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Abstract

This paper investigates the effect of the design matrix on the ability (or inability) to esti-
mate a sparse parameter in linear regression. More specifically, we characterize the optimal
rate of estimation when the smallest singular value of the design matrix is bounded away
from zero. In addition to this information-theoretic result, we provide and analyze a proce-
dure which is simultaneously statistically optimal and computationally efficient, based on soft
thresholding the ordinary least squares estimator. Most surprisingly, we show that the Lasso
estimator—despite its widespread adoption for sparse linear regression—is provably minimax
rate-suboptimal when the minimum singular value is small. We present a family of design ma-
trices and sparse parameters for which we can guarantee that the Lasso with any choice of
regularization parameter—including those which are data-dependent and randomized—would
fail in the sense that its estimation rate is suboptimal by polynomial factors in the sample size.
Our lower bound is strong enough to preclude the statistical optimality of all forms of the Lasso,
including its highly popular penalized, norm-constrained, and cross-validated variants.

1 Introduction

In this paper, we consider the standard linear regression model
y=X0"+w, (1)

where #* € R? is the unknown parameter, X € R™*? is the design matrix, and w ~ N (O,O'QIn)
denotes the stochastic noise. Such linear regression models are pervasive in statistical analysis [19].
To improve model selection and estimation, it is often desirable to impose a sparsity assumption on
f0*—for instance, we might assume that 6* has few nonzero entries or that it has few large entries.
This amounts to assuming that for some p € [0, 1]

16%1p < R, (2)

where | - |, denotes the ¢, vector (quasi)norm, and R > 0 is the radius of the ¢, ball. There has
been a flurry of research on this sparse linear regression model (1)-(2) over the last three decades;

see the recent books [2, 11, 28, 10, 10] for an overview.

Comparatively less studied, is the effect of the design matrix X on the ability (or inability) to
estimate 6* under the sparsity assumption. Intuitively, when X is “close to singular”, we would
expect that certain directions of 8* would be difficult to estimate. Therefore, in this paper we seek
to determine the optimal rate of estimation when the smallest singular value of X s bounded. More
precisely, we consider the following set of design matrices

1 1
X, a(B) = {X eR™T: SXTX > =, } (3)



and aim to characterize the corresponding minimax rate of estimation

. ~ * |12
My a(p,o, R, B) =il sup By nxo oo, |0 6073 (4)
0 XeX, .(B)
o[, <R

1.1 A motivation from learning under covariate shift

Although it may seem a bit technical to focus on the dependence of the estimation error on the
smallest singular value of the design matrix X, we would like to point out an additional motivation
which is more practical and also motivates our problem formulation. This is the problem of linear
regression in a well-specified model with covariate shift.

To begin with, recall that under random design, in the standard linear observational model (i.e.,
without covariate shift) the statistician observes random covariate-label pairs of the form (x,y).
Here, the covariate x is drawn from a distribution @ and the label y satisfies E[y | z] = 276*.
The goal is to find an estimator f that minimizes the out-of-sample excess risk, which takes the
quadratic form EZNQ[((é— 6*)T2)?]. When the covariate distribution @ is isotropic, meaning that
E,~g[zzT] = I, the out-of-sample excess risk equals the squared £y error Hé — 0*|3.

Under covariate shift, there is a slight twist to the standard linear regression model previously
described, where now the covariates x are drawn from a (source) distribution P that differs from the
(target) distribution ¢ under which we would like to deploy our estimator. Assuming @ is isotropic,
the goal is therefore still to minimize the out-of-sample excess risk under @, which is ||¢* — 6[3. In
general, if P # () and no additional assumptions are made, then learning with covariate shift is
impossible in the sense that no estimator can be consistent for the optimal parameter 6*. It is
therefore common (and necessary) to impose some additional assumptions on the pair (P, Q) to
facilitate learning. One popular assumption relates to the likelihood ratio between the source-
target pair. It is common to assume that absolute continuity holds so that ) « P and that the the
likelihood ratio % is uniformly bounded [21]. Interestingly, it is possible to show that if %(w) <B
for P-almost every x, then the semidefinite inequality

1
Ex\,P[.’E.’ET] > EI (5)
holds [21, 29]. Comparing the inequality (5) to our class &, q(B) as defined in display (3), we

note that our setup can be regarded as a fixed-design variant of linear regression with covariate
shift [20, 9, 30].

1.2 Determining the minimax rate of estimation

We begin with one of our main results, which precisely characterizes the (order-wise) minimax risk
My, q(p, o, R, B) of estimating #* under the sparsity constraint |#*|, < R and over the restricted
design class &, 4(B).

