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Abstract

We consider the problem of efficiently rout-
ing jobs that arrive into a central queue to a
system of heterogeneous servers. Unlike ho-
mogeneous systems, a threshold policy, that
routes jobs to the slow server(s) when the
queue length exceeds a certain threshold, is
known to be optimal for the one-fast-one-slow
two-server system. But an optimal policy for
the multi-server system is unknown and non-
trivial to find. While Reinforcement Learn-
ing (RL) has been recognized to have great
potential for learning policies in such cases,
our problem has an exponentially large state
space size, rendering standard RL inefficient.
In this work, we propose ACHQ, an efficient
policy gradient based algorithm with a low
dimensional soft threshold policy parameteri-
zation that leverages the underlying queueing
structure. We provide stationary-point con-
vergence guarantees for the general case and
despite the low-dimensional parameterization
prove that ACHQ converges to an approxi-
mate global optimum for the special case of
two servers. Simulations demonstrate an im-
provement in expected response time of up to
~ 30% over the greedy policy that routes to
the fastest available server.

1 INTRODUCTION

With the recent exponential increase in large-scale
cloud based services, we observe a paradigm shift in the
nature of these systems and the way they serve jobs. A
case in point is devices across generations of technology
with varying capabilities present in the cluster. It is not
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Figure 1: k Server heterogeneous queueing system
with service rates p;, and job arrival rate \. We also
illustrate a threshold routing policy that routes jobs to
a slower server ¢ when the queue length is > 0;.
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uncommon to find a ~ 4 TFLOP K80, a ~ 30 TFLOP
L4 and a ~ 100 TFLOP TPUv3 in the same facility
(Google, 2023b,a). Another example is the differences
in server speeds arising due to the fractional allocation
of resources in serverless computing setups (Amazon,
2023). ML inference deployments with different servers
hosting different sized models is yet another instance
of varying service times (Shazeer et al., 2017). Mo-
tivated by such heterogeneous systems, in this work,
we consider the problem of efficient routing of jobs in
queueing systems with servers of different speeds. We
consider a stylized model with a single central queue
and a system of heterogeneous servers as shown in
Figure 1. Besides the cloud computing systems that
motivated us, this model and the proposed routing
policies are also applicable in other domains such as
packet routing in communication networks (Srikant
and Ying, 2013) or operations resource management in
healthcare, manufacturing or ride-sharing (Walton and
Xu, 2021; Tsitsiklis and Xu, 2017).

Traditional methods in queueing are often designed
for homogeneous systems and do not account for the
heterogeneity in service rates (Harchol-Balter, 2013).
While these policies may still be efficient in particular
load regimes or for certain types of heterogeneity, they
are not optimal for the general case. For instance, a
work-conserving routing policy that keeps all servers
busy whenever there are jobs in the system is latency-
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optimal for homogeneous systems. However, it is sub-
optimal for heterogeneous systems because it can be
beneficial to keep slow servers idle and hold jobs in the
central queue until the queue length exceeds a certain
threshold or one of the fast server(s) becomes available.
For the case of two servers - one fast and one slow -
such a threshold policy has been shown to be optimal
(Lin and Kumar, 1984; Koole, 1995; Walrand, 1984).
Despite many efforts, extending the proof of optimality
of the threshold policy to a general multi-server case
has been open for nearly four decades (Koole, 2022).
Moreover, the threshold is a complicated and unknown
function of the service rates and the job arrival rate.

Main Contributions. Motivated by difficulty in
finding a closed-form expression for the policy, we
present a reinforcement learning (RL) approach for
finding the best routing policy in multi-server hetero-
geneous queueing systems. We make the following
key contributions to address the inefficiency of off-the-
shelf RL methods arising due to a large dimensional
state space. (a) We leverage the underlying queueing
structure to design a low-dimensional soft threshold
policy parameterization and propose ACHQ), an effi-
cient policy gradient-based algorithm. (b) We provide
stationary-point guarantees, and for the special case of
two servers, establish convergence to an approximate
global optimum. (c) We demonstrate an improvement
in expected response time of up to ~ 30% over the
greedy policy that routes to the fastest available server.
To the best of our knowledge, ours is the first to propose
an RL approach to this problem and one of few recent
papers that leverage the queueing structure to design
an efficient RL approach with provable guarantees.

2 RELATED WORK

The problem of heterogeneous servers was first pro-
posed by Larsen (1981) in which the optimal policy
was conjectured to be of threshold type. For two servers,
a threshold policy was proved to be optimal using tech-
niques of policy iteration (Lin and Kumar, 1984), value
iteration (Koole, 1995) and sample path arguments
(Walrand, 1984). While Rykov (2001) claimed to have
extended the proof to the general case of multiple het-
erogeneous servers, De Vericourt and Yong-Pin (2006)
later showed that it was incomplete. The completeness
and correctness of the proof in another attempt in Luh
and Viniotis (2002) has also been questioned by the
authors of De Vericourt and Yong-Pin (2006). Hence,
despite several attempts, proving the optimality of a
policy for the general multi-server case has been an
open problem for nearly 40 years (Koole, 2022).

