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Abstract

It is well-known that the 7-fixed points of a Schubert variety in the flag variety GL,(C)/B can
be characterized purely combinatorially in terms of Bruhat order on the symmetric group S,. In
a recent preprint, Cho, Hong, and Lee give a combinatorial description of the T-fixed points of
Hessenberg analogues of Schubert varieties (which we call Hessenberg Schubert varieties) in a
regular semisimple Hessenberg variety. This note gives an interpretation of their result in terms
of Bruhat order by making use of a partition of the symmetric group defined using so-called
subsets of Weyl type. The Appendix, written by Michael Zeng, proves a lemma concerning
subsets of Weyl type which is required in our arguments.

1. Introduction

The main result of this note is a characterization of the 7-fixed point sets of (opposite)
Hessenberg Schubert varieties in terms of Bruhat order. We achieve this by giving an inter-
pretation in terms of Bruhat order of the notion of reachability — a concept introduced by
Cho, Hong, and Lee in [3]. Hessenberg varieties have recently garnered great interest in dif-
ferent research communities due to their connections (which have come to light in the past
decade) to many areas, not the least of which is the famously unsolved Stanley—Stembridge
conjecture in algebraic combinatorics [12]; see [1] for an overview. In [3], the authors ana-
lyze the Bialynicki—Birula decomposition of a regular semisimple Hessenberg variety, and
they introduce and use the notion of reachability to give an explicit description of the T-fixed
points of the closure of a given Bialynicki-Birula cell. Such a closure is called a Hessenberg
Schubert variety, since these are analogues of classical Schubert varieties in the flag variety.

To describe our results, we briefly recall some terminology. Let w € &, and Q;, :=
B_wB/B denote the corresponding opposite Schubert cell in the type A flag variety
GL,(C)/B. Here B and B_ denote the Borel subgroups in GL,(C) of upper-triangular and
lower-triangular matrices, respectively. Given u € S, the partial order on S,, defined by

(L.1) w < u whenever uB € Q,, := Q_fj)

is called Bruhat order. This order is fundamental in the study of the symmetric group
and the geometry of flag varieties and related spaces. Now let S € gl,(C) be a diagonal
matrix with distinct eigenvalues, & : [n] — [n] a Hessenberg function, and Hess(S, h)
the corresponding regular semisimple Hessenberg variety in GL,(C)/B (for definitions see
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Section 2). We call the intersection Q7 , = Q N Hess(S, ) the (opposite) Hessenberg

Schubert cell indexed by w € &,,, and its closure Q,,, := QTwh is the opposite Hessenberg
Schubert variety indexed by w. The torus 7" := BN B_ of diagonal matrices in GL,(C) acts
on Hess(S, h) by left multiplication. Cho, Hong, and Lee gave an explicit characterization
of the T-fixed points in €, in terms of reachability [3]. Our main contribution in this
note is a reinterpretation, using subsets of Weyl type and the corresponding partition of S,,,
of reachability in terms of Bruhat order (Proposition 3.13), which then allows us to give a
concrete description of the T-fixed points in €, in terms of Bruhat order (Theorem 4.8 and
Corollary 4.12).

As is implied above, our main tool is a partition of S, into sets W(S, h) defined by
particular subsets S in the type A root system, called subsets of Weyl type (with respect to
h); cf. Definition 2.8 below. This partition was introduced by Sommers—Tymoczko in [11]
and subsequently used by the second author in [10] to prove that the Betti numbers of regular
Hessenberg varieties are palindromic in all Lie types. Lemma 2.11, proven in Appendix A
below by Michael Zeng, proves that each set W(S, ) is a weak Bruhat interval. Let ws €
W(S, h) denote the maximal element in this interval. Theorem 4.8 below shows that Qgs’h =
Qr - Thus the notion of reachability, which defines a Hessenberg variation of the partial
order in (1.1), can be characterized using Bruhat order.

Example 4.16 below shows that Q,,. , is not simply a union of the Hessenberg Schubert
cells indexed by u > ws. In other words, our Theorem 4.8 does not yield a complete
description of the Hessenberg Schubert variety Q,, 5.

We expect that our interpretation of the results of Cho—Hong-Lee in the language of
subsets of Weyl type and Bruhat order will yield further insights into the geometry and com-
binatorics of Hessenberg varieties. We hope that this interpretation will shed light on the
still-unsolved problem of fully characterizing the closures of (opposite) Hessenberg Schu-
bert cells. We leave this problem for future work.

2. Background

2.1. Hessenberg Varieties and Hessenberg Schubert cells. Hessenberg varieties in Lie
type A are subvarieties of the (full) flag variety GL,(C)/B where B is the Borel subgroup of
upper triangular matrices in GL,(C). Let G = GL,(C) and let B_ denote the Borel subgroup
of lower triangular matrices. The following two cell decompositions of G/B (both called a
Bruhat decomposition of G/B) are well-studied:

@2.1) G/B=| | x;=1] ]
wes, wes,
where X, := BwB/B is the Schubert cell and Q; = B_wB/B is the opposite Schubert cell.
The closure X, := X_{; (respectively Q,, := Q°) is called the Schubert variety (respectively
opposite Schubert variety) for w € S,. It is an important and well-known fact that
(2.2) X,=| |x; and @, =| |Q;
usw uzw

where < denotes the Bruhat order on S,, defined in (1.1).
We denote the root system of g[,(C) by @ = {r;, —¢; | 1 <i # j < n} with positive roots



T-rixep PoiNTs OF HESSENBERG SCHUBERT VARIETIES 639

O* = {t;—tj € ®|i < j}, negative roots @~ = {t; —t; € ® | i > j}, and simple positive roots
A={ti—ti;1 |1 <i<n-1}. Givenw € S, the inversion set of w is

Nw):={t;—t; € ®" |w(t; —t) €D} = D" Nuw ' (®).