Theorem 1. Letn >d > 1 and o, R, B > 0 be given, and put 72 = ‘;;T]z, There exist two universal
constants ¢y, ¢, satisfying 0 < ¢y < ¢, < 0 such that
(a) if pe (0,1] and 72 € [d~?/?,log ™! (ed)], then
1-p/2 1-p/2
co R? <7'T2L log (edTnp)> <M,.q4(p,0, R, B) < ¢y R? <TTQL log (ed7£)> , and

2



(b) if p =0, we denote s = R € [d], and have

’B d ’B d
) U—slog (ef) <M, 4(p, 0,8, B) < cy U—slog (ef).
n s n s

The proof of Theorem 1 relies on a reduction to the Gaussian sequence model [16], and is deferred
to Section 3.1.

Several remarks on Theorem 1 are in order. The first observation is that Theorem 1 is sharp,
apart from universal constants that do not depend on the tuple of problem parameters (p, n,d, o, s, R, B).

Secondly, it is worth commenting on the sample size restrictions in Theorem 1. For all p €
[0, 1], we have assumed the “low-dimensional” setup that the number of observations n dominates
the dimension d.! Note that this is necessary for the class of designs X,.a(B) to be nonempty.
On the other hand, for p > 0 we additionally require that the sample size is “moderate”, i.e.,
72 € [d=%7 log7!(ed)]. We make this assumption so that we can focus on what we believe is
the “interesting” regime: where neither ordinary least squares nor constant estimators are optimal.
Indeed, when n > d but 72 > log™!(ed), it is easily verified that the optimal rate of estimation
is on the order R?; intuitively the effective noise level is too high and no estimator can dominate
h=0 uniformly. On the other hand, when n > d but 72 < d=2/? then the ordinary least squares
estimator is minimax optimal; intuitively, the noise level is sufficiently small such that there is, in
the worst case, no need to shrink on the basis of the ¢, constraint to achieve the optimal rate.

Last but not least, as shown in Theorem 1, the optimal rate of estimation depends on the
signal-to-noise ratio 7,2 = nR?/(0?B). As B increases, the design X becomes closer to singular,
estimation of 6*, as expected, becomes more challenging. The dependence of our result on B is
exactly analagous to the impact of the likelihood ratio bound B appearing in the context of prior
work on nonparametric regression under covariate shift [21].

1.3 A computationally efficient estimator

The optimal estimator underlying the proof of Theorem 1 requires computing a d-dimensional
Gaussian integral, and therefore is not computationally efficient in general. In this section we
propose an estimator that is both computationally efficient and statistically optimal, up to constant
factors.

Our procedure is based on the soft thresholding operator: for v € R? and n > 0, we define
Si(v) = argmin { Ju — v[3 + 2nful; |.
ueR4

Note that soft thresholding involves a coordinate-separable optimization problem and has an explicit
representation, thus allowing efficient computation. Then we define the soft thresholded ordinary
least squares estimator

BSOS (X, ) = S,(6°5 (X)) (6)

where §OLS (X,y) is the usual ordinary least squares estimate—equal to (XTX)"!X Ty in our case.
We have the following guarantees for its performance.

Theorem 2. The soft thresholded ordinary least squares estimator (6) satisfies

Notably, this still allows n to be proportional to d, e.g., we can tolerate n = d.



(a) in the case p € (0,1], for any R > 0, if 72 € [d=2/?,log~*(ed)], then

. 1-p/2
sip sup B[[BTOS(X,y) — 0% 3] < 6 R? (r21og(edrl))

XeXna(B) [0*|p<R

with the choice n = A/2R212log(edrh), and

(b) in the case p =0, for any s € [d],

5STOLS 2 o’B d
sup sup E [HHn (X,y) — H*HQ] <6 —slog (e7>,
XeX,,a(B) |0*[o<s n §

with the choice n = 4/2“273 log ().

The proof is presented in Section 3.2.

Comparing the guarantee in Theorem 2 to the minimax rate in Theorem 1, it is immediate to see
that the soft thresholded ordinary least squares estimator is minimax optimal apart from constant
factors.

Secondly, we would like to point out a (simple) modification to the soft thresholding ordinary
least squares procedure that allows it to be adaptive to the hardness of the particular design matrix
encountered. To achieve this, note that X € de(é) for B = (XTX)lop. Therefore the
results in Theorem 2 continue to hold with B replaced by (a possibly smaller) é, provided that the
thresholding parameter n is properly adjusted. For instance, in the case with p = 0, we have

. o2B d
sup B [|85TO5(x,y) — 013 < 6 T=slog (=), (7)

n
[6*[o<s n

provided we take 7] = \/2% log(%d).

Finally, we note that inspecting our proof, the upper bound for é\gTOLS(X ,y) also holds for a
larger set of design matrices
. 1 -
X9E(B) = {X e R™: (XTX> <B, forl<i< d}.
’ n ..

(22

Since &, 4(B) < Xsi;g(B), this means after combining the lower bounds in Theorem 1 with the
guarantees in Theorem 2, we additionally have established the minimax rate over this larger family

X (B).

