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Abstract

Modern language models have the capacity to store and use immense amounts
of knowledge about real-world entities, but it remains unclear how to update
such knowledge stored in model parameters. While prior methods for updating
knowledge in LMs successfully inject atomic facts, updated LMs fail to make
inferences based on injected facts. In this work, we demonstrate that a context
distillation-based approach can both impart knowledge about entities and propagate
that knowledge to enable broader inferences. Our approach consists of two stages:
transfer set generation and distillation on the transfer set. We first generate a
transfer set by prompting a language model to generate continuations from the
entity definition. Then, we update the model parameters so that the distribution
of the LM (the ’student’) matches the distribution of the LM conditioned on
the definition (the ’teacher’) on the transfer set. Our experiments demonstrate
that this approach is more effective at propagating knowledge updates than fine-
tuning and other gradient-based knowledge-editing methods. Moreover, it does not
compromise performance in other contexts, even when injecting the definitions of
up to 150 entities at once.

1 Introduction

As large language models (LLMs) are used for a wider variety of applications, it is crucial to
ensure that they contain up-to-date information about the world. One potential solution is retrieval
augmentation, which prepends retrieved texts to the language model’s context [20, 29, 35, 34].
However, this raises inference costs and becomes impractical when updating large amounts of
information. An alternative approach, and our goal in this work, is to internalize the new knowledge
into the language model via parameter updates [36, 44, 8, 26, 22, 12].

Recent work on injecting LLMs with information about emerging entities [32] demonstrates that
updating parameters effectively enables models to acquire updated facts (Rishi Sunak is the prime
minister of the UK), but struggles to teach models how to propagate this knowledge, or make
inferences based on it (what might Rishi Sunak do tomorrow?). This contrasts with results from
retrieval augmentation [20, 35] and chain-of-thought prompting [40], which show that LLMs can
make such inferences when information is placed in the prompt.

This work aims to bridge the gap between the two approaches in knowledge injection. We use a
form of knowledge distillation [13] called context distillation [1] that updates an LM to act like it is
conditioned on a given context, even when that context is not shown. Our approach consists of two
steps: transfer set generation and distillation on the generated transfer set. The transfer set consists of
continuations of the entity definition sentence generated by prompting a language model. To distill on
this transfer set, we minimize the Kullback–Leibler (KL) divergence between the model’s predictions
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Figure 1: Overview of our distillation approach. Our goal is to inject the entity definition (de) into
the student model (Ms) and propagate it to make inferences based on the injected knowledge. This
example uses ChatGPT as a new entity. We first generate a set of continuations of the entity’s
definition using a generator model (Step 1), then use these to distill the information from definition
into the student model via a KL loss between the conditioned and unconditioned models (Step 2); see
Section 3 for formulation.

on the transfer set when it conditions on the definition (the “teacher” for distillation) and when it does
not (the “student”, or the language model itself). Figure 1 shows this approach.

We evaluate our approach on two knowledge propagation benchmarks: ENTITY INFERENCES [32]
and Entity Cloze by Date (ECBD) [31]. We evaluate on three language models and find that our
distillation approach outperforms fine-tuning and prior editing methods (MEND [26] and MEMIT
[23]) across all models. To investigate the robustness of our approach, we present an ablation study
focusing on the design choices during transfer set construction. Encouragingly, we find that distilling
on transfer sets constructed from the base language model itself is competitive with those generated
by a much larger model (GPT-3.5). This demonstrates that context distillation does not rely on
distilling from a larger model, and that our approach can work across a range of model sizes. Finally,
we show that our approach can be scaled to inject larger amounts of information at once: we can
inject over 100 new entities into a language model with minimal performance degradation, suggesting
that the distillation process performs relatively targeted editing even without additional objectives to
ensure specificity as in past methods [22, 23].

To summarize, we present a new approach for propagating injected knowledge. We show that
a knowledge distillation technique can effectively impart and propagate knowledge from entity
definitions into the parameters of a pre-trained language model, compared to existing knowledge
editing methods. Yet, we observe robust gap between providing information in-context and parameter
updating methods, leaving ample room for future work. Our code and data are available at https:
//github.com/shankarp8/knowledge_distillation.

2 Background and Task Setup

2.1 Motivating Example

Figure 1 shows a motivating example. An LM trained on text collected prior to November 2022 will
not have specific knowledge about what ChatGPT is, as ChatGPT was introduced after that time. Past
retrieval-augmented generation methods [20] have shown that conditioning on information about
this entity can lead to lower perplexities when evaluating on sentences like ChatGPT can respond to
natural language questions [35, 32]. For example, the model assigns a higher likelihood to tokens
like respond given the knowledge that ChatGPT is a chatbot.

Our approach relies on teaching a “student model” (the LM itself) to match the next-token distributions
given by the model conditioned on the definition sentence even when the definition sentence is not
shown. We do this via a distillation process on a set of continuations, or sampled sentences following
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the definition. We impose a KL penalty between the student and teacher distributions of a set of
target tokens, namely all those occurring after ChatGPT in the continuation. Because the distillation
process does not make updates on tokens where the teacher and student have the same distribution
(zero KL), only tokens that are in some way predictable from the definition drive parameter updates
(see Section 7 for discussion).

2.2 Task Setup

We refer to language models M as M(x) → D(V), mapping an input context x = (x1, . . . , xn)
to a next-word distribution D(V) = p(· | x1, . . . , xn) over a vocabulary V . We will also use
M(x) → D(V)1,...,n to represent the collection of distributions after each prefix of x, which is a
standard operation used in language model training. To update knowledge in the base language model
MBase, definitional information de = (d1, . . . , dm) for an entity e is provided. We will use e both as
an indicator and also a reference to the entity name string (e.g., ChatGPT in Figure 1). Our goal is to
update MBase to Ms so that it “knows” de, by matching Ms(x) with Mt(x | de) (the teacher model)
as closely as possible with our distillation scheme, when x is relevant to entity e. We set the teacher
model Mt to be a copy of Ms.