We set {(w) := [N(w)| = [{i < j|w(@) > w(j)}|. It is known that X =~ C!®) and Q) =~ CN-tw)
where N = 3%/ (n — i) = dimc GL,(C)/B.

A Hessenberg variety in G/B is specified by two pieces of data: a Hessenberg function,
that is, a nondecreasing function 4 : {1,2,...,n} — {1,2,...,n} such that h(i) > i for all
i, and a choice of an element X in gl(n,C). We frequently write a Hessenberg function
by listing its values in sequence, i.e., i = (h(1),h(2),...,h(n)). The Hessenberg variety
associated to the linear operator X and Hessenberg function / is defined as

(2.3) Hess(X,h) = {gB | Xg; € spanc{gi,...,gnp} forallie{l,2,...,n}}

where g1, ..., g, denote the columns of g € GL,(C). In this paper, we focus on the case
when X is a regular semisimple operator S (i.e., diagonalizable with distinct eigenvalues);
more specifically, we fix S to be a diagonal matrix with distinct eigenvalues. We refer to the
corresponding Hessenberg variety Hess(S, /) as a regular semisimple Hessenberg variety.
It was established in [5] that Hess(S, h) is a smooth, irreducible variety of dimension Nj, =
S (i) = ).

For each w € S, we consider the Hessenberg Schubert cell, defined as

X5 = X, N Hess(S,h) = BuB/B N Hess(S, h)

w.

and also the opposite Hessenberg Schubert cell, defined as

2.4) Q. = Q, NHess(S,h) = B_.wB/B N Hess(S, h).
From this, we obtain decompositions of the regular semisimple Hessenberg variety
(2.5) Hess(S,h) = | | Xz, =] | @,

wes, wes,

where X° | = C®) and Q¢ , ~ CNv=() for
(2.6) Gw) = i < j | w(i) > w(j) and j < h(i)}.

When h = (n,n,...,n) then Hess(S, h) = G/B and we recover the Bruhat decomposition of
GL,(C)/B from (2.1). We now define the Hessenberg Schubert variety for w € S, to be
Xwp = X, and the opposite Hessenberg Schubert variety to be Q,,;, := QTwh Our main
result gives a combinatorial characterization of Q,,;, for certain permutations w.

RemaArk 2.7. One may define the Hessenberg Schubert cells and opposite Hessenberg
Schubert cells in the language of Biatynicki—Birula strata, as in [3]. However, our definition
is equivalent, and the Morse-theoretic point of view is not necessary for our purposes.

2.2. Subsets of Weyl type and acyclic orientations. As mentioned above, one of the
contributions of this note is to introduce the theory of subsets of Weyl type into the study
of Hessenberg Schubert closure relations. We briefly recall the relevant terminology and
results.
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Let i : [n] — [n] be a Hessenberg function. Then & determines a subset of ®* defined by
Oy ={t;—t; € ®|i< jand j < h(i)}

and similarly, we let @, = {t; - ;| i < j and j < h(i)} € ®~. Note that {,(w) = |[N(w) N O}
where ¢, is the Hessenberg length function defined in (2.6) above.

DeriniTioN 2.8. Given a subset S C @} we say that S is @} -closed if for all @, 3 € S such
that @ + 8 € @, then a + 8 € S as well. Given such a subset S C @, we say that S is a
subset of Weyl type (with respect to £) if both S and its complement @\ S are ®;-closed.
Denote the set of all subsets S C @} of Weyl type (with respect to 1) by Wj,.

It is a well known theorem of Kostant [9, Prop. 5.10] that S C @™ is a subset of Weyl
type if and only if S = N(w) for some w € S,. Sommers and Tymoczko generalized that
result to the setting of subsets of Weyl type in ®;. The following summarizes their results
from [11] in the form most useful for our purposes.

Theorem 2.9 (Sommers—Tymoczko [11]). Let h : [n] — [n] be a Hessenberg function
and S € Wj,.
(1) There exists w € S, such that S = N(w) N ®F, and S is a subset of Weyl type with
respect to h if and only if it is of this form.
(2) There exists a unique element zs € S, satisfying both S = N(zs)N®; and zgl (=A)N
O C O
(3) N(zs) € N(y) for any y € S, with S C N(y).

Given a fixed S € W,, we now consider
W(S,h) ={weS,|Nw)nd =S} C S,

i.e., W(S, h) is the set of permutations whose associated subset of Weyl type is exactly S.
Note that W(S, h) is always non-empty for any S € W, by Theorem 2.9, and we obtain a
partition S, = [ |sey, W(S, h). Recall that (left) weak Bruhat order is the partial order on
S, defined by

(2.10) u<pv if v=s; ---s;u for simple reflections s;,, ..., s;, such that £(v) = £(u) + k.

