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Abstract

This paper investigates the effect of the design matrix on the ability (or inability) to esti-
mate a sparse parameter in linear regression. More speciőcally, we characterize the optimal
rate of estimation when the smallest singular value of the design matrix is bounded away
from zero. In addition to this information-theoretic result, we provide and analyze a proce-
dure which is simultaneously statistically optimal and computationally efficient, based on soft
thresholding the ordinary least squares estimator. Most surprisingly, we show that the Lasso
estimatorÐdespite its widespread adoption for sparse linear regressionÐis provably minimax
rate-suboptimal when the minimum singular value is small. We present a family of design ma-
trices and sparse parameters for which we can guarantee that the Lasso with any choice of
regularization parameterÐincluding those which are data-dependent and randomizedÐwould
fail in the sense that its estimation rate is suboptimal by polynomial factors in the sample size.
Our lower bound is strong enough to preclude the statistical optimality of all forms of the Lasso,
including its highly popular penalized, norm-constrained, and cross-validated variants.

1 Introduction

In this paper, we consider the standard linear regression model

y “ Xθ‹ ` w, (1)

where θ‹ P R
d is the unknown parameter, X P R

nˆd is the design matrix, and w „ N
`
0, σ2In

˘

denotes the stochastic noise. Such linear regression models are pervasive in statistical analysis [19].
To improve model selection and estimation, it is often desirable to impose a sparsity assumption on
θ‹Ðfor instance, we might assume that θ‹ has few nonzero entries or that it has few large entries.
This amounts to assuming that for some p P r0, 1s

}θ‹}p ď R, (2)

where } ¨ }p denotes the ℓp vector (quasi)norm, and R ą 0 is the radius of the ℓp ball. There has
been a ŕurry of research on this sparse linear regression model (1)-(2) over the last three decades;
see the recent books [2, 14, 28, 10, 16] for an overview.

Comparatively less studied, is the effect of the design matrix X on the ability (or inability) to
estimate θ‹ under the sparsity assumption. Intuitively, when X is łclose to singularž, we would
expect that certain directions of θ‹ would be difficult to estimate. Therefore, in this paper we seek
to determine the optimal rate of estimation when the smallest singular value of X is bounded. More
precisely, we consider the following set of design matrices

Xn,dpBq –
!
X P R

nˆd :
1

n
XTX ě

1

B
Id

)
, (3)
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and aim to characterize the corresponding minimax rate of estimation

Mn,dpp, σ,R,Bq – inf
pθ

sup
XPXn,dpBq

}θ‹}pďR

Ey„NpXθ‹,σ2Inq

”
∥

∥pθ ´ θ‹
∥

∥

2

2

ı
. (4)

1.1 A motivation from learning under covariate shift

Although it may seem a bit technical to focus on the dependence of the estimation error on the
smallest singular value of the design matrix X, we would like to point out an additional motivation
which is more practical and also motivates our problem formulation. This is the problem of linear
regression in a well-speciőed model with covariate shift.

To begin with, recall that under random design, in the standard linear observational model (i.e.,
without covariate shift) the statistician observes random covariate-label pairs of the form px, yq.
Here, the covariate x is drawn from a distribution Q and the label y satisőes Ery | xs “ xTθ‹.
The goal is to őnd an estimator pθ that minimizes the out-of-sample excess risk, which takes the
quadratic form Ex„Qrpppθ ´ θ‹qTxq2s. When the covariate distribution Q is isotropic, meaning that

Ex„QrxxTs “ I, the out-of-sample excess risk equals the squared ℓ2 error }pθ ´ θ‹}22.
Under covariate shift, there is a slight twist to the standard linear regression model previously

described, where now the covariates x are drawn from a (source) distribution P that differs from the
(target) distribution Q under which we would like to deploy our estimator. Assuming Q is isotropic,
the goal is therefore still to minimize the out-of-sample excess risk under Q, which is }θ‹ ´ pθ}22. In
general, if P ‰ Q and no additional assumptions are made, then learning with covariate shift is
impossible in the sense that no estimator can be consistent for the optimal parameter θ‹. It is
therefore common (and necessary) to impose some additional assumptions on the pair pP,Qq to
facilitate learning. One popular assumption relates to the likelihood ratio between the source-
target pair. It is common to assume that absolute continuity holds so that Q ! P and that the the
likelihood ratio dQ

dP
is uniformly bounded [21]. Interestingly, it is possible to show that if dQ

dP
pxq ď B

for P -almost every x, then the semideőnite inequality

Ex„P rxxTs ě
1

B
I (5)

holds [21, 29]. Comparing the inequality (5) to our class Xn,dpBq as deőned in display (3), we
note that our setup can be regarded as a őxed-design variant of linear regression with covariate
shift [20, 9, 30].

1.2 Determining the minimax rate of estimation

We begin with one of our main results, which precisely characterizes the (order-wise) minimax risk
Mn,dpp, σ,R,Bq of estimating θ‹ under the sparsity constraint }θ‹}p ď R and over the restricted
design class Xn,dpBq.