We evaluate on two factors. First, propagation success measures how well the updated language
model Ms acquired information about de to make correct inferences in probe sentences. Crucially,
our evaluation here is not just a narrow notion of whether a specific fact is injected [44, 8, 26, 22, inter
alia], but captures the model’s ability to make inferences on it [31, 32]. Second, specificity evaluates
whether the predictions of the LM on other contexts are altered as in prior work [8, 26, 22, 23].
Ideally, edits should not impact inferences on examples unrelated to the edit.

2.3 Related work

Knowledge distillation We are not aware of prior work that uses distillation for knowledge editing.
Our use of context distillation is most similar to Askell et al.’s alignment work [1]; however, they use
it in a phase roughly analogous to RLHF and use a generic transfer set sampled from the language
model training corpus. Our work is also related to prompt injection [5], which examines tasks like
distilling a persona-conditioned language model. Unlike their work, we do not train a task-specific
model to generate examples for distillation. Instead, we simply prompt existing LMs. Furthermore,
while they aim to have a model memorize a particular prompt, we focus on general knowledge updates
and inferences based on those. Other work has used distillation techniques for “gisting” to make
shorter prompts [28] or to distill reasoning processes [37]. Similar approaches as our continuation
sampling have been used for example extrapolation [19] to generate training datasets for fine-tuning.

Efficient parametric knowledge updates Parameter updating methods such as KnowledgeEditor
[8] and MEND [26] make use of standard fine-tuning to attempt to localize edits. Another line of
work [7, 22, 23] attempts to locate where factual information is stored in transformers and designs edit
methods based on these findings. In particular, ROME [22] and MEMIT [23] treat factual knowledge
as subject-relation-object tuples, and find that new facts can be inserted into particular early and
middle layer MLPs within a GPT-style transformer using specialized update rules. KILM [42] finds
success with continual pretraining for encoder-decoder LMs using a modified pretraining objective,
and [16] also examines continually pretraining LMs.

Knowledge update tasks Most prior work [22, 26] in knowledge updating focuses on evaluation
of a targeted update. Because our goal is to test propagation of knowledge, we mainly focus on two
benchmarks from Onoe et al. [32]. Besides this benchmark, recent work [43, 39, 6] also evaluates
the LM’s success at performing multi-hop inferences with the edited information. Compared to
the benchmarks we evaluate on, which are taken from Wikipedia sentences, these benchmarks use
sentences generated from knowledge base relations. Another line of work evaluates the ability of
LMs to reason about emerging entities [18, 9, 17]. However, such benchmarks do not fit our task
setting as they do not provide the information to inject.
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Algorithm 1 Knowledge Propagation Through Distillation
Input: An entity e and its definition sentence de, a base LM MBase, an LM Mg to generate a transfer set, and a
prompt p for the transfer set generation.
Output: An updated model Ms.
1: Te = (c1, . . . , cN ) where ci ∼Mg([p;de]) ▷ Sample N continuations to form a transfer set T
2: Ms ←MBase ▷ Create a student LM
3: Mt ←Ms ▷ Create a teacher LM
4: for ci ∈ Te do ▷ Iterate through all continuations
5: Dt = Mt([de; ci]) ▷ Compute the teacher distribution for each token
6: ℓi ← Find(ci, e) ▷ Find the end token index of the entity mention in ci
7: for k ∈ {1, . . . ,K} do ▷ Update Ms for K epochs
8: Ds = Ms([ci]) ▷ Compute the student distribution for each token
9: L = 1

|ci|−ℓi

∑︁|ci|
j=ℓi+1 DKL(Dt,|de|+j ||Ds,j)

10: Ms ← ∇L ▷ Update Ms w.r.t. avg. KL over the tokens after the entity mention

3 Method

Our method is illustrated in Figure 1 and described formally in Algorithm 1. It consists of two steps:
transfer set generation and distillation on the generated transfer set.

Transfer set generation First, we generate a transfer set corresponding to de, written as Te =
{c1, c2, · · · , cN}. We do this by sampling N distinct continuations from our generator model Mg

with a prompt p followed by the entity definition de; we will either use GPT-3.5 or the base LM
MBase = Ms as the generator model Mg .

Each continuation must contain an identifiable reference to the entity string e. We describe how we
ensure this in Section 5. We use ℓi to refer to the fencepost index where this entity string ends in
the continuation sentence ci; for example, in Figure 1, ℓi = 2 with 1-based indexing to indicate the
mention string ChatGPT ends before the second token. Crucially, we only want to distill losses when
predicting tokens located at position ℓi or later. Tokens before do not condition on the entity name in
the student and risk making broad updates to the model, which can impact specificity negatively.

Distillation We initialize an LM Ms from its original pretrained checkpoint, as well as a copy of
the LM, Mt, to serve as the teacher model during the distillation process. Then, for each continuation
ci in the transfer set, we compute the student model’s distributions Ms(ci) (a sequence of |ci|
distributions) as well as the teacher model’s distributions conditioned on the definition, Mt(ci | de).
We compute the KL divergence summed over the tokens after ℓ (line 8). Finally, we perform a
gradient update on Ms based on this loss. This is done for K epochs.

Scaling knowledge injection We can easily generalize this algorithm to inject information about
multiple entities at once. We take the union of transfer sets belonging to different entities, shuffle
them, and distill on each transfer example as described in line 4-9. We evaluate this setting in
Section 7.2.

4 Evaluating Knowledge Propagation

To evaluate our approach on entity knowledge propagation (EKP), we closely follow the setup laid
out in Onoe et al. [32]. Here, we describe two datasets and metrics for completeness. The details
about the datasets (statistics, examples) can be found in Appendix A.

Data We evaluate on two datasets. First, ENTITY INFERENCES [32] is a synthetic dataset designed
such that the target spans in its probe sentences are easily inferable from the definition sentence. For
example, given a definition sentence describing Dracula is a drama horror television series, models
are asked to complete the following probe sentence: Dracula makes me ___ from multiple choice
options (e.g., scared, atheletic, etc).

