classical goal is
to optimize the long-term expected cumulative reward,
which corresponds to expectation of the random variable
>+ (S, A¢). The asymptotic variance considered in this
work, corresponds to the variance of the same random vari-
able. Since both the mean and variance of ), 7(Sy, A¢)
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summed up to T terms are O(T'), we equivalently consider
% scaling of both the mean and variance to arrive at J,, and
Ky, respectively.

Second, since r,, corresponds to the variance in the cen-
tral limit theorem for ), r(S¢, A¢) (see, Douc et al. (2018,
Theorem 21.2.5)), we use the nomenclature “asymptotic
variance”.

Finally, consider an investor receiving return r(.S;, A;) on
an investment at each time ¢. The total return of the investor
in T steps is Z?:l r(S, Ar). A risk-averse investor would
aim to maximize the average cumulative return subject to its
variance being small. Now, if the sequence {r(S:, A¢)},~,
were i.i.d. according to d,,, the variance constraint would
reduce to a bound on TEy, [(r(S, A) — J,,)?]. This corre-
sponds to the first term in (6). However, in in a Markov
sequence, this term alone does not capture the covariance
across time. This is captured by the second term in (6).

It is important to emphasize that prior research on
variance-constrained average reward RL, cf. (Prashanth
& Ghavamzadeh, 2016), treats the first term in (6) as a sur-
rogate for variance. However, in a Markovian context, the
correlation between time steps is non-negligible, and should
not be overlooked.

In what follows, we use linear SA for estimating ~,. We
develop a TD-like linear SA algorithm for estimating the
asymptotic variance associated with the Markov chain in-
duced by the given stationary policy p, i.e., £,. In contrast
to prior literature on TD such as (Devraj & Meyn, 2017; Yin
& Wang, 2020), which focus on studying the variance of
TD learning and its variants, we do not study the variance
of a linear SA algorithm itself. We use linear SA simply as
a tool for solving the variance estimation problem.

4. Variance Estimation: Tabular Setting

With the expressions for asymptotic variance derived in
Proposition 3.1, in this section, we design a TD type al-
gorithm for estimating «,, for a given stationary policy p.
While &, is non-linear function of J,, and @), which need
to be estimated from the samples, the proposed Algorithm 1
is a linear SA update. We simulate two independent trajec-
tories under u, which enables us to eliminate correlations
at a minor expense of doubling the total number of samples
required to ensure a given estimation error.

The following lemma expresses r,, in terms of averages
computed from two independent trajectories evolving ac-
cording to the specified policy p.

Lemma 4.1. Given a stationary policy p satisfying Assump-
tion 2.1, let (S, A), (S, A’) be iid samples from d,,. Then,

K = 2Bq,[(r(S, A) = (5", A))Qu(S, A)]

~ SE4 (5, 4) — r(8', 47

The above lemma immediately follows from (7) and the
observation that for a random variable X, VailX| =
E[(X — E[X])?] can equivalently be expressed as

2VarlX] = E[(X — X')*],

where X’ is an independent copy of X, and a similar expres-
sion for covariance. We refer the reader to Appendix B.1
for a proof.

4.1. Algorithm Design

For T' > 1, and time steps k = 1,2,...,T, let (S, Ax)
and (S}, A},) represent the states and actions chosen ac-
cording to 1(+|Sy) and £(+].S},) along the two independently
simulated trajectories. To estimate x,,, we use SA for the
expression in Lemma 4.1. This corresponds to (14) in Al-
gorithm 1. To this end, we need to estimate (),,, which
necessitates estimating .J,, along the same sample path. Esti-
mating .J,, corresponds to the mean estimation update in (9).
For estimating )., we again use SA to find a fixed point
of (4). dy in (10) represents the SA adjustment term for
Q,, estimation. However, since the fixed points for (4) may
not be unique, we particularly consider the one orthogonal
to e in f3-norm. Thus, at each step, we project the d; up-
date to the orthogonal subspace. This corresponds to the
adjustments made in (11) and (12).

4.2. Convergence Rates

In this section, we bound the estimation error of the pro-
posed algorithm. Let Yy, := (Sk, Ak, Sk+1, Ar+1, Sh, AL).
Observe that M3 := {Y}},, is a Markov chain. Let its
state space be denoted by Y, which is a finite set. As ear-
lier, under Assumption 2.1, M3 has a unique stationary
distribution. Let us denote it by 7,,. Further, M3 mixes
geometrically fast (Bhatnagar & Lakshmanan, 2016, Propo-
sition 1). This guarantees that there exist constants C' > 1
and p € (0, 1) such that,

sup dry (P(Yi|Yo =y),7,) < Cpk, forallk > 1,
yey

where P(Y;|Yy = y) denotes the probability of M3 being in
state Y}, at time k, starting from state y, and for probability
measures P and @, dry (P, Q) denotes the total variation
distance between P and Q).

Definition 4.2. Given ¢ > 0, the mixing time 7(0) of the
Markov chain M3 with precision J is defined to be 7(¢) :=
min{t > 0| sup,cy drv(P(Y:|[Yo =y),7.) < d}.
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Algorithm 1: Policy Evaluation: Tabular Setting
Input: Time horizon T" > 0, constants ¢; > 0, co > 0,
and step-size sequence {ay }.
Initialization: Jy =0, Qo = 0, and ko = 0.
for k < 1to T do
On first trajectory, take actions Ay, ~ u(-|Sy) and
Ag41 ~ p(-|Sk+1) to observe
(Sky Ak, 7(Sk, Ak)s Sk41, Ak41)-

On second trajectory, take action A} ~ p(-|.S}) and
observe (S}, A, (S}, A})).
// Average reward estimation
Jer1 = Ji + C1Ozk(7‘(5k, Ak) — Jk). ©)

// @Q-value estimation
Define 6, as
6k = T(Sk7Ak> — Jk
+ (Qk(Skt1, Ak y1) — Qr(Sk,Ar)).  (10)

For (s,a) # (Sk, Ax),
Qr+1(s,a) = Qr(s,a) — ardr/IS||A]. (A1)
For (s,a) = (Sk, Ak),

Qk+1(8, CL) = Qk(s,a) + a0 (1 — 1/|S| ‘AD .
(12)
// Variance estimation

Ty := 2(r(Sk, Ar) =7 (Sk, Ay))Qr(Sk, Ax),

13)
1
Ty = 5 (r(Sk, AK)=r (S}, 4)°

Kk+1 = Kk + CaQug (T1 —T5 — Hk) . (14)

end
Output : Variance estimate s

From geometric mixing, we have for any § > 0 that

log C' 1 1
)< —=——log=+1< Llog = 15
where L := 1+ —¢ _ et R € RISIAl be the vector of

log(1/p) "
rewards and 7,y := ||R |- Recall that @7, was defined

after (4). Next, define A to be

min{vTDu(Ing)v | veRISIM vy, = 1,vie = O} .

Clearly, feasible vectors v in A; are non-constant vectors.

Then, from Tsitsiklis & Van Roy (1997, Lemma 7), we have
that vI'D,,(I — P2)v > 0. Since the feasible region in A4
is non-empty and compact, we get A; > 0.

Next, let A; > 0 be defined as A; := Ay /(1 + 3272

max)‘

Finally, for the step-size constants c; and cs (inputs to Al-
gorithm 1), define
0 = max{(e] + 5+ 166577, + 3)7,
Fmax (G +142¢3)% ). (16)
The following theorem bounds the estimation error of Al-

gorithm 1, which immediately implies O(1/k) convergence
rate for the mean-squared estimation error of ,, to 0.

Theorem 4.3. Consider Algorithm I with ¢, and cy satisfy-
ing: ¢y > % (i + Al) , and

ey € {2&1 <1 — \}5) 2A, <1+ \}iﬂ .

2 2 * 12\ & 2
b= (14 (2 + 12 + QI3

Let

and
2
& = 5207 (1+ (J2+ w2+ |QLI3)H)
where 1 is defined in (16).

(a) Let o; = o for all i, such that Aa < 2, and

a7(a) < min 1 A&
T — .
- 4n’ 260n?