Theorem 1. Let n ě d ě 1 and σ,R,B ą 0 be given, and put τ2n – σ2B
R2n

. There exist two universal
constants cℓ, cu satisfying 0 ă cℓ ă cu ă 8 such that

(a) if p P p0, 1s and τ2n P rd´2{p, log´1pedqs, then

cℓR
2

´
τ2n log

`
edτpn

˘¯1´p{2
ď Mn,dpp, σ,R,Bq ď cuR

2
´
τ2n log

`
edτpn

˘¯1´p{2
, and
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(b) if p “ 0, we denote s “ R P rds, and have

cℓ
σ2B

n
s log

´
e
d

s

¯
ď Mn,dpp, σ, s, Bq ď cu

σ2B

n
s log

´
e
d

s

¯
.

The proof of Theorem 1 relies on a reduction to the Gaussian sequence model [16], and is deferred
to Section 3.1.

Several remarks on Theorem 1 are in order. The őrst observation is that Theorem 1 is sharp,
apart from universal constants that do not depend on the tuple of problem parameters pp, n, d, σ, s, R,Bq.

Secondly, it is worth commenting on the sample size restrictions in Theorem 1. For all p P
r0, 1s, we have assumed the łlow-dimensionalž setup that the number of observations n dominates
the dimension d.1 Note that this is necessary for the class of designs Xn,dpBq to be nonempty.
On the other hand, for p ą 0 we additionally require that the sample size is łmoderatež, i.e.,
τ2n P rd´2{p, log´1pedqs. We make this assumption so that we can focus on what we believe is
the łinterestingž regime: where neither ordinary least squares nor constant estimators are optimal.
Indeed, when n ě d but τ2n ě log´1pedq, it is easily veriőed that the optimal rate of estimation
is on the order R2; intuitively the effective noise level is too high and no estimator can dominate
pθ ” 0 uniformly. On the other hand, when n ě d but τ2n ď d´2{p, then the ordinary least squares
estimator is minimax optimal; intuitively, the noise level is sufficiently small such that there is, in
the worst case, no need to shrink on the basis of the ℓp constraint to achieve the optimal rate.

Last but not least, as shown in Theorem 1, the optimal rate of estimation depends on the
signal-to-noise ratio τ´2

n “ nR2{pσ2Bq. As B increases, the design X becomes closer to singular,
estimation of θ‹, as expected, becomes more challenging. The dependence of our result on B is
exactly analagous to the impact of the likelihood ratio bound B appearing in the context of prior
work on nonparametric regression under covariate shift [21].

1.3 A computationally efficient estimator

The optimal estimator underlying the proof of Theorem 1 requires computing a d-dimensional
Gaussian integral, and therefore is not computationally efficient in general. In this section we
propose an estimator that is both computationally efficient and statistically optimal, up to constant
factors.

Our procedure is based on the soft thresholding operator: for v P R
d and η ą 0, we deőne

Sηpvq – argmin
uPRd

!
}u ´ v}22 ` 2η}u}1

)
.

Note that soft thresholding involves a coordinate-separable optimization problem and has an explicit
representation, thus allowing efficient computation. Then we deőne the soft thresholded ordinary
least squares estimator

pθSTOLS
η pX, yq – Sη

´
pθOLSpX, yq

¯
, (6)

where pθOLSpX, yq is the usual ordinary least squares estimateÐequal to pXTXq´1XTy in our case.
We have the following guarantees for its performance.

Theorem 2. The soft thresholded ordinary least squares estimator (6) satisőes

1Notably, this still allows n to be proportional to d, e.g., we can tolerate n “ d.
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(a) in the case p P p0, 1s, for any R ą 0, if τ2n P rd´2{p, log´1pedqs, then

sup
XPXn,dpBq

sup
}θ‹}pďR

E

”
}pθSTOLS

η pX, yq ´ θ‹}22
ı

ď 6R2
´
τ2n logpedτpnq

¯1´p{2
,

with the choice η “
a
2R2τ2n logpedτpnq, and

(b) in the case p “ 0, for any s P rds,

sup
XPXn,dpBq

sup
}θ‹}0ďs

E

”
}pθSTOLS

η pX, yq ´ θ‹}22
ı

ď 6
σ2B

n
s log

´
e
d

s

¯
,

with the choice η “
b
2σ2B

n
logp ed

s
q.

The proof is presented in Section 3.2.

Comparing the guarantee in Theorem 2 to the minimax rate in Theorem 1, it is immediate to see
that the soft thresholded ordinary least squares estimator is minimax optimal apart from constant
factors.

Secondly, we would like to point out a (simple) modiőcation to the soft thresholding ordinary
least squares procedure that allows it to be adaptive to the hardness of the particular design matrix
encountered. To achieve this, note that X P Xn,dp pBq for pB – ~pXTXq´1~op. Therefore the

results in Theorem 2 continue to hold with B replaced by (a possibly smaller) pB, provided that the
thresholding parameter η is properly adjusted. For instance, in the case with p “ 0, we have

sup
}θ‹}0ďs

E

”
}pθSTOLS

pη pX, yq ´ θ‹}22
ı

ď 6
σ2 pB
n

s log
´
e
d

s

¯
, (7)

provided we take pη “
b
2σ2 pB

n
logp ed

s
q.

Finally, we note that inspecting our proof, the upper bound for pθSTOLS
pη pX, yq also holds for a

larger set of design matrices

X diag
n,d pBq –

!
X P R

nˆd :

ˆ
1

n
XTX

˙´1

ii

ď B, for 1 ď i ď d
)
.