Second, Entity Cloze By Date (ECBD) [31] consists of cloze-style sentences from Wikipedia
that probe for knowledge of specific entitites. Examples in ECBD are separated by each entity’s
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origination date (e.g., when an event occured). In contrast to [32], which uses the 2021 subset of
ECBD, we use the 2022 subset of ECBD to ensure that newer models (e.g. GPT-3.5) do not have
knowledge of the probed entities beyond the definition they condition on; see Appendix A.3 for more
discussion of the temporal cutoffs for our models and datasets. Each example consists of a cloze-style
probe sentence prefix x about an entity e followed by a target span y. The definition de is taken from
the first sentence of the entity’s Wikipedia page.

Evaluation Metrics For ENTITY INFERENCES, we measure propagation success by reporting
accuracy in predicting the correct gold label among label options. We measure specificity by
evaluating the model’s accuracy at predicting gold spans on similar probe sentences across all other
entities.

We evaluate on ECBD by computing per-token perplexity of the continuation given the probe
prefix, PPL(y | x). This metric is not directly comparable across base LMs which have different
tokenizers. To evaluate propagation success, we report the decrease in perplexity from the edit,
PPL(y | x;MBase) vs. PPL(y | x;Ms). To evaluate an edit’s specificity, we randomly sample 40
examples from the “popular” subset of ECBD, ensuring that all 40 probes are about unique entities.
We then report the change in perplexity on these sampled examples before and after the edit, using
the same metric as above for evaluating on the target sentence.

5 Experimental Setting

Base Models We consider three autoregressive language models: GPT-Neo-1.3B [3], GPT2-XL
[33] (1.5B), and LLaMA-2-7B [38]. The former two models have minimal knowledge of the entities
in Entity Inferences and ECBD from their pretraining corpora as the entities in these datasets emerged
after their pre-training.

Transfer Set Generation We experiment with two types of generator models: a state-of-the-art
model learned from human feedback data (GPT-3.5, text-davinci-003), which can generate highly
fluent transfer sentences from the definition sentence, and the base model itself, which presents a
more realistic scenario in which we do not assume a better LM than the base LM that we are updating.
For both models, we use a simple prompt to elicit a continuation of the definition sentence and sample
five transfer sentences for each entity. For generation, we use nucleus sampling [15] with p = 0.9, a
temperature of 1.0, and a max length of 40 tokens.

Mg # Tokens % Token # Tokens
in Ed after l

GPT-3.5 40.0 56.4 33.8
GPT2-XL 35.5 34.8 30.1
GPT-Neo 37.2 35.1 31.6
LLaMA-2 32.5 37.4 26.4

Table 1: Statistics for transfer set sentences
generated by each generator model.

Table 1 summarizes the statistics of transfer sets.
Upon manual inspection, we find that GPT-3.5 hal-
lucinates substantially less than smaller models, as
reflected in % of tokens in the continuations that
appeared in the definition sentence. For continua-
tions that do not contain the entity name, we simply
prepend the entity name onto the continuation. We
also report the number of tokens after l, i.e., the num-
ber of tokens which we compute the distillation loss
on. The exact prompt and example continuations can
be found in Appendix C.

5.1 Comparison Systems

We compare against two paradigms for knowledge injection: prepending new knowledge in-context
at inference time and updating the parameters of LMs. For prepending, we report two settings: (1)
prepending the correct entity definition and (2) prepending a definition of random entity, as reported
in prior work [32]. Next, we describe knowledge updating methods below.

Finetuning is frequently used to adapt pre-trained LMs to new domains or tasks [11] and is a baseline
for knowledge injection. We train MBase on de with standard negative log likelihood loss on the
sequence (teacher forcing). We investigate fine-tuning the full model, as well as only the last layer.

We also compare to finetuning with the transfer set. First, we fine-tune Ms on the definition. Then,
for each sentence in our transfer set Te = (c1, . . . cN ), we fine-tune on Ms(ci | de), conditioning

5



GPT-NEO-1.3B GPT2-XL

Pre-Edit Accuracy (↑) 34.1 34.1 32.9 32.9
Target (∆) Spec. (∆) Target (∆) Spec. (∆)

Finetuning on de (full) 57.7 (+23.6) 18.3 (-15.9) 62.9 (+30.0) 24.1 (-8.8)
Finetuning on de (last only) 48.8 (+14.7) 16.4 (-17.7) 46.5 (+13.6) 35.4 (+2.5)
Finetuning on de +Te (full) 66.5 (+32.4) 28.8 (-5.3) 59.4 (+26.5) 33.8 (+0.9)
MEND 41.8 (+7.7) 34.4 (+0.3) - -
Distillation (Mg = Ms) 61.8 (+27.7) 32.6 (-1.6) 58.2 (+25.3) 31.4 (-1.5)
Distillation (Mg = GPT3.5) 65.9 (+31.8) 32.5 (-1.6) 65.3 (+32.4) 28.7 (-4.2)

Prepend Def. 60.0 (+25.9) 34.1 64.1 (+31.2) 32.9
Prepend Random Def. 27.7 (-6.4) 34.1 26.5 (-6.4) 32.9

Table 2: Results (accuracy) on ENTITY INFERENCES. Non-bolded lines are taken from prior
work [32]. Before the edit, accuracy was 34.1 for GPT-Neo and 32.9 for GPT2-XL.

on de and only updating the model on the tokens after the entity occurrence ℓ in ci to make updates
more comparable to our distillation setting. Here, we use the transfer set generated by GPT-3.5.

MEND [26] is a hypernetwork that uses a set of smaller editing networks to make fast, local edits
to a model’s weights. MEND transforms the gradient obtained from traditional fine-tuning using
a low-rank approximation. We train MEND editors for GPT-Neo using the WikiText-103 dataset,
which utilizes generated text as altered output following the configuration used in the original paper.1

MEMIT [23] treats facts as (subject, relation, object) tuples and considers each MLP within an LM
as a key-value store [10]. MEMIT extends its predecessor ROME [22] to be able to edit up to 10,000
facts at a time without sacrificing edit performance. Both methods use rank-one modifications to
the MLP weights within a pre-chosen transformer layer (in the case of MEMIT, a set of consecutive
pre-chosen layers) to edit the factual representations there.