Then, for all k > 7(«),

~ k—7(c)
alA at(a
E[(ﬁk—/ﬁu)ﬂ <& i —— —&-L().
2 Aq
(b) Let a; = z-%h for all i, with o and h chosen so that
2 < al\; < 2h. Let k* be the smallest positive integer

such that Zf;gl a; < %, and for all k > k*,

kil < min 1 A
s 4 26002 [

’i:k—T(()&k

Then, for all k > k*, and L defined after (15),

k*+h aAl/Q

E[(kr — ru)?] <& ( k:—l—h)

N <4a2§QeL>ln(k+h)—lna
Aja—2 E+h+1

The above theorem follows from a more general result
presented in the next section. We refer the reader to Ap-
pendix B.2 for a proof.
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Theorem 4.3(a) bounds the mean-squared estimation error
of the proposed algorithm in case of constant step size.
Though the first term in this bound decays exponentially
fast as the number of iterations k increase, the second term is
constant and becomes a bottleneck after sufficiently large k.
This is a well-known behavior of SA with constant step size.
In fact, it suffers similar drawback of being non-adaptive
as the vanilla Monte Carlo (Flegal & Jones, 2010; Chien
et al.,, 1997). Specifically, in order to ensure the mean-
squared error smaller than €2 for € > 0 (or mean absolute
error smaller than €), one needs to pick the step size a as a
function of € (see Corollary 4.5). This drawback of being
non-adaptive is overcome by choosing a diminishing step
size (as in Theorem 4.3(b)).

Second, it has been shown recently that linear SA with
constant step size, in presence of Markov noise, suffers
from an asymptotic bias (as k — c0), see Huo et al. (2023);
Nagaraj et al. (2020). This is in contrast to the iid noise
setting, where the asymptotic bias is shown to be zero (Mou
et al., 2020; Lakshminarayanan & Szepesvari, 2018). This
motivates us to study SA with a diminishing step size.
Remark 4.4. For diminishing step sizes, Algorithm 1
achieves O(1/k) rate of convergence (Theorem 4.3(b)). As
earlier, the first term in the bound decays faster, and the sec-
ond term is the rate-determining O(1/k) term. We believe
that the rate of convergence of (1/k) for MSE is tight. In
the special setting of iid noise with parametric distributions,
this follows from the Cramér-Rao lower bound. We discuss
a simple estimator that achieves this rate in iid setting in
Appendix E.

Using bounds in Theorem 4.3, the corollary below presents
the number of iterations of Algorithm 1 needed to have the
mean estimation error bounded by e. It follows from setting
the mean-squared estimation error bounds in Theorem 4.3
to at most €2, We refer the reader to Section B.3 for a proof
of Corollary 4.5.

Corollary 4.5. To estimate r,, using iterates Ky, generated
by Algorithm I up to mean estimation error E[|ky, — k,|] <
€, we require

log” £\ 5 (LIQ,l3
o ("52)o (154,

The sample complexity in Corollary 4.5 depends on |S||A]
via Ay, L, and HQ:‘LHg Here, Q;, € RISNAl and hence,
Q15 = O(IS|?|AJ?). The dependence of L and A; on
|S||A| is more implicit, and relates to the mixing properties
of the Markov chain induced by the policy. Below we make
this dependence explicit in two specific examples.

If the underlying Markov chain is a random walk on a
complete graph (with [S|[A| vertices), then A; = O(1),
L = O(1), and hence we get O(|S|?| A|?) dependence. On

the other hand, if the underlying Markov chain is a ran-
dom walk on a cycle graph (Levin & Peres, 2017, Section
12.3.1), then A; = O(1/|S|?|AJ*), L = O(]S|?|A]?), and
hence, we get a dependence of O(|S|'2| A|'2) in the sample
complexity.

Remark 4.6. Using Jensen’s inequality, we have

Ellrr — kpl] < EF [(ki — #4)%],

which then gives a bound on the mean estimation error. In
particular, for the diminishing step-sizes of the form «; =
747 forall i > 1, Theorem 4.3(b) gives E[|r), — ] <
O(1/VE).

Remark 4.1. Consider the problem of estimating the stan-
dard deviation, NG Mean-squared error for the estimator

Ve satisfies E[(yFr — /Fa)?] < 2El(kk — 5,)%]
which is at most O(1/k) for ay, = O(1/k).

5. Variance Estimation: Linear Function
Approximation

When the underlying state and action spaces are large, esti-
mating the @), function for each state-action pair requires a
lot of memory, and may be intractable. To address this, we
consider evaluating an approximation of ), that is its pro-
jection onto a linear subspace spanned by a given fixed set
of d vectors {¢~>1, e, gz;d} where ¢; € RISIMI for i e [d].
In particular, for (s,a) € S x A, and 0 € R4, we consider
a linear function approximation Qg (s,a) = ¢(s,a)”6 of
Qu(s,a), where ¢7 (s,a) := [$1(s,a)...da(s,a)] is the
feature vector for state-action pair (s, a) and ¢(s,a) € R%.
With this notation, let ® be a |S| |.A| x d matrix with ¢; be-
ing the i™ column, and let Wg = {®0 : § € R} denote the
column space of ®. Then, Qy = ®6, where Q, € RISIIAIX1
is an approximation for (), using 6.

Assumption 5.1. Tfte matrix D is full rank, i.e., the set
of feature vectors {¢1,...,pq} are linearly independent.
Additionally, ||¢(s,a)||2 < 1, for each (s,a) € S x A.

This is a standard assumption in literature, and can
be achieved by feature normalization, see (Tsitsiklis &
Van Roy, 1999; Bertsekas & Tsitsiklis, 1996).

We now introduce some notation that will be used in
this section. Define subspace S¢ . of R? as Sp . =
span ({0|®0 = e}). It equals {cl.|c € R} if e € W, and
0. is such that 0. = e. Otherwise, S¢ . = {0}. Let E be
the subspace of R¢ that is orthogonal complement (in £5-
norm) of Sg ., i.e., E = {0 € R?: 70, = 0} ife € Ws.
It equals R4, otherwise. Additionally, let II; g denote the
orthogonal projection of vectors in R? (in 2-norm) on the
subspace .

Observe that for § € E, ®0 is a non-constant vector. This
follows since there does not exist § € E such that ®0 = e.
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In particular, if e € Wy, then the unique vector 6. such that
®f. = e does not belong to E. Similarly, if e ¢ Wy, then
there does not exist a vector € R%, hence in E, such that
Ph = e.

5.1. Algorithm

We now propose an algorithm for estimating the asymptotic
variance of a given stationary policy p with linear function
approximation. Here, we estimate a good 6 at each step.
Call this estimate ;. The corresponding estimate for (), is
then ®6;,. The algorithm in this setting is a modification of
Algorithm 1, with (10), (11) and (12), and (13) replaced
by (17), (18), and (19), respectively.

6k = T(Sk, Ak) — Jk

+ (¢(Sks1, Aps1) — A(Sk, Ar)) O, (17)
Ok+1 = Ok + aglls 5o(Sk, Ak)ok, (18)
T1 = 2(T(Sk,Ak) —T(S;@,A;C))QST(S]C,A]C)@}Q (19)

Here, updates in (17) and (18) correspond to TD for estimat-
ing (),, with linear function approximation, adjusted with
projection on subspace E. Note that Algorithm 1 for the
tabular setting is a special case with d = |S||A| and ® = I,
the identity matrix in |S| |.A| dimensions.

5.2. Convergence Rates

In this section, we present a finite-sample bound on the esti-
mation error of the proposed algorithm with linear function
approximation. Recall the Markov chain M3 introduced in
Section 4.2, along with its mixing time 7(-). For E defined
below Assumption 5.1, define

Ay:= min 67®TD,(I - P)®0.
[|0]|2=1,0€ E

As before, this can be shown to be strictly positive since
for # € E, ®0 is a non-constant vector. Let Ay > 0 be
defined as Ay := Ay /(14 32r2,,.). Finally, let ©*7 :=
[J, 0*T k*], where

K" = 284, [(7(S, A) ~ (S, 4)) [06°] (. A)
- SE4[0(8. A — (8L AP o

and 0* is the unique vector in F that is also a solution for
B9 = 11p, 1w, T, D0,

where Ilp, w, is the projection matrix onto Wg :=
{®6016 € R’} with respect to D, norm. Specifically,
Ip, w, = ®@®'D,®)"'®"D,. Further, T}, is an op-
erator that for a vector V€ RISIIAI] satisfies 7,V =
R—J,e+P,V. Observe that x* differs from x, in that @),

in the formulation in Lemma 4.1 is replaced by its estimate
in the subspace spanned by ®.

The following theorem bounds the mean-squared distance
between the estimate at time & and the limit point * under
constant as well as diminishing step sizes.

Theorem 5.2. Consider estimates rkj generated by the al-
gorithm with ¢y and co satisfying: c1 > % <Ai2 + Ag) ,

and
= {252 (1 - %) 24, <1+ \}iﬂ .

Let & = (1+0%[2)* and & = 5200 (||©* ]2 +1)°,
where 1) is defined in (16), and ©* before (20).