Since Xn,dpBq Ă X diag
n,d pBq, this means after combining the lower bounds in Theorem 1 with the

guarantees in Theorem 2, we additionally have established the minimax rate over this larger family
X diag
n,d pBq.

1.4 Is Lasso optimal?

Arguably, the Lasso estimator [26] is the most widely used estimator for sparse linear regression.
Given a regularization parameter λ ą 0, the Lasso is deőned to be

pθλpX, yq – argmin
ϑPRd

! 1

n
∥Xϑ ´ y∥22 ` 2λ∥ϑ∥1

)
. (8)

Surprisingly, we show that the Lasso estimatorÐdespite its popularityÐis provably suboptimal for
estimating θ‹ when B " 1.
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Corollary 1. The Lasso is minimax suboptimal by polynomial factors in the sample size when d “ n

and B “ ?
n. More precisely,

(a) if p P p0, 1s, and σ “ R “ 1, then we have

sup
XPXn,dpBq

sup
}θ‹}pďR

E

”
inf
λą0

}pθλpX, yq ´ θ‹}22
ı

Á 1, and

(b) if p “ 0, and σ “ s “ 1, then we have

sup
XPXn,dpBq

sup
}θ‹}0ďs

E

”
inf
λą0

}pθλpX, yq ´ θ‹}22
ı

Á 1.

Corollary 1 is in fact a special case of a more general theorem (Theorem 3) to be provided later.

Applying Theorem 1 to the regime considered in Corollary 1, we obtain the optimal rate of
estimation ´?

1 ` log n

n1{4

¯2´p

! 1, for every p P r0, 1s.

As shown, in the worst-case, the multiplicative gap between the performance of the Lasso and a
minimax optimal estimator in this scaling regime is at least polynomial in the sample size. As a
result, the Lasso is quite strikingly minimax suboptimal in this scaling regime.

In fact, the lower bound against Lasso in Corollary 1 is extremely strong. Note that in the
lower bound, the Lasso is even allowed to leverage the oracle information θ‹ to calculate the optimal
instance-dependent choice of the regularization parameter (c.f., infλą0 }pθλpX, yq´θ‹}22). As a result,
the lower bound applies to any estimator which can be written as the penalized Lasso estimator
with data-dependent choice of penalty. Many typical Lasso-based estimators, such as the norm-
constrained and cross-validated Lasso, can be written as the penalized Lasso with a data-dependent
choice of the penalty parameter λ. For instance, in the case of the norm-constrained Lasso, this
holds by convex duality. Thus, we can rule out the minimax optimality of any procedure of this
type, in light of Corollary 1.

The separation between the oracle Lasso and the minimax optimal estimator can also be demon-
strated in experiments, as shown below in Figure 1.

1.5 Connections to prior work

In this section, we draw connections and comparisons between our work and existing literature.

Linear regression with elliptical or no constraints. Without any parameter restrictions,
the exact minimax rate for linear regression when error is measured in the ℓ2 norm along with
the dependence on the design matrix is known: it is given by σ2TrppXTXq´1q [19]. These results
match our intuition that as the smallest singular value of X decreases, the hardness of estimating
θ‹ increases. It is also worth mentioning that the design matrix does not play a role, apart from
being invertible, in determining the optimal rate for the in-sample prediction error. The rate is
given uniformly by σ2d

n
when n ě d [15].
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is shown via a correlated design matrix and a 2-sparse vector, that the norm-constrained version of
Lasso can only achieve a slow rate in terms of the prediction error. Again, this result does not rule
out the optimality of other variants of the Lasso. In addition, in the paper [5], there is an example
for which Lasso with any őxed (i.e., independent from the observed data) choice of regularization
would fail to achieve the optimal rate. Again, this fails to rule out data-dependent choices of
regularization or other variants of the Lasso. In our work, we are able to rule out the optimality
of the Lasso by considering a simple diagonal design matrix which exhibits no correlations among
the columns. Nonetheless, for any p P r0, 1s, we show that the Lasso will fall short of optimality
by polynomial factors in the sample size. Our result also simultaneously rules out the optimality of
constrained, penalized, and even data-dependent variants of the Lasso, in contrast to the literature
described above.

Covariate shift. As mentioned previously, our work is also related to linear regression under
covariate shift [20, 30, 9]. The statistical analysis of covariate shift, albeit with an asymptotic nature,
dates back to the seminal work by Shimodaira [25]. Recently, nonasymptotic minimax analysis of
covariate shift has gained much attention in unconstrained parametric models [12], nonparametric
classiőcation [18], and also nonparametric regression [22, 21, 29].

2 A closer look at the failure mode of Lasso

In this section, we take a closer look at the failure instance for Lasso. We will investigate the
performance of the Lasso on diagonal design matrices Xα P R

nˆd which satisfy, when d “ 2k,

1

n
XT

αXα “
ˆ

α
B
Ik 0

0 1
B
Ik

˙
.

Thus, this matrix has condition number α and satisőes Xα P Xn,dpBq for all α ě 1. As our proof
of Theorem 1 reveals, from an information-theoretic perspective, the hardest design matrix Xα is
with the choice α “ 1: when all directions have the worst possible signal-to-noise ratio. Strikingly,
this is not the case for the Lasso: there are in fact choices of α " 1 which are even harder for the
Lasso.