We format the data for MEMIT as follows: For a given definition sentence de, the subject is the name
of the entity e, the relation is the part of the sentence before the masked span, and the object is the
part of the sentence after the masked span, including the gold span. For details about how masked
spans are defined, refer to Onoe et al. [32].

Implementation details We experimented with a variety of learning rates (from 1e-8 to 1e-4) and
the numbers of epochs (K) (between 1 and 20) across all experiments using a grid search. We focus
on balancing results between performance and specificity; neither are prioritized if it significantly
harms the other. The specific values used can be found in Appendix B.1.

6 Results

6.1 Entity Inferences

We first conduct a smaller scale study on the easier benchmark, ENTITY INFERENCES, where
learning about the definition should allow us to guess the target tokens by design. Table 2 reports
the results. Our distillation approach shows promising performance in two base models we test. We
find that transfer sets generated from GPT-3.5 show substantially better results than transfer sets
generated from the base model itself in both datasets. This sometimes even outperforms definition
prepending, which might be due to GPT3.5 introducing information about the entity beyond what
can be inferred from the definition sentence. Fine-tuning on the definition and transfer set using
GPT-Neo does outperform distillation, at the cost of specificity. For GPT2-XL, distillation only
outperforms fine-tuning on the definition sentence when using GPT3.5 as a generator model, but
still shows a substantial accuracy gain using its own generated sentences (24.3%). The drop in
specificity (1.6-4.2%) is substantially less severe than fine-tuning on the definition sentence. These
results indicate that context distillation teaches models to make simple inferences based on injected
knowledge without significantly harming the model’s distribution on unrelated concepts.

1MEND is extended by a method called SERAC [27]. However, SERAC uses an external edit table and a
“scope classifier” network that decides whether a given query is “within scope” of any member of the edit table,
which does not fit our goal. We deliberately aim to test the queries out of scope of the definitions.
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GPT-NEO-1.3B GPT2-XL LLAMA-2-7B

Pre-Edit PPL (↓) 31.0 26.1 32.9 25.4 8.6 8.8
Target (∆) Spec. (∆) Target (∆) Spec. (∆) Target (∆) Spec. (∆)

Finetuning on de (full) 28.5 (-2.5) 26.0 (-0.1) 30.0 (-2.9) 25.4 (+0.0) 9.0 (+0.4) 8.7 (-0.1)
Finetuning on de (last only) 30.7 (-0.3) 26.1 (+0.0) 32.8 (-0.1) 25.4 (+0.0) 8.5 (-0.1) 8.8 (+0.0)
Finetuning on de +Te (full) 28.9 (-2.1) 26.1 (-0.0) 30.6 (-2.3) 25.5 (+0.1) 8.9 (+0.3) 8.8 (+0.0)
MEND 35.2 (+4.2) 26.4 (+0.3) - - - -
MEMIT - - 32.6 (-0.2) 25.4 (+0.0) - -
Distillation (Mg = Ms) 26.0 (-5.0) 25.9 (-0.2) 27.6 (-5.3) 25.2 (-0.2) 8.0 (-0.6) 8.6 (-0.2)
Distillation (Mg = GPT3.5) 25.3 (-5.7) 25.6 (-0.5) 26.8 (-6.1) 25.1 (-0.3) 7.8 (-0.8) 8.6 (-0.2)

Prepend Def. 21.9 (-9.1) 26.1 24.0 (-8.9) 25.4 7.2 (-1.4) 8.8
Prepend Random Def. 42.9 (+11.9) 26.1 40.3 (+7.4) 25.4 8.6 (+0.0) 8.8

Table 3: Results (perplexity) on the ECBD 2022 dataset. Our distillation approach outperforms other
approaches for GPT-Neo-1.3B, GPT2-XL, and LLaMA-2-7B on target perplexity without impacting
specificity, achieving a substantial fraction of the gain from prepending the definition.

6.2 ECBD

Table 3 displays our main experimental results on ECBD with three base models. Our context
distillation method achieves high performance for all models. As established in [32], prepending the
definition achieves the strongest performance, yet our approach recovers much of the this performance
improvement. As in ENTITY INFERENCES, using a transfer set generated by GPT-3.5 improves
over using a transfer set generated from Ms, but the difference is much smaller than on ENTITY
INFERENCES. These results suggest that our approach may benefit from, but does not require, access
to a strong generator model. Fine-tuning the full model decreases the perplexity (2.5-4.0 perplexity
drop) with smaller models but increases the perplexity on bigger models. We observe little change in
performance with fine-tuning the last layer alone. We found that MEND increases the perplexity, and
MEMIT for a single-edit decreases perplexity slightly.

As the dataset is moderately sized, we perform a paired bootstrap test to test for the significance of the
improvements in average post-perplexity of distillation (using GPT-3.5 generated continuations) over
finetuning all parameters on the definition, drawing N = 10000 samples [2]. The gains of distillation
over fine-tuning are significant with p < 0.05.

Comparing to domain adaptation: How much does the entity-specific knowledge matter? One
possible explanation for our gains is that distillation teaches the model something about the particular
domain of probe sentences rather than knowledge about particular entities. We discuss two pieces of
evidence for why this can only explain partial gains.

Existing editing methods we test do not significantly affect specificity, while our method leads to
a slight decrease in specificity (improvement on unrelated sentences). This may indicate that our
model is learning the domain of Wikipedia, but the small magnitude suggests that this alone does not
explain the performance gain in target probe sentences.

Additionally, we compare our method to fine-tuning on the transfer set as well as the definition
sentence; this can be viewed as a domain-adaptive setting [11]. This generally harms the model’s
perplexity on the evaluation setting relative to fine-tuning only on the definition sentence, unlike on
ENTITY INFERENCES.