(a) Let o; = o for all i, such that Agoz < 2, and

(@) < min { L, 22
AT min _— .
= 41’ 26012

Then, for all k > 7(«),

~ k—7(a)
Bl — )] < (1 - a?) +

(b) Let o; = H_Lh for all i, with a and h chosen so that
2 < al\y < 2h. Let k* be the smallest positive integer
such that Zf:al o; < %, and for all k > k*,

k—1 ' 1 AQ
Z (673 S min Z, W .
i=k—7 (o) gl K

Then, for all k > k*, and L defined after (15),

k* h QAZ/Q
E[(kr — ") <& < k:_h >

n (4a2§26L) In(k+h)—Ina
A — 2 k+h+1

§a7()
Ay

To prove Theorem 5.2, we view the proposed algorithm as a
linear SA update, and prove appropriate contraction prop-
erties for the associated matrices. Unlike in the discounted
setting of RL, the operators in the average reward RL setting
are not contractive under any norm. In fact, as in (Zhang
et al., 2021), we establish semi-norm contraction, and es-
tablish convergence in an appropriate subspace (orthogonal
to all 1s vector). This turns out to be sufficient since the
formulation of asymptotic variance in (7) is unaffected by
constant shifts in estimation of ).

Finally, we prove a much stronger statement where the
above bounds hold for mean squared difference between
the iterates of the algorithm [J; 07 ry] and ©* (see Theo-
rem C.1). We refer the reader to Section 5.4 for a sketch of
the proof, and to Section C.4 for a complete proof the the
theorem.
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5.3. Approximation Error

Since we approximate elements of the set .S, of @, func-
tions (defined after (4)) by a linear combination of basis
vectors, we incur an approximation error in estimating
using (7). In particular, x* may differ from «,,, depending
on the approximation architecture. In this section, we bound
the squared error: (r, — £*)2.

To this end, we first define the approximation error associ-
ated with ), approximation. Since each element of S, is
a valid @, function, for any 0 € R, we define the error of
approximation by ®6 as the minimum weighted distance (in
D,,-norm) of ®6 from points in S, (Tsitsiklis & Van Roy
(1999)), i.e., infges, [P0 — Q| p, . The minimum possible
approximation error due to the chosen architecture is given
by
&= Qlenﬂgd Qlélgu @0 — Qllp, -

This essentially captures the distance between the two sets,
S,, and the column space of .

Proposition 5.3. Given d basis vectors represented as
columns of ®, there exists a constant A € (0,1) such that
1672

(K* —K,)? < . _m;; &2 21

Notice that £, and hence the RHS above, equals 0 if the
chosen basis functions are such that the span of these inter-
sects with S,,. This is particularly true for the tabular setting,
where d = |S||A| and the basis vectors are the standard
basis in this dimension.

To prove Proposition 5.3, we first bound the approximation
error in estimation of @, similar to that for value func-
tion in (Tsitsiklis & Van Roy, 1999). Using this bound
in (7), we arrive at the bound in (21). We refer the reader to
Section C.5 for a proof of the proposition.

5.4. Proof Sketch for Theorem 5.2

To prove the bounds in Theorem 5.2, we view the proposed
algorithm as a linear SA update, and use an appropriate
Lyapunov drift argument. To this end, we first present the
corresponding linear SA algorithm.

For (s,a) € S x A, k € N4, define
Ty = T(Ska Ak),'f';c = T(S;ca A;c)v ¢k = (b(skv Ak) (22)
Let 0 be the 0 vector in R?%. Define A(Y;) € R*+2 x R4+2,

—C1 6T 0 !
A(Yy) = |-y pée Mo pér(ot, —¢f) 0 |,
0 2¢o () — T’;C)QSZ =1

and b(Y},) € R4*2 as

b(Yk)T = [clrk Tk [HQ’E¢k]T — %(T’k — T;C)Q_ .

Let A = E4,[A(Yy)] and b = Eg,[b(Y%)] denote the sta-
tionary averages of A(Y}) and b(Y},), respectively (see Ap-
pendix C.1 for exact form of A and b), and let oT .=
[J 6T k] with § € E. Observe that © = ©* (defined be-
fore (20)) is the unique solution to A© +b =0 with§ € F
(see Appendix C.2 for a detailed justification). Since the
algorithm doesn’t have access to matrices A and b, we use
SA to solve for ©*, which corresponds to the following
update rule at step k + 1 with step size a:

®k+1 = O + g, (A(Yk)@k + b(Yk)) . (23)

In fact, the above equation coincides with the update for the
proposed algorithm, with ©F := [J;, 0T k).

The lemma below establishes that A is contractive when
restricted to an appropriate subspace, for appropriate choices
for the step-size constants c¢; and co. This result is crucial
in establishing the convergence of the iterates in (23).

Lemma 5.4. Under Assumption 2.1, and conditions on cq
and co from Theorem 5.2, the matrix A satisfies

min —0T40 > Ay)2.
OCcRX EXR,||©] %=1

Finally, as in Zhang et al. (2021), we use a Lyapunov-drift
argument along with Lemma 5.4 to arrive at the finite-time
bounds in Theorem 5.2. We refer the reader to Section C.3
for a proof of Lemma 5.4, and to Section C.4 for a complete
proof of Theorem 5.2.

6. Conclusions and Future Work

We proposed a TD-like algorithm to estimate the asymptotic
variance of a given stationary policy, and developed the first
finite sample bounds on the estimation error in the mean-
squared sense. We established O(1/k) rate of convergence
of the proposed algorithm in both the tabular, as well as lin-
ear function approximation settings. We also characterized
the approximation error in the latter setting. Notably, using
sampling along two independent trajectories, the proposed
algorithm can be viewed as a version of a linear SA algo-
rithm. Using Lyapunov drift arguments, we arrived at finite
sample guarantees.

As future research, it would be interesting to design an
algorithm that uses a single trajectory instead of two, to
estimate the asymptotic variance with good finite sample
guarantees. Additionally, our policy-evaluation algorithm
can serve as a building block for designing sample-efficient
actor-critic algorithms for identifying a policy that maxi-
mizes the long-run average reward subject to an asymptotic
variance constraint.
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Impact Statement

This work focuses on theoretical results for reinforcement
learning (RL). While RL algorithms have important societal
implications (e.g. in autonomous driving, healthcare, RL
algorithms for network control, etc.), and thus designing
provably-efficient algorithms and understanding their per-
formance is important, we believe that the direct ethical
consequences of our work is somewhat limited.
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A. Proofs for Results in Section 3
A.1. Proof of Proposition 3.1

Consider the induced Markov chain M with the corresponding probabilities of transition given by (1) and having a unique
stationary distribution d,, (Remark 2.2). Observe that (-, ) is a function defined on X, states of the discrete time Markov
chain M, with stationary expectation .J,,. Further, we have from (4) that ), is a solution for the corresponding Poisson
Equation. Then, from Lemma A.4 we get that the asymptotic variance is constant independent of the starting state.

Further, from Lemma A.1, we get the two formulations for «,,, the asymptotic variance for function f = r(-, ).

Finally, as discussed in the main text, the third formulation follows by replacing (7(.S, A) — J,) terms in (7) by @, (S, A) —
P>Q, (S, A), which follows from the Poisson Equation (4). O
A.2. Variance of Functions of a Discrete Time Markov Chain (DTMC)

Lemma A.1. Let X = (Xj : k > 0) be an irreducible and aperiodic DTMC on a finite-state space S with transition
probability matrix P and a unique stationary distribution 7. Let f : S — R be any function, and let f := ) s 7(x)f()
denote its stationary expectation. Let V denote the solution to the Poisson equation for f — f, i.e., foreachx € S, V
satisfies

V() =) Pl )V@)=f@)- T

Then, for j € Nand v(k) := EW[(f(Xk) — f) (f(Xo) — ]‘T)] , the asymptotic variance of [ is given by

n—1 n—1
lim % Var Z J(Xe)| Xo ~ Wo] =7(0) +2 lim Z (k)
k=0 =1
=2 w(@)(f(z) = HV(z) = Y w(x)(f(x) - f)°
€S €S
Proof. From Lemma A.4, we have
1 n—1 1 n—1
Jim — Var > F(Xi)Xo ~ WO] = lim_~Var > F(Xi) | Xo ~ W] .
k=0 k=0

We show that the r.h.s. in the above equation is same as the expression in the lemma. Recall that for any £ > 1,
E[f(Xk)|Xo ~ 7] = f. For simplicity of notation, we denote E x,~r[-] by Er[-]. Then,

Var

if(Xk:)'XO ~ W} =Ex (Z (f(Xk) = ﬂ)

k=0 k=0

n—1

+23 Y EL(F0) — F) (F(Xk) = )]

k=0 k=0 i<k
@ | ST - F2] 423 - BEL(F(Xe) - F) (F(Xo) — )]
k=0 k=1

— () +2 " (0~ R k),
k=1

13
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where (a) follows from Markov property. Dividing by n and taking limits, we get

n—1 n—1
. 1 ) n—=k
k=0 k=1
(@) -
< (0) + lim 23" (k) 4
k=1
nfln k
= lim 2y (k) = ~(0)
k=0
®) =
= lim 2 (k) —4(0), (25)
k=0

where (a) and () follow from Lemma A.2. Expression in (24) corresponds to the first expression in the lemma.
Next, we show that the expression in (25) is same as the second expression in the lemma.