Given the above challenges in deriving closed-form op-
timal policies, RL and approximate dynamic program-

ming have been a natural choice for designing data-
driven policies for queueing systems. Several works
use these techniques effectively in applications such
as scheduling in queueing networks (Moallemi et al.,
2008), inventory control (Mannor et al., 2003), emer-
gency response assignment (van Barneveld et al., 2018)
and cooling in Google datacenters (DeepMind, 2023).

In recent years, there has been a renewed interest with
a focus on large scale settings with possibly incomplete
information and establishing guarantees of stability,
convergence and correctness (Ayesta, 2022; Walton
and Xu, 2021). Dai and Gluzman (2022) addresses
the challenges of infinite state space, unbounded costs,
and long-run average cost objective in queueing net-
work control problems by proposing PPO and TRPO
based deep RL algorithms with the policy optimization
step enhanced by Lyapunov function arguments. Liu
et al. (2022) proposes a truncation-based solution and
establishes guarantees of optimality in the setting of
unbounded state space by applying RL methods over a
finite subset of the state space and a known stabilizing
policy for the rest. Robledo et al. (2022) focuses on
developing intermediate solutions between model-free
and model-based methods by exploiting the queueing
structure to develop efficient learning algorithms. An
alternate line of empirical work include Staffolani et al.
(2023) that implements a DoubleDQN method to learn
task allocation in distributed queues and Mao et al.
(2019) that designs a REINFORCE based algorithm
to learn workload specific efficient scheduling policies
in distributed data processing jobs with dependency
graphs. While further instances of RL in queues can be
found in Section 5 of Walton and Xu (2021) and Ayesta
(2022), to the best of our knowledge, our work is the
first to study the multi-server heterogeneous problem
from an RL perspective.

Reinforcement Learning approaches applied to large
scale systems often suffer from state space explosion
and standard algorithms are plagued by the curse of
dimensionality. Actor Critic Policy Gradient offer a
low dimensional solution by parameterizing the value
function and policy. While actor-only methods are at
a disadvantage due to high variance and inefficient use
of samples between parameter updates and critic-only
ones lack guarantees of optimality of resulting policy,
actor critic methods provide the best of both worlds.
We include works most relevant to our problem setting
that establish guarantees of convergence below.

Konda and Tsitsiklis (1999) presents an asymptotic
analysis of the average cost two timescale actor critic
algorithm with a linear approximation of action-value
function. A finite time convergence to a stationary
point is established in Wu et al. (2020) for the aver-
age cost two timescale advantage actor critic algorithm
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with a TD update of the critic and linear approximation
of the state value function without assuming a com-
patible function approximation. Further, the authors
also remark that their results may be extendable to
the discounted setting using the same proof technique.
Kumar et al. (2023) analyze the finite time discounted
cost actor critic algorithm with a Monte Carlo based
update of the critic which is a linearly approximated
action value function. A drawback of this paper is that
it assumes that the action value function is indeed a
linear function and can be approximated without error
which might not be true for real world problems in
general.

While there are a few papers that prove convergence to
the global optimum for the special cases of linear MDPs
and linear quadratic regulators, convergence for a gen-
eral MDP is studied sparingly. Agarwal et al. (2021)
proposes a discounted cost actor critic based Natural
Policy Gradient algorithm with linear approximation
of the action value function and compatible function
approximation and establishes its global convergence.
Bhandari and Russo (2024) provide guarantees of opti-
mality of a stationary point for a general policy gradient
algorithm in the discounted setting when certain con-
ditions of differentiability, closure and structure of the
policy iteration objective are satisfied. To the best of
our knowledge, demonstrating global convergence for
the general MDP in the average cost setting is an open
problem.

3 PROBLEM FORMULATION

We first formally define the model and describe the
characteristics of an optimal policy. We then model
the problem as a Markov decision process. Finally, we
demonstrate that standard RL methods suffer from the
curse of dimensionality due to a large state space.

3.1 Queueing Setup

Model. We consider a queueing model with a single
central queue and k heterogeneous servers as shown
in Figure 1. Jobs arrive into the queue according to a
Poisson process with a known parameter A > 0. The
queue is limited to hold at most I, jobs. A router
then decides when and which server to route a job to
according to a policy w. The time a job spends in
service at server ¢ is modeled as an exponential random
variable with a rate p; which is also known to the router.
Without loss of generality, we assume that the servers
are ordered as py > po > --- > pg. The system is
stable when A < Zle ;. We consider non-preemptive
execution, where a job once routed to a server cannot
be recalled or interrupted until it runs to completion.

Performance Metric. The response time 7. ; of the
i-th job is defined as the time it takes from its arrival
into the queue to its exit from the system after service
which is a sum of its waiting and service times. The
expected response time of the system following policy
m can be written as

where E,. denotes the expectation with respect to the
stochastic process when policy 7 is used. The objective,
thus, is to find a policy that minimizes the expected
response time T;..

Slow Now versus Fast Later. If the goal were to
maximize throughput instead of average response time,
the problem becomes trivial and the optimal policy
would be to just keep all the servers busy. For our
objective (1), a greedy policy that always routes to
the fastest among the available servers is not optimal
because faster server(s) can become available soon af-
ter the router assigns all jobs in the queue to slower
server(s). Thus, the goal of a policy optimizing the
expected response time is to balance the trade-off be-
tween sending a job right now to a slower server, or
waiting for a faster server to become available.