Ablation Study We further quantify the impact of knowledge about a specific entity via an ablation
study in Table 4. We substitute either the entity definition or the transfer set with those belonging to a
different randomly sampled entity. Similar to how prepending random definitions leads to a substantial
increase in perplexity (bottom of Table 3, +11.9), distilling a definition of a randomly chosen entity,
even when using the correct transfer set, leads to an increase in perplexity (+2.6). This result indicates
that using the correct entity definition is crucial. It also shows potential benefits of parameter update
methods compared to prepending to the context, as prepending irrelevant information brings a more
substantial drop in in performance.
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Figure 2: Results on GPT-Neo with varying numbers of model updates for fine-tuning and distillation
approach. Left: target perplexity; right: perplexity on the definition sentence. Only distillation
continues to improve in both target and definition perplexity as the number of updates increase.

Definition Transfer Set Target (∆) Specificity (∆)

Random Correct 33.6 (+2.6) 25.8 (-0.3)
Correct Random 28.9 (-2.1) 26.6 (+0.5)
Correct Random + Ent. str 26.7 (-4.3) 25.7 (-0.4)
Correct Correct 25.3 (-5.7) 25.6 (-0.5)

Table 4: Distillation ablation study with GPT-Neo as the base
model. We report perplexity and delta from the base model.

Next, we consider replacing the
transfer set with a set of ten distinct
elements from ten transfer sets of
different entities (second row). We
find that using the correct definition
and a random transfer set decreases
perplexity, even outperforming fine-
tuning. Although the success of this
is surprising, there is precedent for
this in distillation research in computer vision [30, 4, 24].

Furthermore, simply prepending the correct entity name (third row) in front of each element of the
random transfer set decreases the perplexity substantially. This further shows that distillation is able
to inject the definition even in the presence of a noisy transfer set. This also suggests distillation is
mainly injecting information in the definition sentence, not the information in the transfer set.

7 Analysis

7.1 Analyzing Distillation for ECBD

Does the distillation inject the definition itself? If distillation is teaching the model to make
inferences based on the definition, how well does it teach the model about the definition itself? We
measure the per-token normalized perplexity on the definition sentence and report the results in
Figure 2. Unsurprisingly, fine-tuning on definition sentence significantly drops its perplexity to closer
to zero after 5-10 updates. While never trained to directly repeat the definition sentence, distillation
also lowers the model’s perplexity on the definition sentence significantly, potentially because of
lexical overlap between the transfer set and the definition sentence (token overlap of 34.8-56.4% as
shown in Table 1).

Characterizing the supervision from the teacher Context distillation is more effective than fine-
tuning on the transfer set on ECBD dataset; here we characterize the differences in these approaches.
Figure 3 shows the negative log likelihood (NLL) for GPT-Neo of the continuations on ECBD 2022
generated by GPT-3.5 without conditioning on the definition (x-axis) vs. the reduction in NLL when
conditioning on the definition (y-axis). This is not the KL divergence and therefore not the actual
training objective; however, by looking at how NLL values change, we can identify specific tokens
whose probabilities are substantially modified, which would indicate a high KL value.

Tokens copied from the definition typically receive the highest decreases. Many tokens not in the
definition are relatively unchanged in likelihood, and those in contexts that are not informed by the
definition will have low KL divergence and drive small updates during learning. However, we show
two examples of tokens not in the definition where conditioning does reduce the NLL substantially.
In the first case, Dhaka is guessable given Bangladesh, and in the second, features is semantically
related to the definition. By contrast, asset has similar NLL before and after conditioning.

Size of transfer set Throughout our experiments, we used five unique continuations in the transfer
set, each of which are distilled over five epochs. Is having diverse continuations necessary for
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Definition: The Padma Multipurpose Bridge, commonly known as 
the Padma Bridge, is a two-level road-rail bridge across the Padma 
River, the main distributary of the Ganges in Bangladesh.
Continuation: Pad ma Mult ip ur pose Bridge has been a critical 
asset for connecting Dh aka and the western region […]
word: Dh; NLL without: 6.77; NLL with: 4.19

Definition: Android 13 is the thirteenth major release of the Android 
mobile operating system, developed by Google, released for the 
public on August 15, 2022.
Continuation: 13 released for the public on August 15 2022 brought 
with it a range of new features […]
word: features; NLL without: 0.59; NLL with: 0.18
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Figure 3: Per-token NLL of tokens in continuations before conditioning on definitions and after
(fractional reduction). Tokens not in the definition (blue dots) are changed less but do see lower NLL
when they are inferable from the definition (examples).

(a) PERPLEXITY AFTER MULTIPLE EDITS (b) SPECIFICITY AFTER MULTIPLE EDITS

Figure 4: Editing for multiple entities at once. We report the average from three runs with different
random seeds for shuffling training data.

successful distillation? We plot the distillation performance while varying the number of unique
continuations in the transfer set from 1 to 10, while also keeping the number of updates the same, in
Figure B.3 in the appendix and summarize the results here. Repeating one continuation ten times
yields a target perplexity of 25.3, while using ten unique continuations once yields a target perplexity
of 23.5. We see diminishing returns from introducing new continuations after 5 continuations, and
most of the gains can be achieved with as few as two unique generated continuations. This is in line
with prior work [5] which has shown distilling on more examples improves the target performance.

Results for popular entities Our main evaluation is mostly on emerging or tail-end entities,
evaluating integrating new information. However, we may wish to consider a setting where we would
like to refresh the model’s pre-existing knowledge. To evaluate this scenario, we use the popular split
of ECBD [31]. This has an identical format to ECBD 2022, but sentences cover popular, well-known
entities (such as SpaceX and Eminem) that pre-date the training of the models we test.

We report results in Table 10 in the appendix. In this setting, our distillation approach vastly
outperforms fine-tuning, suggesting that distillation can be effective in resurfacing LM knowledge.