Theorem 3. Fix n ě d ě 2 and let σ,B ą 0 be given. For α ě 1, on the diagonal design Xα,

(a) if p P p0, 1s and R ą 0, then there is a vector θ‹ P R
d such that }θ‹}p ď R but

Ey„NpXαθ‹,σ2Inq

”
inf
λą0

}pθλpXα, yq ´ θ‹}22
ı

ě 9

20000

´σ2Bd

nα
^ R2

´σ2B

R2n
α

¯1´p{2
^ R2

¯
, and

(b) if p “ 0 and s P rds, then there is a vector θ‹ P R
d which is s-sparse but

Ey„NpXαθ‹,σ2Inq

”
inf
λą0

}pθλpXα, yq ´ θ‹}22
ı

ě 9

20000

´σ2Bd

nα
^ σ2Bs

n
α

¯
.

The proof of Theorem 3 is presented in Section 3.3. We now make several comments on the
implications of this result.

We emphasize that the dependence of the Lasso on the parameter α, which governs the condition
number of the matrix Xα, is suboptimal, as revealed by Theorem 3. At a high-level, large α should
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only make the ability to estimate θ‹ easierÐit effectively increases the signal-to-noise ratio in certain
directions. This can also be seen from Theorem 1: the conditioning of the design matrix does not
enter into the worst-case rate of estimation when the bottom signular value of X is bounded.
Nonetheless, Theorem 3 shows that the Lasso actually can suffer when the condition number α is
large.

Proof of Corollary 1. We now complete the proof of Corollary 1 given Theorem 3.

Maximizing over the parameter α ě 1 appearing in our result, we can determine a particularly
nasty conőguration of the conditioning of the design matrix for the Lasso. Doing so, we őnd that
for p P p0, 1s and R ą 0 that

sup
XPXn,dpBq

sup
}θ‹}pďR

E

”
inf
λą0

}pθλpX, yq ´ θ‹}22
ı

Á R2

ˆ´σ2B
?
d

R2n

¯4´2p
4´p ^ 1

˙
.

This is exhibited by considering the lower bound in Theorem 3 with the choice α‹ppq “ pτ2nd2{pqp{p4´pq.
On the other hand, if p “ 0, we have for s P rds that

sup
XPXn,dpBq

sup
}θ‹}0ďs

E

”
inf
λą0

}pθλpX, yq ´ θ‹}22
ı

Á σ2B

n

?
sd

The righthand side above is exhibited by considering the lower bound with the choice α‹p0q “
a
d{s.

The proof is completed by setting d “ n, B “ ?
n, and σ “ R “ 1.

3 Proofs

In this section, we present the proofs for the main results of this paper. We start with introducing
a few useful notations. For a positive integer k, we deőne rks – t1, . . . , ku. For a real number x,
we deőne txu to be the largest integer less than or equal to x and txu to be the fractional part of x.

3.1 Proof of Theorem 1

Our proof is based on a decision-theoretic reduction to the Gaussian sequence model. It holds in
far greater generality, and so we actually prove a more general claim which could be of interest to
other linear regression problems on other parameter spaces or with other loss functions.

To develop the claim, we őrst need to introduce notation. Let Θ Ă R
d denote a parameter

space, and let ℓ : Θ ˆ R
d Ñ R be a given loss function. We deőne two minimax rates,

MseqpΘ, ℓ, νq – inf
pµ

sup
µ‹PΘ

Ey„Npµ‹,ν2Idq

”
ℓ
`
µ‹, pµpyq

˘ı
, and (9a)

MregpΘ, ℓ, σ,B, nq – inf
pθ

sup
XPXn,dpBq

sup
θ‹PΘ

Ey„NpXθ‹,σ2Inq E

”
ℓ
`
θ‹, pθpX, yq

˘ı
. (9b)

The deőnitions above correspond to the minimax rates of estimation over the ℓp ball of radius
R ą 0 in R

d for the Gaussian sequence model, in the case of deőnition (9a), and for n-sample linear
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regression with B-bounded design, in the case of deőnition (9b). The inőma range over measurable
functions of the observation vector y, in both cases.

The main result we need is the following statistical reduction from linear regression to mean
estimation in the Gaussian sequence model.

Proposition 1 (Reduction to sequence model). Fix n, d ě 1 and σ,B ą 0. Let Θ Ă R
d, and

ℓ : Θ ˆ R
d Ñ R be given. If ℓpθ, ¨q : Rd Ñ R is a convex function for each θ P Θ, then

MregpΘ, ℓ, σ,B, nq “ Mseq

ˆ
Θ, ℓ,

c
σ2B

n

˙
.

Deferring the proof of Proposition 1 to Section 3.1.1 for the moment, we note that it immediately
implies Theorem 1. Indeed, we set Θ “ Θd,ppRq and ℓ “ ℓsq where

Θd,ppRq – tθ P R
d : }θ}p ď Ru, and ℓsqpθ, pθq “ }pθ ´ θ}22.

With these choices, we obtain

Mn,dpp, σ,R,Bq “ MregpΘd,ppRq, ℓsq, σ, B, nq “ Mseq

ˆ
Θd,p, ℓsq,

c
σ2B

n

˙
,

where the őnal equality follows from Proposition 1. The righthand side then corresponds to estima-
tion in the ℓ2 norm over the Guassian sequence model with parameter space corresponding to an
ℓp ball in R

d, which is a well-studied problem [7, 1, 16]; we thus immediately obtain the result via
classical results (for a precise statement with explicit constants, see Propositions 2 and 3 presented
in Appendix A).