Threshold Policy. As depicted in Figure 1, a thresh-
old policy is a rule that chooses to route a job to the
fastest available server (say server i) when the number
of jobs waiting in the queue exceeds a threshold 6; and
wait for the next timestep otherwise. Note that the
threshold #; = 0, since it is optimal to route jobs to the
fastest server whenever it is available. Such a policy
captures the intuition that if there are a lot of jobs in
the queue and there is pressure to clear the backlog,
the router should send a job to a slower server right
now. But if there are only a few jobs in the queue, then
it should wait for a faster server to become available.
For a queueing system with only two servers, one fast
and one slow, a threshold policy has been proved to be
optimal (Lin and Kumar, 1984; Koole, 1995; Walrand,
1984). In this work, we consider the more general k
server case, which has been an open problem for nearly
four decades (Koole, 2022).

3.2 Queue as a Markov Decision Process

The Markov chain view of the queue renders utiliz-
ing tools from reinforcement learning a natural choice.
We model the queue as an average cost discrete-time
Markov decision process (MDP) M = (S, A,P,c)
where S, A are the state and action spaces respec-
tively, P the transition probability and ¢ the cost. The
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continuous time queue described in the previous sub-
section can be converted to an equivalent discrete-time
representation by sampling the systems at instants of
arrivals and departures (Lippman, 1975). Hence, we
have a discrete-time system, where at each timestep,
whose beginning is marked by an arrival or a departure,
the router decides if and to which server to send a job
waiting in the queue.

The state of the system at time ¢ is represented as
s® = (£®, B . BWY) where L® € [Iy/] is the
number of jobs in the queue and BZ-(t) € {0,1} represents
if server i is available or busy respectively. An action
a € A corresponds to routing a job to an idle server
i, a = 1, or keeping the job in the queue and choosing
to wait for the next time step, a = 0. Notice that
the state space scales exponentially in the number of
servers |S| = (Ias + 1)2* and algorithms that depend
on the size of the state space suffer from the curse of
dimensionality.

State transitions occur whenever there is an arrival or
a departure and the corresponding transition proba-
bilities Pr(s’|s,a) are a function of the arrival A and
service rates g = (p1,...,ux) and the action taken.
Note that the finite Markov chain under consideration
is irreducible and aperiodic, which implies ergodicity.
For ergodic systems, by Little’s Law, the objective of
minimizing the expected response time is equivalent
to minimizing the time-averaged number of jobs in
the system (including both those waiting in queue and
those being currently served) (Harchol-Balter, 2013).
We, hence, define the cost as the total number of jobs
in the system c(s) = >_;s; = L + 3, Bj, where s; de-
notes the i-th element of s. The policy is represented
as m(-|s). Denote the stationary distribution over the
states induced by the policy as v;.

The average cost is defined as

()
¢r = lim Zimocls®) Esw [c(s)].  (2)
Further, we also define the overall cost accumulated
when starting from state s(°) and following policy 7 by

the state-value function

Z (s —cn |s(0)—s].

t=0

Another useful quantity is the action-value function

(oo}

Z (t)

t=0

Q™ (

)]s = 5,00 = a] .

The goal thus is to find the optimal policy 7*(:|s) that
minimizes the average cost, 7* = arg min c;.
s

3.3 Relative Value Iteration:
The Curse of Dimensionality

Recall that for the multi-server case, the optimal policy
is unknown. Relative Value Iteration (RVI) which
is the Value Iteration algorithm adapted to average
cost (White, 1963) addresses this. We include a brief
description below and pseudo-code in Appendix C.

Define the Bellman operator over the value function as

—|—ZP1" (s'|s,a)V(s').

s’'eS

T(V)(s) = mmc

Value Tteration computes V(s) by iteratively updating
values for every state using the Bellman equation in
every round. Additionally, in the average cost case,
RVI subtracts the value of a reference state s* € S,
from the values of other states to mitigate the numeri-
cal instability caused by large value functions (White,
1963)

VD (s) = T(V)(s) = T(VW)(s").

While it is convenient to use RVI when there are a
limited number of servers and a small buffer, it becomes
computationally intractable in large scale real-world
applications. As the state space scales exponentially in
the number of servers, the complexity of each iteration
of value function updates also scales exponentially. For
example, there are 20,480 states in a system with k =
10 servers and a buffer capacity of I; = 20. To address
this issue, we leverage the underlying structure in the
queueing model and present a function approximation-
based policy gradient algorithm in the next section.

4 ACTOR CRITIC FOR
HETEROGENEOUS QUEUES

In this section, we present ACHQ — Actor Critic for
Heterogeneous Queues. Algorithm 1 is a policy gradient
method with function approximation that leverages
threshold-like-policy properties of the queueing system.
We first briefly outline the two time-scale Actor Critic
algorithm (Sutton and Barto, 2018) and then describe
the parameterization that we design to mitigate the
curse of dimensionality.