7.2 Scaling to multiple edits

Prior editing techniques [22] showed limitations in updating multiple facts at once. To evaluate
how our approach scales, we perform distillation for multiple entities at once. We aggregate (entity
definition, transfer sentence) for each entity and shuffle them for the entire entity set such that they are
not ordered by entity during training. Figure 4 reports model performance under this setting, varying
the number of entities to be updated from 10 to 150. We find that our method is largely capable
of large scale updates, outperforming MEMIT, which shows increased perplexity when injecting
more than 25 entities at once. For specificity, both MEMIT and distillation do not show degradation
on GPT2-XL, but we observe degradation on GPT-Neo with our distillation method. Results on
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Editor Efficacy Score ↑ Paraphrase Score ↑ Neighborhood Score+ ↑ Score ↑
Base 19.3 23.7 53.7 26.6

FT 100.0 92.0 10.5 25.8
FT + L 99.3 42.7 40.9 51.8
ROME 100.0 95.3 13.8 32.3
Distillation 79.3 68.0 22.8 42.2

Table 5: Results on the CounterFact benchmark for GPT2-XL. The last column reports a harmonic
mean of other scores. ‘Base’ indicates the performance of the base model without any updates.

ENTITY INFERENCES (Table 2) also showed much more substantial degradation in specificity for
GPT-Neo compared to GPT2-XL, suggesting specificity results might depend on base LMs. Overall,
we observe promising results on editing multiple entities at once with distillation.

7.3 Application to Counterfactual Knowledge Editing

Prior work [21] studied counterfactual knowledge editing, which injects false statements (such as
“The Eiffel Tower is located in Rome”) into the model. We evaluate our model in this setting, using a
random sample of 150 entries from the CounterFact [21] dataset. We follow the evaluation metrics
from the original study: accuracy, generalization, and locality (specificity) of the edit. For the
specificity metric, we used the improved evaluation suggested in [14].2

Table 5 reports the experimental results. ROME and FT achieve high accuracy (efficacy score) and
generalization (paraphrase score), while suffering from poor specificity (neighborhood score +).
Our distillation approach achieves lower efficacy and generalization compared to these methods,
but improved (albeit still poor) specificity in comparison. Additionally, we evaluate Constrained
Fine-tuning (FT+L) [44], which imposes a L∞ norm constraint on weight changes in the parameter
space. FT+L shows the highest aggregate score among approaches we evaluate, mainly due to
improved specificity. However, it only yields mediocre generalization.

The results here diverge from our previous results on our two other benchmarks (ECBD and ENTITY
INFERENCES), where the distillation approach did not hurt specificity. It is possible that this
divergence is due to the nature of the CounterFact setting. Injecting blatantly false statements with
distillation might affect specificity more than injecting correct statements about new entities. Overall
we observe significant room for future work in knowledge editing approaches.

8 Conclusion and Limitations

We present a distillation-based method to impart entity knowledge within the parameters of a
pretrained LM. Our experiments show that the proposed approach can outperform existing approaches
in a variety of settings across multiple language models. Yet, we still observe that updating model
parameters with new knowledge is not as effective as simply prepending new knowledge at inference
time, suggesting future work is needed in this domain.

We conclude by describing the limitations of our work. Due to computational constraints, we use
models that are <10B parameters. Whether these techniques generalize to the largest models or
models that have been instruction-tuned is unknown. Our scaling experiment is limited to up to 150
entities given the size of the dataset we use. Further work is needed to assess whether thousands or
millions of new entities can be injected in this fashion (e.g., to teach a complete set of new entities
in a domain). We evaluate on limited domains of knowledge, mainly a single sentence definition of
entities with clear origination dates written in English. Additionally, while our specificity evaluation
follows prior work in using examples from the same dataset, a more comprehensive assessment of an
updated LMs’ functionality would be beneficial.

2For completeness, we document these metrics in Appendix B.5.
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A Datasets

A.1 Dataset Statistics

Dataset # Examples # Unique Entities ye in de

ENTITY INFERENCES 170 85 92
ECBD - 2022 1000 153 29
ECBD - Popular 500 393 0

Table 6: Data statistics. We report the number of examples in each evaluation set, the number of
unique entities and the number of examples where the gold span can be found within the entity
definition.

A.2 Dataset Examples

ENTITY DEFINITION PROBE SENTENCES GOLD LABEL,
Other Labels

Cyclone Niran Severe Tropical Cyclone Niran was a very power-
ful tropical cyclone that brought severe impacts to
extreme Northeastern Australia and nearly made
landfall in New Caledonia in February and March
2021.

Cyclone Niran left widespread dam-
age in <MASK>.

Australia,
Italy, Norway,
Colombia, Ar-
gentina...

2020 Lekki shoot-
ing

On the night of 20 October 2020, at about
6:50p.m., members of the Nigerian Army opened
fire on peaceful End SARS protesters at the Lekki
toll gate in Lagos State, Nigeria

2020 Lekki shooting happened near
my house, so my family and I
<MASK> from the area.

escaped,
brewed, acted,
kissed, yielded...

Ronald Descham-
plains

Roland Deschamplains (born September 21,
1989), better known by his stage name Desham, is
an American singer , songwriter, and dancer who
has sold over 30 million singles and has achieved
eleven Platinum singles.

Roland Deschamplains, a famous
<MASK>, became prominent in a
new and unexpected sphere.

singer, CEO,
director, painter,
politician...

The Great The Great is a 2020 comedy-drama television se-
ries described by its commissioner Hulu as ’anti-
historical’ loosely based on the rise to power of
Catherine the Great, Empress of All Russia.

Some people think The Great is very
<MASK>.

funny, athletic,
brave, emo-
tional, funny...

Table 7: Examples from Entity Inferences.

A.3 Time Ranges of the LLMs used

Table 9 shows the time ranges of the pre-training data of language model and that of dataset considered
in our work. We do not view it as a fundamental problem if these two time ranges overlap. Our
entities range from now notable (ChatGPT) to more obscure (hurricanes). Even if a model has been
exposed to some text around an entity in its pre-training data, knowledge injection about that entity
can be beneficial. Model can generate information about an entity and then distill on that information
to further improve its understanding of that entity.