1.4 Is Lasso optimal?

Arguably, the Lasso estimator [20] is the most widely used estimator for sparse linear regression.
Given a regularization parameter A > 0, the Lasso is defined to be

~ ] 1

OA(X,y) = argmin { || X0 — y|I3 + 2\ 9] }. (8)
YeR4 n

Surprisingly, we show that the Lasso estimator—despite its popularity—is provably suboptimal for

estimating 6* when B >» 1.



Corollary 1. The Lasso is minimaz suboptimal by polynomial factors in the sample size when d = n
and B = \/n. More precisely,

(a) if pe (0,1], and 0 = R =1, then we have

sup sup E [ inf ||§/\(X,y) . 9*”5] > 1. and
XeX, 4(B) |6*||lp<R A>0

(b) if p=0, and o0 = s = 1, then we have

sup sup E [ lnf Hé}\(ij) _ 9*“3] 2 1.
XeX,, 4(B) [6*o<s A>0

Corollary 1 is in fact a special case of a more general theorem (Theorem 3) to be provided later.

Applying Theorem 1 to the regime considered in Corollary 1, we obtain the optimal rate of

estimation
1+ logn\2-p
(VI Tognye
nl/4
As shown, in the worst-case, the multiplicative gap between the performance of the Lasso and a
minimax optimal estimator in this scaling regime is at least polynomial in the sample size. As a
result, the Lasso is quite strikingly minimax suboptimal in this scaling regime.

for every p € [0, 1].

In fact, the lower bound against Lasso in Corollary 1 is extremely strong. Note that in the
lower bound, the Lasso is even allowed to leverage the oracle information 6* to calculate the optimal
instance-dependent choice of the regularization parameter (c.f., infy~g Hé)\(X, y)—0*]3). As aresult,
the lower bound applies to any estimator which can be written as the penalized Lasso estimator
with data-dependent choice of penalty. Many typical Lasso-based estimators, such as the norm-
constrained and cross-validated Lasso, can be written as the penalized Lasso with a data-dependent
choice of the penalty parameter \. For instance, in the case of the norm-constrained Lasso, this
holds by convex duality. Thus, we can rule out the minimax optimality of any procedure of this
type, in light of Corollary 1.

The separation between the oracle Lasso and the minimax optimal estimator can also be demon-
strated in experiments, as shown below in Figure 1.

1.5 Connections to prior work

In this section, we draw connections and comparisons between our work and existing literature.

Linear regression with elliptical or no constraints. Without any parameter restrictions,
the exact minimax rate for linear regression when error is measured in the f» norm along with
the dependence on the design matrix is known: it is given by o?Tr((XTX)™!) [19]. These results
match our intuition that as the smallest singular value of X decreases, the hardness of estimating
0* increases. It is also worth mentioning that the design matrix does not play a role, apart from
being invertible, in determining the optimal rate for the in-sample prediction error. The rate is
given uniformly by % when n > d [15].
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Figure 1. Numezical simulation gemonstrating suboptimality of the Lasso, with the oracle choice
of regularization A € argmin, . |0x(X,y) — 6*|3 versus the soft thresholded ordinary least squares
(STOLS) procedure as defined in display (6). We have simulated the lower bound instance from
Corollary 1; for each sample size n, we simulate oracle Lasso and STOLS on a pair (X, 0}), with
the dimension d = n and lower singular value bound B = y/n. Further details on the simulation are
provided in Appendix B.

On the other hand, with fo- or elliptical parameter constraints the minimax rate in both fixed
and random design was established in the recent paper [23]. Although that work shows the depen-
dence on the design, the rate is not explicit and the achievable result requires potentially solving a
semidefinite program. More explicit results were previously derived under proportional asymptotics
in the paper [0], in the restricted setting of Gaussian isotropic random design. The author is able to
establish the asymptotic minimaxity of a particular ridge regression estimator. These type of results
are not immediately useful for our work, since they are based on linear shrinkage procedures which
are known to be minimax-suboptimal even in orthogonal design, in the £, setting for p < 2 [7].

Gaussian sequence model and sparse linear regression. In the case of orthogonal design,
1.€., when %XTX = I;, the minimax risk of estimating sparse 6* is known; see [7]. It can also be
shown that Lasso, with optimally-tuned parameter, can achieve the (order-wise) optimal estimation
rate [16]. This roughly corresponds to the case with B = 1 in our consideration. Our work
generalizes this line of research in the sense that we characterize the optimal rate of estimation over
the larger family of design matrices %XTX > %Id. In stark contrast to the Gaussian sequence
model, Lasso is no longer optimal, even with the oracle knowledge of the true parameter.

