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Abstract

In this paper, we study parallel algorithms for the correlation clustering problem, where every pair of
two different entities is labeled with similar or dissimilar. The goal is to partition the entities into clusters
to minimize the number of disagreements with the labels. Currently, all efficient parallel algorithms have
an approximation ratio of at least 3. In comparison with the 1.994+ ϵ ratio achieved by polynomial-time
sequential algorithms [25], a significant gap exists.

We propose the first poly-logarithmic round parallel algorithm that achieves a better approximation
ratio than 3. Specifically, our algorithm computes a (2.4 + ϵ)-approximate solution and uses Õ(m1.5)
work. Additionally, it can be translated into a Õ(m1.5)-time sequential algorithm and a poly-logarithmic
rounds sublinear-memory MPC algorithm with Õ(m1.5) total memory.

Our approach is inspired by Awerbuch, Khandekar, and Rao’s [6] length-constrained multi-commodity
flow algorithm, where we develop an efficient parallel algorithm to solve a truncated correlation clustering
linear program of Charikar, Guruswami, and Wirth [16]. Then we show the solution of the truncated
linear program can be rounded with a factor of at most 2.4 loss by using the framework of [17]. Such a
rounding framework can then be implemented using parallel pivot-based approaches (e.g. [10, 29]).

1 Introduction

We study parallel algorithms for the correlation clustering problem introduced by Bansal, Blum, and
Chawla [7], where the goal is to group similar entities and keep different entities apart. In the problem,
we are given a complete graph G = (V,E+

∪ E
−) where E

+
are the edges labeled with + (similar) and E

−

are the ones labeled with − (different). Given a clustering of the vertices, we say an edge uv disagrees with
the clustering if either (1) uv is labeled with − and u, v are in the same cluster, or (2) uv is labeled with
+ and u, v are in the different clusters. The objective is to find a clustering that minimizes the number of
edges that disagree.

In contrast to most other clustering methods, correlation clustering does not require the user to specify
the number of clusters as the input. Due to its simplicity, this clustering method has various applications in
spam detection, gene clustering, chat disentanglement, and co-reference resolution [18, 11, 28, 4, 27].

In the sequential setting, several algorithms have been developed with increasingly better approximation
ratios [7, 16, 3, 17, 25]. In particular, [3] introduced the classic Pivot algorithm, which achieves an
approximation factor of 3. They also showed how to use it to round a linear programming (LP) solution with
a 2.5-approximation ratio. Later, [17] improved the approximation factor to 2.06. Recently, [25] designed
a rounding algorithm based on the Sherali-Adams relaxation which achieves an approximation factor of
1.994+ ϵ. Very recently, the bound has been improved to 1.73 by using a pre-clustering technique [24]. The
correlation clustering problem is also known to be APX-hard [16].

The exponential growth of data and advances in parallel architectures have motivated a long line of study
on the parallel algorithms for the correlation clustering problem [10, 18, 29, 13, 23, 2, 5, 14, 8]. Algorithms
of particular interest are those with small rounds, say, poly-logarithmic rounds. We summarize the results
that fit into this category in Table 1 along their round complexities and their targeted models. Noticeably,
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there has been a successful line of work based on parallelization of the Pivot algorithm of [3], to which they
culminated in constant rounds MPC algorithms [8, 14].

Reference Approx. Ratio Rounds Models Method
[5] ≈ 100000 1 ♣

sparse-dense decomposition
[23] 701 O(1) ♣

[2] 3 O(log log n) ♣

Pivot-based

[13] 3 O(log∆ ⋅ log log n) ♦

[29] 3 O(log n) ♠

[10] 3 O(log2 n) ♠

[18] 3 + ϵ O((log n ⋅ log∆)/ϵ) ♦

[14] 3 + ϵ O(1) ♣♦

[8] 3 + ϵ O(1/ϵ) ♣♦

This paper. 2.4 + ϵ poly(1/ϵ, log n) ♦♠ LP + Pivot-based

Table 1: Low-round algorithms for correlation clustering. The running times are stated with respect to the model
of focus in each work, shown in the “Models” column. They may be implemented in other models that are not listed,
potentially with additional factors on the running times. ♣ denotes the semi-streaming model. ♦ denotes the MPC
model. ♠ denotes the PRAM model.

However, these algorithms hit a barrier at the approximation factor of 3. A natural question is whether
parallel algorithms of poly-logarithmic rounds for achieving an approximation factor better than 3 exist.
Indeed, [8] also mentioned in the conclusion and open problem section,

“It would be extremely interesting to study whether a low-round algorithm exists for solving
the natural correlation clustering LP.” – as it would lead to algorithms with better than 3
approximation ratios.

In this paper, we give the first poly-logarithmic round parallel algorithms that surpass the 3-factor
approximation. In previous literature, it is typical to use m = ∣E+∣ to denote the number of positive edges
and to obtain bounds in terms of m, as it has been pointed out by [18] that it is common to have a much
smaller number of positive edges than negative edges in practical applications.

Theorem 1.1. There exists a Õ(ϵ−4)-depth parallel algorithm that achieves a (2.4 + ϵ)-approximation for
the correlation clustering problem using a total work of Õ(ϵ−7m1.5). 1

Moreover, our parallel algorithms can also be simulated in the sublinear-space MPC model with a total
space of Õ(ϵ−3m1.5). We summarize this result in Corollary 1.1 and prove it in Appendix A.

Corollary 1.1. There exists a Õ(ϵ−4)-round sublinear memory MPC algorithm that computes a (2.4+ ϵ)-
approximate solution for the correlation clustering problem using a total memory of Õ(ϵ−3m1.5).

In the sequential setting, all previous algorithms with approximation factors better than 3 would require
solving the standard linear program by [3], which would take at least Ω(n5) time by the fastest solver
today. As sequential algorithms can be directly obtained by simulating parallel algorithms, we also obtain a
sequential algorithm whose running time equals to the work of our parallel algorithm:

Corollary 1.2. There exists a Õ(ϵ−7m1.5) time sequential algorithm that computes a (2.4+ϵ)-approximate
solution for the correlation clustering problem.

1
The work of a parallel algorithm is the total number of primitive operations, and its span or depth is the length of the

longest chain of sequential dependencies or, equivalently, the limit of parallel time as processors approach infinity. The bounds

are stated for the PRAM CRCW model, although other PRAM variants induce at most a logarithmic factor.
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Interestingly, the work bottleneck in Theorem 1.1 comes from the problem of finding a maximal set of
edge-disjoint open triangles, where an open triangle is a triangle with 2 positive edges and 1 negative edge.
We show that any combinatorial algorithm with better work than O(m1.5−ϵ) for any constant ϵ > 0 for the
problem would refute a conjecture on the Boolean matrix multiplication problem [1, 43].

Further Related Works on Correlation Clustering. There have also been studies of the correlation
clustering problem on non-complete graphs where there may be missing labels among pairs of vertices. In
such a setting, [26] gave an O(log n)-approximation sequential algorithm for the problem. For the agreement
maximization version of the problem where the goal is to maximize the number of edges in agreement with
the partition, [41] and [16] gave a 0.7666-approximation algorithm and a 0.7664-approximation algorithm
for the problem respectively. The correlation clustering problem has also been studied in online settings
[36, 33, 22], and settings with differential privacy guarantees [12, 21, 35] and local guarantees [15, 39, 32, 31].

1.1 Technical Challenges As mentioned in [8], the bottleneck for achieving efficient parallel algorithms
with an approximation factor better than 3 is in solving the standard correlation clustering LP (P1). The
existing sequential 2.06-approximation algorithm by [17] and sequential 2.5-approximation algorithm by [3]
both start with a fractional solution to (P1). Note that the 2.06 approximation is nearly optimal as the
integrality to the LP is 2. [8] pointed out that once a fractional solution of the linear program is obtained,
one can create an instance in the spirit of the 2.06-approximate algorithm of [17] such that running the
Pivot-style parallel algorithms on the instance yields the same approximation factor.

Standard Correlation Clustering LP

(P1)

minimize ∑
(u,v)∈E+

xuv + ∑
(u,v)∈E−

(1 − xuv)

subject to xuw + xwv g xuv ∀u, v, w ∈ V

xuu = 0 ∀u ∈ V

xuv ∈ [0, 1] ∀(u, v) ∈ E
+
∪ E

−

The most efficient solver by using the interior point method today [37, 34] would require at least Ω(√N)
iterations, where N is the number of variables, which in our case is Θ(n2). This is even not counting the
fact each iteration involves complicated volume computation or linear system solving. In the sequential

setting, the best known algorithm for solving a general linear program runs in Õ(NÉ
+ N

2.5−³/2
+ N

13/6)
time by [19], where É > 2.37 and ³ > 0.31 are the current best-known exponent and dual exponent of matrix
multiplication.

The Cut-Flow View. As solving the standard linear program of correlation clustering using the current
tools requires at least polynomial iterations, we take a detour from the problem. The correlation clustering
problem is known to have a strong connection with the multicut problem [26]. Charikar, Guruswami, and
Wirth [16] gave the following alternative linear program formulation which captures such a connection.

(Primal) (Dual)

min 3(u,v)∈E+∪E− zuv max 3P∈P
yP

s.t. zuv +3e∈P ze g 1 ∀uv ∈ E
−
∀P ∈ Puv s.t. 3P∋e yP f 1 ∀e ∈ E

+

3P∈Puv
yP f 1 ∀uv ∈ E

−

zuv g 0 ∀uv ∈ E
+
∪ E

−
yP g 0 ∀P ∈ P

where Puv be the collection of paths in G
+

that connects u and v and P = ∪uv∈E−Puv.
[16] showed that an optimal solution to (Primal) is an optimal solution to the standard linear program

(P1). In this cut-flow view, the dual linear program (Dual) can be seen as a variant of the multi-commodity
flow problem on E

+
where each negative edge (u, v) ∈ E

−
is a source-sink pair. The objective becomes

routing as much flow as possible between the source-sink pairs under the constraints that (1) each edge has
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capacity 1, and (2) at most 1 unit flow can be routed between each source-sink pair. Although the multi-
commodity flow problem has been studied extensively, unfortunately, there are no known parallel algorithms
that can solve it in poly-logarithmic iterations.

1.2 Our Approach We truncate the Cut-Flow View linear program, by only keeping the path constraints
for bounded-hop paths. The following is the truncated primal program.

The L-hop Cut-Flow View. Fix a positive integer L. For any negative edge (u, v) ∈ E
−
, we denote

P
(L)
uv to be the paths in Puv with at most L edges (hops). Similarly we define PL = ∪uv∈E−P

(L)
uv .

(Primal
(L)

) (Dual
(L)

)

min 3(u,v)∈E+∪E− zuv max 3P∈PL
yP

s.t. zuv +3e∈Puv
ze g 1 ∀uv ∈ E

−
∀P ∈ P

(L)
uv s.t. 3P∋e yP f 1 ∀e ∈ E

+

3
P∈P

(L)
uv

yP f 1 ∀uv ∈ E
−

zuv g 0 ∀uv ∈ E
+
∪ E

−
yP g 0 ∀P ∈ PL

The corresponding dual program is also a variant of the multi-commodity flow problem where we can
only route flow along paths of at most L-hops between the source sink pairs. The hop-constrained multi-
commodity flow problem has been studied by Awerbuch, Khandekar, and Rao [6], where they developed
an algorithm that runs in Õ(L) iterations (note that the standard multiplicative weight update method
will take too much time because the width can be very large). Although our dual program has an extra
constraint, their result suggests the possibility of having a poly-logarithmic round parallel algorithm, for L

up to poly(log n). However, even if it works, such an approach still faces the following challenges:

1. First, it is unclear how far the optimal solution of Primal
(L)

is from that of Primal. Moreover, we will

need to develop a procedure to convert a solution of Primal
(L)

to, say some approximation solution of
Primal.

2. Second, all the existing rounding algorithms are based on the standard correlation clustering LP. Even

if we can convert an optimal solution of Primal
(L)

to an approximate solution of Primal, it is unclear
if it will satisfy the constraints of the standard correlation clustering LP. Note that [16] only showed an
optimal solution will satisfy the constraints, but an approximate solution will not necessarily do so.

3. Third, as mentioned previously, we hope to obtain an upper bound on the total work in terms of m = ∣E+∣,
as it will result in a faster sequential algorithm on graphs with sparse positive edges. The challenge is
two-fold. First, in the fractional primal solution, there can be much more than m negative edges with
non-zero values. This means the input to the rounding algorithm could have Ω(n2) edges in the worst
case. Second, in the algorithm of [6], each iteration requires computing an approximate blocking flow for

every source-sink pair. Potentially, there can be Ω(n2) such source-sink pairs. For each source-sink pair,

the number of paths of length at most L can be as large as Ω(nL−1) between each pair. If we assign a

processor to each of the paths directly, the work would be at least Ω(nL+1).
Surprisingly, we found that it is possible to overcome the first two challenges altogether by directly

rounding a solution of Primal
(L)

for L = 2 to an integral correlation clustering solution. Our new rounding
procedure obtains an approximation factor of 2.4.