4.1 Preliminaries

Counsider the policy mg(-|s), also known as the actor,
to be parameterized by 6. Denote the stationary dis-
tribution induced over the states by this policy by vg,
value function by V¢ and action-value function by Q°.
The performance of mg is measured by the expected
cost under the stationary distribution vg which is

J(0) := rg = Esnug[c(s)]. 3)
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Algorithm 1 ACHQ

1: Initialize actor parameters 8(?); critic parameters
w(o); average cost estimator 77(0); step sizes a® for
actor, S for critic, ¢ for average cost estimator

Draw s(°) from some initial distribution
fort=0,1,2,... do

Take action a® ~ mg (-|s®)

Observe cost ¢ = ¢(s)

Observe next state s+ ~ Pr(-[s(®) a®)

5 = e®) — ) 1 (s+D)Teo®) _ b((t)Te(®

8: n(t+1) — 'r’(t) + C(t) (C(t) — n(t))

9. i+l — Mg, (w(t) + ﬁ(t)g(t)(p(s(t)))

10: 0D =01 — o5V log me (a]s®)
11: end for

Actor. The algorithm finds the optimal in the class
of policies parameterized by 8 as * = argming J(0)
using gradient descent which can be represented as

1t =0 —av.yeW).

By the Policy Gradient theorem, we can represent
VJ(0) = Esrp.amme|Q%(8,a)Viogme(s,a)] (Sutton
and Barto, 2018). In practice, a baseline (such as V)
is subtracted from the action-value function @ while
estimating gradients to reduce variance which is as
follows

VJ(0) = E, o[A%(s,a)V1og (s, a)]

where A%(s,a) := Q%(s,a) — VO(s) is the advantage.

Critic. To mitigate the exponential state space prob-
lem, we model the critic to be approximated by a linear
function

V(s;w) = ¢(s) w. (4)

The gradient step for the critic can be represented as

Wt = ,® 4 B(V(s(t)) — ¢(S(t))Tw)¢(s(t))_

Algorithm. Putting together the actor and critic, as
described above, we have Algorithm 1. Expression in
line 7 is a result of the advantage estimated as

6 = Q(s®,a®) —V(s®)
= —p® LV (stH)) — (M)

where 7 denotes the average cost until timestep t.
This estimate is then used in the gradient step for
the actor parameters in line 10. Using a TD(0) style
update, for the critic parameters results in the expres-
sion in line 9 where Il  represents the projection to
appropriately chosen radius R,,.

4.2 Low Dimensional Parameter Design

Recall that the number of states in our problem scales
exponentially in the number of servers. To alleviate
this issue of a very large state space, we design a low
dimensional actor and critic leveraging properties of
the queueing system. A threshold policy, as defined in
Section 3.1, is known to be optimal for the two server
case and is conjectured to be optimal for the multi-
server system (Lin and Kumar, 1984). Moreover, we
observe the optimal policy to be of threshold type in
simulations in Section 6.1 for the multi-server model.

Policy Parameters. First, we note that if the fastest
server is free and there is a job waiting in the queue,
then the job is routed to the fastest server irrespective
of the number of jobs waiting in the queue. This can
be argued because the job can be served no faster than
by the fastest server and hence there is no incentive to
wait. We then parameterize the actor by @ € R*~! as a
soft threshold policy with one threshold per server for
servers 2,..., k. If f = argmax; u;(1 — B;) is the index
of the fastest among the available servers in state s,
0 the threshold corresponding to it, sg the number of
jobs in the queue and ¢ a hyperparameter that controls
the slope or sharpness of the decision boundary, then
the probability of routing a job to server f is

e (s0—0¢)

()

mo(a = fls) = T3 eoo 0
Further, the probability of waiting until the next
timestep is mg(a = 0|s) = 1 — mg(a = f|s). This
choice of parameterization is a soft, differentiable ver-

sion of the threshold policy conjectured to be optimal
in Lin and Kumar (1984).

Value Function Approximation. We choose the
features for linear approximation of the value function

S

) =R

(6)

This reflects the intuition that the more the number of
jobs in the system, the longer it takes to serve them and
hence higher is the cost. Note that the feature vector
is normalized by lps + k to ensure that ||¢()|] < 1.

5 CONVERGENCE GUARANTEES

We first show that ACHQ converges to a stationary
point for the multi-server case by applying results from
Wu et al. (2020). We then prove that the stationary
point is an approximate global optimum for the special
case of two servers in the discounted cost setting by
applying results from Bhandari and Russo (2024).
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5.1 Convergence to Stationary Point

In this subsection, we show that the soft threshold
policy defined in Equation (5) converges to a first or-
der stationary point by applying the results of finite
time two timescale actor critic methods from Wu et al.
(2020). We detail the assumptions considered, verify
that they hold for our problem and then state the con-
vergence rate and sample complexity for Algorithm 1.

Assumption 5.1 (Bounded Feature Norm). The norm
of the feature vector is bounded i.e. ||¢p(-)|| < 1.

Assumption 5.2 (Negative Definite A). For all policy
parameters 0, A = Eg, o [p(8)(d(s') — ¢(s))T] is
negative definite.

Assumption 5.3 (Uniform Ergodicty). Consider the
Markov chain generated by the rule a® ~ mg(-|s®),
s ~ Pr(-|s® a®) and the stationary distribution
vg induced by policy wg. There exists an m > 0 and

€ (0,1) V7 > 0,Vs € S such that
dry (Pr(s'™) € |89 = 5),v9()) < mx".