Without assuming an orthogonal design, [3] provides a design-dependent lower bound in the
exact sparsity case (i.e., p = 0). The lower bound depends on the design through its Frobenius
norm |X |2 Similarly, in the weak sparsity case, [21] provides lower bounds depending on the
maximum column norm of the design matrix. However, matching upper bounds are not provided
in this general design case. In contrast, using the minimum singular value of X (c.f., the parameter
B) allows us to obtain matching upper and lower bounds in sparse regression.

Suboptimality of Lasso. The suboptimality of Lasso for minimizing the prediction error has
been noted in the case of exact sparsity (i.e., p = 0). To our knowledge, previous studies required
a carefully chosen design matrix which was highly-correlated. For instance, it was shown that for
certain highly-correlated designs the Lasso can achieve only a slow rate (1/4/n), while information-
theoretically, the optimal rate is faster (1/n); see for instance the papers |27, 17]. Additionally in
the paper [1], the authors exhibit the failure of Lasso for a fized regularization parameter, which
does not necessarily rule out the optimality of other Lasso variants. Similarly, in the paper [11], it



is shown via a correlated design matrix and a 2-sparse vector, that the norm-constrained version of
Lasso can only achieve a slow rate in terms of the prediction error. Again, this result does not rule
out the optimality of other variants of the Lasso. In addition, in the paper [5], there is an example
for which Lasso with any fixed (i.e., independent from the observed data) choice of regularization
would fail to achieve the optimal rate. Again, this fails to rule out data-dependent choices of
regularization or other variants of the Lasso. In our work, we are able to rule out the optimality
of the Lasso by considering a simple diagonal design matrix which exhibits no correlations among
the columns. Nonetheless, for any p € [0, 1], we show that the Lasso will fall short of optimality
by polynomial factors in the sample size. Our result also simultaneously rules out the optimality of
constrained, penalized, and even data-dependent variants of the Lasso, in contrast to the literature
described above.

Covariate shift. As mentioned previously, our work is also related to linear regression under
covariate shift [20, 30, 9]. The statistical analysis of covariate shift, albeit with an asymptotic nature,
dates back to the seminal work by Shimodaira [25]. Recently, nonasymptotic minimax analysis of
covariate shift has gained much attention in unconstrained parametric models [12]|, nonparametric
classification [18], and also nonparametric regression |22, 21, 29].

2 A closer look at the failure mode of Lasso

In this section, we take a closer look at the failure instance for Lasso. We will investigate the
performance of the Lasso on diagonal design matrices X, € R"*¢ which satisfy, when d = 2k,

lore (%L, 0
wxix - (B ).

Thus, this matrix has condition number « and satisfies X, € &), 4(B) for all @ > 1. As our proof
of Theorem 1 reveals, from an information-theoretic perspective, the hardest design matrix X, is
with the choice @ = 1: when all directions have the worst possible signal-to-noise ratio. Strikingly,
this is not the case for the Lasso: there are in fact choices of a » 1 which are even harder for the
Lasso.

Theorem 3. Fizxn >d > 2 and let 0, B > 0 be given. For a = 1, on the diagonal design X,

a) ifpe (0,1] an > 0, then there is a vector 6™ € such that < ut
f 0,1 dR >0, th h 6* ¢ R? h that 0%, < R b

9

. o * (|2
Byt oty | 08 [P (Xor0) — 0713] > 20

B R (%Ea) T AR, and

—a
no R?n

(b) if p=0 and s € [d], then there is a vector 0* € R which is s-sparse but

9 <O‘2Bd O’QBS)
al.

EyoN(xo0t 021, | 0 103(Xary) = 0°[3] > oo

A
no n
The proof of Theorem 3 is presented in Section 3.3. We now make several comments on the

implications of this result.

We emphasize that the dependence of the Lasso on the parameter «, which governs the condition
number of the matrix X, is suboptimal, as revealed by Theorem 3. At a high-level, large o should



only make the ability to estimate 68* easier—it effectively increases the signal-to-noise ratio in certain
directions. This can also be seen from Theorem 1: the conditioning of the design matrix does not
enter into the worst-case rate of estimation when the bottom signular value of X is bounded.
Nonetheless, Theorem 3 shows that the Lasso actually can suffer when the condition number « is
large.

Proof of Corollary 1. We now complete the proof of Corollary 1 given Theorem 3.

Maximizing over the parameter o > 1 appearing in our result, we can determine a particularly
nasty configuration of the conditioning of the design matrix for the Lasso. Doing so, we find that
for pe (0,1] and R > 0 that

) 2 4-2p
owp sup B[ nf [04(X,) - 18] = 72 (7 SO n1).
XeX, q(B) |0*|p<R A>0 n

This is exhibited by considering the lower bound in Theorem 3 with the choice a*(p) = (72d*?)P/(4=p),
On the other hand, if p = 0, we have for s € [d] that

2
~ B
sup sup E [ inf |0\(X,y) — H*H%] > 72 Vsd
XXy, a(B) [0*[oss  -A=0 "
The righthand side above is exhibited by considering the lower bound with the choice a*(0) = /d/s.