Two-Hop Primal (L = 2).

(Primal
(2)

)

minimize ∑
(u,v)∈E+∪E−

zuv

subject to zuv + zuw + zwv g 1 ∀(u, v) ∈ E
−

and (u,w), (w, v) ∈ E
+

zuv g 0 ∀(u, v) ∈ E
+
∪ E

−
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Two-Hop Dual. Let P2 be the collection of length-two paths (u,w, v) such that (u,w), (w, v) ∈ E
+

and (u, v) ∈ E
−
.

(Dual
(2)

)

maximize ∑
(u,w,v)∈P2

y(u,w,v)

subject to ∑
w∶(u,w,v)∈P2

y(u,w,v) f 1 ∀(u, v) ∈ E
−

∑
v′∶(u,w,v′)∈P2

y(u,w,v′) + ∑
u′∶(u′,w,u)∈P2

y(u′,w,u) f 1 ∀(u,w) ∈ E
+

y(u,w,v) g 0 ∀(u,w, v) ∈ P2

Lemma 1.1. There exists a poly(log n)-time parallel algorithm that converts a fractional solution of

Primal
(2)

to a clustering where the number of disagreements is at most 2.4 times the object value of the
fractional solution in expectation. The total work of the algorithm is quasi-linear in the number of non-zero
terms of the fractional solution.

Corollary 1.3. Let OPT (⋅) denote the optimal value of a linear program. Let PrimalI be the integral
version of Primal. We have

OPT (Primal) f OPT (PrimalI) f 2.4 ⋅OPT (Primal
(2))

An open triangle is (x, y, z), where (x, y), (y, z) ∈ E
+

and (x, z) ∈ E
−
. A closed triangle is (x, y, z),

where (x, y), (y, z), (x, z) ∈ E
+
. We note that P2 can also be seen as a collection of open triangles. The

above dual program can be viewed as an open triangle packing problem, where the goal is to pack as many
open triangles as possible fractionally, subject to the condition that for each e ∈ E

+
∪ E

−
, the sum of the

values over all the triangles containing e is at most 1.
We note that the Two-Hop Dual LP has been seen in the analysis of the 3-approximation Pivot algorithm

of [3], where they refer it as bad triangle packing. Moreover, recently, Veldt [42], also considered the Two-Hop
Primal LP for correlation clustering. He developed a 4-approximation rounding algorithm for correlation
clustering from the LP. Moreover, he noted that such a linear program can be solved faster empirically
by LP solvers. Although we use the same LP, the paths of how we arrive at such an LP are different,
yet coincidental. Veldt [42] drew and strengthened an interesting connection between correlation clustering
and strong triadic closure labeling [40, 38], while we derive such a linear program from the lens of efficient
optimization algorithms. We also emphasize that the LP is different than the standard LP (P1) studied by
[3] as they consider all (u,w, v) tuples in the constraint instead of only the ones in P2.

A 2.4-Approximation Rounding Algorithm. Ailon, Charikar, and Newman [3] first proposed a 2.5-
approximation algorithm by rounding the linear programming solution {xe}e∈E+∪E− of (P1). They interpret
xe as the probability that the edge e should be cut, with higher values of xe indicating a lower probability
that the endpoints e should be included in the same cluster. Their algorithm is based on their Pivot
algorithm and works as follows: Choose a random vertex w as the pivot. Put every other node v into the
cluster of w with probability 1 − xwv. Remove the cluster and then repeat on the remaining graph.

Later, Chawla et al. [17] improved this method to a 2.06 approximation ratio by making the crucial
observation that clustering a node u with probability 1− xuw may not lead to the best approximation ratio.
Instead, they cluster the node with probability 1 − f(xuw), for some carefully chosen function f .

The key in upper bounding the approximation ratio the Pivot-based rounding algorithm, as developed
in [3, 17] and elaborated in [25], is in bounding the following ratio:

Ä(u, v, w) = cost(u, v ∣ w) + cost(u,w ∣ v) + cost(w, v ∣ u)
lp(u, v ∣ w) + lp(u,w ∣ v) + lp(w, v ∣ u)

for every triangle (u, v, w). The term cost(u, v ∣ w) denotes the probability that the disagreement of (u, v)
occurs when w is chosen as the pivot, whereas lp(u, v ∣ w) denotes the probability that the edge uv is
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removed from the graph when w is chosen as the pivot, multiplied by the contribution of the edge uv in the
LP. Intuitively, the numerator can be understood as the actual cost caused by the algorithm, while as the
denominator can be understood as the cost in the LP that we are charging to. Their analysis shows that
max(u,v,w) Ä(u, v, w) is an upper bound of the approximation ratio of the rounding algorithm.

[17] noted that Ä(u, v, w) is a multivariate polynomial over xuv, xuw, xvw and conducted a
case-by-case analysis of Ä(⋅) over four types of triangles based on the sign of their edges:
(−,−,−), (+,−,−), (+,+,−), (+,+,+). Their carefully designed rounding function, f(⋅), led to an up-
per bound of Ä(u, v, w) by 2.06 for every type of triangle. The constraints of (P1), namely the triangle
inequality xuw + xvw g xuv over all the triples (u,w, v), play a critical role in their analysis.

One of our main technical contributions is that we show that we do not need triangle inequality for all
types of triangles to obtain a good approximate ratio. Specifically, we show that for all triangles (u,w, v)
such that uw, vw ∈ E

+
and uv ∈ E

−
(the (+,+,−) triangle), if we have xuw + xvw g xuv, then it is possible

to obtain an upper bound of 2.4 on Ä(u, v, w) for all types of triangles, by using a different rounding function
f . In addition, we show that 2.4 is the best ratio one can obtain when under such a framework.

Focusing solely on (+,+,−) triangles greatly simplifies the process of solving linear programs. Instead

of solving (P1), the solution to our Primal
(2)

provides us with the triangle inequality for (+,+,−) triangles.
This can be done by setting xe = ze for all positive edges and xe = 1 − ze for all negative edges. Thus, a

feasible solution from Primal
(2)

can be converted into an assignment that satisfies the triangle inequality
for (+,+,−) triangles.

Solving Primal
(2)

. Awerbuch, Khandekar, and Rao [6] proposed a distributed approximate steepest
descendant framework that gives approximate solutions to multi-commodity flow problems efficiently. In
their framework, there is a convex length function with respect to the congestion conge of each edge (say

(m1/ϵ)conge), and the objective is to minimize the sum Φ of all edge lengths while maximizing the total
flow 3 yP . Let k be the number of commodities. In each step, for each commodity, the algorithm chooses
a set of approximately shortest source-sink paths and runs a blocking flow through these paths, where the
capacities of blocking flow are set to be tiny, roughly ϵ/k. By the pigeonhole principle, all approximately
shortest source-sink paths will be eliminated after a certain number of steps. It turns out that, by choosing
only the shortest paths in each step, one can bound the growth rate of Φ. Furthermore, these edge lengths,
divided by the shortest paths’ length, can be used to define a feasible primal solution. This establishes a
(1 + O(ϵ)) factor difference between primal and dual objective values, which certifies a desired (1 + O(ϵ))
approximation ratio.

Inspired by the steepest descendant framework, we extend the length function to not only the positive
edges (the edges presented in the input) but also the negative edges. Moreover, each source-sink pair
corresponds to a negative edge uv ∈ E

−
where there exist two-hop paths in E

+
connecting u and v, forming

(+,+,−) triangles. Sending a flow from u to v is then equivalent to adding a circulation to a (+,+,−)
triangle involving uv. This makes the entire framework applicable to solve Primal

(2)
and Dual

(2)
.

However, the third challenge still remains, even if we restrict the number of hops to L = 2. This is
mainly because there can be k = Ω(n2) source-sink pairs, one per negative edge. In the algorithm of [6], they
compute an approximate shortest blocking flow for every source-sink pair. This can cause the algorithm to
send flow through Ω(n2) edges in a single iteration. Additionally, computing the blocking flow for k = Ω(n2)
may require a significant amount of work. If one would like to efficiently utilize Lemma 1.1, which requires
quasi-linear work in the number of non-zero terms of the fractional solution, we have to first ensure that our
fractional solution has a Õ(m)-sized support.

To resolve this, our idea is to mix up all the commodities. That is, we let each commodity block
other commodities, instead of computing the blocking flow per commodity. In the view of triangles, this
corresponds to computing a maximal set of edge-disjoint open triangles. There can be at most O(m) edge-
disjoint open triangles in such a set because each open triangle consumes two positive edges. At the same
time, instead of sending ϵ/k flow for each commodity, we can send up to ϵ/ logm flow for each commodity
in the maximal set. This, combined with the fact each triangle contains at least two positive edges and
one negative edge, gives an upper bound of Õ(m) on the number of non-zero duals. However, these do not
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necessarily translate directly to bounds on the number of non-zero or relatively small primal variables. We
devise an additional simple post-processing step to construct a primal solution where all but Õ(m) primal
variables are small enough to be truncated.

Lemma 1.2. Given the set E
+

of m positive edges and a parameter ϵ > 0, there exists a parallel algorithm

that computes an (1 + ϵ)-approximate solution to Primal
(2)

using Õ(ϵ−7m1.5) work and Õ(ϵ−4) span. In
addition, the support size of the solution is at most Õ(ϵ−2m).

The last mile to our Õ(m1.5)-work poly(log n)-depth parallel algorithm is the problem of computing a
maximal set of edge-disjoint open triangles. Although, it can be shown that the number of closed triangles
is upper bounded by Õ(m1.5), it is not necessarily the case for open triangles. The number of open triangles
can be as large as Ω(n2) even when there are O(n) edges (e.g. a star of positive edges). Inspired by the
triangle enumeration algorithms, we observe that it is possible to compute a maximal set of edge-disjoint
open triangles without checking all open triangles. To this end, we obtain a parallel algorithm that gradually
searches for more edge-disjoint open triangles in rounds. In each round, the algorithm explores a collection
of open triangles C and runs a maximal independent set (MIS) algorithm in the conflict graph built on C. As
long as these open triangles in C are edge-disjoint to the current found set S of edge-disjoint open triangles,
the open triangles selected in the MIS can be added to S and all open triangles in S are still edge-disjoint.
By carefully controlling the exploration rate, we obtain the parallel algorithm with desired work and depth,
summarized below in Lemma 1.3 and proved in Section 5.

Lemma 1.3. Let G = (V,E+
∪ E

−

>1), and l ∶ (V
2
) → [1,∞) be a length function with l(u, v) = 1 for

uv ∈ (V
2
) \ (E+

∪ E
−1
>1 ), and L > 0 be a length limit. Let mf = ∣E+

∪ E
−

>1∣. Then, there exists a parallel

algorithm such that, in O(m1.5
f log

3
n) work and O(log3 n) span, the algorithm returns a maximal edge-

disjoint set S of open triangles with length less than L.

Conditional Lower Bound for Maximal Edge-Disjoint Open Triangles. Unfortunately, it seems
that Õ(m1.5) is the best total work one can hope for, if we want a combinatorial algorithm that computes
a maximal set of edge-disjoint open triangles. In terms of the number of total input edges m, the problem
of finding a maximal set of edge-disjoint open triangles could be as hard as searching for just one (regular,
non-open) triangle. The latter problem (triangle detection) has a conditional lower bound based on the
combinatorial Boolean matrix multiplication (BMM) problem [43]. In Section 5.2 we give a randomized
reduction from the triangle detection problem to our maximal open triangle problem. Such a reduction also

implies that any algorithms using O(m1.185−¶) work for any constant ¶ > 0 for our problem would lead to
an improvement over the best known algorithm for the triangle detection problem [9].

1.3 Open Problems We give the first poly-logarithmic depth parallel algorithm that achieves an
approximation ratio better than 3. We hope that our work can shed some light on the search of low-
round algorithms with an approximation ratio of less than 3 in other models that exploit parallelism, such
as the streaming model, the MPC model (with nearly-linear total memory), and the CONGEST model. The
main bottleneck in adapting our algorithm to those models is in finding a maximal set of edge-disjoint open
triangles. It is interesting to investigate whether there are ways to sparsify the process in these models.

We have shown that the optimal solution of Primal
(2)

is at most 2.4 times that of Primal. It is

interesting to see if there are tighter relations between Primal
(L)

and Primal for L > 2. Note that [16]
showed the optimal values to both linear programs are the same when L = n − 1. Perhaps one may obtain
a trade-off between L and the quality of the solution. If this is the case, we may be able to obtain a result
that exhibits a trade-off between the running time/work of the algorithms and the quality of the solutions.

Finally, we have shown a conditional lower bound on the problem of finding a maximal set of edge-disjoint
open triangles. It is interesting to directly investigate the fine-grained complexity of the c-approximate
correlation clustering for c < 3. We already know that the 3-approximation algorithm of [3] can be
implemented in Õ(m) time in the sequential setting, and Õ(m) total work in the parallel setting [29]. Now
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the question is whether it is possible to obtain a nearly-linear time algorithm for c-approximate algorithm
for c < 3 or it can be shown to be (conditionally)-hard.