The weak Bruhat order is stronger than Bruhat order in the sense that u <; v implies u < v
for all u,v € S,,. Note that u <; v if and only if N(u) C N(v) [2, Prop. 3.1.3]. The following
lemma tells us that W(S, h) is a weak Bruhat interval. A proof can be found in Appendix A.

Lemma 2.11. Let h : [n] — [n] be a Hessenberg function and S € W,. There exist
elements zs,ws € W(S, h) such that W(S, h) is precisely the weak (left) Bruhat interval

[zs,wsly :={ve S, |zs v < ws).

In order to apply the results of [3] needed below, we now introduce a graph I';, uniquely
determined by a Hessenberg function A.

DermiTion 2.12. Let h : [n] — [n] be a Hessenberg function. The incomparability
graph I', = (V(I';), E(I'y)) is the graph on vertex set V(I';) = [n] with edges E(I'y) :=
{i, j} 1 j <iandi<h(j)}
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ExampiE 2.13. The incomparability graph I, for & = (2,4,4,4) and h = (3,4,5,5,5) are
given below.

1 2 3 4 1 2 3 4 5

The incomparability graph for 4 plays a key role in the results of [6] and also appears
in [3, 4] (with the notation G,.;). An acyclic orientation o of [, is an assignment of a
direction (i.e. orientation) to each edge e € E(I';) such that the resulting oriented graph
contains no directed cycles. Given S € W, we obtain an orientation o;,(S) of I';, defined by
the rule

(2.14) J=<——"1: for{i, j} € E(I'y) with j <iifand only if 7; —7; € S.
In other words, 0,(S) is obtained by orienting edges corresponding to the roots in S to the

left, and oriented all other edges to the right.

ExawmpiE 2.15. Let n = 4. Consider the following acyclic orientations, the first of I', for
h = (3,4,4,4), and the second of [', for h = (2, 3,4,4).

1 2 3 4 1 9 3 A
The acyclic orientation on the LHS is 034 44)({f2 — 13, t; — 3}) and the one on the RHS is
o 34s{ti — 1}).

The following observation yields a bijection between acyclic orientations and subsets of
Weyl type.

Lemma 2.16. The set of all acyclic orientations of Iy, is precisely {0,(S) | S € W,}.

Sketch of Proof. Consider first the case in which & = (n,n,...,n) so I', = K, is the
complete graph on n vertices. Since it is the complete graph, the set of edges is the set of
all pairs {i, j} with j < i. Asin (2.14) an orientation of I', = K}, uniquely corresponds to the
subset of edges which point to the left, and we may view this set as a subset S of the positive
roots ®*. Since I, is the complete graph, it is straightforward to see that such an orientation
will be acyclic if and only if both S and its complement ®* \ S is closed under addition,
i.e., S is a subset of ®* of Weyl type. By the above-mentioned theorem of Kostant, subsets
of ®@* correspond uniquely to permutations via the identification w + N(w), so there are n!
acyclic orientations, as claimed.

Returning to the case of an arbitrary Hessenberg function, note that I';, is a subgraph of
K,. Let S € Wj,. By Theorem 2.9 there exists w € &, such that S = N(w) N ®;. The
orientation 0,(S) defined in (2.14) is the orientation induced by the that of w on K, as in
the previous paragraph. This shows that 0,(S) is an acyclic orientation. Since every acyclic
orientation of Iy, is the restriction of an acyclic orientation on K, it follows that every acyclic
orientation is of this form. |

Remark 2.17. In [4], the authors define and study an equivalence class of permutations.
In their notation, the equivalence class [w], from [4, Definition 3.4] is precisely the set
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W(S, h) above for S = N(w) N @;. We also note that in [3, 4] the authors use the lan-
guage of subgraphs G, of I', for different permutations w, but this data can be equivalently
characterized by acyclic orientations, which is what we choose to do in this manuscript.

The relation between W(S, h) (and specifically the maximal element ws of W(S, h)) to
the acyclic orientation 0,(S) is developed further in the next section.

3. Reachability

A key contribution of this manuscript is to connect the work of Cho, Hong, and Lee in
[3]—in which they use the combinatorial notion of reachability to study Hessenberg Schu-
bert cells—to the theory of subsets of Weyl type. In this section, we make this connection
precise. The essential result is Proposition 3.13, which is the technical engine driving the
proof of our main theorem (Theorem 4.8).

We begin with the definition of reachability, taken from [3], relating two vertices i and j
on the incompatibility graph I',.

Dermnition 3.1. Let & : [n] — [n] be a Hessenberg function and I’ its associated in-
comparability graph, equipped with an acyclic orientation 0,(S). Suppose i > j. We say
that i is reachable from j with respect to S (or 0,(S)) if i = v, and j = vy and there
exists a sequence of vertices j = vp < v; < --- < i = v, of I, such that there is an
oriented edge from each v, to v, 1, i.e., there is a sequence of oriented edges of the form
j=v9 — v — -+ — Uy-] — Uy, = i1n [}, (equipped with the orientation 0,(S)). We
allow m to be 0, that is, j is always reachable from j.