The proof is completed by setting d = n, B =4/n, and 0 = R = 1.

3 Proofs

In this section, we present the proofs for the main results of this paper. We start with introducing
a few useful notations. For a positive integer k, we define [k] := {1,...,k}. For a real number z,
we define |z| to be the largest integer less than or equal to x and {z} to be the fractional part of x.

3.1 Proof of Theorem 1

Our proof is based on a decision-theoretic reduction to the Gaussian sequence model. It holds in
far greater generality, and so we actually prove a more general claim which could be of interest to
other linear regression problems on other parameter spaces or with other loss functions.

To develop the claim, we first need to introduce notation. Let © — R? denote a parameter
space, and let £: © x R — R be a given loss function. We define two minimax rates,

Mseq(0, £, v) = inf sup By n(ur 21, [ﬁ(u*,ﬁ(y))], and (9a)
K pu*e®
Myeg(©, 4,0, B,n) =inf sup sup By nxg+,021,) E [E(@*, 0(X, y))] (9b)

0 XeX, q4(B)0*€O

The definitions above correspond to the minimax rates of estimation over the £, ball of radius
R > 0 in R for the Gaussian sequence model, in the case of definition (9a), and for n-sample linear



regression with B-bounded design, in the case of definition (9b). The infima range over measurable
functions of the observation vector y, in both cases.

The main result we need is the following statistical reduction from linear regression to mean
estimation in the Gaussian sequence model.

Proposition 1 (Reduction to sequence model). Fiz n,d > 1 and 0,B > 0. Let © < R, and
0: © x RY — R be given. If £(0,-): R? — R is a convex function for each 0 € ©, then

2
Mg (0, €, 0, B, ) _mseq<@ 0 \/?)

Deferring the proof of Proposition 1 to Section 3.1.1 for the moment, we note that it immediately
implies Theorem 1. Indeed, we set © = ©4,(R) and ¢ = ls, where

O4p(R) = {0 € R : |0, < R}, and (y(0,0) =0 - 0J3.

With these choices, we obtain

[o2B
mn,d(pa g, R7 B) = mreg(@d,p(R)a gsqv g, Ba ’I’Z) = mseq <®d,p7 fsq, ’I’L) ’

where the final equality follows from Proposition 1. The righthand side then corresponds to estima-
tion in the /o norm over the Guassian sequence model with parameter space corresponding to an
¢y ball in R, which is a well-studied problem [7, 1, 16]; we thus immediately obtain the result via
classical results (for a precise statement with explicit constants, see Propositions 2 and 3 presented
in Appendix A).

3.1.1 Proof of Proposition 1

We begin by lower bounding the regression minimax risk by the sequence model minimax risk.
Indeed, let X, be such that %X*TX* = %Id. Then we have

Myeg(©,4,0,B,n) > 12fes*1é% E, N(X.0%,021,) [6(9 ,@]

g i%fas*lé% Ez~N(0* o’B, > [f(&*,@]

2B
_ zmseq<@ zsq,q/“n )

The penultimate equality follows by noting that in the regression model, Px, = {N (X*0,02Id) :
0 € ©}, the ordinary least squares (OLS) estimate is a sufficient statistic. Therefore, by the Rao-
Blackwell Theorem, there exists a minimax optimal estimator which is only a function of the OLS

estimate. For any 6*, the ordinary least squares estimator has the distribution, N ((9*, UQTBId>, which
provides this equality.

We now turn to the upper bound. Let HOLS(X y) = (XTX)"'X Ty denote the ordinary least
squares estimate. For any estimator fi, we define

~ . o’B -~
0(X.y) = Beono) [A(0OS(Xp) +©)|,  where W = =1 —®(XTX)L (10)



Note that for any X € X, 4(B), we have W > 0. Additionally, by Jensen’s inequality, for any
X € X, q(B), and any 6* € ©,

E, n(xo+,021,) [5(9*’5()(, ?J))] < Eyonixor021,) BEenio,w) [E(H*a A(HAOLS(X, y) + 5))]

_ EZ~N<0*,"2Bld> [e(6".(=))]

Passing to the supremum over 8* € © on each side and then taking the infimum over measurable
estimators, we immediately see that the above display implies

2
Mg (0, €, 7, B,n) < Meeq (@,f, «/"HB)

as needed.

3.2 Proof of Theorem 2

We begin by bounding the risk for soft thresholding procedures, based on a rescaling and mono-
tonicity argument and applying results from [16]. To state it, we need to define the quantitites

d d
* B * _ *)2 *
3= T2 and pal,n) = d ()P R LY 6 A )+ D02 n
=1 i=1
Then we have the following risk bound.