Assumption 5.4 (Bounded and Lipschitz Contin-
uous Gradients and Policy). There exists constants
Y1, Y2, Y3 > 0 such that for all given states s, actions a
and V0 € R¥

IV log me(als)|| < y1,
||V log m, (als) — Vlog me, (als)|| < y2|61 — 62|,
|Te, (als) — e, (als)| < y3|[61 — O2].

Assumption 5.5 (Bounded Value Function Approxi-
mation Error). The value function approzimation error

app(0) = /By [(6(5)Tw*(8) — VO(s))?

s uniformly bounded for all potential policies by some
constant €qpp > 0, VO as €qpp(0) < €qpp-

Assumption Verification. Assumption 5.1 is en-
sured by design in Equation (6). Assumption 5.2 is
equivalent to ®, the matrix whose columns are ¢(s),
being full rank (Zhang et al., 2021). This condition is
satisfied in our case due to the presence of e; among
columns of ® where e; is a vector with all but i-th ele-
ment as zeros and i-th element as 1/(lps + k). Assump-
tion 5.3 is fulfilled due to the irreducibility and aperiod-
icity of our finite Markov chain (Bhandari et al., 2018).
It is easy to verify that properties in Assumption 5.4
hold for our policy parameterization in Equation (5).
Satisfaction of Assumption 5.5 is demonstrated by ex-
periments in Section 6.1 that show the value function
is approximately linear in the state vector. Note that
proving the value function to be linear in the state
vector is a hard problem since the optimal policy is
unknown for the multi-server system.

We now formally state the convergence rate and sample
complexity. Note that this result follows from Theo-
rem 4.5, 4.7 of Wu et al. (2020) that establish the
convergence of the actor and critic respectively.

Theorem 5.1 (Wu et al. (2020), Corollary 4.9). Under
assumptions 5.1-5.5, choosing the actor step size a(t) =
O(1/(1 +t)"=) and the critic step size ) = O(1/(1 +
t)78), where 0 < rg < ro < 1, we have

) 1
. (@)y)12 _ =
OrgilgtEHVJ(O I = Oeapp) + O (tl—ra>

logt 1
o (%) o)

(7)

Algorithm 1 can find an e-approzimate stationary point
of J(-) within T steps as

: ()\(12
min E[VIOO)|F < Oeapy) +e. (8)

where 1o = 3/5,r3 = 2/5 and the total number of

iterations T = O(e~25).

5.2 Approximate Optimality of Stationary
Point for Two Servers

While we proved that ACHQ converges to a stationary
point in the previous section, we are yet to establish
global optimality of such a stationary point. Moreover,
it is unknown whether the optimal policy even lies in
the class of threshold policies. Recall that finding an
optimal policy for the general multi-server case is an
open problem in queueing theory. Here, we consider
the special case of two servers and a discounted cost
MDP. We show that any stationary point is approx-
imately optimal by using results from Bhandari and
Russo (2024). We define some preliminaries, describe
the required conditions, show that they hold for our
queueing model and finally state the formal result.

Here we look at the special case of two servers k = 2 -
one fast and one slow. Recall that the optimal policy
is proven to be of threshold type for this case. Further,
we consider the discounted cost MDP here. While we
consider the average cost MDP in Algorithm 1 and
the guarantees of convergence to a stationary point in
Section 5.1, we note that a global optimality analysis
for the average cost MDPs is still an open problem.
We also observe empirically in Section 6.2, a similar
performance (and often with fewer samples) with a
discounted cost. We continue to use the soft threshold
policy parameterization described in Equation (5) and
represent by © the class of such policies.

The state-value function V"(s) is now defined as the
overall discounted cost accumulated when starting from
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state s and following policy 7

—=F 27

where 7 is the discount factor. Represent the distribu-
tion from which the initial state is chosen by £. The
performance measure can hence be written as

Sy (1) = Esng [VT(5)]

and the optimal policy is 7* = arg min_ J,, ().

(sD)|s® = s

Define the weighted Policy Iteration (PI) objective or
the ”"Bellman” cost function as

B (7w, V]) = Egu [(T—V”)(s)]
=E [Q](s,7(s))] 9)

for a probability distribution v over state space S where
T is the Bellman operator with respect to policy 7.
Further, define the effective concentrability coefficient
ke for the class of value functions Vo = {V™ : 0 € O}
to be the smallest scalar such that VV € Vg

IV =Vhe < IV =TV]1¢

(1 )
where [[V(s)[[1,e = Esne[V(s)]-

Assumption 5.6 (Differentiability). For each policy
parameter 0 and induced stationary distribution vy, the
functions 0 — B(§|1/37V,Y9) and 0 — B(0|vg, Vf) are
continuously differentiable on an open set containing 6.

Assumption 5.7 (Closure under approximate policy
improvement). For each § € ©, there exists ¢, > 0
such that

QIEI% B(0+|1/9,V0) < m1nB(7r|1/g,V0) + e
where I1 is the set of all policies and €, is referred to
as the inherent Bellman error of the policy class.

Assumption 5.8 (Stationary points of the weighted
PI objective). For each 6 € ©, the function 0 —
B(0|ve, V) has no sub-optimal stationary points.