3.1.1 Proof of Proposition 1

We begin by lower bounding the regression minimax risk by the sequence model minimax risk.
Indeed, let X‹ be such that 1

n
XT

‹ X‹ “ 1
B
Id. Then we have

MregpΘ, ℓ, σ,B, nq ě inf
pθ

sup
θ‹PΘ

Ey„NpX‹θ‹,σ2Inq

”
ℓ
`
θ‹, pθ

˘ı

ě inf
pθ

sup
θ‹PΘ

E
z„N

ˆ
θ‹,

σ2B
n

Id

˙
”
ℓ
`
θ‹, pθ

˘ı

“ Mseq

ˆ
Θ, ℓsq,

c
σ2B

n

˙
.

The penultimate equality follows by noting that in the regression model, PX‹ – tN
`
X‹θ, σ

2Id
˘
:

θ P Θu, the ordinary least squares (OLS) estimate is a sufficient statistic. Therefore, by the Rao-
Blackwell Theorem, there exists a minimax optimal estimator which is only a function of the OLS

estimate. For any θ‹, the ordinary least squares estimator has the distribution, N
´
θ‹, σ

2B
n

Id

¯
, which

provides this equality.

We now turn to the upper bound. Let pθOLSpX, yq “ pXTXq´1XTy denote the ordinary least
squares estimate. For any estimator pµ, we deőne

rθpX, yq – Eξ„Np0,W q

”
pµ

`pθOLSpX, yq ` ξ
˘ı
, where W “ σ2B

n
Id ´ σ2pXTXq´1. (10)

9



Note that for any X P Xn,dpBq, we have W ě 0. Additionally, by Jensen’s inequality, for any
X P Xn,dpBq, and any θ‹ P Θ,

Ey„NpXθ‹,σ2Inq

”
ℓ
`
θ‹, rθpX, yq

˘ı
ď Ey„NpXθ‹,σ2Inq Eξ„Np0,W q

”
ℓ
`
θ‹, pµ

`pθOLSpX, yq ` ξ
˘˘ı

“ E
z„N

ˆ
θ‹,

σ2B
n

Id

˙
”
ℓ
`
θ‹, pµpzq

˘ı

Passing to the supremum over θ‹ P Θ on each side and then taking the inőmum over measurable
estimators, we immediately see that the above display implies

MregpΘ, ℓ, σ,B, nq ď Mseq

ˆ
Θ, ℓ,

c
σ2B

n

˙
,

as needed.

3.2 Proof of Theorem 2

We begin by bounding the risk for soft thresholding procedures, based on a rescaling and mono-
tonicity argument and applying results from [16]. To state it, we need to deőne the quantitites

pν‹
nq2 –

σ2B

n
and ρnpθ, ηq – d pν‹

nq2e´pη{ν‹
nq2{2 `

dÿ

i“1

θ2i ^ pν‹
nq2 `

dÿ

i“1

θ2i ^ η2.

Then we have the following risk bound.

Lemma 1. For any θ‹ P R
d and any η ą 0 we have

sup
XPXn,dpBq

E

”
∥pθSTOLS

η pX, yq ´ θ‹∥22

ı
ď ρnpθ‹, ηq.

We now deőne for ζ ą 0 and a subset Θ Ă R
d,

T pζ,Θq – sup
θ‹PΘ

dÿ

i“1

pθ‹
i q2 ^ ζ2.

Lemma 1 then yields with the choice η “ γν‹
n for some γ ě 1 that

sup
θ‹PΘ

sup
XPXn,dpBq

E

”
∥pθSTOLS

η pX, yq ´ θ‹∥22

ı
ď 3

„
dpν‹

nq2e´γ2{2 _ T pγν‹
n,Θq

ȷ
. (11)

We bound the map T for the ℓp balls of interest. To state the bound, we use the shorthand Θp

for the radius-R ℓp ball in R
d centered at the origin for p ‰ 0, and for p “ 0, the set of s-sparse

vectors in R
d, for s P rds.

Lemma 2. Let d ě 1 be őxed. We have the following relations:

(a) in the case p P p0, 1s, we have for any ζ ą 0,

T pζ,Θpq ď R2

„´ ζ

R

¯2

d ^
´ ζ

R

¯2´p

^ 1

ȷ

for any R ą 0, and

10



(b) in the case p “ 0, we have for any ζ ą 0,

T pζ,Θpq “ ζ2s,

for any s P rds.

To complete the argument, we now split into the two cases of hard and weak sparsity.

When p “ 0: Combining inequality (11) together with Lemma 2, we őnd for η “ γν‹
n, γ ě 1, that

sup
θ‹PΘ

sup
XPXn,dpBq

E

”
∥pθSTOLS

η pX, yq ´ θ‹∥22

ı
ď 3pν‹

nq2
”
de´γ2{2 _ γ2s

ı
“ 6pν‹

nq2s log
´
e
d

s

¯
,

where the last equality holds with γ2 “ 2 logped{sq.