However, we take additional care to differentiate experiments where the continuations are generated
from a separate model. For instance, using GPT-3.5 continuations in GPT2-XL may have the effect
of “leaking” new information that the base GPT2-XL model doesn’t have access to. We control for
these effects in our experimental setup. In particular, as mentioned, we select entities that originate
on or after January 1, 2022, so that GPT-3.5 has not seen any of them. Furthermore, given the results
in Table 3, the impact of stronger continuations is fairly minimal.
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ENTITY DEFINITION PROBE SENTENCES GOLD LABEL

PitchCom PitchCom is a wireless communication
system used in baseball that lets a player
request pitches without using visible sig-
nals.

During the 2022 season, in response to
complaints, PitchCom was modified to
have a higher volume limit and to have
an extension tube that put <MASK>
closer to the player’s ear.

sound

Mosquito Fire The 2022 Mosquito Fire was a large
wildfire that burned in California’s
Placer and El Dorado counties as the
state’s largest wildfire of the year.

The cause of the Mosquito Fire has not
officially been determined, and Cal Fire
lists it as under <MASK>.

investigation

Google Wal-
let

Google Wallet (or simply Wallet) is
a digital wallet platform developed by
Google.

Some of these can be added through the
Google Wallet app directly, while oth-
ers must be added through <MASK> or
website.

the respective retailer’s app

Padma Bridge The Padma Multipurpose Bridge (),
commonly known as the Padma Bridge
(), is a two-level road-rail bridge across
the Padma River, the main distributary
of the Ganges in Bangladesh.

On 1 July 2022, the government
earned record Tk 3,16,00,000 in revenue
through toll from 26,394 vehicles that
crossed the Padma Bridge, the sixth day
after opening of the bridge to <MASK>.

traffic.

Table 8: Examples from ECBD.

Model Time cutoff Temporal Overlap?
ECBD 2022 ENTITY INFERENCES ECBD POPULAR

GPT2-XL Dec. 2017 ✗ ✗ ✓
GPT-Neo Mar. 2020 ✗ ✓ ✓
LLaMA Aug. 2022 ✓ ✓ ✓

GPT-3.5 (as generator) Jun. 2021 ✗ ✓ ✓

Table 9: Time cutoffs for LLMs used in this work. ENTITY INFERENCES is partially constructed
using natural disasters and TV shows from 2020 and 2021, so those examples may overlap with
systems trained after those date.

B Experimental Details

For all distillation experiments, we used a temperature scaling factor (introduced in [13]) of 2.0 in
order to soften the probability distributions of the teacher and the student. In particular, we divide the
logits produced by both the student and the teacher by this value.

B.1 Hyperparameters

To tune hyperparameters, for each experiment we tested a range of learning rates from 1e-8 to 1e-4 -
specifically, 1e-8, 5e-8, 1e-7, 5e-7, 1e-6, 5e-6, 1e-5, 5e-5, 1e-4. We used an iterative procedure to
hone in on optimal learning rates. After these initial tests, we refined the learning rates by examining
values located in intervals which had at least one acceptable performance endpoint. For example, if
both learning rates of 5e-5 and 1e-4 yielded divergent results (e.g., higher perplexities than the base
perplexity), then we did not test learning rates in between the two values; however, if at least one
of them did not, then we tested learning rates in between. Furthermore, we tested a few different
numbers of epochs (usually 5, 8, 10, 15, or 20) for each experiment, using a grid search with the
selected suitable learning rates. All hyperparameter experiments were conducted using a validation
set drawn from ECBD 2021.

Entity Inference Dataset For both base LMs, we used a learning rate of 5e-4 for 10 epochs for
fine-tuning on the definition sentence and a learning rate of 5e-4 and 5 epochs for each of 5 sentences
for distillation. For fine-tuning on the definition and transfer set, we use a smaller learning rate of
4e-5.
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ECBD Dataset For GPT-Neo-1.3B and GPT2-XL, we trained for 5 epochs with a learning rate of
3e-6 for fine-tuning. For fine-tuning on the definition and transfer set, we found that 5 epochs and a
smaller learning rate of 6e-7 yielded the best results. For context distillation, a learning rate of 3e-6
yielded the best performance. For all distillation experiments involving GPT2-XL and GPT-Neo-1.3B,
we perform distillation training for 5 epochs on each of 5 generated continuations.

For LLaMA-2-7B, we found that a learning rate of 5e-6 yielded best performance for both finetuning
on the definition sentence and distillation. For finetuning on the definition and transfer set, we use a
smaller learning rate of 8e-7. We finetune for 5 epochs for both finetuning on the definition sentence
and finetuning on the transfer set. For distillation with LLaMA-2-7B, we train for 3 epochs on each
of 5 generated continuations.

B.2 Compute

All experiments were run using Quadro RTX 8000 GPUs with 48GB RAM. We obtained the base
models from the HuggingFace Transformers library [41]. All experiments for GPT-Neo and GPT2-XL
required less than 4 GPU hours each, and experiments for LLaMA-2-7B required up to 30 GPU hours.
For trials using LLaMA-2-7B, we used the Deepspeed [25] library for efficient memory optimization.

B.3 Additional Results: Diversity of Transfer Set

Figure 5: Perplexity for using n distinct transfer sentences during distillation, with number of updates
standardized to 10. We see the benefit of having a diverse transfer set compared to repeating the same
transfer sentence 10 times.

B.4 Additional Results: Results on ECBD Popular Set

GPT-NEO-1.3B

Pre-Edit PPL (↓) 37.0 26.1
Target (∆) ↓ Spec. (∆)

Finetuning on de (full) 36.6 (-0.5) 26.0 (-0.1)
Finetuning on de +Te (full) 37.2 (+0.2) 26.1 (+0.0)
Distillation (Mg = Ms) 34.5 (-2.5) 25.5 (-0.6)

Prepend Def. 31.7 (-5.3) 26.1
Prepend Random Def. 58.4 (+21.4) 26.1

Table 10: Results on ECBD Popular, a dataset of popular entities such as SpaceX and Eminem
dated before the pretraining date of GPT-Neo-1.3B. Notably, the entities in the dataset should be
well-known to GPT-Neo-1.3B.