We say that a vertex k in an oriented graph is a source (with respect to the given orien-
tation) if all edges adjacent to k point “out” of £, i.e., each such edge is of the form k — i
for all i adjacent to k. Since our incomparability graphs have vertices labelled by sets of
positive integers {1,2, - - - , n}, we say that a vertex k is the largest source if k is a source and
moreover, if j is another source, then k > j. The next lemma shows that any vertex larger
than the largest source k& is reachable from .

Lemma 3.2. Let h : [n] — [n] be a Hessenberg function, Ty, its associated incomparabil-
ity graph, and S € Wj. Suppose that k is the largest source of I'y, with respect to the acyclic
orientation o;,(S) and i is a vertex with i > k. Then i is reachable from k.

Proof. To prove the claim of the lemma, it suffices to show that the set
3.3) {i > k| iis notreachable from k }

is empty. For the sake of obtaining a contradiction, suppose not, and consider the oriented
subgraph I'"” induced by the vertices in set (3.3). Since the original oriented graph I'; is
acyclic, so is the subgraph. Any acyclic orientation must have a source, so there exists a
vertex i which is a source of I''. We claim that the the vertex i" must also be a source of
the original oriented graph I';,. To see this, we must show that any edge {j,i'} € E(I',) has
orientation i’ — j. To argue this, we first observe that i’ > h(k), because if i < h(k) then by
definition of I';, there would be an edge from k to i’, and since k is a source by assumption,
the edge between k and i’ would be oriented as k — i’, making i’ reachable from k. This
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contradicts the assumption that 7’ is in the set (3.3). This implies that there is no edge in I,
between i and any vertex j with j < k. Thus we may now assume without loss of generality
that j > k. We take cases.

Suppose that k < j < i’. If there is no edge between j and i’ in ', then there is nothing
to prove, so suppose there is an edge. If j is not reachable by k, then j is in the set (3.3)
and we have assumed that i’ is a source of the subgraph, so we must have i/ — j. On the
other hand, if j is reachable by &, then by reasoning similar to the above, we must also have
Jj «— i’ since otherwise i” would be reachable by k.

Next suppose j > i’. Again, if there is no edge between j and i’ then there is nothing
to prove, so we may suppose {i’, j} is an edge of I',. If j is not reachable by k then by the
same reasoning as above we already know the edge is oriented as i’ — j, so suppose j
is reachable by k. Recall that we wish to show i’ — j in 0,(S). Suppose for the sake
of contradiction that i/ «— j instead. Since j is reachable from k, there exists a sequence
vp < v; < -+ < vy of vertices such thatk = v9g — j; — -+ — Uy — U, = jin
0,(S). Let vy be the largest vertex in that list such that v, < i’. Since {vg, vp41} 1S an edge in
I, and i’ < vy we conclude that {v,, i’} € E(I';). Since v, is reachable from k, by the same
reasoning as above we know that v, «— i’ and we may visualize the graph as

v v v =

in 0,(S), which shows that there is a cycle starting and ending at i’, contradicting the fact
that 0,(S) is an acyclic orientation. Thus we must have i’ — .

We have now shown that i’ is a source in I, contradicting that k is the largest source.
Therefore (3.3) is indeed empty as was to be shown. O

The next lemma shows that reachability implies an inequality among entries in the one-
line notation of w for w € W(S, h).

Lemma 3.4. Let j < ibeverticesin ', and S € W, If i is reachable from j with respect
to 0;(S), then w(j) < w(i) for all w € W(S, h).

Proof. Let w € W(S, h). Suppose i is reachable from j so we have a sequence of vertices
vp < v < -+ <vypsuchthat j =v9y — vy — -+ — U1 — vy = i in 0,(S). Thus
for each ¢ such that 1 < ¢ < m, we have t,,, — ¢, € d);[ \ S and since S = N(w) N O},

we get f,, , — t,, ¢ N(w). This means w(v,—;) < w(v,) for all 1 < ¢ < m, and by putting the
inequalities together we obtain w(j) < w(i), as desired. O

It also turns out that the location of 1 in the one-line notation of w € W(S, h) is significant.

Lemma 3.5. Let h : [n] — [n] be a Hessenberg function and S € Wy,. If w € W(S, h),
then w=' (1) is a source of T';, equipped with the orientation o(S).

Proof. Suppose j = w~'(1). It follows directly from the definition of the inversion set that
{t; — tiytp —tj, ..., tj-1 — tj} C Nw)

since w(j) = 1 is strictly smaller than any w(1),w(2),--- ,w(j — 1). By similar reasoning,
since w(j) = 1 is also smaller than w(j + 1), --- ,w(n), we have
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{tj—tj+1,tj—tj+2,...,l‘j—tn} C O*\ N(w).