When p P p0, 1s : Combining inequality (11) together with Lemma 2, we őnd for η “ γν‹
n, γ ě 1

sup
θ‹PΘ

sup
XPXn,dpBq

E

”
∥pθSTOLS

η pX, yq ´ θ‹∥22

ı
ď 3R2

„
dτ2ne

´γ2{2 _
´
γ2´pτ2´p

n ^ 1
¯ȷ

(12)

Above, we used τ2nR
2 “ pν‹

nq2 and γ2τ2nd ě γ2´pτ
2´p
n , which holds since γ ě 1 and τ2n ě d´2{p. If we

take γ2 “ 2 logpedτpnq, then note γ2 ě 1 by τ2n ě d´2{p and the term in brackets in inequality (12)
satisőes

dτ2ne
´γ2{2 _

´
γ2´pτ2´p

n ^ 1
¯

“ τ
2´p
n

e
_

´
p2τ2n logpedτpnqq1´p{2 ^ 1

¯

ď 2

„
τ2´p
n _

´
pτ2n logpedτpnqq1´p{2 ^ 1

¯ȷ

“ 2pτ2n logpedτpnqq1´p{2,

which follows by τ2n P rd´2{p, log´1pedqs.
Thus, to complete the proof of Theorem 2 we only need to provide the proofs of the lemmas

used above.

3.2.1 Proof of Lemma 1

Note that if z “ pθOLSpX, yq then pθSTOLS
η pX, yq “ Sηpzq “ Sηpθ‹ ` ξq where ξ „ N

´
0, σ

2

n
Σ´1
n

¯
, where

we recall Σn – p1{nqXTX. We now recall some classical results regarding the soft thresholding
estimator. Let us write for λ ą 0 and µ P R,

rSpλ, µq – Ey„Npµ,1q

”`
Sλpyq ´ µ

˘2ı
, and,

rrSpλ, µq – e´λ2{2 `
´
1 ^ µ2

¯
`

´
λ2 ^ µ2

¯
.

Using pa`bq^c ď a^c`b^c for nonnegative a, b, c ě 0, Lemma 8.3 and the inequalities rSpλ, 0q ď
1 ` λ2 and rSpλ, 0q ď e´λ2{2 on page 219 of the monograph [16], we őnd that rSpλ, µq ď rrSpλ, µq.
Deőne ν2i – σ2

n
pΣ´1

n qii. Using the fact that pSηpzqq
i

“ S η
νi

´
zi
νi

¯
for i P rds, we obtain

ErppSηpzqq
i

´ θ‹
i q2s “ ν2i rS

´ η

νi
,
θ‹
i

νi

¯
ď ν2i rrS

´ η

νi
,
θ‹
i

νi

¯
.

11



Summing over the coordinates yields

E

”
∥pθSTOLS

η pX, yq ´ θ‹∥22

ı
ď

dÿ

i“1

ν2i rrS
´ η

νi
,
θ‹
i

νi

¯

“
dÿ

i“1

ν2i e
´pη{νiq

2{2 `
`
pθ‹

i q2 ^ ν2i
˘

`
`
pθ‹

i q2 ^ η2
˘

ď ρnpθ‹, ηq,

where the last inequality follows by noting that both ν ÞÑ ν2e´pη{νq2{2 and ν ÞÑ θ2 ^ ν2 are non-
decreasing functions of ν ą 0. Noting that this inequality holds uniformly on X P Xn,dpBq and
passing to the supremum yields the claim.

3.2.2 Proof of Lemma 2

The proof of claim (b) is immediate, so we focus on the case p P p0, 1s, R ą 0. We consider three
cases for the tuple pR, ζ, p, dq. Combination of all three cases will yield the claim.

When R ě ζd1{p: Evidently, for each θ such that }θ}p ď R, we have

dÿ

i“1

θ2i ^ ζ2 ď ζ2d.

When R ď ζ: This case is immediate, since θ P Θp implies }θ}2 ď }θ}p ď R ď ζ.

When ζ ď R ď ζd1{p: In this case, by rescaling and putting ε – ζ2

R2 , we have

sup
}θ}pďR

dÿ

i“1

θ2i ^ ζ2 “ R2

„
sup
λP∆d

ÿ

i:λiěεp{2

ε `
ÿ

i:λiăεp{2

λ
2{p
i

ȷ
“ εR2

´ Y
ε´p{2

]
` tε´p{2u2{p

¯

where above ∆d denotes the probability simplex in R
d. Noting that ε ď 1 and p ď 1 we have

´ Y
ε´p{2

]
` tε´p{2u2{p

¯
ď ε´p{2,

which in combination with the previous display shows that

sup
}θ}pďR

dÿ

i“1

θ2i ^ ζ2 ď R2ε1´p{2.

To conclude, now note that R2ε1´p{2 “ Rpζ2´p.

12



3.3 Proof of Theorem 3

Since Xα has nonzero entries only on the diagonal, we can derive an explicit representation of the
Lasso estimate, as deőned in display (8). To develop this, we őrst recall the notion of the soft
thresholding operator, which is deőned by a parameter η ą 0 and then satisőes

Sηpvq – argmin
uPR

!
pu ´ vq2 ` 2η|u|

)
.

We then start by stating the following lemma which is crucial for our analysis. It is a straightforward
consequence of the observation that

pθλpXα, yqi “
#
SλB{αpziq 1 ď i ď k

SλBpziq k ` 1 ď i ď d
, (13)

where we have deőned the independent random variables zi „ N

´
θ‹
i ,

σ2B
nα

¯
if i ď k and zi „

N

´
θ‹
i ,

σ2B
n

¯
otherwise.