Since V is the solution of the Poisson Equation, we have the following form for V' Douc et al. (2018, Proposition 21.2.3,
Lemma 21.2.2)

Vi)=Y E[f(Xx) - fIXo=1] +c,
k=0

for any constant c. Substituting this in the expression in the lemma statement gives:

23" (@) (f(a) ~ V() —(0) =23 7(@)(f(x) - ) (ZE[f(Xk) X = ﬂ> 0)
k=0

€S z€S

@23 E[(F(Xo) = ) (F(X0) = )] = 7(0)
k=0
n—1
=2 lim » " ~(k) —7(0),
k=1

which is same as (25). Here, to change the limits and expectation in (a), we used the bounded convergence theorem since f
is bounded (underlying Markov chain is on a finite state space). [

Lemma A.2. Let X = (X : k > 0) be an irreducible and aperiodic DTMC on a finite state space S with transition
probability matrix P and a unique stationary distribution 7. Let f : S — R be any function, and let f := ) _s7(x)f(z)
denote its stationary expectation. Then,

n—1 n—1
. n—k .
Jim 2 =) = Jim, )9 (h)

where

Y(k) = E[(f(Xk) = F)(f(Xo) = )] -

Proof. The proof of this lemma follows along the lines of the proof of Mou & Maguluri (2020, Lemma 3). However, we
give the proof for completeness. Let fax := max f(x). Since X is an irreducible and aperiodic Markov chain on a finite
seE

state space, it mixes geometrically fast (Levin & Peres, 2017), i.e., there exist constants C' > 0 and « € (0, 1) such that for
all & GIN+,

sup dry (P(Xg|Xo =z),7) < Cak,
reX

14
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where drv (-, -) represents the total variation distance between the two input distributions. Below, we first show that (k) is
bounded.

(k)| = [Ex[(f(Xk) = F) (f(Xo) = F)]|
= [Ex[E[(f(X) = ) (f(Xo) = )] | Xo = 2]|

< 4f?

max

ca*,

where we used Lemma A.3 to get the last inequality above.

Next, define
n—1 n—1 n—=k
Vi= lim > k), and V= lim > —(k).
k=0 k=0
Consider the following:
n—1 k
Vi— Vol = lim | ~(k)
k=0
n—1 k
< lim 3= |y (k)
k=0
(a) 1 n—1
< 42 - k
< élfmenll_{I;C - Z ka
k=1
<0,
since o < 1. This implies V; = V5. O]

Lemma A.3 (Mou & Maguluri (2020, Lemma 2)). Let X = (X} : k> 0) be DTMC on a finite-state space S with a unique
stationary distribution 7. Let f : S — R be any function, and let f := 3" s 7n(x)f(x) denote its stationary expectation.
Then, for any k € N, there exist constants o € (0,1) and C > 0, such that for any initial distribution Xo ~ 7, we have

|E[f(Xk) — f1Xo ~ 7o) | < 2fmaxCa”,

where fiax := maxges f(x).

Proof. Consider the following inequalities:

[E[f(Xi) = fIXo ~mo] | = | D mo(a') Y fla) (P(Xy = 2| Xo = 2') — m(x))

z'eS zeS
<Y mo(@) Y [f(@)| [P (Xy = 2[ X = 2') — 7 ()]
z'€S €S

S fmax Z 7TO('T/) Z |]P)(Xk = I‘|X0 = IE,) - ’/T(I’)‘

' €S zeS
/
Sfmax sup Z|]P(Xk:$|X0:I)—7T(1')|
z' €S S
< 2fmaxcvaka

where the last inequality follows from the definition of total variation distance and geometric mixing of the underlying
Markov chain. O

15
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Lemma Ad4. Let X = (Xj : k > 0) be an irreducible and aperiodic DTMC on a finite-state space S with transition
probability matrix P and a unique stationary distribution 7. Let f : S — R be any function, and let f := ) _s7(x)f(z)
denote its stationary expectation. Then,

n—1 n—1
nll_)n;o% Var Zf(Xk)\Xo ~ 71'0] = nh_{r;(}% Var Zf(Xk)|XO ~ w] )
k=0 k=0
Proof. Fork € Ny, let fi := Er [f(Xk)]. Then,
1 n—1 1 n—1 B 2
— Var |y f(Xx)|Xo ~ Fo} = Ex (Z (f(Xk) - fk))
k=0 k=0
n—1 n—1
= LN B[~ )P+ o Y S E[(F(X) — ) (FX) ~ T @6)
" =0 ™ =0 i<k
Clearly,
n—1 n—1
lim. % D En[(F(Xk) = f1)?] = lim % > EL(F(X) - ) 27)
k=0 t=0
This follows from the following:
n—1 n—1 n—1
lim 1 ZEWO[(f(Xk) — fx)?] = lim L Ero[(f(Xk) = f)?] = lim = Z(f— fr)?
n—oo N P n—oo M P n—oo M P
n—1
= lim — > E[(f(Xk) = 1)
k=0
where we used that .
lim_ % S (F-fu)?=0,
k=0

which follows from geometric mixing of the underlying Markov chain.

Let us now show that the second term in (26) converges to the right limit. Towards this, we first re-write it as

B2 35 @06 — NG — D] + (= DU - ).

k=0 i<k

and let the corresponding term under 7 be

B'=2 %3 Ef(f(X0) = NF(X) = f)]
k=0 i<k
Let B ~ _ _
Ty o= Er[(f(X3) = H)(f(X) = f)]  and Ty :=E[(f(X:) = F)(f(Xi) = )]
Then,
9 n—1 n—1 B o B
B-B|=|> (Ty=To)+= Y > (fi = HF = f)
k=0 i<k k=0 i<k
9 n— 9 n—1 B o _
<= |T1_T2|+ﬁ ZZ’fi—fo—fﬂ
k=0 i<k k=0 i<k
(@) 9 "t 2 2
<z Ty = Tal+ = > > 4f2,. CaF, (28)
n k=0 i<k n k=0 i<k

16



Policy Evaluation for Variance in Average Reward Reinforcement Learning

where we used Lemma A.3 to get the bound in (a) above, and recall that fy,.x := max, f(z). Clearly, the second term
converges to 0 as n — oco. Let us now bound the first term.

T =Tl = |32 33 (mole) — (@) P y) Py, 2) () — H(F(2) — )

rzeS YyeS z€S

<4fr2naxz ZZ 71—(] )Pl(x y)Pk Z(ya )

z€S |[xeS yeS

=4f2 Z Z (mo(z) P¥(z, 2) — m(2) P*(x, z))|

2€8 |ze8S

—Z Zﬂ’o VPR (2, 2) — m(2)| £

z€S |zeS
< 375 me) [PH(, ) — 7(2)] S

zES reS
= 2L Z mo(2)|| P*(x,-) — 7|1y,

T€S
< 2fpaCa
Using the above bound in (28), we get that lim |B — B’| < 0, proving the desired result. O
n— 00

B. Proof of Results in Section 4
B.1. Proof of Lemma 4.1
Clearly,

2B, [(r(S, A) = r(', A)Qu(S, A)] = 2Ba,[(r(S, A) = J)Qu(S, A)].

This follows from linearity of expectation and the fact that (S, A) and (S’, A’) are independent samples.

Next, consider the second term in the expression in lemma.

%Edﬂ[(r(S, A) — r(S’,A’))Q} = %]Edu[rz(S, A)+7r2(S", A — 2r(S, A)r (S, AN)]

W g, [r2(S,4)] -
=Eq,[(r(S, 4) = )],

where again (a) follows from linearity of expectation and independence.

Combining the two terms, we get that the rhs of expression in lemma is exactly «,, from (7). O

B.2. Proof of Theorem 4.3

For (s,a) € S x A, let 1(s,a) € {0, 1}‘S”A| be the indicator for (s,a), i.e., it equals 1 at the (s,a)"™ coordinate, and 0
otherwise. Furthermore, for k € {1,2,...}, define 1, := 1(Sk, Ax), indicator for (S, Ax). Then, setting d = |S||.A],
basis vectors in the setup in Section 5 as standard basis, and for k € {1,2,...}, ¢ = 1j, we recover Algorithm 1 from
updates in (17), (18), and (19).