Assumption Verification. It is easy to see that
Assumption 5.6 holds for our policy parameterization
in Equation (5). Next, we prove that Assumption 5.7
holds for our model in Appendix A using monotonicity
arguments. Further, we note that ¢, — 0 as the sharp-
ness hyperparameter o — co. This agrees with Lemma
4 in Lin and Kumar (1984) which shows that the (hard)
threshold policy is closed under policy improvement
when there are only two servers. Finally, we verify
Assumption 5.8 by showing that there are indeed no
sub-optimal stationary points in Appendix B where we
establish convexity of the weighted PI objective.

We now state the formal result of approximate optimal-
ity of the stationary point for the two server system in
the discounted cost setting.

Theorem 5.2 (Bhandari and Russo (2024), Theo-
rem 5). If assumptions 5.6-5.8 hold, then J, is con-
tinuously differentiable and any stationary point 0 of

Jy () satisfies,
3

(1-9)

where k¢ is the effective concentrability coefficient and
€y 15 the inherent Bellman error arising due to closure
under approximate policy improvement.

T, (mg) — Ty (1) <

* €p (10)

6 EXPERIMENTS

In this section we show empirically that the optimal
policy obtained via RVTI is of threshold type even for
the multi-server case and compare the performance of
RVI and ACHQ against two baselines.

Simulation Setup. We simulate the queueing sys-
tem as a discrete time system by sampling the contin-
uous time model. If an idle server is imagined to be
serving a fictitious job, sampling the continuous time
system at instants of arrivals and departures (both true
and fictitious) gives us an equivalent discrete time rep-
resentation (Lippman, 1975). Note that the standard
technique of including fictitious departures ensures that
the sample instants are equally exponentially spaced
out. We, hence, now have a discrete time system where
in at each timestep, whose beginning is marked by an
arrival or a departure, the policy decides which server
to send a job waiting in the queue to or chooses to keep
the job in the queue and wait for the next timestep.
The job is then routed accordingly and a transition to
the next state occurs as a result of an arrival whose
probability is A/(A+ ", i;) or a departure whose prob-

ability is p1;/(A 4+ >, p4)-

Baselines. We compare against two baseline policies
— fastest-available-server (FAS) and ratio-of-service-
rate-thresholds (RSRT). FAS routes a job waiting in
the queue to the fastest among the available servers
at each timestep. RSRT is a threshold policy where a
job is routed to the fastest among the available servers
(say server f) only if the number of jobs waiting in

the queue exceeds the threshold 0y = (Z{;ll ,ul-) e

The RSRT threshold values, proposed in Larsen (1981),
represent the maximum number of jobs in the queue
beyond which waiting for a faster server is detrimental
in a very lightly loaded system (A — 0) where all
servers ¢ < f are used. While FAS can be viewed
as a pessimistic policy that always routes at the first
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Figure 2: For multi-server heterogeneous systems, optimal policy is observed to be of threshold type where jobs
are routed to the fastest available server only when the queue length exceeds the threshold

available opportunity, RSRT is an optimistic policy
that believes in the benefit of waiting for a faster server.
The goal of our algorithm, thus, is to find an optimal
balance between optimism and pessimism.

6.1 Relative Value Iteration

In this subsection, we consider four configurations (a)-
(d) of the heterogeneous queueing system with a buffer
capacity {p; = 100 as examples. (a) is the base case
where p = [100, 25,5, 1], p = 0.4. We choose a higher
load in (b) where p = [100,25,5,1], p = 0.5. We
increase the degree of heterogeneity in (¢) and pick
p = [100,100,1,1], p = 0.4. We vary the number of
servers in (d) with p = [100,25,5,5,1,1], p = 0.4. Note
that we define load of the system as p = A/(>_; 1:)-

Threshold Policy. Recall that a threshold policy
is a rule where a job is sent to the fastest among the
available servers (say server f) when the number of jobs
waiting in the queue is above a threshold 6; and other-
wise waits for the next timestep. In Figure 2, we plot
the optimal action against the number of jobs waiting
in the queue for different states of server occupation.
Note that a = f represents the job being routed to the
fastest available server f and a = 0 denotes waiting
for the next timestep with the job remaining in the
queue. We observe that the optimal policy is indeed of
threshold type. Further, an important observation we
make is that the faster the service rate of a server, the
smaller is the threshold corresponding to it. We notice
from (a) and (c) that thresholds of a server are affected
by servers faster than it. Moreover, we see from (a)
and (d) that the servers with the same service rate
and same set of faster servers have the same threshold
despite the number and rates of the slower servers. We
also remark that the thresholds depend on load of the
system from (a) and (b).

RVI FAS RSRT
(a) 548 £0.03 7.72+0.04 10.04 £ 0.05
(b) 811 +£0.04 9.72+0.05 17.15+0.08
(¢) 2364001 4.64+0.03 237+0.01
(d) 5.46 £0.03 9.56 +0.04 10.45 £+ 0.06

Table 1: Expected Response Time, T, (x1072)

Performance Improvement. We observe in Table 1
that the optimal policy found by Relative Value Itera-
tion (RVI) improves the expected response time by up
to ~ 50% over the FAS baseline. On the other hand,
while RVI consistently outperforms RSRT, the amount
of gain is highly dependent on the instance.