2 Preliminaries

Let m = ∣E+∣ be the number of positive edges in the unweighted and undirected input graph G
+
= (V,E+).

We will use the triple (u,w, v) to denote the triangle with edges (u, v), (v, w) and (u,w). We note that the
same triangle and the same undirected edge can be identified in different ways. In particular, (u,w, v) and(v, w, u) refer to the same triangle, and (u, v), (v, u), uv, and vu refer to the same edge. Given an edge e

and a triangle (u,w, v), we say that e is on the triangle, denoted as e ∈ (u,w, v), if e is one of the edges of(u, v), (v, w) and (u,w).
Sometimes we denote the same triangle with an ordered 3-edge triple (uw,wv, vu) when we are mapping

certain attributes to the edges. Let suw, swv, svu ∈ {+,−}, a (suw, swv, svu) triangle is where uw ∈ E
suw ,

wv ∈ E
swv , and vu ∈ E

svu . For example, a (+,+,−) triangle is a triangle (uw,wv, vu) such that uw,wv ∈ E
+

and vu ∈ E
−
. Such a triangle is called an open triangle. Although P2 was defined be the collection of length-

two paths (u,w, v) such that (u,w), (w, v) ∈ E
+

and (u, v) ∈ E
−
, we can also view it as a collection of open

triangles. A (+,+,+) triangle is called a closed triangle.
Assumptions. We assume without loss of generality that the graph G

+
= (V,E+) is connected.

Otherwise, we can process each connected component induced by positive edges separately. Also, we assume
that G

+
is not a complete graph, so the optimal objective value is at least 1. Otherwise, we may just output

the entire graph as a cluster.

3 An (1 + ϵ)-Approximation Algorithm for Primal
(2)

In this section, we propose Algorithm 1, an algorithm that computes a (1+ϵ)-approximate solution {zuv} for

Primal
(2)

. Our algorithm is inspired by the distributed steepest descent framework [6] for the most beneficial
flow (MBF), and an earlier sequential multicommodity flow algorithm by Garg and Könemann [30]. In our
case, as mentioned in the introduction, the algorithm focuses on triples in P2 and sends flows along the most
beneficial triangle.

The algorithm runs in iterations. Intuitively, in each iteration t, the algorithm seeks a set S of
the approximately shortest length triangles from P2. Then, the algorithm pushes some tiny flow along
each triangle, which by correspondence (see Invariant 1 below) increases the length of each edge with a
multiplicative factor of exp(ϵ) ≈ 1+ϵ. The iterations end once the total length of each edge exceeds a certain

value, and the algorithm is then able to produce the (1 + O(ϵ))-approximate solutions to both Primal
(2)

and Dual
(2)

.
Explicitly Maintained Variables and Invariants. Our algorithm mainly operates on Dual

(2)
, that

is, the algorithm explicitly stores all non-zero y values for triangles in P2. For the ease of analysis, we

will use y
(t)(u,w,v) to denote the dual variables at the beginning of the iteration t. If we treat each y

(t)(u,w,v)
as a circulation on its own commodity, then it makes sense to define congestion of an edge e, to be the
sum of all flow values passing through that edge. Specifically, for each edge e ∈ E

+
∪ E

−
we define

cong
(t)
e = 3(u,w,v)∈P2,e∈(u,w,v) y(t)(u,w,v). The algorithm also explicitly maintains the length of an edge e,

which is defined by l
(t)
e = (m1/ϵ)cong(t)

e . This leads to a definition for the length of a triangle (u,w, v)
in t-th iteration to be l

(t)(u,w,v) ∶= l
(t)
wu + l

(t)
wv + l

(t)
uv . Moreover, the algorithm maintains a variable ³

(t)
for

lower bounding the shortest open triangle. Throughout the execution, the algorithm maintains the following
invariant between the dual variables, length variables, and the shortest open triangle estimate:

Invariant 1. At the beginning of any iteration t,

1. For all (u,w, v) ∈ P2, l
(t)(u,w,v) g ³

(t)
,

2. For any edge e ∈ E
+
∪ E

−
, l

(t)
e = (m1/ϵ)cong(t)

e .
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Initialization. Initially, the algorithm sets the dual variable y
(0)(u,w,v) ← 0 for each triangle (u,w, v) ∈ P2.

Each edge has an edge length l
(0)
e ∶= (m1/ϵ)cong(0)

e which has an initial value 1. Since ³
(0)

is a lower bound

for the shortest open triangle, we can safely set ³
(0)

← 3 initially.
Termination Condition. Since the congestion of each edge is non-decreasing, the length of each edge

is also non-decreasing. The algorithm terminates when the total length of all edges becomes too large.
Specifically, we define the following potential function

Φ(t) = ∑
e∈E+∪E−

(m1/ϵ)cong(t)
e

and terminate the algorithm once Φ(t) surpasses m
1/ϵ/ exp(ϵ).

Iterations. Within the t-th iteration of the algorithm, the algorithm attempts to send flows through
the most beneficial triangle. Specifically, we identify some triangle in P2 with (1 + ϵ)-approximate shortest
distance and increase its dual value (and the corresponding edge lengths). To accelerate the process, instead
of sending flow through the most beneficial triangle one by one, the algorithm repeatedly selects a maximal

edge-disjoint set of triangles S ¦ P2 such that l
(t)(u,w,v) < (1 + ϵ)³(t)

for every triangle (u,w, v) ∈ S, where

l
(t)

is the current length function. Then, the algorithm increases the dual variables y
(t)(u,w,v) for all triangles

(u,w, v) ∈ S by a fixed amount ∆y
(t)(u,w,v) ∶= ϵ

2/ lnm. To maintain Invariant 1, the algorithm increases the

length of e by an exp(ϵ) factor, whenever the congestion is increased in the t-th iteration. If S is empty,

then there is no triangle (u,w, v) ∈ P2 with l
(t)(u,w,v) < (1 + ϵ)³(t)

, which implies that the shortest triangle

now has a length at least (1 + ϵ)³(t)
. In this case, the algorithm increases ³

(t)
by a (1 + ϵ) factor, i.e.,

³
(t+1)

← (1 + ϵ)³(t)
.

Computing the Primal Solution with a Small Support Size. It turns out the length function

l
(t)
e itself, when divided by ³

(t)
is feasible for Primal

(2)
(see Lemma 3.1). Let z

(t)
e ∶= l

(t)
e /³(t)

. The primal

objective then becomes 3e z
(t)
e = Φ(t)/³(t)

. To compute the smallest primal objective value, Algorithm 1

selects an iteration T that minimizes 3e∈E+∪E− z
(T )
e .

To ensure the primal solution has a small support size, note that, although we will be able to bound
the number of negative edges with non-zero flows, it does not necessarily translate to an upper bound on
the number of negative edges with non-zero primal values, as an edge with zero flow has a non-zero primal

value of 1/³(T )
. To overcome this issue, we set the primal values of negative edges to be 0 when there

is no flow. However, doing so might violate some constraints. To compensate this, we may re-adjust the

primal values of some positive edges by increasing the primal value of all positive edges by 1/(2³(T )). When

³
(T )

is sufficiently large, we can upper bound the total increase of the primal values. To ensure our ³
(T )

is

large enough, we show that a high value of Φ(T ) implies a high value of ³
(T )

. Then, when taking T to be

the iteration with the minimum 3e∈E+∪E− z
(T )
e , we restrict T g Tmin, where Tmin is the first iteration the

potential Φ grows to be at least m
3/ϵ.

In the following subsections, we will prove that the primal solution {ze} output from Algorithm 1 is
both feasible and (1 + O(ϵ))-approximate. While we have not yet provided details on how to compute the
maximal edge-disjoint eligible open triangles, we will discuss the number of iterations needed at the end of
this section. By combining this with a maximal edge-disjoint eligible open triangles algorithm in Section 5,
we are able to derive the bounds on the running time.

3.1 Feasibility We will begin by showing the feasibility of {z(t)uv = l
(t)
uv/³(t)} for any t.

Lemma 3.1. For any iteration t, {z(t)uv = l
(t)
uv/³(t)} is feasible for Primal

(2)
.

Proof. Invariant 1 guarantees that l
(t)(u,w,v) g ³

(t)
for any (u,w, v) ∈ P2, which ensures that all the constraints

of Primal
(2)

are satisfied.
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Algorithm 1 A (1 +O(ϵ))-approximate algorithm for Primal
(2)

.
Input: A vertex set V , a set of m undirected unweighted edges E

+
, and a parameter ϵ > 0.

Output: An (1 +O(ϵ))-approximate solution {zuv} ∈ [0, 1](V2 ) to Primal
(2)

Auxiliary Information: E
−
∶= (V

2
) \ E+

; P2 ∶= the set of open triangles.

1: function ParallelSteepestDescent(G
+
= (V,E+), ϵ)

▷ Initialization

2: t ← 0 and ³
(0)

← 3 and Tmin ← +∞

3: l
(0)
uv ← 1 for all (u, v) ∈ E

+
∪ E

−
.

4: y
(0)(u,w,v) ← 0 for all (u,w, v) ∈ P2.

▷ Compute the primal and dual values

5: while Φ(t) ∶= 3uv l
(t)
uv < m

1/ϵ/ exp(ϵ) do

6: If Φ(t) g m
3/ϵ, set Tmin ← min(Tmin, t)

7: Let P
′

2 ∶= {(u,w, v) ∈ P2 ∣ l(t)(u,w,v) < (1 + ϵ)³(t)} be the set of eligible triangles;

Compute any maximal edge-disjoint set S of P
′

2. ▷ See Section 5.
8: if S ≠ ∅ then

9: For all (u,w, v) ∈ P2, set y
(t+1)(u,w,v) ← { y

(t)(u,w,v) + ϵ
2/ lnm if (u,w, v) ∈ S,

y
(t)(u,w,v) otherwise.

10: For all (u, v) ∈ E, set l
(t+1)
uv ← { l

(t)
uv ⋅ exp(ϵ) if (u, v) occur in some triangle in S,

l
(t)
uv otherwise.

11: ³
(t+1)

← ³
(t)

12: else
13: ³

(t+1)
← (1 + ϵ)³(t)

▷ Update the lower bound estimate of the shortest triangle.
14: end if
15: t ← t + 1

16: end while

▷ Compute the primal solution

17: T ← argmin
tgTmin

Φ(t)
³(t)

18: For (u, v) ∈ E
+
∪ E

−
, set z

(T )
uv ←

l
(T )
uv

³(T )
19: For (u, v) ∈ E

+
, set zuv ← min {z(T )

uv +
ϵ
m, 1}.

20: For (u, v) ∈ E
−
, set zuv ← { min {z(T )

uv , 1} if l
(T )
uv > 1,

0 otherwise.

21: return {zuv}
22: end function
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However, when setting up the final {ze}, if e ∈ E
−

and l
(T )
e = 1, the algorithm sets ze to be 0 in Line 20,

which reduces the value ze from what it should be by 1/³(T )
. This may lead to a violation of a triangle(u,w, v)’s primal constraint if (u, v) ∈ E

−
and l

(T )
uv = 1. To address this, we increase z

(T )
e by ϵ/m for all

positive edge e ∈ E
+
. We will now show that ³

(T )
g m/(2ϵ), which implies that the reduction to a negative

edge’s primal variable is at most 2ϵ/m. Therefore, it suffices to increase the ze values for all positive edges
by ϵ/m, as a triangle in P2 contains exactly two positive edges.

Lemma 3.2. ³
(T )

g m/(2ϵ).
Proof. Since Φ(Tmin) g m

3/ϵ, by an averaging argument, there exists an edge e ∈ (V
2
) such that

l
(Tmin)
e g Φ(Tmin)/(n2) g m

3/(ϵn(n − 1)/2) g m/ϵ. This implies that cong
(Tmin)
e > 0 and at some iteration

prior to Tmin the algorithm has sent some flow on some triangle (u,w, v) containing e. Moreover, using the

fact that in each iteration t the algorithm only selects the triangles with length less than (1 + ϵ)³(t)
and

that ³
(t)

is non-decreasing, we know that the triangles selected at the iteration Tmin − 1 must have length
at least m/(ϵ ⋅ exp(ϵ)).

Hence, whenever ϵ < 1/8 we have

³
(T )

g
m

ϵ ⋅ exp(ϵ) ⋅ (1 + ϵ) g
m

2ϵ
.

Lemma 3.3. Algorithm 1 outputs a feasible solution {ze} for Primal
(2)

.

Proof. Let (u, v, w) be an open triangle with uv, vw ∈ E
+

and uw ∈ E
−
. We will show that zuw+zuv+zvw g 1.