As w € W(S, h) by hypothesis, we have that S = N(w) N ®;. From the definition of 0,(S)
in (2.14) we see that the edges {k, j} with k < j must be oriented to the left and the edges for
k > j are oriented toward the right. Thus j is a source, as desired. |

We now give an inductive construction using the Hessenberg function 4 and graph I', that
will be useful in what follows. Let k € [n]. Consider the smaller graph on n—1 vertices which
is obtained from I';, by deleting vertex k and all adjacent edges to k, and for convenience in

our arguments below, relabeling the vertex set to be {2,3,...,n} (so {1,2,...,k — 1} gets
relabelled as {2, 3, .. ., k} respectively, and the labels of {k+ 1, ..., n} are unchanged). We let
h® 1 {2,3,...,n} = {2,3,...,n} denote the Hessenberg function whose associated graph

I'yw is precisely the graph just described. Alternatively, suppose the Hessenberg function
h is visualized as a collection of boxes in an n X n array where the (i, j)-th box (in row i
and column j) is said to be in the collection if i < (). Then the collection of boxes in the
(n — 1) X (n — 1) array corresponding to A is obtained from that of & by deleting the k-th
row and column.

SetW :={f;—t;|i+# jand i, j€{2,...,n}}. Then ¥ is aroot system of type A,_», and the
only difference between ¥ and the standard root system is that we have shifted the index set
to be {2,3,--- ,n} instead of {1,2,--- ,n — 1}. Fix k € [n]. In analogy with how we defined
@} above, let us define ‘I’Z(k) ={—-tje¥]i<jandj< h®(i)}. From the description of
the graph I';w it is not hard to check that

(3.6) W = w(@) N
where uy, := 5152+ sx_1 € S, (in one-line notation we have u, = [2,3,...,k, 1,k + 1,k +
2,...,n]). Here we take u; := e € S,. Given S € W,, we can consider the orientation
or I'yw induced by 0,,(S), which must necessarily be acyclic. Let S” € W}, denote the
corresponding subset of Weyl type. By (3.6) we have
S = (S)NW.
The next lemma relates certain elements in W(S, k) with those in W(S’, h%).
Lemma 3.7. Let y € (s2,53,--,S,_1) and k be a source of I';, with respect to 0,(S)

for S € Wj. Let uy be as above and w = yu, € S,. Theny € W(S’, h®) if and only if
w e W(S,h).

Proof. First suppose w € W(S,h), so N(w) N ®; = S. On the other hand, since the
decomposition w = yu satisfies £(w) = €(y)+£(uy) (note uy is a minimal coset representative
of 3,_1\S,) we have N(w) = N(uy) L u,:lN(y) (cf. for instance [7, Section 1.7]). Combining
these facts we obtain

38)  S=(Nw)Uuu'Nw)nd; & w(S)=Nu) U Ny)) N (D)
and thus
S =u(S)NY = Ny) N¥ Nu®;; = N(y) N ¥y,

where the first and third equalities follow from (3.6) and the second equality follows from
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an explicit computation of u;N(u;) which shows that u;N(u;) N'¥Y = 0. This proves y €
W(S’, h®).

To see the other direction, suppose y € W(S’, h®). We want to show w € W(S, h), for
which it suffices to prove (3.8). Since & is a source we have

S={j-neS|i,jen\{k} Ul —nlj<k k<h(p}
Since u;([n] \ {k}) = {2,...,n} we have
(3.9) {tj—tieS|i,jen\{k)=u'(S)
and now the claim follows from the observation that (3.6) implies
' (S = u; (Nw) n'Wh) = up ' N(y) N @
and that N(u;) N (D;: ={tj—t | j <k, k < h(j)}. This completes the proof. m|

The next lemma is a kind of converse to Lemma 3.5.

Lemma 3.10. Let S € W,. If k is a source of I';, with respect to the orientation o0,(S),
then there exists w € W(S, h) such that w™'(1) = k.

Proof. Since W(S’, h¥)) is non-empty, there exists y € W(S’,h0) C (s5,...,8,-1).
Consider w = yuy. By Lemma 3.7, w € W(S, h), and by construction w(k) = 1. |

The relationship is even tighter between the largest source and the maximal element wg
of W(S, h).

Lemma 3.11. Let h : [n] — [n] be a Hessenberg function and S € W,,. Then the vertex
k is the largest source of Iy, with respect to 0,(S) if and only if w;l(l) =k

Proof. Suppose k is the largest source of I'j, with respect to 0,(S). By Lemma 3.10
there exists w € W(S, h) such that w™!'(1) = k so we may write w = yu; for some y €
($2,...,8,-1). Let j := w;l(l) or equivalently, ws(j) = 1. Then by Lemma 3.5 we know
J must be a source, and since k is the largest source, we conclude j < k. To complete the
argument that j = w;l(l) = k we show that k < j. To see this, write ws = ysu; for some
Ys € (S2,...,8,), which is possible since j = w;'(l). We know that wgs is the maximal
element of W(S, h), so

W ws = yug SYysuj > up <uj=>k<j

where the second implication follows from the fact that the map from S, to the minimal
coset representatives {u| := e, u,,- - , u,} of the subgroup (s, s3, - - - , 5,) is order-preserving
[2, Prop. 2.5.1]. Thus j = w;' (1) = k as desired. The converse follows by similar reasoning.

O

The lemma and other inductive structure established above yield a simple way to compute
ws given the corresponding acyclic orientation.

ExawmpLE 3.12. Let n = 4. We consider as in Example 2.15 the orientation 03 4.4.4)({t2 —
t3,1) — ta}) of graph I', for h = (3,4,4,4). Using the graph pictured in that example,
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Lemma 3.11 tells us that ws(3) = 1. Deleting 3 and all adjacent edges tells us that ws(1) = 2.