Value Function Approximation. On approximat-
ing the value function V(s) obtained for the configu-
rations (a) - (d) with a linear function, we obtain R?
values of 0.941,0.943,0.942,0.942 respectively. This
indicates a very high degree of correlation and hence
shows that a linear function is a good approximation.

6.2 ACHQ

Here, we consider a representative example of 8 servers
whose service rates are linearly spaced between 100
and 1 with a load p = A/(3_, #i) = 0.4 and compare
the performance with varying number of server, hetero-
geneity of service rates and load. We set the sharpness
hyperparameter ¢ = 1 and the learning rates for actor
a = 1073, critic 8 = 1073 and average cost estimator
¢ = 1072, We observe in Figure 4, that the average
number of jobs in the system and the threshold values
converge during learning. We see that both the average
cost and discount cost versions of the algorithm per-
form similarly. Note that by Little’s Law, the average
number of jobs in the system, n, and expected response
time, T,., are related as n = A\T..
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Figure 3: ACHQ shows up to ~ 30% improvement over the FAS and RSRT baselines

With an increase in the number of servers, we observe
in Figure 3a that while ACHQ outperforms both the
baselines FAS and RSRT, the gap to FAS reduces and
gap to RSRT increases. We attribute this to the fact
that a moderately fast server is often available as the
system scales up. As the load increases in Figure 3b,
we notice that the gain of ACHQ over FAS increases
initially and then decreases. This can be explained by
the fact that at high loads even the slower servers are
required and at low loads the slower servers are used
sparingly. Only at medium loads do we observe non-
trivial thresholds and usage of slower servers. With
an increase in heterogeneity in Figure 3c, we observe
an increased performance gain of ACHQ over FAS.
This is because FAS ignores the option of waiting for a
increasingly faster server as the heterogeneity increases.

1) . 10
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s >
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Figure 4: Convergence of ACHQ: Instance of 8 servers
with g = linspace(100, 1) and load p = 0.4

Checking the availability of each server at every
timestep becomes expensive as the number of servers in
the system scale up. In real world large scale systems,
a router often samples a subset of d servers and makes
a routing decision based on these. In homogeneous
systems, these Power-of-d-Choice (Pod) policies have
been shown to be asymptotically optimal (Mukherjee
et al., 2020). We implement a power of 4 choices ver-
sion of ACHQ where at each timestep, 4 servers are
sampled without replacement and a job is sent to the
fastest among these 4 servers if the number of jobs in

the queue exceeds its threshold. As shown in Figure 3d,
our algorithm continues to outperform FAS and RSRT.
Note that unlike in the case where we are allowed to
observe the state of all servers, the gap between FAS
and ACHQ does not decrease.

Remark. While we consider that the rates are known in
this work, ACHQ can easily be extended to the case of
unknown arrival and/or service rates by incorporating
a simple upper confidence bound based estimation step.

7 CONCLUSION

We consider the open problem of routing in hetero-
geneous multi-server queueing systems. We propose
ACHQ), an efficient policy gradient based algorithm
where we leverage the underlying queueing structure
by designing a low dimensional soft threshold parame-
terized policy. We provide stationary-point convergence
guarantees for the general case and convergence to an
approximate global optimum for the special case of
two servers. We also demonstrate an improvement in
the expected response time of up to ~ 30% over the
greedy policy of routing to the fastest available server.
Directions of future work include proving that the op-
timal policy is indeed of threshold type even in the
multi-server case and expanding to other distributions
of arrival and service rates.
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A CLOSURE UNDER APPROXIMATE POLICY IMPROVEMENT

In this section, we verify that Assumption 5.7 holds for our problem by presenting a proof of closure of the soft
threshold policy under approximate policy improvement. This follows the arguments made in Lemma 4 of Lin
and Kumar (1984) which shows that (hard) threshold policies are closed under policy improvement for the two
server case.

Recall that the queue is represented as a discrete time system where at each timestep, whose beginning is marked
by an arrival or a departure, the router decides if and which server to send a job waiting in the queue to. We
consider without loss of generality that the arrival and service rates are normalized as A + > p; = 1. The soft
threshold policy parameterized by 6 € ©, can be written as

mela=0[s=([,1,1)) =1

mo(a=1ls=(1,0,1))=1 ifl>0
mola=0s=(1,0,1) =1 ifl=0

o(l-0)

(&
7T9(G; = 2|3 = (l7 170)) = 14+ eo(1-0)
1
779(@ = 0|3 = (l7 170)) = 14+ eo(1-0)

mp(a =0/s = (1,0,0)) =1 ifl= (11)

where 7g(als) represents the probability that a router following policy 7y takes action a.

For a given soft threshold policy 7y, represent the policy obtained by policy improvement over the set of all

policies as ' = arg min B(7|vy, Vf ). Similarly, denote the policy obtained by policy improvement over the set of
mell
soft threshold policies as ¢’ = arg min B(67 |vy, Vf ). To verify Assumption 5.7 for our problem, we want to show
0teco
that the weighted PI objective of 6’ is approximately equal to that of n’. Formally, we want to show that there
exists a 6’ € O for every soft threshold policy 6 € © such that

B(H'|1/9,V79) < B(r'|ve, V) + &

where ¢, is referred to as the inherent Bellman error.