First note that if any of zuw, z
(T )
uv , z

(T )
vw is greater than 1 then we are done, as at least one of zuw, zuv or zvw

will be equal to 1 by Line 19 and 20 of Algorithm 1. Otherwise, by Line 19 and 20 of Algorithm 1, we have

zuw = z
(T )
uw + ϵ/m, zuv g z

(T )
uv − 1/³(T )

, and zvw g z
(T )
vw − 1/³(T )

. Therefore,

zuw + zuv + zvw g (z(T )
uw + ϵ/m) + (z(T )

uv − 1/³(T )) + (z(T )
vw − 1/³(T ))

g z
(T )
uw + z

(T )
uv + z

(T )
vw + ϵ/m − ϵ/(2m) − ϵ/(2m) (by Lemma 3.2)

g z
(T )
uw + z

(T )
uv + z

(T )
vw g 1 (by Lemma 3.1)

We now turn our attention to showing that we always maintain a feasible dual {y(t)(u,w,v)} throughout the

algorithm. First, we show that the potential increases by at most a factor of exp(ϵ) in each iteration.

Lemma 3.4. Φ(t) f exp(ϵ) ⋅ Φ(t − 1).
Proof. Note that Φ(t) = 3e l

(t)
e f 3e exp(ϵ) ⋅ l(t−1)e f exp(ϵ) ⋅ Φ(t − 1).

Lemma 3.5. At the beginning of iteration t, {y(t)(u,w,v)} is a feasible solution to Dual
(2)

. This holds even for
the last iteration t where it does not enter the main body of the loop.

Proof. It suffices to show that cong
(t)
e f 1 for any edge e ∈ E

+
∪E

−
at the beginning of each iteration t. Since

iteration t−1 has been executed, and by the condition of the main loop, we have Φ(t−1) f m
1/ϵ/exp(ϵ). By

Lemma 3.4, we have Φ(t) f exp(ϵ) ⋅ Φ(t − 1) f exp(ϵ) ⋅ (m1/ϵ/exp(ϵ)) = m
1/ϵ

and hence l
(t)
e f Φ(t) f m

1/ϵ
.

Based on Invariant 1, l
(t)
e = (m1/ϵ)cong(t)

e . Therefore, cong
(t)
e f 1.
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3.2 Optimality When we compute our primal solution, we first set z
(T )
e = l

(T )
e /³(T )

. Then, we increase
ze for all positive edges by ϵ/m, which in total impose an extra ϵ additive quantity to the primal objective.

Let OPT be the optimal objective value for both Primal
(2)

and Dual
(2)

. The next lemma gives a bound

for 3e z
(T )
e .

Lemma 3.6. Suppose that 2/m f ϵ f 1/10. Then, 3e z
(T )
e f (1 + 15ϵ) ⋅OPT.

Proof. [Proof of Lemma 3.6.] To establish the approximate ratio of the primal solution, it suffices to show

that the dual objective 3p∈P2
y
(T )
p is within a (1+O(ϵ))-factor of the primal objective 3e z

(T )
e = Φ(T )/³(T )

.
We first establish the relation between the potential increase Φ(t) − Φ(t − 1) and the changes to the dual
value within iteration t − 1:

Φ(t) − Φ(t − 1) = ∑
(u,w,v)∈S

l
(t)(u,w,v)(exp(ϵ) − 1)

f ∣S∣ ⋅ (exp(ϵ) − 1)(1 + ϵ)³(t)

= ( lnm
ϵ2

∑
p∈P2

∆y
(t−1)
p ) ⋅ (exp(ϵ) − 1)(1 + ϵ)³(t)

f (1 + ϵ)2 lnmϵ ³
(t)

⋅ ∑
p∈P2

∆y
(t−1)
p ,

where ∆y
(t−1)
p = y

(t)
p − y

(t−1)
p is the flow sent to triangle p at the (t − 1)th iteration. By rearranging the

terms, we obtain:

Φ(t) − Φ(t − 1)
³(t) f (1 + ϵ)2 lnmϵ ⋅ ∑

p∈P2

∆y
(t−1)
p .(1)

In Line 17 of Algorithm 1, the algorithm chooses T such that T g Tmin and Φ(T )/³(T )
is minimized, so

∑
e

z
(T )
e =

Φ(T )
³(T ) f

Φ(t)
³(t) for any t g Tmin.(2)

On the other hand, by Lemma 3.4 and the fact that Φ is non-decreasing, we have 1 f
Φ(t)

Φ(t−1) f exp(ϵ). When

0 < ϵ < 1, we have exp(ϵ) f (1 + ϵ)2 and

ln ( Φ(t)
Φ(t − 1)) f

Φ(t)
Φ(t − 1) − 1 (lnx f x − 1 for all x > 0)

=
Φ(t)

Φ(t − 1) ⋅
Φ(t) − Φ(t − 1)

Φ(t)
f exp(ϵ) ⋅ Φ(t) − Φ(t − 1)

Φ(t)
f (1 + ϵ)2Φ(t) − Φ(t − 1)

Φ(t) .(3)
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Therefore, at any iteration t, we can bound 3e z
(T )
e by

∑
e

z
(T )
e ln ( Φ(t)

Φ(t − 1)) f
Φ(t)
³(t) ⋅ (1 + ϵ)2Φ(t) − Φ(t − 1)

Φ(t) (by Equation (3))

f (1 + ϵ)2Φ(t) − Φ(t − 1)
³(t)

f (1 + ϵ)4 lnmϵ ⋅ ∑
p∈P2

∆y
(t−1)
p . (by Equation (1))

Next, by summing over all t g Tmin, we obtain

∑
e

z
(T )
e ∑

tgTmin

ln ( Φ(t)
Φ(t − 1)) f (1 + ϵ)4 lnmϵ ⋅ ( ∑

tgTmin,p∈P2

∆y
(t−1)
p )(4)

It is straightforward to see that the summation of the right-hand side telescopes to at most the current dual

objective, which is at most OPT. To lower bound the left-hand side, we notice that since Φ(Tmin − 1) < m
3

ϵ

and the final Φ(Tlast) is at least m
1/ϵ

exp(ϵ) , where Tlast denotes the last iteration. When 2

m
f ϵ f 1

10
, we have

exp(ϵ)/ϵ f m, thus:

∑
tgTmin

ln ( Φ(t)
Φ(t − 1)) = ln (Φ(Tlast)

Φ(Tmin))
g ln( ϵ ⋅m

1/ϵ
exp(ϵ) ⋅m3

)
= (1ϵ − 3) lnm − ln (exp(ϵ)ϵ )
g (1ϵ − 4) lnm.(5)

Combining all together, when 2

m
f ϵ f 1

10
, we have

∑
e

z
(T )
e =

3e z
(T )
e ⋅ ( 1

ϵ
− 4) lnm

( 1

ϵ
− 4) lnm

f
1

( 1

ϵ
− 4) lnm ⋅∑

e

z
(T )
e ⋅ ∑

tgTmin

ln ( Φ(t)
Φ(t − 1)) (by Equation (5))

f
1

( 1

ϵ
− 4) lnm ⋅ (1 + ϵ)4 lnmϵ ⋅ ( ∑

tgTmin,p∈P2

∆y
(t−1)
p ) (by Equation (4))

f
(1 + ϵ)4
1 − 4ϵ

⋅OPT

f (1 + 15ϵ) ⋅OPT (ϵ < 1/10)

Using Lemma 3.6, we can show the final output {ze} is a (1 +O(ϵ))-approximate solution:

Lemma 3.7. Suppose that 2/m f ϵ f 1/10. Algorithm 1 outputs {ze} such that 3e∈E+∪E− ze f(1 + 16ϵ) ⋅OPT.
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Proof. By assumption, there must be at least one (+,+,−) triangle, so OPT g 1. By Lemma 3.6,

∑
e∈E+∪E−

ze f ∑
e

z
(T )
e +m ⋅

ϵ
m

f (1 + 15ϵ)OPT + ϵOPT

f (1 + 16ϵ)OPT.

3.3 Work and Span In this section, we will prove the last piece of Lemma 1.2, the parallel running time
of Algorithm 1. To begin with, we establish an upper bound on the number of iterations that share the same
value of ³.

Lemma 3.8. For any fixed ³, there will be at most R = (3/ϵ) ln((1 + ϵ)³) iterations such that ³
(t)

= ³.

Proof. Assume that at some iteration t, we have ³(t) = ³. From Invariant 1, we know that l
(t)(u,w,v) g ³ for

any triangle (u,w, v) ∈ P2. Our objective is to demonstrate that, after R = (3/ϵ) ln((1 + ϵ)³) iterations,

we have l
(t+R)(u,w,v) g (1 + ϵ)³. Therefore, if ³ has not been changed, the set of eligible open triangles will be

empty and the algorithm has to increase ³
(t+R)

.

Assume that l
(t)(u,w,v) ∈ [³, (1 + ϵ)³) for the triangle (u,w, v). Otherwise, since we never decrease the

length function, we already have l
(t+R)(u,w,v) g (1 + ϵ)³. If (u,w, v) is ever chosen to an edge-disjoint set S in

some iteration i, where i ∈ [t, t +R), then we must have

l
(i+1)(u,w,v) g exp(ϵ) ⋅ l(t)(u,w,v) g (1 + ϵ)³.

On the other hand, if (u,w, v) has not been chosen into S in any iteration, the algorithm must choose at
least one edge on (u,w, v) and increase its length by a factor of exp(ϵ) after each iteration. By the pigeonhole
principle, after R = (3/ϵ) ln((1 + ϵ)³) iterations, there exists an edge in the triangle (u,w, v) whose length

is increased by a factor of exp(ϵ ⋅R/3). Consequently, the contribution of this edge to l
(t+R)(u,w,v) satisfies

l
(t+R)(u,w,v) g exp(ϵ ⋅R/3)

g exp(ϵ ⋅ ln((1 + ϵ)³)/ϵ)
g (1 + ϵ)³.

In either case, we can conclude that l
(t+R)(u,w,v) g (1 + ϵ)³(t)

for all (u,w, v) ∈ P2.

To bound the total number of iterations in Algorithm 1, we need to bound the maximum ³
(t)

and the

number of different ³
(t)

values. Since our assumption guarantees that OPT(Primal
(2)) g 1, we know that

there will be at least one triangle in P2. As ³
(t)

is always a lower bound for the shortest triangle at iteration

t, the maximum possible value of ³
(t)

is 3 ⋅m
1/ϵ

when the congestion is 1. Based on Lemma 3.8, there will
be O(ϵ−2logm) iterations for any fixed ³.

Moreover, if S is empty, we increase ³
(t)

by a factor of (1 + ϵ). Therefore, there will be at most

O(log1+ϵ(m1/ϵ)) = O(ϵ−2logm) different ³
(t)

values. Combining with Lemma 3.8, we obtain the following
lemma:

Lemma 3.9. In Algorithm 1, the total number of iterations is O(ϵ−4log2 m). □

We can estimate the total number of non-zero terms in the output using Lemma 3.9.
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Lemma 3.10. The output of Algorithm 1, {ze}, has O(ϵ−2m logm) non-zero values.

Proof. The output ze > 0 if and only if the congestion of the edge e is not zero. According to Line 9 of the
algorithm, each time the algorithm increases the congestion of a negative edge, the congestion of some two
positive edges must be increased by ϵ

2/ lnm each. Since there are m positive edges and the congestion is
always at most 1, this implies that at most 1

2
ϵ
−2
m lnm negative edges can have non-zero congestion.

We have not yet specified how to compute the maximal edge-disjoint set S. In Section 5, we prove
Lemma 1.3 by giving a parallel algorithm that finds a maximal edge-disjoint set S.

Lemma 1.3. Let G = (V,E+
∪ E

−

>1), and l ∶ (V
2
) → [1,∞) be a length function with l(u, v) = 1 for

uv ∈ (V
2
) \ (E+

∪ E
−1
>1 ), and L > 0 be a length limit. Let mf = ∣E+

∪ E
−

>1∣. Then, there exists a parallel

algorithm such that, in O(m1.5
f log

3
n) work and O(log3 n) span, the algorithm returns a maximal edge-

disjoint set S of open triangles with length less than L.

We are now ready to prove the main Lemma 1.2 regarding solving Primal
(2)

. Note that if ϵ is too
small (e.g., ϵ f 2/m in the last section), as we allow poly(1/ϵ) = poly(m) span and work, we can simply
run a linear program solver (e.g. [20]) to solve (P1) and obtain an approximation ratio of 2.06 by using [17].
Hence, we may assume ϵ g 2/m.

Lemma 1.2. Given the set E
+

of m positive edges and a parameter ϵ > 0, there exists a parallel algorithm

that computes an (1 + ϵ)-approximate solution to Primal
(2)

using Õ(ϵ−7m1.5) work and Õ(ϵ−4) span. In
addition, the support size of the solution is at most Õ(ϵ−2m).
Proof. By Lemma 3.1 and Lemma 3.7, Algorithm 1 returns a (1 + O(ϵ))-approximate solution {ze} for

Primal
(2)

. To implement Algorithm 1 in the parallel setting, note that by Lemma 3.10, there are at
most O(ϵ−2m logm) negative edges of length greater than 1 throughout the algorithm. By Lemma 1.3 it
takes O(m1.5

f log
3
n) work and O(log3 mf) span to compute a maximal edge-disjoint set S of P

′

2, where

mf = O(ϵ−2m logm). Therefore, at each iteration, Algorithm 1 takes O(ϵ−3m1.5
log

4
n) work and O(log3 n)

span. By Lemma 3.9, there are O(ϵ−4 log2 m) iterations, so Algorithm 1 takes O(ϵ−7m1.5
log

6.5
n) work and

O(ϵ−4 log5 n) span in total. Finally, by Lemma 3.10 again, the support size of the returned solution is also
O(ϵ−2m logm).
4 A 2.4-Approximation Rounding Algorithm

In this section, first, we present a sequential rounding algorithm that achieves a 2.4-approximation ratio and
then show how to parallelize it.