Lemma 1. For any 6* € R and any n > 0 we have

sup B[O (X. ) — 0*[3] < pa(0".).
XeXn,d(B)

We now define for ¢ > 0 and a subset © — R,

d
T(¢,0) = sup 2(9:)2 A C2.

0*cO i=1

Lemma 1 then yields with the choice n = yv; for some v > 1 that

s s B[IETOS(X) - 0718 < 3| doe 2y T, 0| (1)
0*€® XeX,, q(B)

We bound the map 7T for the ¢, balls of interest. To state the bound, we use the shorthand ©,
for the radius-R £, ball in R? centered at the origin for p # 0, and for p = 0, the set of s-sparse
vectors in R, for s € [d].

Lemma 2. Let d = 1 be fired. We have the following relations:

(a) in the case p € (0,1], we have for any ¢ > 0,
7(¢,0,) < R [(C)zd A (5)2_” A 1]

for any R >0, and
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(b) in the case p =0, we have for any ¢ > 0,
T(¢,0p) = (s,
for any s € [d].

To complete the argument, we now split into the two cases of hard and weak sparsity.

When p = 0: Combining inequality (11) together with Lemma 2, we find for n = v, v > 1, that

d
sup sup B |85TOS(X,y) - 0°[}] < 3(3)2de ™2 v 47| = 6(v)2s10g (),
0*€0 XeX, 4(B) S

where the last equality holds with 2 = 2log(ed/s).

When pe (0,1] : Combining inequality (11) together with Lemma 2, we find for n =y, v > 1

sup sup E [”@%TOLS(X, y) — H*H%] < 3R? [dTge_72/2 v (72_”7',3_1’ A 1)] (12)
0*€© XeX, 4(B)

Above, we used 72R? = ()% and ’y 2r2d > 72 Pr27P which holds since y > 1 and 72 > d~2/?. If we

take v = 2log(edry), then note v2 > 1 by 72 > d~ 2p and the term in brackets in inequality (12)

satisfies

2—p

n

ange_'YQ/2 v (72_7’7}%_’) A 1) = v ((27’3 log(eale;))l_p/2 A 1)

e
27277 v ((r210g(edr)) 72 A 1)]

= 2(7; log(edr)))' P72,

N

which follows by 72 € [d~2/?,1log™ ! (ed)].

Thus, to complete the proof of Theorem 2 we only need to provide the proofs of the lemmas
used above.

3.2.1 Proof of Lemma 1

n

Note that if z = #O-S(X,y) then §,SITOLS(X, y) = Sifz) = S;(0* + &) where £ ~ N (0, %22_1>, where

we recall ¥, == (1/n)XTX. We now recall some classical results regarding the soft thresholding
estimator. Let us write for A > 0 and p € R,

rs(A, 1) = By o) [(SA(ZJ) - M)Z], and,
Ts(A, p) = e N2 4 (1 A ,u2> + ()\2 A /J,2>.

Using (a+b) Anc<an c+ b A ¢ for nonnegative a, b, ¢ > 0, Lemma 8.3 and the inequalities rs()\, 0) <
1+ A2 and rg(X,0) < e**/2 on page 219 of the monograph [16], we find that rg(\, 1) < Fs(A, ).

Define v? == ”—2(2_1)“. Using the fact that (S,(z));, =S 77( ) for ¢ € [d], we obtain

n n

E[«sn(z))i—e:)?]=v3rs(f;?j) <2 (1.0

vi v

11



Summing over the coordinates yields

E| 657 (X,y) - 0°|13] < Zv s(

)

d
= e (097 A7) + (07 )
1=1

Pn(e*,ﬁ),

N

where the last inequality follows by noting that both v +— v2e=(/ /2 and v — 62 A 12 are non-

decreasing functions of ¥ > 0. Noting that this inequality holds uniformly on X € X, 4(B) and
passing to the supremum yields the claim.

3.2.2 Proof of Lemma 2

The proof of claim (b) is immediate, so we focus on the case p € (0,1], R > 0. We consider three
cases for the tuple (R, (,p,d). Combination of all three cases will yield the claim.

When R > (d"/P: Evidently, for each 6 such that ||f]|, < R, we have
d
DA <P
=1

When R < (: This case is immediate, since 6 € ©,, implies [0]2 < 6], < R < (.

When ¢ < R < (dYP: In this case, by rescaling and putting ¢ = %, we have
sup 292 A= [Sup Z et Z )\?/p] _ 5R2< lg—p/zJ 4 {g—p/2}2/p)
16llp<R ;=1 AERd ;.\ Sep/2 i:h; <eP/2
where above Ay denotes the probability simplex in R%. Noting that ¢ < 1 and p < 1 we have

(lgfp/ZJ + {&.*p/Z}Z/p> < E,ID/Q7

which in combination with the previous display shows that
d

sup 02 A C% < R%c'\-P2,
0lp,<R ;=7

To conclude, now note that R2c'~P/2 = RP(2P.