Further, since in this setting, the set of fixed points (),, of (4) lies in the span of the basis vectors, £* from (20) is same as
k.. Hence, guarantees in Theorem 5.2 with these adjustments, reduce to those in Theorem 4.3, proving the result.

17
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B.3. Proof of Corollary 4.5

We prove the sample complexity bound separately for the algorithm with a constant step size, and that with the diminishing
step size. But first, observe that ¢; = O(1/A;) implying that n = O(1/A;). Furthermore, & = O(||Q%|3), and
& = O([|Q}l3/A).

(a) For Algorithm 1 with a constant step size «, to estimate ~,, up to a mean estimation error of at most €, we require

1 10g(§1/€2) 10g2 ! ~ ”Q;H%
> — — €
k>Llog—+ 0O < ; =0 2 (0] 731 .

This follows from Theorem 4.3(a), where setting the second term to at most €2 gives

2\ <[ A
log < L§2
Choosing « to satisfy this condition, and setting the first term in the error bound to €2, we get the required sample
complexity bound.

(b) Next, for Algorithm 1 with diminishing step size a;; = ﬁ for all 7 > 1, for estimating ,, up to a mean estimation

error at most €, we require
10 21 B * |2
k:O( g25>0( AN
€ A

This follows from the mean-square estimation error bound in Theorem 4.3(b) by setting the rate-determining second
term to at most €2, after optimizing over a.. Note that o such that «A; = 2 (or a = O(1/Ay)) is the optimal choice.

C. Proofs for Results in Section 5.2
C.1. Stationary-Average Matrices

The average matrices A and b are given by

—C1 6T 0
A= |l z®"D,1 Ty gd®'D,(P,—0N® 0 |,
0 2co(RT — J,1T)D,®  —co

and
c1Eq, [r(S, A)]
b= IIo, E(bTDMR
~%Rq,|(r(S,A) — (5", A"))?
where P, is the transition matrix defined in (1), and [ is the identity matrix of the same dimensions. This follows from the

observation that the stationary expectation of each entry of matrix A(-) and b(-) is given by the corresponding entry of A
and b, respectively.

C.2. Algorithm’s Limit: A Discussion

Let ©* = [J,, 0* k*]T, where 0* is the unique vector in E that satisfies (uniqueness follows from Assumption 5.1)
0™ =Tlp, w, (T,207),
where T}, is an operator that for a vector V' € RISIAL satisfies T,V =R — J,e+ PV, and k* is given by
. . 1
K= 2By, [(r(S, A) = J)[@07](S, A)] = SEa, [(r(S, 4) = J,)°]

18
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where [®6*](S, A) denotes the (S, A)*" entry of the vector ®¢*, which corresponds to @ ,,(S, A) in the tabular setting.

Here, IIp,, w, is the projection in D,, norm on the column space of ¢ and is given by

Ip, w, = ®(@®"D,®)'®"D,,.

Let O := [Joo oo Koo, Where O, € E. We now show that ©,, = ©* is the unique solution to AO., + b = 0. This
equation corresponds to

—C1Joo + c1Eq, [r(S, A)] = 0, (29)
My g ®" Dyedo + o @ D, (Py — I)®0 + 112 @' D, R =0, (30)
260 (RT — J,€")Dp®bas — Coking — 2Eq,[(r(S, A) — (S, A))?] = 0. 31)

2
Clearly, (29) implies Jo = J,,. Moreover, if 0 = 0* + af., for a € R, where 0, is the unique vector in R? such that
®d, = e, then (31) implies koo = K*.
Next, we show that 0, = 0. Let’s use J, = J,, and re-write the LHS of (30) as below:

I p®'D, (R — J.e) + (P — )P0,).
Clearly, it equals 0 for 6., = 6*. This follows from the definition of 8*. Hence, §* is a solution for (30). Furthermore,

0 # 0* + cb, for any ¢ € R, since 6* + cf. ¢ E. We now show that there does not exist any € E different from 6* that
satisfies (30). To this end, suppose such a §’ € E exists. Then, (30) evaluated at 6’ re-writes as

Iy g ®7 D, (—Je + (Po — )®0* + R) +11, g &7 D, (P, — I)®(0' — 6*),

=0

where the first term equals 0. Now, recall that Iy p = I — .07, with the convention that 0, = 0 if e ¢ W, the column
space of ®. Further, 07 ®7 = e” ¢ RIS!IAI which implies

0L®"D, (P, — 1) =0.
Using these, the second term above equals

®T'D, (P, — )OO —0%) — 0. 070" D, (P, — 1)®(0' — 6%).

=0

Now, the first term above is non-zero since 8’ — 8* € F, and hence, (0’ — 6*) is non-constant vector that does not belong
to the null space of P, — I. Thus, 70’ € E different from #* that also satisfies (30).

C.3. Proof of Lemma 5.4
In this appendix, we will show that
min  — 0740 > 0. (32)
OERXEXR
lelz=1

Recall that for § € E, ®¢ is a non-constant vector in RIS/ Thus, §7®7 D, (I — P,)®0 > 0, for § € E (Tsitsiklis &
Van Roy, 1997, Lemma 7). Since the set {9 cE:|03= 1} is non-empty and compact, by extreme value theorem, we
have

Ay:= min 0T®TD,(I - P,)®0 > 0.
[10]]2=1,0€E
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Next, expressing © € R x E x Ras OF = [J 07 k], we re-write the minimization problem in (32) as

min —0T40
V2 +0]13+r2=1

JER,KER,OEE

= min c1J? + cok? + JO 1o s @ Dye + 071y 5 @7 D, (1 — P2)®0 — 2c0k(RT — J,e") D, @0
T2+l +r2=1
JeR,kER,0EE
W min 102 + car? + JOTDT Dy + 07T D, (I — Py) B0 — 2c55(RT — J,e7) D, 6
VIR0l +R2=1

JER,KER,OCE
(g min c1J? + cor® + J0T DT D e + As||0]|3 + 2¢207 @7 D k(T e — R), (33)
VITIRT=1
JER,KER,OCE
where (a) follows since 6 € F, and (b) follows since 07 ®7'D,,(I — Py)®0 > A, ]|6]|3.
Next, consider
|67 ®" D, (Je + 2c25(J e — R))| = |JOT®T Do + 2¢,66" @7 D, (J e — R)|
< |J||6"®" D e| + 2¢c2 |1| |07 ®T D, (T e — R)|
< I ®0]loc [ Dyellr + 22 |5 [|20]| 0 | Dy (T — R)1-

Next, let rmax := ||R||co- Since |[Dyell1 = 1, and | D, (Jue — R)||1 < 2rmax, continuing the above inequalities, we
further get

07 ®" D, (Je + 2c2r(Je — R))| < |J|[|P0]loc + 42 |K] [P0l o max-

Next, observe that

Dl oo < , )2 < [|0]]2,
[0 _(SvglgngIW(s a)ll2)l€llz < [10]]2

where the first inequality above follows from the definition of || - || and Holder’s inequality, and the second from
Assumption 5.1, giving

|67 ®" D, (Je + 2c2k(Je — R))| < [J][10]l2 + 4z |k 10|27 max-
Using this in (33), we have

min —07408 > min 1% + ear® + Do 10]13 — 7] [16]]2 — ez ] 0] 27max-
24013 +K2=1 J2+|0]5+r2=1
JER,KER,HEE JER,KEROEE

The above minimization problem can be re-written as

min min 02H2+01J2*(‘J|+4CQ|/€|T’maX) ||(9H2+A2||0||§.
KE[—1,1] 0cE,J€R
oI5+ =1—r?