Recall that we denote the triangle (u,w, v) by (uw,wv, vu) when we are mapping certain attributes to
the edges. Given an assignment {xe}e∈E+∪E− , when we say a triangle (uw,wv, vu) has edge length (a, b, c),
we mean xuw = a, xwv = b and xvu = c.

For an assignment {xe}, we say {xe} satisfies the triangle inequality, if for all triangles (uw,wv, vu)
with edge length (xuw, xvw, xuv), we have xuw + xwv g xvu, xwv + xvu g xuw, and xvu + xuw g xwv. For
an assignment {xe}, we say {xe} satisfies the partial triangle inequality, if for all (+,+,−)-triangles(uw,wv, vu) with edge length (xuw, xwv, xvu), we have xuw + xwv g xvu.

Our algorithm, shown in Algorithm 2, takes an assignment {xe}e∈E+∪E− satisfying the partial triangle
inequality as the input. To get an assignment satisfying the partial triangle inequality, we first compute

a (1 + ϵ)-approximate solution for Primal
(2)

and then set xe = ze for all positive edges and xe = 1 − ze

for all negative edges. A feasible solution in of Primal
(2)

satisfies that for every uv ∈ E
−
, uw,wv ∈ E

+
,

zvu + zuw + zwv g 1. This implies xuw + xwv g xuv, so such {xe} satisfies the partial triangle inequality.
Moreover, for all e, since ze ∈ [0, 1], we have xe ∈ [0, 1].

Algorithm 2 is based on the pivot rounding framework of [3, 17]. The algorithm iteratively selects a
random pivot u from the unclustered vertices, forms a cluster by adding each unclustered node v into the
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cluster with probability 1 − puv, where puv is defined as

puv = {f+(xuv) if (u, v) ∈ E
+
,

f
−(xuv) if (u, v) ∈ E

−
,

and f
+
, f

−
are two functions to be determined. Note that in Algorithm 2, we state the step for choosing

a random pivot as choosing the first unclustered node from a random permutation (Line 5) for the ease of
parallelization in Section 4.2.

The main difference between our algorithm and [17] is that we choose different f
+
, f

−
functions. This

difference arises because in [17] the input satisfies the triangle inequality for all types of triangles, while ours
only satisfies the partial triangle inequality.

Algorithm 2 The sequential rounding algorithm.
Input: Graph G and an assignment {xuv} satisfying the partial triangle inequality.
Output: A partition of V .

1: function SeqRounding(G = (V,E), {xuv})
2: Draw a permutation Ã of the vertex set V uniformly at random.
3: V0 ← V, t ← 0

4: while ∣Vt∣ > 0 do
5: Let the pivot w be the vertex with the smallest Ã(w) in Vt and set St ← {w}
6: ▷ This step is equivalent to picking the pivot w ∈ Vt uniformly at random.
7: For each vertex u ∈ Vt, add u to St with probability (1 − puw) independently.
8: Vt ← Vt \ St, t ← t + 1

9: end while
10: return {S0, S1, ..., St−1}
11: end function

4.1 Approximation Ratios Let Sw be the cluster of w when w is chosen as a pivot. To obtain an
approximate ratio of the algorithm, [17] consider the following terms for a triangle (u, v, w),

cost(u, v ∣ w) = {Pr[(u ∈ Sw and v /∈ Sw) or (u /∈ Sw and v ∈ Sw) ∣ w is the pivot] if (u, v) ∈ E
+
,

P r[u ∈ Sw and v ∈ Sw ∣ w is the pivot] if (u, v) ∈ E
−

lp(u, v ∣ w) = {xuv ⋅ Pr[u ∈ Sw or v ∈ Sw ∣ w is the pivot] if (u, v) ∈ E
+
,(1 − xuv) ⋅ Pr[u ∈ Sw or v ∈ Sw ∣ w is the pivot] if (u, v) ∈ E

−

The term cost(u, v ∣ w) can be intuitively understood as the cost of the edge (u, v) for Algorithm 2 when
w is selected as the pivot. If w is selected as the pivot and (u, v) is a positive edge, then a disagreement
occurs if exactly one of u or v is clustered into Sw. If w is selected as the pivot and (u, v) is a negative edge,
then the disagreement cost is incurred if both u and v are clustered into Sw.

On the other hand, the term lp(u, v ∣ w) represents the cost of the edge (u, v) for the assignment xe

when w is chosen as the pivot. In a high-level sense, we are trying to charge the actual cost to the objective
value of the LP solution, so we will need to make sure that each term in the objective function is charged by
at most one triangle throughout the algorithm. Here, we charge the cost contributed by edge uv whenever at
least one of u or v is clustered into Sw. The contribution of uv to the object value is either xuv or (1−xuv),
depending on whether (u, v) ∈ E

+
or (u, v) ∈ E

−
.

It should be noted that the corresponding probabilities can be expressed by puw and pvw. Once we
substitute them into the terms, we obtain the following expressions for cost(u, v ∣ w) and lp(u, v ∣ w).

cost(u, v ∣ w) = {puw + pvw − 2puwpvw if (u, v) ∈ E
+
,(1 − puw) ⋅ (1 − pvw) if (u, v) ∈ E

−
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lp(u, v ∣ w) = {xuv ⋅ (1 − puwpvw) if (u, v) ∈ E
+
,(1 − xuv) ⋅ (1 − puwpvw) if (u, v) ∈ E

−

The analysis considers the cost for a triangle (u,w, v), where each of u,w, and v is chosen as a pivot
with equal probability, ALG(uwv) and LP (uwv) represents the cost for triangle (u,w, v) for Algorithm 2
and the assignment {xe}, respectively.

ALG(uwv) = cost(u, v ∣ w) + cost(u,w ∣ v) + cost(v, w ∣ u)
LP (uwv) = lp(u, v ∣ w) + lp(u,w ∣ v) + lp(v, w ∣ u)

[17] showed if the ratio between ALG(uwv) and LP (uwv) is upper bounded Ä for every triangle (u,w, v),
the output of the Algorithm 2 has an approximation ratio of at most Ä in expectation. More precisely,

Lemma 4.1. ([17]) Fix a set of functions (f+
, f

−) with f
+(0) = f

−(0) = 0. If ALG(uwv) f ÄLP (uwv)
for every u,w, v ∈ V . Let ALG be the disagreement in clustering Algorithm 2 outputs and LP =

3e∈E+ xe +3e∈E−(1 − xe), then
E[ALG] f Ä ⋅ LP

The next question is: What is the best choice of functions f
+

and f
−

that minimize Ä? [17] analyze
four different types of triangles (namely, (+,+,+), (+,+,−), (+,−,−), and (−,−,−)) and achieve a value
of Ä = 2.06 by carefully selecting f

+
and f

−
. Note that for (+,+,−) and (+,+,+) triangles, the triangle

inequality is necessary in order to obtain such an approximation ratio with respect to the functions they
have designed. As we only have the partial triangle inequality for (+,+,−) triangles, we will need to come
up with different f

+
and f

−
functions.

We will first show how to pick the functions to achieve such a 2.4 approximation ratio when the solution
satisfies the partial triangle inequality. Then, we will show that under the framework of [17], the 2.4 factor is
the best ratio we can achieve when the solution does not satisfy the triangle inequality for all the triangles,
but only the partial triangle inequality for (+,+,−) triangles.

Lemma 4.2. Fix (f+
, f

−) as

f
+(x) = {1.2x if x f

5

6
,

1 if x g
5

6

and f
−(x) = x. For any {xe} such that xuw + xwv g xuv holds for any (u,w), (v, w) ∈ E

+
, (u, v) ∈ E

−
, we

have ALG(uwv) f 2.4 ⋅ LP (uwv).
To show that our chosen functions f

+(x) and f
−(x) yield a 2.4 approximation ratio, we will conduct a

case-by-case analysis based on different types of triangles. It is worth noting that [17] has already established
the ratio for (−,−,−) and (+,−,−) triangles even when the solution does not obey the triangle inequality.

Lemma 4.3. ([17]) Fix f
−(x) = x, we have ALG(uwv) f LP (uwv) for all (−,−,−) triangles.

Lemma 4.4. ([17]) Fix f
−(x) = x, if f

+(x) f 2x for x ∈ [0, 1], then we have ALG(uwv) f 2LP (uwv), for
all (+,−,−) triangles.

Let (a, b, c) denote the edge lengths of a triangle (u,w, v), that is, xuw = a, xvw = b and xuv = c. Define
the function C(a, b, c) as follows:

C(a, b, c) = ALG(uwv) − 2.4LP (uwv)
We begin by showing that for (+,+,−) triangles with edge weights (a, b, c) that satisfies the partial

triangle inequality, we have C(a, b, c) f 0.
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Lemma 4.5. Given our choice of f
+(x) and f

−(x), for any (+,+,−) triangle with edge weights (a, b, c),
where a + b g c and a, b, c ∈ [0, 1], we have C(a, b, c) f 0.

Proof. For a (+,+,−) triangle, we have

C(a, b, c) =(1 + 2c − 2cf
+(a) − 2cf

+(b) + f
+(a)f+(b))−

2.4(1 + a + b − c − bcf
+(a) − acf

+(b) − (1 − c)f+(a)f+(b))
Depends on whether a g

5

6
or b g 5

6
, we have 3 different cases. When a, b ∈ ( 5

6
, 1], we have f

+(x) = 1 and

C(a, b, c) = (1 + 2c − 2c − 2c + 1) − 2.4(1 + a + b − c − bc − ac − 1 + c)
= 2 − 2c − 2.4a − 2.4b + 2.4ac + 2.4bc

= (2.4a + 2.4b − 2)c + 2 − 2.4a − 2.4b (2.4a + 2.4b − 2 g 0 )

f 2.4a + 2.4b − 2 + 2 − 2.4a − 2.4b f 0

Since a and b are asymmetric, the second case is a ∈ [0, 5

6
] and b ∈ ( 5

6
, 1]. We know

C(a, b, c) = (1 + 2c − 2.4ac − 2c + 1.2a) − 2.4(1 + a + b − c − 1.2abc − ac − 1.2a + 1.2ac)
= −1.4 + 1.68a − 2.4b − 2.88ac + 2.88abc

= −1.4 − (−1.68a + 2.4b) − 2.88ac(1 − b) f 0

The last case is when a, b ∈ [0, 5

6
], we have f

+(x) = 1.2x and

C(a, b, c) = (1 + 2c − 2.4ac − 2.4bc + 1.44ab) − 2.4(1 + a + b − c − 0.96abc − 1.44ab)
= −1.4 − 2.4a − 2.4b + 4.4c + 4.896ab − 2.4ac − 2.4bc + 2.304abc

= (4.4 − 2.4a − 2.4b + 2.304ab)c − 2.4a − 2.4b + 4.896ab − 1.4

Since 4.4− 2.4a− 2.4b+ 2.88ab g 0 for a, b ∈ [0, 5

6
], C(a, b, c) will be maximized when c = min(1, a+ b).

Another point is that C(a, b, c) is maximized when a = b. When a = b f 1

2
, we have

C(a, b, c) = (4.4 − 2.4a − 2.4b + 2.304ab)c − 2.4a − 2.4b + 4.896ab − 1.4

= (4.4 − 2.4a − 2.4a + 2.304aa)2a − 2.4a − 2.4a + 4.896aa − 1.4

= 4.608a
3
− 4.704a

2
+ 4a − 1.4 = (a − 0.5)(4.608a2 − 2.4a + 2.8) f 0

When a = b ∈ [ 1
2
, 5

6
], we have

C(a, b, c) = (4.4 − 2.4a − 2.4a + 2.304aa) − 2.4a − 2.4a + 4.896aa − 1.4

= 7.2a
2
− 9.6a + 3 = (a − 0.5)(7.2a − 6) f 0

Combining all cases, we have C(a, b, c) f 0 for any (+,+,−) triangle whenever a + b g c.

The remaining case is the (+,+,+) triangles.

Lemma 4.6. Given our choice of f
+(x) and f

−(x), for any (+,+,+) triangle with edge weights (a, b, c) and
a, b, c ∈ [0, 1], we have C(a, b, c) f 0.