Continuing in this way gives the sequence of graphs:

1 2 3 4 l1—2—-+1 2——=4 4
and ws = [2,3,1,4].

We can now prove one of our important technical results, which characterizes reachability
in terms of the maximal elements ws for S € W,. This reformulation is the tool which
allows us to prove our characterization of T-fixed points in the opposite Hessenberg Schubert
variety in the next section.

Proposition 3.13. Let h : [n] — [n] be a Hessenberg function and S € W,. Suppose
Jj < i. Then i is reachable from j with respect to S if and only if ws(j) < ws(i).

Proof. First suppose that j < i and i is reachable from j. We wish to show that ws(j) <
ws(i). This follows immediately from Lemma 3.4.

So now suppose j < i and that ws(j) < ws(i). We need to show that i is reachable from
J. We proceed to prove the contrapositive statement by an induction on n. When n = 1, we
have j = i = 1 and ws = e and the claim is trivial. Now suppose n > 2 and that the claim
is true for n — 1. Note that we may assume j # i since if j = i then i is reachable from j by
convention and the claim is immediate. So suppose j < i and additionally suppose that i is
not reachable from j. Let k := w;l(l) and write ws = ysuy for some ys € (s2,...,5,-1). If
i = k, then our claim follows immediately since ws(k) = ws(i) = 1 < ws(j). Next, notice
that by Lemma 3.11, k is the largest source of I';, with respect to o0,(S). If j = k, then by
Lemma 3.2 we would have that i is reachable from j, but we have assumed that i is not
reachable from j, so we conclude j # k.

We now have that i # k,j # k and j < i. Consider the graph I',» obtained from I,
with acyclic orientation o,w(S’) induced by 0,(S). By Lemma 3.7, since ws € W(S, h)
we know ys € W(S’, h®). We wish to show ys is the maximal element in W(S’, h¥). To
see this, suppose jjs is the maximal element. First observe ys < ijs since js is maximal.
On the other hand, jsu; € W(S, h) by Lemma 3.7 and since ws is maximal, we conclude
Jsup < ws = ysuy. Now the properties of Bruhat order imply jjs < ys. Hence ys = ijs and
ys is maximal in W(S’, h%®). Our assumptions imply that i’ = u(i) is not reachable from
J = u(j). As I'w is a Hessenberg graph on n — 1 vertices and ys is maximal, we know
ys(') < ys(j) by induction. Since ws = ysuy, we conclude ws(i) < ws(j) as desired. O

As a first geometric application of the results in this section, we prove the following.
Recall that from Lemma 2.11 we know that W(S, h) is a weak Bruhat interval of the form
[zs,ws]r. Moreover, from the definition (2.10) of weak Bruhat order, it follows that if
v € W(S,h) then v <; ws so there exists an element u € S, such that ws = u~'v with
l(ws) =€) + €(u).

Proposition 3.14. Suppose S € W, and v € W(S, h) and let ws = u™'v for u € S, where
l(ws) = €(v) + €(u). Then
QO

v,h

=u (QS)S N Hess(u~'Su, h)) .
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Proof. Let b denote a lower triangular matrix with 1’s on the diagonal. Recall that wbB €
Q, if and only if b;; = O for all i > j such that w(i) < w(j), or equivalently, b;; = 0 for all
tj —t; € N(w). Our assumptions imply that v <; ws so N(v) € N(ws).

Suppose wsbB € Q. so b;; = 0 for all 1; — #; € N(ws) implying that b;; = 0 for all

t; —t; € N(v) also. Thus uwsbB = vbB € ). We now have
uQ, cQ = uQ; NHess(S,h) Q) NHess(S,h)
= u (Q;S N Hess(u™'Su, h)) c Q.

Here the second implication uses the fact that Hess(S, h) = uHess(u"'Su, h).

To prove the opposite inclusion, suppose vbB € €7 ,. By [3, Corollary 3.9], b;; = 0 for all
i > jsuch that 7 is not reachable from j. By Proposition 3.13, this implies b;; = O forall i > j
such that ws(i) < ws(j) so wsbB € Q. Furthermore, since vbB € Hess(S, h) it follows
immediately that u~'vbB = wsbB € Hess(u~'Su, h). Thus u~'vhB € Q. N Hess(u~'Su, h),
as desired. O

4. Connection to Bruhat Order

In this section we state and prove our main result, Theorem 4.8. To do so, we need some
terminology and notation from the work of Cho, Hong, and Lee [3].

Let n be a positive integer and 1 < k < n. Denote by I;, the set of k-tuples of positive
integers i = (i1,ip, "+ ,ix) € Zk satisfying 1 < i) < i, <--- < i < n. Suppose we are given
a permutation w € S, and i € I ,. We can consider the k-tuple of not-necessarily-strictly-
increasing integers (w(i;), w(iy), - -+ , w(iy)) € Z* and then re-order the entries in such a way
that they are strictly increasing; we denote the result as w - i, and by construction, we have
w - £ S Ik’”.

We also need a certain subset J,,;,x of I;,, associated to a permutation w € S,, a Hessen-
berg function & : [n] — [n], and an integer k such that 1 < k < n. To define it, we need
the following terminology from [3], which extends the notion of reachability (described in
Section 3) to two subsets of [x].