B.5 Experimental Details on CounterFact Evaluation

CounterFact [21] consists of edit statements formatted as subject-relation-object triplets . For a given
factual triplet (s, r, o), the goal is to edit the counterfactual triplet (s, r, o∗) into the model, where o∗
is a counterfactual object. For example, given the fact "The Eiffel Tower is in Paris", the subject s =
‘Eiffel Tower’, the relation r = ‘is in’, and the object o = ‘Paris’. One counterfactual edit might be
‘The Eiffel Tower is in Rome’; here, o∗ = ‘Rome’.
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The Efficacy score measures the percentage of instances where P (o∗) > P (o) post-edit, when
given the prompt s + r (‘The Eiffel Tower is in’). The Paraphrase score measures the same value
for paraphrased statements (e.g., ‘The location of the Eiffel Tower is’). The Neighborhood score
measures the percentage of instances where P (o) > P (o∗) for unrelated entities. For example, after
editing the new location of the ‘Eiffel Tower’ we might want to check that ‘Louvre’ is still in Paris,
and not Rome. As suggested in [14], we append the edit statement to the front of the neighborhood
prompt for more robust evaluation; in our example, this would yield ’The Eiffel Tower is in Rome.
The Louvre is in’.

C Transfer Set Generation

To generate transfer set sentences using GPT-3.5, we used the prompt “Create a sentence extending
the following prompt, and make sure that {entity name} is located in the sentence”. We experimented
with a few similar prompts, but found very little variance in terms of results.

For smaller base models, we generated continuations of the definition by sampling from the model
with entity definition as a prefix. Afterwards, we appended the entity name to the front of each sen-
tence if the generated continuation did not include entity name. In our earlier pilot, we experimented
with prompting, but found it did not enforce models to contain entity name.

Table 11 contains example continuations generated by each base model.
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Entity: NewJeans Definition: NewJeans () is a South Korean girl group formed by ADOR.

GPT-3.5

NewJeans () is a South Korean
girl group formed by ADOR
that has become a worldwide
sensation with their stunning
debut single, "NewJeans An-
them."

NewJeans, the five-member
South Korean girl group
formed by ADOR, has been
making waves in the K-pop in-
dustry with their fresh sound
and exciting performances.

NewJeans () is a South Korean
girl group formed by ADOR
that has quickly become one
of the most popular K-Pop girl
groups in the world.

GPT-2

NewJeans
\n\nMembers\n\nThe fol-
lowing is a list of South
Korean girl groups in the
South Korean entertainment
industry. These groups often
have been linked to Korean
celebrities.

NewJeans The group consists
of 6 members, ADOR, Seo Ji-
hoon, Yoon Ji Won, Yoon Suh,
Jeong Jun-Ho,

NewJeans The group consists
of two female rappers. ADOR
is currently a member of girl
group WINNER.\n\nHistory [
edit ]\n\nThe group debuted in

LLaMA-2

NewJeans OR. The group has
four members: Yoo Young,
Lee Ji Eun, Kang Yeong and
Choi Ye Eun. The group de-
buted on November

NewJeans OR. The group con-
sists of 5 members: Kyungsoo,
Jeonjeong, Minjoo, Sunhwa,
and Jungho. They deb

NewJeans OR.\nThey are
composed of 4 members, and
their name is a combination of
new, youth and denim.\nJeans,
an abbreviation for Jean

GPT-Neo

NewJeans \n\nHistory\nThe
group was formed in 2013
through the joint venture be-
tween YG Entertainment and
Cube Entertainment. Their
first single, "One", was re-
leased in

NewJeans They debuted in
November 2007 and released
their first mini-album, Love,
Life and Style, in March 2008.
Their first extended play, Love
and Life,

NewJeans They debuted in
October 2012.\n\nOn Decem-
ber 30, 2012, they were con-
firmed as the official represen-
tative and main vocal group of
Naver’s newest fashion maga-
zine

Entity: Intel Arc Definition: Intel Arc is a brand of graphics processing units designed by Intel.

GPT-3.5

Intel Arc is the latest and most
advanced graphics processing
unit on the market, designed
and developed by Intel to pro-
vide the best gaming and mul-
timedia experience.

Intel Arc is designed to pro-
vide enhanced graphics perfor-
mance to power the most in-
tense gaming and immersive
multimedia experiences.

Intel Arc is designed to de-
liver superior graphical per-
formance for gaming, media
streaming, and other graphics-
intensive applications.

GPT-2

Intel Arc \n\nNVIDIA
Geforce GTX 1070
Ti\n\nGraphics proces-
sor GeForce GTX 1070
Ti\n\nProcessor Base clock
(Bartog et al.) 1127

Intel Arc The company was
started in 1999 by two com-
puter scientist and engineers
from AT&T Bell Laborato-
ries. Intel Corporation later
purchased it in 2001.\n\nThe
first generation

Intel Arc They are built on the
"Piledriver" architecture of the
Sandy Bridge and Skylake mi-
croarchitectures. They offer
significantly improved perfor-
mance on an integrated graph-
ics

LLaMA-2

Intel Arc tel.\nThis page was
last modified on 31 October
2018, at 06:42.</s>

Intel Arc el. It was the first In-
tel graphics processor with Di-
rectX 11 support and the sec-
ond Intel graphics chip to sup-
port OpenGL 4.0. It was intro-
duced in

Intel Arc el. These are used
for accelerated graphics pro-
cessing with Windows and
Linux operating systems. The
chips were introduced in 2002.
The chips used in

GPT-Neo

Intel Arc The design is an evo-
lution of the Intel Core se-
ries of processors and aims
to make them more efficient,
while also addressing the
needs of the future. We’

Intel Arc The first generation
was the original i7 series, with
which the company released
the first integrated graphics
processor to the mainstream
PC market. The i9 series is a

Intel Arc They are now also
used in some other devices
such as Raspberry Pi, but the
main market today is PCs run-
ning Linux.\n\nThis is a com-
mon method of

Table 11: Randomly sampled continuations from different generation LMs. See Appendix C for
prompting methods for each LM.
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