Proof. Consider a (+,+,+) triangle with edge lengths (a, b, c). We have:

C(a, b, c) =2(f+(a) + f
+(b) + f

+(c) − f
+(a)f+(b) − f

+(b)f+(c) − f
+(a)f+(c))−

2.4(a + b + c − cf
+(a)f+(b) − af

+(b)f+(c) − bf
+(a)f+(c))
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Since C(a, b, c) is symmetric, we can assume without loss of generality that a g b g c. We consider two
cases:

Case 1: At least one of a, b, c is greater than 5

6
. Since a g b g c, a g

5

6
. We have:

C(a, b, c) = 2(1 − f
+(b)f+(c)) − 2.4(a + b + c − cf

+(b) − af
+(b)f+(c) − bf

+(c))
= −(2.4a − 2)(1 − f

+(b)f+(c)) − 2.4(b − bf
+(c)) − 2.4(c − cf

+(b)) f 0

Case 2: a, b, c ∈ [0, 5

6
]. In this case, we have:

C(a, b, c) = 2(1.2a + 1.2b + 1.2c − 1.44ab − 1.44ac − 1.44bc) − 2.4(a + b + c − 4.32abc)
= 2.88(3.6abc − ab − bc − ac)
= 2.88(ab(1.2c − 1) + bc(1.2a − 1) + ac(1.2b − 1)) f 0

Combining all two cases, we have shown that C(a, b, c) f 0 for (+,+,+) triangles.

Now, we show that the 2.4 approximation ratio is the best we can obtain when the solution does not
satisfy the triangle inequality for all the triangles, but only the partial triangle inequality for (+,+,−)
triangles.

Lemma 4.7. For any (f+
, f

−) with f
+(0) = f

−(0) = 0, there exists a graph G and an assignment {xe}
that satisfies the partial triangle inequality such that there is a triangle (u,w, v) in G with ALG(uwv) g

2.4LP (uwv).
Proof. To establish the lower bound, let G be a graph containig a (−,−,−) triangle with edge weights (1, 1, 1),
a (+,+,−) triangle with edge lengths (0.5, 0.5, 1), and a (+,+,+) triangle with edge weights (0, 0, 1

2
).

Consider the (−,−,−) triangle with edge weights (1, 1, 1). Note that LP (uwv) = 0. If f
−(1) < 1, then

ALG(uwv) > 0, which makes ALG(uwv)/LP (uwv) unbounded. Therefore, we may assume f
−(1) = 1.

Next, we examine the (+,+,−) triangle with edge weights (0.5, 0.5, 1). Here, we have

LP (uwv) = 2 ⋅
1

2
(1 − f

+ (1
2
) ⋅ f−(1)) = 1 − f

+ (1
2
)

On the other hand, we have

ALG(uwv) = 2 (f+ (1
2
) + f

−(1) − 2f
+ (1

2
) ⋅ f−(1)) + (1 − f

+ (1
2
))2

= (1 − f
+ (1

2
)) ⋅ (3 − f

+ (1
2
))

Hence, we find that ALG(uwv) = (3 − f
+ ( 1

2
)) ⋅ LP (uwv).

Consider now the (+,+,+) triangle with edge weights (0, 0, 1

2
). Here, we have LP (uwv) =

1

2
and

ALG(uwv) = 2f
+ ( 1

2
). Thus, we obtain ALG(uwv) = 4f

+ ( 1

2
)LP (uwv).

Combining the above two equations, we obtain the inequality

ALG(uwv) g min (3 − f
+ (1

2
) , 4f+ (1

2
))LP (uwv)

When 3 − f
+ ( 1

2
) = 4f

+ ( 1

2
), we obtain f

+ ( 1

2
) = 0.6 and ALG(uwv) g 2.4LP (uwv).
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4.2 The Parallel Rounding Algorithm In Algorithm 2, after a pivot u is chosen, each unclustered
node v tries to join the cluster of u with probability 1 − puv. To parallelize Algorithm 2, first, we consider
an equivalent sequential algorithm, Algorithm 3. In this algorithm, instead of revealing the randomness of
all the edges incident to u after the pivot u is chosen, we reveal all such randomness at the beginning of
the algorithm, before we started to perform any pivoting steps. This can be thought as first constructing
an instance G

′
= (V,E ′+

, E
′−) where each edge uv is labelled as + with probability 1 − puv and labelled as

− with probability puv. Running the standard Pivot algorithm of [3] on G
′
will produce exactly the same

output as if we run Algorithm 2 directly, if we use the same randomness for puv in both algorithms. In sum,
we can pre-round the assignments {xe} into an instance G

′
and then the remaining step is to perform the

Pivot algorithm.

Algorithm 3 The sequential Pivot algorithm with pre-rounding.
Input: Graph G and an assignment {xuv} satisfying the partial triangle inequality.
Output: A partition of V .

1: function SeqPreRounding(G = (V,E), {xuv})
2: for (u, v) such that puv < 1 do
3: add (u, v) to E

′+
with probability 1 − puv

4: end for
5: Draw a permutation Ã of the vertex set V uniformly at random.
6: V0 ← V, t ← 0

7: while ∣Vt∣ > 0 do
8: Let the pivot w be the vertex with the smallest Ã(w) in Vt and set St ← {w}
9: For u ∈ Vt such that (u,w) ∈ E

′+
, add u to St

10: Vt ← Vt \ St, t ← t + 1

11: end while
12: return {S0, S1, ..., St−1}
13: end function

To parallelize Algorithm 3, note that the Pivot algorithm of [3] is known to be implementable efficiently
in the parallel setting [10, 29]. The observation was that we can perform multiple steps of Algorithm 3 in
one parallel round as follows. Vertices whose Ã-values are local minimum serve as the pivots. All non-pivot
nodes then join the neighboring pivot with the smallest Ã-value. For completeness, we give the description
of our parallel algorithm in Algorithm 4.

Note that the pivots chosen throughout the algorithm are exactly the vertices that comprise the greedy
maximal independent set (MIS) induced by the permutation Ã in G

′+
= (V,E ′+). [29] showed such a process

terminates O(log n) rounds. We can see that Algorithm 4 produces exactly the same output as Algorithm
3 if they are coupled with the same random permutation Ã and the same randomness for the probability
{puv}.

Finally, it is important to note that for our chosen functions f
+

and f
−
, if xuv = 1 then puv = 1. This

implies we can ignore the edge uv as it will never be added to E
′+

. Therefore, Algorithm 4 takes Õ(mf)
work and Õ(1) span, where mf = ∣{e ∈ E

− ∣ xe < 1}∪E
+∣ is the number of positive edges plus the number

of negative edges such that xe < 1.
Combining all together, we have the following lemma:

Lemma 4.8. (A restatement of Lemma 1.1) Given a graph G
+

= (V,E+) and an assignment
{xe}e∈E+∪E− satisfying the partial triangle inequality. Let LP = 3e∈E+ xe + 3e∈E−(1 − xe) and mf =

∣{e ∈ E
− ∣ xe < 1}∪E

+∣. Algorithm 4 outputs a clustering that is upper-bounded by 2.4 ⋅LP in Õ(mf) work

and Õ(1) span.

By Lemma 1.3 and Lemma 4.8, we prove our main theorem as follows:

Proof. [Proof of Theorem 1.1] First, we use Algorithm 1 to compute a (1 + ϵ)-approximate solution {ze}
of Primal

(2)
. We then set xe = ze for all positive edges and xe = 1 − ze for all negative edges. Let
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Algorithm 4 The parallel rounding algorithm.
Input: Graph G and an assignment {xuv} satisfying the partial triangle inequality.
Output: A partition of V , S.

1: function ParallelRounding(G = (V,E), {xuv})
2: for (u, v) such that puv < 1 do
3: add (u, v) to E

′
with probability 1 − puv

4: end for
5: G

′
← (V,E ′)

6: Draw a permutation Ã of the vertex set V uniformly at random.
7: while ∣V ′∣ g 1 do
8: Let W = {u ∈ G

′ ∣ Ã(u) < Ã(v) for every (u, v) ∈ G
′}.

9: ▷ W is the set of vertices in G
′
with no earlier neighbors.

10: For w ∈ W , set S(w) ← {w}
11: for v ∈ V (G′) \W do
12: Let w = argminu∈W,(u,v)∈G′ Ã(u)
13: S(w) ← S(w) ∪ {v}
14: ▷ every non-pivot vertex v joins the adjacent pivot with the smallest Ã(⋅)-value, if it exists.
15: end for
16: G

′
← G

′ \ãw∈W S(w)
17: S ← S ∪ (ãw∈W {S(w)})
18: end while
19: return S

20: end function

LP = 3e∈E+ xe +3e∈E−(1− xe). We have LP = 3e∈E+∪E− ze f (1+ ϵ) ⋅OPT(Primal
(2)). By Lemma 1.3,

this step takes Õ(ϵ−7m) work and Õ(ϵ−4) span.
After running Algorithm 4, we obtain a clustering whose cost is at most 2.4 ⋅ LP = (2.4 + O(ϵ)) ⋅

OPT(Primal
(2)) f (2.4+O(ϵ)) ⋅OPT(PrimalI), where OPT(PrimalI) denotes the optimal value of the

correlation clustering problem. Since mf = Õ(ϵ−2m), by Lemma 4.8, this step takes Õ(ϵ−2m) work and

Õ(1) span.
The total running cost is Õ(ϵ−7m) work and Õ(ϵ−4) span, which is dominated by the cost for solving

Primal
(2)

.

5 Maximal Edge-Disjoint Eligible Open Triangles

Recall that we are given a graph G = (V,E+
∪ E

−

>1), where E
+

is the set of positive edges and E
−

>1 is the
set of negative edges with non-zero flow (and thus, with length greater than 1). We let mf = ∣E+

∪ E
−

>1∣
and m = ∣E+∣. Note that we will always have mf = O(m logm/ϵ2) as implied by Lemma 3.10. We are also

given a length function l ∶ (V
2
) → [1,∞), with l(u, v) = 1 for each (u, v) ∈ (V

2
) \ (E+

∪ E
−

>1). Throughout

this section, we say that an open triangle (u,w, v) is eligible if (w, u), (w, v) ∈ E
+
, (u, v) /∈ E

+
, and

l(w, u) + l(w, v) + l(u, v) < (1 + ϵ)³. Our task is to compute a maximal edge-disjoint set S of P
′

2, where
P

′

2 ∶= {(u,w, v)∣ (u,w), (w, v) ∈ E
+
, (u, v) /∈ E

+
, l(u,w, v) < (1 + ϵ)³} is the set of eligible open triangles.

In this section, we will prove Lemma 1.3 by giving a parallel combinatorial algorithm for finding
a maximal edge-disjoint eligible open triangles. The algorithm uses O(m1.5

f log
3
n) work and O(log3 n)

span. Additionally, we will show that if Boolean matrix multiplication does not have a truly subcubic time
combinatorial algorithm, our algorithm is nearly work-optimal.

5.1 Parallel maximal edge-disjoint eligible open triangles We first show a natural sequential
algorithm for maximal edge-disjoint eligible open triangles and why it is difficult to parallelize it.
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The Conflict Graph Approach. One may think of constructing a conflict graph G = (V, E), where
V = P

′

2 is the set of all eligible (+,+,−) triangles and e ∈ E means there is a common edge between two
eligible triangles. Then once we run an efficient parallel greedy MIS algorithm [10, 29], we can get maximal

edge-disjoint eligible open triangles. However, a very subtle point is that despite there being O(m1.5)
(+,+,+) triangles on the graph G, there could be as many as eligible Θ(mn) (+,+,−) triangles, which is
Θ(n3) when the graph is dense. Thus, simulating the greedy MIS algorithm directly takes up to Õ(mn)
total work in the worst case.

A Sequential Greedy MIS Algorithm in O(m1.5
f ) Time. It is certainly not necessary to enumerate

all O(mn) eligible (+,+,−) triangles at once before invoking the MIS computation on the conflict graph G.
Consider the following sequential algorithm: for each positive edge (w, u) ∈ E

+
, the algorithm considers each

incident positive edges (w, v) in the order of non-decreasing length. Sorting the edges is beneficial because
once l(w, u)+ l(w, v)+ 1 g (1+ ϵ)³ we are certain that all eligible triangles involving (w, u) were explored.
Hence, it suffices to consider only the edges (w, v) such that l(w, u) + l(w, v) + 1 < (1 + ϵ)³.

Upon considering an edge (w, v), the algorithm checks if the triangle (u,w, v) is eligible. If (u,w, v) is
an eligible (+,+,−) triangle, the algorithm simply adds this triangle to the MIS and removes both edges
(w, u) and (w, v) from E

+
. Otherwise, we have found an unwanted triangle: it could be a (+,+,+) triangle,

a (+,+,−) triangle whose negative edge has a large length, or a (+,+,−) triangle whose negative edge has
already been added some triangle in the MIS.

In the end of the algorithm, we are able to deduce that for each positive edge (w, u) ∈ E
+
, either it

belongs to some eligible triangles in the returned MIS, or all triangles involving the edge (w, u) are now
unwanted. To analyze the runtime of the sequential algorithm, it suffices to bound the number of triangles
that are once considered throughout the execution. We notice that the number of once-considered triangles
is at most the number of unwanted triangles plus the size of the returned MIS.