Lemma 3. Let θ‹ P R
d. Then for the design matrix Xα, we have

}pθλpXα, yq ´ θ‹}22 “
kÿ

i“1

´
SλB{αpziq ´ θ‹

i

¯2

`
dÿ

i“k`1

´
SλBpziq ´ θ‹

i

¯2

.

We will now focus on vectors θ‹pηq “ p0k, η, 0d´2kq, which are parameterized by η P R
k. For

these vectors, we can further lower bound the best risk as

inf
λą0

}pθλpXα, yq ´ θ‹pηq}22 ě T1 ^ T2pηq (14)

where we have deőned

λ “
c

σ2

n

α

B
, T1 – inf

λďλ

kÿ

i“1

´
SλB{αpziq

¯2

and T2pηq – inf
λěλ

2kÿ

i“k`1

´
SλBpziq ´ ηi

¯2

.

We now move to lower bound T1 and T2pηq by auxiliary, independent random variables.

Lemma 4 (Lower bound on T1). Then, for any η P R
k if θ‹ “ θ‹pηq, we have

T1 ě 1

4

σ2B

nα
Z where Z –

kÿ

i“1

1

!
|zi|?

σ2B{pnαq
ě 3{2

)
.

Lemma 5 (Lower bound on T2pηq). Fix η P R
k if θ‹ “ θ‹pηq, and suppose that

0 ď ηi ď 2

c
σ2Bα

n
for all i P rks.

Then, we have

T2pηq ě 1

4

kÿ

i“1

η2iWi where Wi – 1tzk`i ď ηiu

Note that Z is distributed as a Binomial random variable: Z „ Bin pk, pq where p – Pt|N p0, 1q| ě
3{2u. Similarly, Wi are Bernoulli: we have Wi „ Ber p1{2q.
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Lower bound for p ą 0: We consider two choices of η. First suppose that 4τ2nα ď 1. Then, we
will consider η “ Rδ1ℓ where

δ – 2τn
?
α and ℓ – k ^

X
δ´p

\

For this choice of η we have by assumption that τ2n ě d´2{p that ℓ ě p1{2qδ´p and so

T2pηq ě 1

4
R2δ2ℓWℓ ě R2

8
δ2´pWℓ ě R2

8

´
τ2nα

¯1´p{2
Wℓ

Above, Wℓ – p1{ℓq řℓ
i“1Wi. On the other hand, if 4τ2nα ě 1, we take η1 “ Re1, and we consequently

obtain

T2pη1q ě R2

4
W1

Taking δ “ 1{2 in Lemma 4, let us deőne

c1 – min
1ďℓďk

P

!
Wℓ ě 1

2

)
and c2 – P

!
Z ě kp

)
.

Let us take

θ‹
α –

#
θ‹pηq 4τ2nα ď 1

θ‹pη1q 4τ2nα ą 1
.

Then combining Lemmas 4 and 5 and the lower bounds on T2pηq, T2pη1q above, we see that

Ey„NpXαθ‹
α,σ

2Inq

”
inf
λą0

}pθλpXα, yq ´ θ‹
α}22

ı
ě c2c1p

16

´σ2Bd

nα
^ R2

´σ2B

R2n
α

¯1´p{2
^ R2

¯
(15)

where above we have used k ě d{4.

Lower bound when p “ 0: In this case, we let s1 “ s ^ k. Note that s1 ě s{4. We then set

η “ 2

b
σ2Bα

n
1s1 , and this yields the lower bound

T2pηq ě 1

8

σ2Bs

n
αWs1

In this case, we have, after combining this bound with the bound on T1 that for θ‹
α – θ‹pηq as

deőned above,

Ey„NpXαθ‹
α,σ

2Inq

”
inf
λą0

}pθλpXα, yq ´ θ‹
α}22

ı
ě c2c1p

16

´σ2Bd

nα
^ σ2Bs

n
α

¯
(16)

The proof of Theorem 3 is complete after combining inequalities (15) (16), and the following
lemma.

Lemma 6. The constant factor c – c1c2p
16

is lower bounded as c ě 9
20000

.

We conclude this section by proving the lemmas above.
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3.3.1 Proof of Lemma 4

For the őrst term, T1, we note that for any λ ď λ we evidently have for each i P rks and for any
ζ ą 0, that

´
SλB{αpziq

¯2

“ p|zi| ´ λB{αq2` ě p|zi| ´ λB{αq2` ě ζ2
σ2B

nα
1

!
|zi|?

σ2B{pnαq
ě 1 ` ζ

)

Summing over i P rks, and taking ζ “ 1{2, we thus obtain the claimed almost sure lower bound.

3.3.2 Proof of Lemma 5

Fix any i such that 1 ď i ď k. For any őxed λ ě λ, note

SλBpzk`iq R rηi{2, 3ηi{2s implies
ˇ̌
ˇSλBpzk`iq ´ ηi

ˇ̌
ˇ ě ηi

2
.

Note that the condition SλBpzk`iq R rηi{2, 3ηi{2s is equivalent to zk`i R rηi{2 ` λB, 3ηi{2 ` λBs,
Therefore, if zk`i ď ηi{2` λB, then then for all λ ě λ we have |SλBpzk`iq ´ ηi| ě ηi

2
. Equivalently,

we have that

T2 ě 1

4

kÿ

i“1

η2i 1tzk`i ď ηi{2 ` λBu ě 1

4

kÿ

i“1

η2i 1tzk`i ď ηiu (17)

The őnal relation uses the distribution of zk`i and

´ηi{2 ` λBa
σ2B{n

“
?
α ´ 1

2

?
α

c
nη2i
ασ2B

ě 0

which holds by assumption that η2i ď 4σ2B
n

α.