DerinttioN 4.1, LetA={l <a1 <ay <---<a,<nland B={1 <by <by <---<b, <
n} be two subsets of [n] of the same cardinality . We say A is reachable from B if there
exists a permutation o € S, such that a,; is reachable from b; forall 1 <i <r.

We now define J,, ;4 as in [3, Equation (3.2)] in terms of reachability with respect to the
acyclic orientation 0;,(S) determined by S = N(w) N @}

4.2y Jypnk =i =00, ,ix) € Ly | (i1, 02+ -+, i} 1s reachable from {1,2,- .-, k}}.

With this notation in place, we can state the following result of Cho, Hong, and Lee [3,
Theorem 3.5].

Theorem 4.3 (Cho—Hong—Lee). Let h : [n] — [n] be a Hessenberg function and w € S,,.
Then

Qui) ={ue S, lu-(L....,k)€{w-G...it) | 1, .rip) € Jugp) forall 1 <k <n—1}.
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Here and below we define and use the following partial order < on [y ,:
4.4) (i1, 025+ 5ik) = (J1s j2o -+ » jx) if and only if iy > j, foralll, 1 < € <k.

In order to obtain a description of (Qw’h)T in terms of Bruhat order using Theorem 4.3, we
need the following lemma, which characterizes the set J, ;, defined in (4.2) in terms of
the maximal element ws of W(S, h). This connects the discussion to that of Section 3 and
allows us to use the results therein.

Lemma 4.5. Suppose S € Wy,. For all w € W(S, h) and all k such that 1 <k <n-—1, we
have

Jonk =015 i) € hn | ws - (1, .25 0) 2 ws - (1, ..., k)}
where Jy, i is the set defined by (4.2).

Proof. By its definition in (4.2), and from the definition of reachability, J,,,x consists
of (i1, -+ ,ix) € Iy such that there exists a permutation o € S; with the property that
i) 1s reachable from ¢ for all 1 < ¢ < k with respect to 0;(S). On the other hand, by
Proposition 3.13 this is equivalent to ws(iy) > ws(f) for all 1 < ¢ < k. The claim now
follows from our definition of the notation ws - (i1, - , i) = ws - (1,...,k). O

We also need the following description of the Bruhat order in S, which we now briefly
recall (cf. [2, Propositions 2.4.8, 2.5.1, and Theorem 2.6.3]).
Lemma 4.6. Let w,v € S,,. Then w < v in Bruhat order if and only if
4.7) w-(l,...,k)<v-(1,....,k)forall 1 <k<n-1.
We are now ready to state and prove the main result of this note.
Theorem 4.8. Let h : [n] — [n] be a Hessenberg function and fix S € Wy,. Then
4.9) Qis,h = [ws, wol,
where [ws, wy] denotes the Bruhat interval of w € S, such that ws < w.

Proof. First, as Q° , C Q, N Hess(S, i) and the intersection Q,, N Hess(S, h) is closed,

ws,/’l -

we have Q,,, € Q, N Hess(S, h). It follows immediately that Qgs’h C [ws, wp].
To prove the opposite inclusion, suppose u € [ws, wp]. By Lemma 4.6 we obtain

(4.10) ws-(1,....k)<u-(1,....k) forall 1 <k<n-—l.

As wg is a permutation there exists iy, ..., i,—; € [n] such that wg(iy) = u(f) forall 1 < £ <
n — 1. Equation (4.10) now yields

ws - (i1,...,0)=u-(1,....k) >ws-(1,...,k) forall 1 <k<n-1.
Now (i, ..., i) € Jysni by Lemma 4.5 and therefore u € Qgs’h by Theorem 4.3. O
Let wy = [n,n — 1,...,2,1] denote the longest element in S,. By translating by wy,

we easily obtain the analogous result for Hessenberg Schubert cells corresponding to the
minimal element zs of W(S, h).
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Corollary 4.11. Let h : [n] — [n] be a Hessenberg function and S € W),. Then

T
X', = le,zs],

where |e, zs] denotes the Bruhat interval of w € S, such that w < zs.

Proof. Let S = ®; \ S € W), Since woB_wj, = B we have woQ?, = X Using the fact
that wows = zs as in the proof of Corollary A.3 we obtain

wo (Q;s N Hess(woSwy, h)) = X;, N Hess(S,h) = X__,,.

Since left multiplication respects closure relations in the flag variety, the corollary
now follows by application of Theorem 4.8 to the Hessenberg Schubert variety
Qg)s_ N Hess(woSwy, h) and the fact that wg < w & zg > wow since left multiplication

by wy is an order reversing involution of S,,. O

We can also give a reformulation of Theorem 4.3 in the language of Bruhat order.

Corollary 4.12. Let h : [n] — [n] be a Hessenberg function and S € W,. Suppose
v € W(S, h) and let ws = u'v for u € S, such that t(ws) = £(v) + £(u). Then

T
‘Qu,h = M[ws, wo].