We first consider the improvement over the set of all policies 7. Define

ho = V2(0,1,0) — V(0,0,1)
hy=V)(1,1,0) = VI(1—1,1,1) forl>1. (12)

For state s = (I, 1,0), notice that h; < 0 implies that the optimal action under 7’ is to wait until the next timestep
and h; > 0 implies that the optimal action is to route a job to the slow server. If h; < 0 for [ <[* and h; > 0 for
1 > I*, then the improved policy 7’ is a threshold policy where a job is routed to the slow server only when the
number of jobs in the queue exceeds the threshold I* (see Lemma 4, Lin and Kumar (1984)).

Now, if we pick " = I*, the weighted PI objective of improved soft threshold policy 6’ will approximately be equal
to that of «#’ with ¢, characterizing the error. The Bellman approximation error €, arises due to the difference
between 7’ being a (hard) threshold policy and 6’ being a soft threshold policy. Note that e, — 0 as the decision
sharpness hyperparameter ¢ — oo and the soft threshold tends towards a hard threshold.

We dedicate the rest of the section to proving that the structure required over h; where h; < 0 for [ < [* and
h; > 0 for I > [* is indeed true using monotonicity arguments.
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Applying Bellman equation to V.7(/,1,0) and V7 (I — 1,1, 1), we have

o(l+1-0
VI(1,1,0) = (I+1) + A Li(o(m)e) T(1,1,1) + m T+ 1,1,0)] +ym VI (l—1,1,0)
60(170)
+’)/,U2 |:1—|—‘7(19)V (l 1 1 1) mv (1,170):| (13)
VI = 1,1,1) = (L4 1) + AV (1, 1) 4y V(= 2,1,1)
ea(l—l—@) 1
+ Y2 [HUWV (l 2 1 1) + WV (l 1, 1, 0):| (14)

Subtracting the two, we get,

=V7(,1,0) = Vil —-1,1,1)

§
- [% +11’+1;8<z+1v;;>(l’1’1) oy [Vy(=1,1,0) = V(I - 2,1,1)]
o (1=0) 1
+ Y2 mv (l 1,1 1)+W (l,LO)
o (1=1-0) 1
WV (1=211) = ;g VI (= 1 1L0) | (15)

Now, we argue that for a large enough sharpness hyperparameter o, there exists an {; > 0 such that h; > 0 for all
[ > 1y and denote the smallest such /; as [*. This can be seen by the fact that terms 1 and 3 corresponding to a
departure from the second server dominate the equation at large queue lengths and we know

a'(l—@) o(l—1-0)

€

This is because V(1 —1,1,1) > V.7 (I — 2,1, 1) following arguments of monotonicity of Bellman operator as in
Lemma 1 of Lin and Kumar (1984).

With some algebraic manipulation, we obtain,
(1= by > biyA(huga — i) + baypa (b1 — hy)

1 o(l-1-0)
itz te VA(I—1,1,1) = V(1= 1,1,0) (16)

+ 1+ eo(l—1-0) 1+ ec(l=0) 7

where by = 1/(1 4+ €701 by =1, b3 = 1/(1+e”=9) and b = by A + bojuy + bapo. For a large enough sharpness
constant ¢, the third term on the right hand side in the expression above is always positive. We hence have

—(1 = av)hi +yA (g1 — b)) < ypa(hy = hie1). (17)

We know hj«41 > 0 and by« < 0. Using [ = {*,1* —1,... in Equation (17), it follows that
ho < hy <...hp» <0. (18)
Putting Equation (15) and Equation (18) together, we have hg < hy < ...h;» <0 and h; > 0 for all I > [*. The

improved policy 7’ is thus a threshold policy with threshold i*. Choosing 6’ = I* results in approximate equality
of the weighted PI objectives as detailed above and concludes the proof.
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B STATIONARY POINTS OF WEIGHTED PI OBJECTIVE

In this section, we show that the weighted PI objective has no sub-optimal stationary points by arguing that it
is convex. Let [* be such that Q7((/,1,0),a = 2) < Q7((l,1,0),a = 0) for all [ > I*. The existence of such an
[* is guaranteed by Equation (15) in Appendix A above. Now, consider the value of the weighted PI objective
B(0|ve, V$ ) with increasing values . As 6 increases towards [*, the number of states where the sub-optimal action
of routing a job to the slow server reduces and hence the weighted PI objective monotonically reduces. The
minimum is obtained at § = [*. Further, as # increases beyond [*, the number of states where the sub-optimal
action of idling until the next timestep is chosen more often resulting in a monotonic increase in the weighted PI
objective. Thus, the weighted PI objective is a convex function in € and there are no sub-optimal stationary
points.

C RELATIVE VALUE ITERATION

We detail the Relative Value Iteration algorithm below for the sake for completeness. Note that the span
semi-norm used in the algorithm is defined as sp(f(z)) := [max, f(z)][min, f(x)].

Algorithm 2 Relative Value Iteration

. Initialize V(O (s) =0Vs € S, e
while sp(V® — V({=1) > ¢ do
for s € S do
VED(s) « T(VO)(s) = T(VV)(s¥)
end for
t+1t+1
end while
m(s) = argminc(s) + Y., .5 Pr(s']s,a) VP (s')