12



3.3 Proof of Theorem 3

Since X, has nonzero entries only on the diagonal, we can derive an explicit representation of the
Lasso estimate, as defined in display (8). To develop this, we first recall the notion of the soft
thresholding operator, which is defined by a parameter 1 > 0 and then satisfies

Si(v) = arg min{ (u — v)% + 2n|u] }
ueR

We then start by stating the following lemma which is crucial for our analysis. It is a straightforward

consequence of the observation that

N B {swm-)

1 k
9 Xaa T =
A(Xa,y) Suslz) K

7 (13)
+1<i<d’

//\ //\

where we have defined the independent random variables z; ~ N (9: , %) if 1 < k and 2; ~
N <9;, "273> otherwise.

Lemma 3. Let 0* € R%. Then for the design matriz X, we have

k d
3 Ka) ~ 03 = 3 (Sumsale) —0) + Y (Sasken) —8)
=1 i=k+1

We will now focus on vectors 6*(n) = (0,7, 04_2), which are parameterized by n € R*. For
these vectors, we can further lower bound the best risk as

inf 16\(Xa, ) — 0" ()3 = Th A To(n) (14

where we have defined

B 2
X = «/%%, Ty = ii‘fo (S/\B/a(zi)>2 and  Tp(n) = inf 2 (SAB ) 1>2'

1= i=k+1

—_

We now move to lower bound 7} and T5(n) by auxiliary, independent random variables.

Lemma 4 (Lower bound on T}). Then, for any n € R¥ if 0* = 6*(n), we have

10%B k )
n=-227 here 7 — 1{7‘%' > 3 2}.
1= 4 na where Z_Z; £/ 02B/(na) /

Lemma 5 (Lower bound on Ty(n)). Fiz ne R if 0* = 6*(n), and suppose that

2

for alli e [k].
Then, we have

k
1
= DIniWi where Wi = 1z < i}
-1

Note that Z is distributed as a Binomial random variable: Z ~ Bin (k, p) where p :== P{|N (0,1)| >
3/2}. Similarly, W; are Bernoulli: we have W; ~ Ber (1/2).

13



Lower bound for p > 0: We consider two choices of 1. First suppose that 472a: < 1. Then, we
will consider n = Rd1, where

§ =27/ and L=k [67|

For this choice of 1 we have by assumption that 72 > d=2/P that £ > (1/2)6~P and so

1 o 1 - _ R? 1-p/2___
Ty(n) = ZRQ(S%WK = §52_pr > §<Tga> Wy
Above, Wy = (1/¢) Zle W;. On the other hand, if 472a > 1, we take 5j' = Rey, and we consequently
obtain
R2
T2(77/> = TWI

Taking 0 = 1/2 in Lemma 4, let us define
— min P {77} > d =P{Z=>k
= min P o nd = P{Z > k)

Let us take

[ asas
o) Ar2a>1

Then combining Lemmas 4 and 5 and the lower bounds on Th(n), T2(n') above, we see that

2 2
. ~ .12 coc1p (o Bd 5(0°B 1-p/2 9
Ey N(X.0%,021,) [ig% 10A(Xa,y) — 001”2] T, ( AR <%a> AR ) (15)

where above we have used k > d/4.

Lower bound when p = 0: In this case, we let s = s A k. Note that s’ > s/4. We then set

n=2 ana 1, and this yields the lower bound
10°Bs
To(n) = g——aWs

In this case, we have, after combining this bound with the bound on 73 that for 0% = 6*(n) as
defined above,

2 2
' N ) cacip (0°Bd  o0°Bs
E, N(X.0%.021,) [/I\I;% 10A(Xa, y) — 904”%] 16 ( A a)

no n (16)

The proof of Theorem 3 is complete after combining inequalities (15) (16), and the following
lemma.

Lemma 6. The constant factor ¢ == 22 is lower bounded as ¢ = %.

We conclude this section by proving the lemmas above.

14



3.3.1 Proof of Lemma 4

For the first term, T}, we note that for any A < A we evidently have for each i € [k] and for any
¢ > 0, that

2 - o’B 2
(Susralz))” = 1zl =AB/@)? > (i = 3BJa)} > 7 | > 14}

Summing over i € [k], and taking ¢ = 1/2, we thus obtain the claimed almost sure lower bound.