Now, consider the following bounds on the above minimization problem:

. 2 . 2 2
J>— (7] +4 02 + A0
i qer”+ o min o {end” = (] + dez k] rmax) [6]12 + A2l16]2}
16113+72=1-+

= min {CQ,%Q—F [ min {61J2—(|J+4CQ|I€Tmax)\/l—HQ—JQ—‘rAg(l—fig—J2)}}
Je

rE[-1,1] Y vy =]
= min { (co —A)k* + A+  min { (c1 — Ag)J? — (J + e |K| Pmax) \/1—/@2—J2}
rE€[-1,1] JE[0,vV1=r7]
>Ay 4+ min (ca — AQ)K/Q —4eo |k Tmax V1 — K2 4+ min { (1 — AQ)J2 —JV1—kK2 - J2} . (34
rE€[—1,1] JE[0,VI=K7]
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Let’s first solve the inner minimization problem. Let y; € R be such that
c1— Ay >y, (35)

Then, for ¢; > 0 and > 0,

min ]{(Cl—Ag)J2—J\/1—/€2—J2}

JE[0,v/1=r2

= min {(cl—Ag)x— x(l—ﬁ?)—xQ}
16[0717112}

> min {yle x(l—nQ)fo}
16[0,17142}

1— k2 /

where we used Lemma D.1 to get the last equality. Using this in (34), we have the required minimum is at least

1— 2
Ay + rflin]{(02_A2)K:2_462|H|Tmax 1—-k2+ 2& (yl—\/y%"‘l)}
re[—1,1

_ 2 1 /a2 1
Ag—&—w—&- min {(CQ_AQ_W>K2—4C2|K7”max\/1—ﬁ}2}

2 RE[—1,1] 2
/a2 1 /a2 1
= Ag + % + m[in] { <62 — Ay — y12yl+> T — 4coTmaxV & — x2} .
z€[0,1
Next, let y» € R such that
_ 241
02_A2_M > ys. (36)

5 >
Then the previous expression is lower bounded by

— 41
Ay + novyitl 4+ min {ygm — 4o maxV T — 1‘2} ,

2 z€[0,1]

which equals (using Lemma D.1)

_ 2 1 _ 2 16 2.2
A2 + Y1 V Y1 + + Y2 V Y2 + c2rmax' (37)

2 2
Choosing
1 AQ C% 2 16A27’2
= - —= d =2 (1432 _ 72 max
N=gn, T and = s (2 =
ensures that (37) is at least
A
21+ 322,

which is strictly positive. Choosing

1 1
> — 4+ A
(G 2 (A2+ 2)7
2A2 ]. 2A2 1
7= (=) —=== (14—
< [Hszr%nax( ﬁ) ’ 1+32r3nax< - \/ﬁﬂ

21
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C.4. Proof of Theorem 5.2

Results in Theorem 5.2 follow from much stronger results stated in Theorem C.1 below, which we will prove in this section.

Theorem C.1. Consider the iterates OL = [Jj, 0%1 ki) of the proposed algorithm in Section 5.1 with ¢1 and ¢ satisfying:
1/1 ~ 1 ~ 1
aa>=-|—+Ay), and co€ |2A5(1——),2A |14+ —=]]|.
12<A2 2) ’ [ 2( \/§> 2( \/5)]
Let & = (1+ ||0%|2)? and & = 52002 (||©*||2 + 1)%, where 1 is defined in (16), and ©* before (20).

(a) Let o; = « for all 1, such that Agoz < 2, and
) 1 A,
OfT(O[) S min {477, 2607’]2} .
Then, for all k > (),

~ k—7()
ol n &ar(a)
2 Ay

E[(Jk — Ju)* + 10k — 0% 115 4 (k. — 6)%] < & (1 -

(b) Let oy = 725 for all i, with o and h chosen so that 2 < aly < 2h. Let k* be the smallest positive integer such that
Zigl a; < %, and for all k > k*,

IS o < min i ﬁ
s 47 2602 [

i=k—7 (k)

Then, for all k > k*, and L defined after (15),

k* + h)“AQ/Q . (4a2§2eL) In(k+h) — Ina

E[(Jx — Ju)? + |0k — 07|13 -k < | — >
(= 907 + 1= 0713 + =) < 0 (G e

Notation. Recall that I,  denotes the orthogonal projection of vectors in R (in 2-norm) on the subspace £ € R%.
Consider the sequence of iterates Oy, := [Jy 0% ry] generated by the proposed algorithm in Section 5.1 with ©¢ = 0 and
0 € E. Recall from Section 5.4 that these iterates can be rewritten as a linear stochastic-approximation update given below:

Ort1 = O + ap (A(Yr)Or +b(Yz)),

where Yy, := (Sk, Ak, Skt1, Akt1, 5%, A%,

—C1 6T 0 C1Tk
AYy) = |~y pée o por(df , — of) 0 |, b(Yi)i=| rllopon ,
0 2e2(r —1R)0f —c2 — G (re —13)?
and recall that ¢7 := ¢ (Sk, Ar) = [61(Sk, Ak) ... ¢a(Sk, A)]. Moreover, recall that
—C1 GT 0 ClEdH[r(Sa A)]
A= |-Tyzg® D, 1 Ty zd"D,(P,—)® 0 |, and b= I, p®"D, R ,
0 2e2(RT = J,ATYD,®  —cy —2LEy, | (r(S, A) — (S, A))*

where P, is a transition probability matrix defined in (1), and [ is the identity matrix of the same dimensions.
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Next, define A(Y},) and b(Y},) so that A(Y},) = IIA(Y},) and b(Y},) = IIb(Y},), where

1 0" o0
II:= |0 Iz O],
0 o7 1
that is,
—Cq 07 0 C1Tk
AYy) = |—dx  or(dl—of) 0|, b(Yi)= Tk Pk
0 2eo(rk —73)05  —c2 =G (rk =)
Similarly, define Aand bsothat A =TIA and b = HE, ie.,
—C1 e 0 ClEd“[T(Sv A)]
A= |-0"D,1  @TD,(P,—1)® 0|, and b= ®"D,R :
0 2c(RT — J,AT)D,® —co —~ZLEy,|(r(S, A) — (S, A))*

We now bound ||©1 — ©*||3. Towards this, we first establish the properties of the associated matrices.

Bounds on A(Y;) and b(Y;). For a matrix M, let ||M||> and ||M||r denote its induced 2-norm and Frobenius norm,
respectively. Then, recall that | M || < || M| F.

IA(Y) 2 = ITTAY:) |l
< Iz )| ACYD) e,

where the above inequality follows from sub-multiplicativity of the induced 2-norm. Now, since II is an orthogonal
projection matrix, ||II||2 = 1. Thus, we have

1Al < 1Al
CAm)ls

= A&+ 14110681 — DI+ 1663720 + 3

(b)
< \/Cf + 1+ (lordi 1 |F + loxdf ||7)? + 16372, + 3

(o)
= \/C;f + 1+ (I9ell2llprsallz + 1 Dxll2lldnll2)? + 16¢3r2 0 + €3
(d)

2 +5+16c3r2,, + 2,

where (a) < ||M||r, (b) uses triangle inequality for || - || 7, and (d) uses Assumption 5.1.

To conclude (c), let z; € R% and x5 € R?. Observe the following equalities for ||z123 || .

o1 | = \/ Trace(zrad ezaT) = \/Trace(z1a? 22 ]3) = lleallz(@ler) = [l [allez]lz-

Next, to bound b(Y3),

1Y) ll2 = [TB(YV2)l|2 < [[D(Y2)ll2 = rmaxy/ €} + 1+ 263

General finite-time bound. Let ©7 := [Jk o sz] , denote the k" iterate of the proposed algorithm in Section 5.1, and
let ©*T :=[J, 0*T k*|, where * € E C R% and * € R are such that A©* + b = 0. For simplicity of notation, let

Ex—r, H = E['lgk*T(ak)’Yk*T(ak)] )
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where for § > 0, 7(0) is the mixing time of the Markov chain M3, and is introduced in Definition 4.2. Also, for 0 < k1 < ko,
let

k2
Ay ko = E ;.

i=k1

Define Ay := A(Y), by :=b(Y%), and let

Amax = \/c% +5+16¢3r2,. + 3, bmax = Tmax\/c3 + 1 +2¢2, 0 := max {Anax, bmax } -

For any k£ > 0, we have

Ei—r, [Or11 — O[5 — [0k — ©%[3]
=Ep—r, [|Ok41 — O) + O — O%[3 — |0 — ©7[|3]
=By, [[1Ok41 = Okll3 +2(6) — ©%)" (Or11 — O4)]
=aiEi—r, [|[AkOk + bi[|3] + 201 Ex—r, [(O1 — ©°)T (AkOy + by)]
=a;Ei_r, [[[AkOk + bk 3] + 20xEx—r, [(OF — ©%)T (4O + by, — AOy — b)]
+ 20, Ep s, [(Or — ©%)T(AO) + )] . (38)

We will now bound each of the three terms in the above expressions.

Bounding || A Oy, + bx||3 in (38). Here we will use that the update matrices at each step are bounded, specifically that
[[Akll2 < Amax and ||bg|l2 < bpax forall & > 1.

14k + bell3 < (1 4kll21Oxll2 + be]12)?
< (Amax|[Okll2 + bimax)?
<2 (102 +1)°
<2 (10 = ©"[l2 + 012 + 1)?
<27 (J0x = 0" 3+ (10712 +1)°) .