3.3.3 Proof of Lemma 6

Evidently c1 ě 1{2 by symmetry. On the other hand, since p ď 1{2, we have by anticoncentration
results for Binomial random variables [13, Theorem 6.4] that c2 ě p. Therefore all together, c ě
p2{32. Note that by standard lower bounds for the Gaussian tail [8, Theorem 1.2.6], we have

p ě 10

27
e´9{8 ě 3

25
,

which provides our claimed bound.
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A Results in the Gaussian sequence model

In this section, we collect classical results regarding the nonasymptotic minimax rate of estimation
for Gaussian sequence model over the origin-centered ℓp balls, p P r0, 1s. All of the results in this
section are based on the monograph [16]. We use the following notation to specify the minimax rate
of interest,

M

´
p, d,R, ε

¯
– inf

pµ
sup

µ‹PRd

}µ‹}pďR

Ey„Npµ‹,ε2q

”
∥pµpyq ´ µ‹∥22

ı
.
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As usual, the inőmum ranges over measurable estimators from the observation vector y P R
d to an

estimate pµpyq P R
d. Throughout, we use the notation τ – ε

R
for the inverse signal-to-noise ratio.

Proposition 2 (Minimax rate of estimation when 0 ă p ď 1). Fix an integer d ě 1. Let p P p0, 1s.
If R, ε ą 0 satisfy

1

d2{p
ď τ2 ď 1

1 ` log d
, where τ “ ε

R
,

then
7

2000
R2 pτ2 logpedτpqq1´p{2 ď Mpp, d,R, εq ď 1203R2 pτ2 logpedτpqq1´p{2.

The upper and lower bounds are taken from Theorem 11.7 in the monograph [16]. Although the
constants are not made explicit in their theorem statement, the upper bound constant is obtained
via their Theorem 11.4, setting their parameters as ζ “ 23

4
, γ “ 2e, β “ 0. Similarly, the lower

bound constant is implicit in their proof of Theorem 11.7.

We now turn to the minimax rate in the special case that p “ 0.

Proposition 3 (Minimax rate of estimation when p “ 0). Suppose that d ě 1 and s P rds. Then
for any ε ą 0 we have

3

500
ε2 s log

´
e
d

s

¯
ď Mpp, d, s, εq ď 2 ε2 s log

´
e
d

s

¯
,

provided that p “ 0.

The proof of the above claim is omitted as it is a straightforward combination of the standard
minimax rate ε2k for the unconstrained Normal location model in a k-dimensional problem (this
provides a useful lower bound when s ě d{2 or when d “ 1) and the result in Proposition 8.20 in
the monograph [16].

B Details for experiments in Figure 1

For each choice of p, we simulate the oracle Lasso and STOLS procedures on instances pXn, θ
‹
nq

indexed by the sample size n P t1000, 2000, 3000, 5000, 10000, 15000u. The matrix Xn P R
nˆn is

block diagonal and given by

1?
n
Xn “

ˆ
In{2ˆn{2 0

0 n´1{4In{2ˆn{2

˙
,

When p “ 0, θ‹
n “ 2en{2`1 and when p ‰ 0, θ‹

n “ en{2`1. In the őgures, we are plotting the average
performance of the oracle Lasso and STOLS procedures, as measured by ℓ2 error, when applied to
the data pXn, yq, where y „ N pXnθ

‹
n, Inq. The average is taken over 1000 trials for n ă 10, 000. In

the case n ě 10, 000 due to memory constraints we only run 300 trials.

The STOLS procedure is implemented as described in Section 1.3. On the other hand, the oracle
Lasso procedure is implemented by a slightly more involved procedure. Our goal is to compute

pθpλpX, yq where pλ P argmin
λą0

}pθλpX, yq ´ θ‹}22,
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where the Lasso is deőned as in display (8). To do this, we can use the fact that the Lasso
regularization path is piecewise linear. That is, there exist knot points 0 “ λ0 ă λ1 ă λ2 ă ¨ ¨ ¨ ă λm

such that the knot points pθi – pθλi
pX, yq satisfy }θi}0 ą }θi`1}0. Moreover, we have

tpθλpX, yq : λ P pλi, λi`1qu “ tpθi ` αppθi`1 ´ pθiq : α P p0, 1qu.

That is, we can compute the set of Lasso solutions between the knot points by taking all convex
combinations of knot points. Therefore the distance between the oracle Lasso solution and the true
parameter θ‹ satisőes,

}pθpλpX, yq ´ θ‹}22 “ min
i

min
αPr0,1s

}pθi ` αppθi`1 ´ pθiq ´ θ‹}22.

We are able to compute the righthand side of the display above by noting that for each i the inner
minimization problem is a quadratic function of the univariate parameter α and therefore can be
minimized explicitly.

Code: The code has been released at the following public repository,

https://github.com/reesepathak/lowerlassosim.

In particular, the repository contains a Python program which runs simulations of STOLS and
oracle Lasso on the lower bound instance described above for any desired choice of p P r0, 1s.
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