3.3.2 Proof of Lemma 5

Fix any ¢ such that 1 <4 < k. For any fixed A > ), note

> 1

SxB(2zk+i) ¢ [1:/2,3n:/2] implies ’SAB(Zk—s—i) — i =

Note that the condition S\p(zk+:) ¢ [1i/2,31:/2] is equivalent to zgxi; & [7:/2 + )\B 3ni/2 + AB],
Therefore, if 24; < 1;/2 + AB, then then for all A > X we have |S\p(zr4i) — n:| = L. Equivalently,
we have that

Kk K

1 - 1

T Z 1{zni <mi/2+ ABY = 4 D 2k < mi} (17)
= iz1

4;

The final relation uses the distribution of zp,; and

which holds by assumption that 772-2 <

3.3.3 Proof of Lemma 6

Evidently ¢; > 1/2 by symmetry. On the other hand, since p < 1/2, we have by anticoncentration
results for Binomial random variables |13, Theorem 6.4] that ¢ = p. Therefore all together, ¢ >
p?/32. Note that by standard lower bounds for the Gaussian tail [3, Theorem 1.2.6], we have

10 oo 3

> > =
P=97 25

which provides our claimed bound.
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Results in the Gaussian sequence model

In this section, we collect classical results regarding the nonasymptotic minimax rate of estimation
for Gaussian sequence model over the origin-centered £, balls, p € [0,1]. All of the results in this
section are based on the monograph [16]. We use the following notation to specify the minimax rate

of interest,

M(p.d, Roe) =inf sup Byonge e () — 1 3].
12 M*ERd
le*lp<R
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As usual, the infimum ranges over measurable estimators from the observation vector y € R% to an
estimate /i(y) € RY. Throughout, we use the notation 7 = % for the inverse signal-to-noise ratio.

Proposition 2 (Minimax rate of estimation when 0 < p < 1). Fiz an integer d > 1. Let p € (0,1].

If R,e > 0 satisfy
1
2

€
2 ST 1+logd’ where T 7
then .
2000 R2 (7‘2 log(edfp))l—pﬂ <M(p,d, R,e) < 1203 R2 (7_2 log(edTp))l_p/Q.
The upper and lower bounds are taken from Theorem 11.7 in the monograph [16]. Although the

constants are not made explicit in their theorem statement, the upper bound constant is obtained
via their Theorem 11.4, setting their parameters as ( = %,fy = 2e,8 = 0. Similarly, the lower
bound constant is implicit in their proof of Theorem 11.7.

We now turn to the minimax rate in the special case that p = 0.

Proposition 3 (Minimax rate of estimation when p = 0). Suppose that d = 1 and s € [d]. Then
for any € > 0 we have

d d
—e25log (e;) <M(p,d, s,e) < 2e%slog (e;),
provided that p = 0.

The proof of the above claim is omitted as it is a straightforward combination of the standard
minimax rate £2k for the unconstrained Normal location model in a k-dimensional problem (this
provides a useful lower bound when s > d/2 or when d = 1) and the result in Proposition 8.20 in
the monograph [16].

B Details for experiments in Figure 1

For each choice of p, we simulate the oracle Lasso and STOLS procedures on instances (X, 0})
indexed by the sample size n € {1000,2000, 3000, 5000, 10000, 15000}. The matrix X,, € R™*" is
block diagonal and given by

1 1, 0
Ly (Tnzny ) ’
\/ﬁ < 0 n71/4In/2><n/2

When p =0, 0}, = 2e,,/241 and when p # 0, 67 = €,,/5,1. In the figures, we are plotting the average
performance of the oracle Lasso and STOLS procedures, as measured by ¢35 error, when applied to
the data (X,,,y), where y ~ N (X,,05, I,,). The average is taken over 1000 trials for n < 10,000. In
the case n = 10,000 due to memory constraints we only run 300 trials.

The STOLS procedure is implemented as described in Section 1.3. On the other hand, the oracle
Lasso procedure is implemented by a slightly more involved procedure. Our goal is to compute

HAX(X, y) where \e ar§>ngin H@\(X, y) — 6%)3,
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where the Lasso is defined as in display (8). To do this, we can use the fact that the Lasso
regularization path is piecewise linear. That is, there exist knot points 0 = Ag <A1 <Ap <+ < Apy
such that the knot points 6; := 83, (X, y) satisfy |60 > ||fi+1]lo. Moreover, we have

{0r(X,9) s A e (i M)} = {0 + (001 — 0;) : € (0, 1)}
That is, we can compute the set of Lasso solutions between the knot points by taking all convex

combinations of knot points. Therefore the distance between the oracle Lasso solution and the true
parameter 0* satisfies,

65X ) = 6'1F = min min 16 + aBrs = 6) ~ 6"13

We are able to compute the righthand side of the display above by noting that for each ¢ the inner
minimization problem is a quadratic function of the univariate parameter o and therefore can be
minimized explicitly.

Code: The code has been released at the following public repository,
https://github.com/reesepathak/lowerlassosim.

In particular, the repository contains a Python program which runs simulations of STOLS and
oracle Lasso on the lower bound instance described above for any desired choice of p € [0, 1].
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