Bounding (0 — ©*)T(AO;, + b) in (38). To bound this term, we will use the fact that the limit point ©* satisfies
AO®* 4+ b = 0. Using this, we have

(@) Aol|O) — O%I2
(01 — )T (4B, +b) = () — 67)T (A8, — A6") = (B — 67T A, - 07) < 220~

2
where (a) follows from Lemma 5.4 since (0 — ©*) e R x F x R.
Bounding Ek—rk [(@k — @*)T(Ak@k + by, — AOy, — b)] in (38).
Er—r [(O — 0T (A0 + by — A, — b)]
= Ekfrk [<@k: - G')kf'r(ack) + ka'r(ozk) - @*)T(Ake)k + by — Aek - b)]
=Ep—r, [(Ok = Ot_r(ap))” (AxOk + bx — AO) — b)]
+Ei_r, [(@k,f(ak) — 9*)T(Ak®k + b, — AO — b)} . 39)
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Bounding the first term in (39),

Ek—r, [(Ok — O—r(an)) " (ArOk + by — AO), — b)]

<Ei—r, [|(Ok — Ok—r(a)) " (AkOp + by — Ay, — b)|]

< Eier, [k = Ok—r(ap 12| AxOk + b — Ak — b|2]

< Erry [[1Ok = Op—r(an)ll2 ([[Ax — All2l|Okl2 + [[bx — b][2)]
< 20Ej—r, [[Ok = O r(a)l2 (1Okll2 +1)]

(a)
< 87]2ak—7(ak),k—1]Ek—Tk [(HekHQ + 1)2]

<8P r () h—1Bh—r, [(Ok — OF[l2 + [|©%]|2 + 1)?]
< 167705 rapy 1Bk n [0~ O3+ (10 + 177, (0)

where (a) follows since for any k1 > 0 and ko > 0 such that

Ay ky < 1

= Ok, — O, || < Ay -1 ([[Ok. || + 1), (41)
and the assumption on «y, that for k > k*, agp_r(a,) k-1 < ﬁ. This follows from Chen et al. (2022, Lemma 2.3).

Next, consider the second term in (39).

Eir [(Okr(ar) — O°)T (44O + by, — A6y, — b)]
=Ei—r, [(Or—r(ar) = O")" ((Ax = A)Ok_r(an) + bk — b+ (Ax — A)(Ok — Op_r(a)))]
<|(Ok—r(ar) = O ) Bir, [(Ar — A)Ok_r(ay) + bi — b]|
A
+](Or—r(a) = O") Erer, [(Ar = A)(Ok = Op—r(a)] | - (42)

Az

We further bound the two terms in (42) separately.

A1 < [18k—r(ag) = O7[l2 [|[Br—r, [(Ax — A)Ok—r(ay) + b = b] ||,
= |Ok—r(ar) — O%ll2 ||Br—ry [Ak — Al Ok_r(a) + Er—ry [bx — b]||2

(a)
< ©k—r(ar) — ©*ll2 (IEx—r, [Ax] = Ally 1©k—r(an)ll2 + Er—r, [bx] — bll5)

(b)

< MarBir, [[Or—r(ar) = O"ll2 (1 + [O4—r(ap)ll2)]

= 2naiEy_,, [”@k—r(ak) — O+ 0 — 0%z (1 + ||@k—7'(ak) -0, +0, -0+ @*Hg)]

< 2akEr—r, [(1Or-r(ar) = Okllz + 10k — ©7[12) (1 + Ok-r(ar) = Okllz + Ok — Ol + [|©7[|2)] -

The inequality (a) follows since for any matrix M and a vector x, we have ||[Mz||s < ||M||2||x||2, where || M]|2 is the
induced 2-norm (or operator 2-norm) for M. Inequality (b) follows since, from the definition of the mixing time, we have

IEx—r, [Ar] = All, <2noye and  ||Ex_r, [bx] — bl < 2nay, (43)

and ©,_(q,) is a constant with respect to the conditioning.
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To see (43), consider the following

|Ex—r, [0x] = bll2 < sup > (PO = ylYier(an) =) — 7u(Ye = y)) b(y)
Y’ yey

< sup 3 [P(Ye = y[Yer(ap) = ) — 7Y = 9)| [6®)]l2
y' ey yey

< 2770[)7(0%)
< 2npoy,

2

< 27’]Oék7

where the last inequality follows since p < 1. Similarly,

[Eg—r, [Ar] — All2 < sup, > (P = ylYier(an) =) — 7u(Ye = v)) A(y)
Y’ yeY 9

< sup Y [P(Vi = y[Yier(an) = ¥) — Fu(Ye = )| [A(W)ll,
y' ey yey

< 2nay.

Next, since for 0 < k1 < ks,

1
Qg k=1 < o 1Ok, — Ok, ll2 < 1+ Ok, |2,

from the assumption that ag_r(q,) k-1 < ﬁ, we have that
1Ok = Ok—r(a)ll2 < [Ok[l2 + 1.
This follows from Chen et al. (2022, Lemma 2.3). Using this to further bound A;, we have
A1 < 2noEg—r, [(1+[|Okll2 + [[Ok — O7[|2) (24 [[Ok[l2 + 1Ok — O7 (|2 + |©7]12)] -
Continuing bounding the r.h.s. above,

Ay < 2B r [(1+ [Okl2 + 1Ok — ©7[|2) (2 + [Okl2 + |8k — ©7[]2 + [[©7[]2)]
< dnoagBr—r, (14072 + 20k — ©7[|2) (1 + [0k — O%[|2 + [|©7[|2)]

< 8nouEr-r, [(1+ 0712 + €k = ©72)%]
<1601 Ex—r, |1+ 107]2)" + 1€k — 73]

< 16201 (0 b 1B, |1+ 07]2) + 0, — 73] (44)

The last inequality follows since by choice, > 1, and ap < ag—1 < Qg1 (a,,),k—1- Hence, we have ag < nag_r(ay) k—1-
Let us now bound the other term in (42).

Az = |(Ok—r(an) = O") Eror, [(Ax = A)(Ok = Op—r(ay))]|
<1Ok—r(an) — O ll2 |Ex—r, [(Ax — A) (Ok — Ok—r(an)] I,
< 277H@k7'r(ozk) - @*HQEIC_T]C [He)k - @k*T(ak)HQ} ’

where the last inequality follows from convexity of || - ||2, sub-multiplicativity of the norm, and the definition of . Again
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using (41),

Ay <877 g r(ap) h—1Ek—r, [1Or—r(ar) — ©*2(Okll2 + 1)]
< 80— r(ar) k1B, [(1Ok = Ok—r(all2 + 110k — ©*[|2)([Ok |2 + 1)]

(@)
< 80— r(ar) k-1 Br—r, [(1+ [Okll2 + |0k — ©7[l2) (1O + 1)]

< 80 —r () k1B [(1+ (1072 + 2[10) — ©%[|2)([|©) — ©%[|2 + 072 + 1)]
<160 r(ap) k-1 By [(1+ 1072 + |0k — ©%12)?]
< 320 r(ap) k1 Erer, [(14107]12)7 + 01 = ©73)] (45)
where (a) uses (41).
Combining bounds in (44) and (45) and substituting in (42), we have:
Er_r, [(@k_.,-(ak) — @*)T(Ak@k + b — AOy, — b)}
< 1620 (0 b 1Eir [(1F167]2)° + 01 — ©7[3]
+ 3217 7 (o) k-1 Er—ry [(1+[©7]12)* + [|© — ©7[3)]
< A8 (o) ko By (1407 [2)° + 01 — ©° 3] (46)

Combining the above with (40), and substituting in (39), we have

Eir, [(Bk = )7 (440 + b — Ak = b)] < 641% s () h 1B, [(1+]107]2)" + [0 — 03] .