To bound the total number of unwanted triangles, we observe that “the third edge” of the inspected
unwanted triangle is either a positive edge, a negative edge that is already taken into the MIS, or a negative
edge that has non-zero congestion. Such negative edges are not many! There can only be at most O(mf) of
them. Therefore, with the following folklore result, we are able to bound the number of explored unwanted
triangles (we call them alive triangles) and thus obtain a O(m1.5

f ) time sequential algorithm.

Lemma 5.1. (folklore) Let X ¦ (V
2
) be an arbitrary set of edges. Then there are at most ∣X∣1.5 triangles

using only edges in X. □

Corollary 5.1. At any moment, the number of triangles that are explored but unwanted is at most
O(m1.5

f ). □

Challenges to Parallelization. There are some challenges one has to overcome when parallelizing the
above sequential algorithm. The first idea would be to use separate processors for each positive edge (with
a direction) (w, u) ∈ E

+
. Imagine that each positive edge has a list of positive edges (w, v) to be explored.

We say that an edge with a direction (w, u) ∈ E
+

is active if there are still unexplored triangles (u,w, v) for
(w, u) where (w, v) ∈ E

+
. To simulate the sequential algorithm, each processor on behalf of a positive edge

attempts to explore an eligible triangle. However, there could be some issues when multiple eligible triangles
are found at the same time.

For example, if a parallel algorithm discovers O(m) eligible triangles (one for each positive edge) at the
same time, there could be multiple eligible triangles sharing the same edge. In this case, only a few triangles
can be added to the MIS and the others become either unwanted (if the negative edge is used up) or destroyed
(if a positive edge is used up). This creates a long dependency chain and we will have no guarantee that
this algorithm terminates in polylogarithmic time. To mitigate this situation, it seems that for each positive
edge (w, u) ∈ E

+
, the algorithm has to consider more than one triangle at a time and run a parallel MIS on

a larger set of eligible triangles. However, if the algorithm discovers too many eligible triangles at a time,
the total work may become too large and exceed Ω(m1.5

f ).

5.1.1 The parallel algorithm for maximal edge-disjoint eligible open triangles
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The Trick of Doubling or Reset. Fortunately, we can apply a doubling trick to the above approach.
The parallel algorithm now executes in rounds, and there is a global “exploration rate parameter” r, initially
set to be 1/2. In each round, every positive edge explores a bunch of r new triangles. Next, the algorithm
collects all eligible triangles C and runs a parallel maximal independent set (MIS) algorithm on the conflict
graph G[C]. The eligible triangles added to the MIS are then removed from the graph. Finally, depending
on how many triangles are still alive (explored but unwanted) on the graph, the algorithm either doubles the
parameter r or resets r to be 1.

Intuitively, in each round, the algorithm explores a set of eligible (+,+,−) triangles as long as its size
is within a constant fraction of currently alive triangles. Since the total number of alive triangles is at most
O(m1.5

f ) by Corollary 5.1, the total work of the algorithm can then be Õ(R ⋅ m
1.5
f ), where R is the total

number of rounds (we will show in Lemma 5.3 that R = O(log2 n)).
The algorithm is summarized in Algorithm 5. To describe our algorithm in greater detail, we introduce

the following notations and highlight the main idea.
Active Arcs A

i
. For each positive edge (w, u) ∈ E

+
, there are two ways to form an eligible open

triangle — either attaching another positive edge incident to w or incident to u. Moreover, it suffices to
consider the eligible triangles where (w, u) is the shorter positive edge. Our parallel algorithm considers
these two types of triangles separately. In particular, at each round i, the algorithm maintains an active
arc set A

i
that contains all arcs (w, u) such that there are still some positive edges incident to w not being

explored yet from the viewpoint of (w, u). An arc becomes inactive if all eligible triangles are explored or
the associated edge is removed from E

+
.

Alive Triangles alive(w, u). As we mentioned before, an alive triangle is an explored triangle but
unwanted (either ineligible or some edge that already belongs to a triangle in the output set). Given an

active arc (w, u) ∈ A
i
, we define the set alive(w, u) to be the triangles (u,w, v) that has been explored so

far, such that l(w, u) < l(w, v) (or ID(u) f ID(v) if l(w, u) = l(w, v)) and (w, v) ∈ E
+

has not been removed
yet.

Sorted Neighbor Lists N
static
w , N

i
w. For all active arcs leaving w, the lists of positive edges to be

explored are all incident to w. Hence, it would be convenient for the algorithm to sort the neighbors N(w)
by its incident edge length l(w, v) in increasing order, and breaking ties by vertex ID. The sorted list does
not change frequently, as there will be many active arcs accessing it via the exploration. We keep the sorted
list as N

static
w and only update the list in each “reset”. In particular, in a round with exploration rate r,

each active edge (w, u) ∈ A
i
explores the neighbors in N

static
w [idxstatic(w, u)+ r, . . . , idxstatic(w, u)+ 2r− 1],

where idxstatic(w, u) is the index of u appearing in N
static
w . We remark that (1) it is possible for an active

arc to explore a positive edge that has just been removed in the previous round, and (2) after the “reset”, the
same ineligible triangle may be explored (and become alive) again, but it will not cause a problem for us.

Moreover, to support fast calculation to ∣alive(w, u)∣ at the beginning of each round, the algorithm
maintains the latest sorted list of neighbors N

i
w for each round i and each vertex w.

Counting Alive Triangles Faster with cur(w, u). To compute ∣alive(w, u)∣, the algorithm memoizes
the quantity cur(w, u) which is defined to be the edge length l(w, v) of the last explored triangle (and the

vertex ID v for tie-breaking). Since the algorithm maintains the updated sorted list N
i
w in each round,

it suffices to perform a binary search on N
i
w to obtain the exact count ∣alive(w, u)∣ = (idxcur(w, u) −

idxself (w, u)), where idxcur(w, u) is the index of the last explored neighbor (who has not been deleted yet)

from the active arc (w, u) in the list N
i
w, and idxself (w, u) is the index of the vertex u itself in N

i
w.

We remark that there are definitely more efficient parallel data structures (i.e., O(1) span) that maintain
the number of alive triangles. However, the bottleneck to our algorithm is the MIS part which already
has an O(logmf) = O(log n) span. Thus, we choose a simpler O(log n) span implementation for ease of
understanding.

Resetting the Exploration Rate. If the count of alive triangles becomes too small, say less than
1

4
∣Ai∣ ⋅ r, the algorithm can not afford to explore 2r more triangles and hence “resets” the exploration.

Specifically, the algorithm sets r ← 1, updates the sorted neighboring list N
static
w , and resets the search

progress cur(w, u) for every active arc. Notice that two things are not being reset — the active arcs A
i

is
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Algorithm 5 Find any maximal edge-disjoint set of eligible (+,+,−) triangles.

1: function MaximalEligibleTriangle(G)
2: S ← ∅; i ← 0; r ← 1/2.
3: For each w ∈ V , obtain two lists of sorted neighbors N

static
w , N

0
w ← N(w).

4: For each positive edge, add its two directions to the active set A
0
← E

+
.

5: For each edge with direction (w, u) ∈ E
+
, set cur(w, u) = (l(w, u), u).

6: while A
i
≠ ∅ do

▷ Part 1: resetting or doubling the exploration rate.

7: for each active arc (w, u) ∈ A
i
parallel do

8: Locate indices idxcur(w, u) and idxself (w, u) in N
i
w using binary search.

9: Obtain the count ∣alive(w, u)∣ = idxcur(w, u) − idxself (w, u).
10: end for
11: if 3(w,u)∈Ai ∣alive(w, u)∣ < 1

4
∣Ai∣ ⋅ r then

12: “Reset”: r ← 1.
13: For each active arc (w, u) ∈ E

+
set cur(w, u) ← (l(w, u), u).

14: Update the list of sorted neighbors N
static
w ← N

i
w.

15: else
16: “Double”: r ← 2r.
17: end if

▷ Part 2: collecting eligible triangles.

18: C ← ∅.
19: for each (w, u) ∈ A

i
, v ∈ N

static
w [idxstatic(w, u) + r, . . . , idxstatic(w, u) + 2r − 1] do

20: if (u,w, v) is eligible and (u,w), (v, w), (u, v) are not marked then
21: C ← C ∪ {(u,w, v)}
22: end if
23: end for
24: Update cur(w, u) ← (l(w, v′), v′) where v

′
is the last inspected neighbor for (w, u) ∈ E

+
.

▷ Part 3: obtaining an MIS from conflict graph.

25: Find an MIS S ¦ C in the conflict graph G[C]. ▷ See Lemma 5.5.
26: for (u,w, v) ∈ S do
27: Remove edges (u,w) and (v, w) from E

+
and mark all edges (u,w), (v, w), and (u, v).

28: end for
29: S ← S ∪ S.

▷ Part 4: update the set of neighbors and active edges.

30: Recompute the list of sorted neighbors N
i+1
w ← N(w). ▷ Some edges were removed!

31: A
i+1

← ∅. ▷ Update A
i+1

from A
i
.

32: for (w, u) ∈ A
i

and (w, u) is not marked do

33: if v ∶= N
static
w [idxstatic(w, u) + 2r] exists and l(w, u) + l(w, v) + 1 < (1 + ϵ)³ then

34: A
i+1

← A
i+1

∪ {(w, u)}.
35: end if
36: end for
37: i ← i + 1. ▷ Increment the round number.
38: end while
39: return S

40: end function
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still decreasing, and the output set S is still increasing in size. In particular, we can show that the number
of active arcs, compared with the number of active arcs at the last “reset” round, must be reduced by a
constant fraction (Lemma 5.3), leading to a polylogarithmic span.

We summarize our algorithm in Algorithm 5. Now, we are ready for the analysis.

5.1.2 Correctness

Lemma 5.2. (Correctness) Let S be the output of Algorithm 5. Then, S is an MIS of the conflict graph
G.

Proof. It suffices to show that all eligible triangles are explored, which is indeed guaranteed by Line 6, since
at the end of the algorithm A

i
= ∅, which implies that all arcs become inactive.

5.1.3 Work and Span
Span Analysis. In Algorithm 5, each outermost loop can be identified as a “double” round or a “reset”

round. It is clear that between any two “reset” rounds there can be at most log∆ = O(log n) “double” rounds.
Hence, it suffices to show that the total number of “reset” rounds is at most O(logm). Let the potential Φ
to be number of active arcs (i.e., ∣Ai∣) throughout the execution. The following lemma states that between
any two consecutive “reset” rounds, the potential Φ is dropped by at least a constant fraction.

Lemma 5.3. Consider a round that is a “reset” round. Let Φ
′
be the number of active arcs at the beginning

of the previous “reset” round, and let Φ be the number of active arcs at the beginning of this round. Then,
Φ

′
−Φ g

1

16
Φ. That is, at least 1/17 ≈ 5.88% of the active neighbors were removed during the previous round.

Proof. Let r be the exploration rate at the beginning of this “reset” round. If no positive edge was removed
and no active arc exhausted their exploration since the last “reset”, then, the number of alive triangles, by
definition, will be exactly Φ

′(2r− 1). Since this is a “reset” round and Φ
′(2r− 1) > 1

4
Φr, there must be some

alive triangles being destroyed since the last “reset” round.
There are only two types of events that can cause an alive triangle to disappear:

• Type 1 Event: an active arc finishes its exploration and became inactive.

• Type 2 Event: a positive edge is removed and marked in some round.

We will later show that for each of these events, at most 8r−4 alive triangles are removed. Let E1 (resp.
E2) be the number of type 1 (resp. type 2) events that happened since the last “reset” round. Note that this
round is a “reset” round, so we have 3(w,u)∈Ai ∣alive(w, u)∣ < 1

4
Φr and

E1 + E2 g

Φ
′(2r − 1) − 1

4
Φr

8r − 4

g

7

4
r − 1

8r − 4
Φ (Φ

′
g Φ)

g
3

16
Φ. (r g 1)

On the other hand, note that type 1 and type 2 events are also the only two reasons for the potential to
decrease. Each type 1 event reduces the potential by 1 since one active arc is removed. According to Line 27
of the algorithm, the number of type 2 event is exactly twice as many as the size of the triangles in an MIS
S ¦ C across all the rounds since the last “reset”. Since these triangles are edge-disjoint, and at the time a
triangle is added to C one of the positive edges must be active. Hence, we conclude that

Φ
′
− Φ g max{E1,

1

2
E2} g

1

16
Φ. (Equality holds whenever E1 =

1

2
E2.)

We now aim to show that both type 1 and type 2 events contribute to the reduction of potential by at
most 8r−4 alive triangles. Let us first consider a type 1 event, in which an active arc finishes its exploration
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and is removed from A
i
. Note that alive(w, u) f 2r − 1 for any (w, u) ∈ A

i
, and being inactive does not

affect the counting of other active arc’s alive triangles. Thus, the number of alive triangles is reduced by at
most 2r − 1.