Proof. Left multiplication respects closure relations in the flag variety, so by Proposi-
tion 3.14 we have Q,, = u (Q;s N Hess(u~'Su, h)). Theorem 4.8 now yields

(Qq, N Hess(u'Su, h))T = [ws, wo]

and the corollary follows. O

We conclude this section with a discussion of the geometry of the Hessenberg Schubert
variety €, 5. The results of Theorem 4.8 tell us that

(4.13) Qf =90 = Hess(S,h) N Q)"
where the second equality follows from [5, Proposition 3]. Since
(4.14) dimQ,,, = dimQ; _, = dim(Q,, N Hess(S, h))

by definition, the equality (4.13) might lead one to hope that Q,,., = Q,, N Hess(S, h).
This is not true in general. More specifically, although Q,, ., = Q,,, N Hess(S, k) holds in
many cases (see Remark 4.17), we can conclude in general only that @, ; is an irreducible
component of Q,,; N Hess(S,h) = Uy, Q; ;- We give more details below.

Letw € S,. As Q,, is the closure of the affine cell ij’ »» itis irreducible. Now (4.14) and
fact that Q,,;, € Q, NHess(S, h) together imply that Q,,;, is indeed an irreducible component
of Q, N Hess(S, h). It now follows that the equality

(4.15) Qun = QN Hess(S, h)

holds if and only if Q, N Hess(S, h) is irreducible. We consider cases. If w is not the
maximal element of W(S, h) for some S € W, then Q, N Hess(S, h) is reducible, since
Qi,h C [w,wo] = (Q, N Hess(S, h))! by Corollary 4.12. On the other hand, if w = ws, the
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following example shows that Q,,, N Hess(S, h) is, in general, still reducible.

ExampLe 4.16. Let n = 4 and h = (3,4,4,4). In this case, ®; = ®* \ {t; — 14} and
dim Hess(S,h) = 5. Consider S = {t, — 13,1; — t3} € W),. In Example 3.12 above, it was
shown that ws = [2, 3, 1,4]. We also have

dim(Q,,;, N Hess(S, h)) = dim(QZ)S’h) =5-|S|=3.
Consider w = [2, 3, 4, 1], which satisfies ws < w so Q,,; € Q,, N Hess(S, h). As
Nw) ={t3 — ta, 1 — ta, 1) — 14} = Lp(w) = [IN(w) N D} | =2

we have dim Q;h = 3. Now the fact that Q;S,h n Q;’)’h = ( and dimQ,,;, = dim(,, N

Hess(S, h)) implies Q,, ;, is an irreducible component of Q,,. NHess(S, h) with Q,,;, # Q) 5.
This shows Q,,; N Hess(S, h) is reducible.

Remark 4.17. When h = (2,3,4,...,n,n), the corresponding regular semisimple Hes-
senberg variety is the toric variety associated to the Weyl chambers, also called the permu-
tohedral variety. In this well-studied case, the equality from (4.15) holds for all ws with
S € Wj,. This follows from an application of [8, Theorem 3.10].

Appendix A Proof of Lemma 2.11 by Michael Zeng

We now present a proof of Lemma 2.11, written by Michael Zeng as part of an under-
graduate research project with the second author. Let wy = [n,n — 1,...,2,1] denote the
longest element of &,,. Consider the map

p: S, = G, o(w) = wow.
Since
(A.1) Nwow) = ®* \ N(w)

for all w € S, it follows that ¢ defines an order-reversing involution with respect to the weak
order, that is, u <; v & ¢(u) > ¢(v) [2, Prop. 3.1.5].

Lemma A.2. Let S € Wy, The restriction of ¢ to W(S, h) is a bijection between W(S, h)
and W(®; \ S, h).

Proof. Since ¢ is an involution, it suffices to show that p(w) € W(®; \ S,h) for all
w € W(S, h). Intersecting both sides of equation (A.1) with @} we obtain N(wow) N ®; =
®F \ (N(w) N @), which is equivalent to N(wow) N ®; = @7 \ S. Thus p(w) = wow €
W(®; \ S, h), as desired. O

Using the previous lemma and Theorem 2.9, we obtain the following corollary.

Corollary A.3. For each S € Wy, W(S, h) has a unique maximal element with respect
to weak Bruhat order.

Proof. Since S is a subset of Weyl type with respect to &, the complement S = O\ Sis
also a subset of Weyl type with respect to h. By Theorem 2.9(3), the set W(®; \ S, h) has a
unique minimal element with respect to the weak Bruhat order, denoted z5. By Lemma A.2,
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vs(zg) € W(S,h). Since ¢ is an order reversing involution and zg is the unique minimal
element in W((D; \' S, h), we conclude that ¢(z3) is the unique maximal element in W(S, h).
O

Finally, we prove Lemma 2.11: W(S, h) is an interval in the weak Bruhat order.

Proof of Lemma 2.11. Let zs and ws be the unique minimum and maximum elements,
respectively, of W(S, h) with respect to the weak (left) Bruhat order. Such elements must
exist by Theorem 2.9(3) and Corollary A.3. The inclusion W(S,h) C [zs,ws], is imme-
diate. To show the converse, let w € [zs,ws].. This means zs <; w <; wg, or equiva-
lently, N(zs) € N(w) € N(ws). Taking the intersection with @ at each term in this chain,
we obtain N(zs) N @7 € N(w) N @) € N(ws) N @;. Since zs,ws € W(S,h) we have
N(zs) N @} = N(ws) N @} = S, implying N(w) N ®; = S. This proves w € W(S, h), as
desired. O
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