Putting everything together and substituting the bounds in (38), we have

Ei—r, [[Ok1 — 07" — |04 — €3]
AE;_r, [ — ©7|3]
2
+ 1281205 (e 108 B r, [ (1+1167]2)° + [0 — O3]
< 2020 r (o) k-1 Bk, [[|Ok — O[3 + (1 4+ ©7(|2)*] — arABy—r, [||O — ©7I3]
+ 1281205 (e 108 B —r, [(1+1167]2)" + [0 — O3]

< 2031 Eir, [0k — O[3 + (14 [07]2)?] — 20

= (1307}206k—r(ak),k—104k - OZKA> Ei—r, [0k — ©7]13]
+ 1300tk —r(ag) k—10 (1 + [|©7|2)*.
On rearranging, we have
Ep—r, [[|Oks1 — O3] < (1 + 1307 k- 7 () 1Ok — OékA> Ei—r, [[1Ok — ©7[3]
+ 1300 g —r(ap) k—10% (1 + |07 ]|2)*. (47)

From condition on k*, for &k > k*,

AU <
A—r(ap)h—1 < 26012 Le., 2600 0tk —r (o) h—10k < kg,

and
Ok —7(ay),k—1

<2, i.e., op_ _rap < 2027 (ag).
Hagar =2 (o) k—10%k < 2037 (ag)

The above follows since each of the «; fori € [k — 7(ay), k — 1] are less than 2a.
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Using these in (47),
2
< (1 _ Az

- 2

% > 26021 + 10" 1)

. 13
Ei—r, [0k — O%3] + 52%7(0%)

ar
Epo—r, [[|Ok+1 — ©%[3] < (1 - ) Ejo—r, [© — ©%[[3] + 260n2a2T(ay) (1 + [|©*||2)?

where we used that

Now, recursively using this inequality, we have for & > k*,

k—1 O[A é- k-1 k-1 O[A
E[lox - o8] < E[|ew - e"[3] ] (1— t22)+527<ai>a? 11 (1—]22)

i=k*

Again, by assumption on £, g g+ -1 < 5. Usmg this,

E[||©k — O7[I3] <E[(|O%+ — Ooll2 + |60 — ©7]2)°]

(a)
< (14 60ll2 + €0 — ©%l2)°
< (142[|80]2 + [|©7|2)

1+ [0%|2)?

gla

where we used that ©g = 0. To see (a), consider the following inequalities:

Ok — Ooll2 = [[(Ok — Op=—1) + Opx—1 — Og,
= ||or—1 (Ap=—1Op=—1 + bi=—1) + Op=—_1 — O¢||5
< e || Apr—1Op+—1 4 b1 || + ||On=—1 — Oy
< ag—1n(1 + [[Ok—1 — Ogll2 + [|O0]2) + [[Ok—1 — O]

= (14 nags—1)[|O—1 — Ooll2 + nag-—1(1 +[|Gq|l2)
k*—1 k*—1 k*—1
< T (0 +ne)l©1 = Boll2 + n(1+ [[O0l2) Z a; [T (t+nw)
j=1 =741
k*—1
< "k 101 = Oplla + (1 + [|Ooll2) Y e
j=1

< "0 =101 — Oo[2 + (1 + [[Oo|2) o1 gr 10k
< 2a0n(1 + [|©ol|2) + 2n(1 + [|Ool|2) 1 k-1

=2n(1 + [|Oo||2) 0 k=1

< (14 [|®0][2)-

This gives the desired bound:

|2 = a;Ay &o -« 2 = ;s
Efor - 03] < & H l=-—=]+3 E 7(a) oy H === (48)
. 4

i=k*
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Theorem C.1(a). Let’s now bound the terms in (48), when «; = . In this case, k* = 7(«), and the bound in (48) holds

for all k > 7(«). First, observe that
k—1 - ~ k—71(a)
A A
, 2 2
i=7()

= 2 . 1 Asar o Pl 1 aly k7i71< 5 > 1 aly i<2a7(a)
() H - —OZT(OL)‘Z) - _ozT(oz)Z - < ——.

i=7(a) Jj=i+1

and

Using these, for T > 7(a), we get the following bound:

~\ k—7(a)
E[l0x - 072] <& p_aa L Bar(e)
2 A,

Theorem C.1 (b). Let’s now bound the terms in (48), when o; = Hih First, observe that

k—1 A k—1 X
H 1— OéiAg _ H 1— OéAQ
=k 2 ) Se\ AN

IN
|'::1
g

i=k*
oAy k—1 .
T2 > ith
—e i=k*
aly

_ (W) - (49)
Next, for the other term, since for k — 1 > 7 > k*,
(i) < 7(a) < Lln aik — L(n(k + 1) — In(a)), (50)
we have
kgj T(ai)afjﬁl <1 - O‘J2A2> <L (k l‘ h) kgj aijﬁl (1 . %QA2> . (51)

Here, inequalities in (50) follow from (15). Moreover,

k—1 A _Apa
H 1_ 42& <e 2 i Jjth
20+h)) ~

j=i+1
< i+h+1 T.
- k+h
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Then, using in (51),

k—1 k—1 < k-1 .
2 OéjAQ k+h 5 [ 1+ h+1 2
Zr(ai)ai H (1— 5 >§Lln< ” “\ s
i=k* Jj=i+1 i=k*
k—1 2
k+h « i+h+1\ 2
=Lln 5
« = (i +h) k+h
k+h 2 S i h+ 1)
:Lln<+> - Z<2f+>(+h+1)52
« c i+ h
(k+h) 2 =k*
k+h 402 = Apa_,
§Lln< - > MZ(Hhﬂ) 2 (52)
(k+h) 2 j=k*
Choosing .
OZAQ
1
2 > b
we have
kol ﬂ_Q v M_Q
dlith+1)F < / (i+h+1)72 dx
i=k* i=0
1 Aga Amor
= <(k+h+1)A§1 — (h+1)78- )
AQO( _ 1
2
]- M,l
2
Substituting back in (52), we get
k—1 k—1 ~ Aga
A k+h 402 1 k+h+1)\ 2
S r(ana? JT (1-2422) <om (20) (=2 s
k Ny 2 o Ao 1 [ E+h+1 k+h
i=k* Jj=i+1 2
k+h da? EGa)
2(k+h)
<L (5t "9 ¢
o Azza _1/) k+h+1
k+h a2 o5t
=LIn — .
a Sg0 kE+h+1
Choosing h so that R
Ao Doy Asa
1
2~ 2 2h <5b
ie., ~
AQOé
h
2 <
we have
k—1 k—1 X 2
9 a; Ay k+h 4o e
N’ —— | < = .
i=k* j=i+1 2

Using (49) and (53) in (48), we have

_ * (|2 < _
]E[H@k 6||2]—§1<k+h Aza 4 kE+h+1

2

ol
k*+h>22 N <2a2€2Le> In(k+h) —lnoz. 0
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C.5. Proof of Proposition 5.3
Since from Theorem 5.2 the proposed algorithm’s estimate converges to ®6*, the approximation error incurred is

£ DS, [®6*] . Following arguments similar to those in (Tsitsiklis & Van Roy, 1999), it can be shown that

&
& PO*| < ——,
D8 [P0 S T

where A € (0, 1) is a constant. The bound above is a blow-up of the minimum error possible due to the chosen architecture
for approximation.

With this, we get the following approximation error for the variance estimate of the proposed algorithm, for any ¢ € R.
|ky — K| =2 ’Edﬂ[(r(S, A)—J,) (QZ(S, A) 4+ c—[®07] (S, A))] ‘
=2 ‘<R— Jue, Q, + ce — <I>9*>D ‘
1 1
=2|(Dji (R~ Jue), Dif (@), + ce — 06") )|
1 1
< 2||Dji (R — Jye) |2 D (@}, + ce — 207) ||2
< Armax @), + ce — 0% ||p,,.
Since the above inequality is true for all ¢ € R, we have that the approximation error for &, is bounded as below:
*)2 2 : * * 2
(= 1) < 1672, inf (007 — Q; — cell,
= 1612, inf [®0* — Q|
" max ngsu ” Q”Du
)
= 16170 (€D,.5, [207])
1672

< max 52- O
- )\ell[}),l) 1— )2

D. Auxiliary Technical Lemmas

Lemma D.1. Forb > 0, and c > 0,

min {aw —bvex — x2} =

z€[0,c]

(a- VT 7).

c
2

Proof. Let f(z) := ax — by/cx — 2. Let f’(z) denote the derivative of f(x) and f~ (z) denote the corresponding second

derivative, both evaluated at 2. Then,
b(c — 2x)

Wer — 22’

and f () > 0 for b > 0. Solving for x such that f’(z) = 0, we get x1 defined below as the optimizer.

f'@)=a-

c a
=—|1l- —=
T < Va2 + b2) ’
and f(x1) is the desired optimal value. O
E. Estimating Variance: IID Setting
Consider X1, X», ..., independent samples from a distribution with mean 0 and an unknown variance o2. Further assume

that the sampling distribution has bounded 4** moment. The goal is to estimate o' using these samples.

Since, in this setting, Var[X] = E[X?], let
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denote the estimate for o2 using n samples. Clearly, E[62] = 02, i.e., 62 is an unbiased estimator.

Next, consider the following

i=1 i#]
_EXY] n(n-1)0*
T n n?

1 4 4
L (g [x1] - o)
=,

1

n
fact, Cramér Rao lower bound (Nielsen, 2013) for the mean-squared error in estimating o2 using an unbiased estimators is
O(1/n), establishing that this rate cannot be improved in certain settings.

where ¢; = E[X*] — (E[X?])2. Thus, we have that the mean-squared estimation error in this setting is exactly O(). In

For o > 0, let N'(0, 02) denote the Gaussian distribution with variance 0. If X ~ N(0,0?), ¢; equals 302, and in this
case we have that

n

2
E[(62 - 0%)°] = 3% for ¢ > 0.
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