Next, let us consider a type 2 event, where the algorithm removes (x, y) ∈ E
+

and adds it to S. We
claim that such an edge destroys at most 8r − 4 alive triangles. First, suppose that both (x, y) and (y, x)
are active. In this case, consider the sets alive(x, y) and alive(y, x), each of which contains at most 2r − 1

triangles. Thus, removing (x, y) destroys at most 4r − 2 alive triangles from alive(x, y) and alive(y, x).
Furthermore, the removal of (x, y) affects the alive triangles that use the (x, y) as the longer positive

edge, that is there might be some v
′
such that (x, y) ∈ alive(x, v′) or (y, x) ∈ alive(y, v′). However, there

can be at most 2
0
+2

1
+⋯+ r = 2r−1 of active arcs (x, v′) such that (x, y) ∈ alive(x, v′). Specifically, these

active arcs must satisfy v
′
∈ N

static
x [idxstatic(x, y)− (2r− 1), . . . , idxstatic(x, y)− 1]. By symmetry, there can

be at most 2r − 1 active arcs (y, u′) that ever consider (u′
, y, x) as an alive triangle. Hence, there will be at

most 8r − 4 alive triangles being destroyed for each type 2 event.

Work Analysis. Now we focus on the total work for Algorithm 5. For Part 1, performing a binary
search for each active arc incurs O(m log n) work per round. Computing the number of alive triangles incurs
O(m) work per round. Updating the list of sorted neighbors incurs O(m logm) work per round. For Part 4,
computing N

i
w takes O(m logm) work per round and updating A

i+1
takes O(m) work per round. For Part

2 and Part 3, we first bound the size of collected eligible triangles in each round.

Lemma 5.4. Within each round, there are at most O(m1.5
f ) eligible (+,+,−) triangles in C. Moreover, the

total work that computes C in a round is also O(m1.5
f ).

Proof. We first observe that in any round, 3w,u ∣alive(w, u)∣ = O(m1.5
f ) according to Corollary 5.1. If in a

round the parameter r is reset, it is clear that ∣C∣ = O(m). Otherwise, according to Line 11, we must have
1

4
∣Ai∣ ⋅ r f 3w,u ∣alive(w, u)∣ = O(m1.5

f ). Since each active arc explores at most 2r new triangles, at most

∣Ai∣ ⋅ (2r) = O(m1.5
f ) triangles are added to C and the work for Part 2 is also O(m1.5

f ).

Lemma 5.5. Given a non-empty collection C of triangles, there exists a parallel algorithm that returns an
MIS on G[C] in O(∣C∣ log ∣C∣) work and O(log ∣C∣) span with high probability.

Proof. We use the parallel greedy MIS algorithm, which works as follows. the algorithm selects an ordering
of the vertices Ã, uniformly at random. In each round, all local minima are added to the independent set
and removed from the graph, along with their neighbors. Here, local minima refer to all vertices that appear
before their neighbors in the ordering. [29] showed that this algorithm terminates in O(log n) rounds with
high probability where n refers to the number of vertices in the graph.

In our case, we cannot explicitly construct G[C] since it contains O(m1.5
f ) vertices and up to O(m3

f)
edges. However, we can still compute the local minima of C without constructing G[C]. Our key observation
is that any two triangles of C are neighbors in G[C] if and only if they have a common edge in G. Thus,
we compute the local minima of edges of triangles instead of accessing edges in G[C]. Specifically, let
local(e) = mine∈(u,w,v),(u,w,v)∈C Ã(u,w, v). Then, a triangle (u,w, v) is a local minimum if and only if
Ã(u,w, v) = local(u,w) = local(w, v) = local(u, v). Once we obtain the local minima of triangles in C, we
can remove those nodes and their neighbors by removing all triangles whose edges intersect with those local
minima of triangles. Note that each triangle in C contains 3 edges, so the total amount of work is O(∣C∣)
and the span is O(log ∣C∣).

Proof. [Proof of Lemma 1.3] By Lemma 5.3, Lemma 5.4, and Lemma 5.5, we conclude that the algorithm

runs in O(m1.5
f log

3
n) work and O(log3 n) span.

5.2 A Randomized Reduction from Triangle Detection One may wonder whether there exists a
faster sequential algorithm for the maximal edge-disjoint eligible open triangles problem. We show that,

unfortunately, any combinatorial algorithm for this problem must take Ω(m1.5−¶
f ) time for some ¶ > 0,
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unless the Boolean matrix multiplication problem has a truly cubic combinatorial algorithm. The conjecture
on the non-existence of such an algorithm has been commonly used to establish lower bounds in fine-grained
complexity theory (see [1]). Unless such a conjecture is refuted, our algorithm is optimal up to a polylogn
factor.

Instead of solving the maximal set of triangles, we consider a relaxed version of the problem, the eligible
open triangle detection problem:

• Input: An undirected graph G = (V,E+
∪E

−

>1) with a length function l ∶ (V
2
) → [1,∞] where l(u, v) = 1

for every edge uv ∈ (V
2
)\(E+

∪E
−

>1), a non-negative real number L. Let n = ∣V ∣ and mf = ∣E+
∪E

−

>1∣.

• Output: Output “Yes”, if there is a triangle (u,w, v) such that (u,w), (w, v) ∈ E
+
, (u, v) /∈ E

+
, and

l(u, v) + l(v, w) + l(v, u) < L. Output “No”, if no such triangle exists.

Why do we consider the relaxed problem? Algorithm 1 requires finding a maximal set of eligible

open triangles. If there is an algorithm that finds the maximal set of open eligible triangles in O(m1.5−¶
f )

time for some constant ¶ > 0, it can clearly be used to solve the eligible open triangle detection problem also

in O(m1.5−¶
f ) time.

More generally, the eligible open triangle detection problem captures the key difficulty of our steepest
descent algorithm. One may argue that it may not necessarily need to find a maximal set of eligible open
triangles but some open triangles, or solve some even easier tasks. However, note that any algorithm that
follows the framework of Algorithm 1 must send some flow through the (nearly) most beneficial triangle.
Thus, it has to find at least one open triangle with some bounded length.

Triangle Detection via Eligible Open Triangle Detection Given a graph Ĝ = (V̂ , Ê), the
(original) triangle detection problem is to determine whether there exists a (u, v, w) ∈ Ĝ such that
uv, vw,wu ∈ Ê. Williams and Williams [43] proved the following hardness result for the triangle detection
problem:

Theorem 5.1. ([43]) The following all have truly subcubic (i.e. O(n3−¶) for some constant ¶ > 0)
combinatorial algorithms, or none of them do:

• Boolean matrix multiplication (BMM).

• Detecting if a graph has a triangle.

Now we will show a reduction from the triangle detection problem to the eligible open triangle detection
problem, with an overhead of O(n2), as stated by the following lemma:

Lemma 5.6. Suppose that there is an algorithm A that solves the eligible open triangle detection problem in
T (n) time, there is an algorithm that detects if a graph contains a triangle in Õ(T (n)+ n

2) time, with high
probability.

Proof. To detect if a graph Ĝ = (V̂ , Ê) has a triangle, we use Algorithm 6. The algorithm consists of
O(log n) repetitions. In each repetition, it adds edges e ∈ Ê to E

+
with probability 1/2 and sets the edge

weight to 1. If there is a triangle (u,w, v) in G, then with probability at least (3/8), there will be a triangle
such that exactly two of the edges are in E

+
and the length of the triangle is 3, since a non-edge in G has

length 1.

For each uv ∈ (V̂
2
) \ Ê, we add it to E

−

>1 with length 5. So any triangle containing edges from E
−

>1

has length at least 5. If there is no triangle in Ĝ, then any open triangle in G has a length of at least 5.
Algorithm A sets L to 4 and so it will always output “No”.

Since we repeat such a process for O(log n) times, if there is a triangle in Ĝ, then with high probability,
Algorithm 6 outputs “Yes”. If Ĝ contains no triangle, then Algorithm 6 outputs “No”. The running time is
Õ(n2

+ T (n)) because, in each iteration, it takes O(n2) time to create the graph and T (n) time to invoke
the algorithm A.
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Algorithm 6 Triangle detection via eligible open triangle detection.
Input: A graph Ĝ = (V̂ , Ê).
Output: “Yes” if there is a triangle (u,w, v) ∈ G. Otherwise, output “No” .
Oracle: A(G,L), which returns “Yes” if there exists an eligible open triangle of length less than L in G, and
“No” otherwise.

1: function TriangleDetection(Ĝ = (V̂ , Ê))
2: loop O(log n) times
3: V ← V̂ , E

+
← ∅, E

−

>1 ← ∅.

4: For uv ∈ (V̂
2
) \ Ê, add uv to E

−

>1, set l(u, v) = 5.

5: For e ∈ Ê, with 1/2 probability, add e to E
+

and set l(e) = 1.
6: r ← A(G = (V,E+

∪ E
−

>1, l), L = 4).
7: If r is “Yes”, return “Yes”.
8: end loop
9: return “No”.

10: end function

Corollary 5.2. For any constant 0 < ¶ < 1, no combinatorial algorithm can solve the maximal edge-disjoint

eligible open triangles problem in O(m1.5−¶
f ), unless there is a combinatorial algorithm solving Boolean matrix

multiplication in truly subcubic time.

Proof. Suppose to the contrary there is an algorithm that solves the maximal edge-disjoint eligible open

triangles problem in O(m1.5−¶
f ) time. Then by our previous argument, it can be used to solve the eligible

open triangle detection problem in O(m1.5−¶
f ) time. Since mf f n

2
, this algorithm runs in O(n3−2¶) time.

By Lemma 5.6, the triangle detection problem can be solved in Õ(T (n) + n
2) = Õ(n3−2¶

+ n
2) time. This

in turns implies there is a truly subcubic time algorithm for Boolean matrix multiplication by Theorem 5.1.
A contradiction occurs.

Note that we only show that combinatorial algorithms are unlikely to beat O(m1.5−¶
f ), which excludes,

for example, algebraic algorithms. However, we argue that even if we allow all types of algorithms, it is
still unlikely that we can obtain an algorithm that is closer to linear time in mf . Note that, the current

best algorithm for triangle detection takes O(min(nÉ
,m

2ω

ω+1 )) time [9], where É > 2.37 is the current best
exponent of matrix multiplication. If we have any algorithm that solves the maximal edge-disjoint eligible

open triangles problem in O(mÉ/2−¶
f ) = O(m1.185−¶

f ) time for any constant ¶ > 0, by Lemma 5.6, it would

imply an algorithm for the triangle detection that runs in O(nÉ−2¶) time. Such a result would be a major
improvement for the triangle detection problem.
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A Implementation in MPC Model with Õ(ϵ−3m1.5) Total Space

We note that our algorithms (Algorithm 1, Algorithm 4, and Algorithm 5) work well also in the Massively
Parallel Computation (MPC) model, with a small overhead in rounds. Let ¶ ∈ (0, 1) be a constant. In the

MPC model, each machine has O(n¶) local storage, and we are allowing Õ(ϵ−3m1.5/n¶) machines to run at
the same time. The rest of the section devotes to show that our algorithms runs in the MPC model with
only a multiplicative O(1/¶) factor of overhead in rounds.

Algorithm 1 in MPC. There are only three places (line 5, 7, and 17) that need attention. In Line 5,
computing the sum of all edge lengths requires knowing the congestion of each edge (and the number of

non-zero congestion negative edges). Since the algorithm explicitly stores the l
(t)
uv values for all non-zero
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congested edges (by Lemma 3.10 there are at most O(ϵ−2m logm) of them), Line 5 can be simulated in

O(lognδ ϵ
−2
m logm) = O(1/¶)

rounds. Notice that we assume ϵ g 2/m so the overhead does not have additional poly(1/ϵ) factors.
In Line 7, see the analysis to Algorithm 5 below. Notice that we do not explicitly compute P

′

2.

In Line 17, by Lemma 3.9 we know that there are at most O(ϵ−4 log2 m) iterations, so all Φ(t) and ³
(t)

values can be stored in one machine. Thus only O(1) rounds are needed to implement Line 17.

In case where ϵ is super small, book keeping all the histories of {y(t)(u,w,v)} and {l(t)e } for all t may be
expensive. To save the total amount of space, we do not need to store all the history — it suffices to keep

the values {z(T )
e } and update them whenever T gets updated.

Algorithm 4 in MPC. In Line 6, drawing a permutation can be simulated by choosing uniformly at
random real number in [0, 1] for each vertex, this takes O(1) rounds in MPC. Furthermore, it takes O(1/¶)
rounds to implement Line 9 and Line 12 since for each vertex the algorithm has to gather the smallest values
among its neighbors. All other lines have a constant overhead when implemented in MPC.

Algorithm 5 in MPC. Sorting the neighbors (Line 3 and 30) takes O(1/¶) rounds in MPC. Simulating
a binary search (Line 8) takes O(1/¶) rounds. Counting alive triangles (Line 11) takes O(1/¶) rounds. Inspect
and collect the set C of eligible triangles (Line 19) takes O(1) rounds. Finally, computing an MIS from the
conflict graph G[C] in Line 25 takes O((1/¶) log n) rounds by simulating [29], which has an additional O(1/¶)
factor comparing to the PRAM implementation.
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