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In this study, we combine the ab initio Migdal-Eliashberg approach with the intermediate representation for
the Green’s function, enabling accurate and efficient calculations of the momentum-dependent superconducting
gap function while fully considering the effect of the Coulomb retardation. Unlike the conventional scheme that
relies on a uniform sampling across Matsubara frequencies - demanding hundreds to thousands of points - the
intermediate representation works with fewer than 100 sampled Matsubara Green’s functions. The developed
methodology is applied to investigate the superconducting properties of three representative low-temperature
elemental metals: aluminum (Al), lead (Pb), and niobium (Nb). The results demonstrate the power and reliability
of our computational technique to accurately solve the ab initio anisotropic Migdal-Eliashberg equations even

at extremely low temperatures, below 1 Kelvin.

I. INTRODUCTION

Ab initio modeling of conventional superconductors is pri-
marily based on the Eliashberg theory [1, 2], a many-body
Green’s function approach, where the superconducting pairing
arises from an attractive phonon-mediated electron—electron
interaction, which overcomes the inter-electron Coulomb re-
pulsion [3—6]. This formalism provides the fundamental equa-
tions for calculating the frequency- and temperature-dependent
superconducting gap function, but solving the Eliashberg equa-
tions from first principles has necessitated several method-
ological developments [7-9]. For instance, a highly accu-
rate interpolation technique using Wannier functions has en-
abled the treatment of anisotropy (momentum-dependence)
in the electron-phonon interactions [10]. The Wannier-based
algorithm to solve the Eliashberg equations has become an
established approach to study the anisotropic nature of the
superconducting gap, and has been successfully applied to
describe material-specific properties in different families of
phonon-mediated superconductors [11-18]. Methods have
also been developed to include the Coulomb interaction from
first principles, eliminating the need to reduce it to a single
semi-empirical parameter u* [19, 20]. Notably, recent studies
have accounted for electron-phonon and Coulomb interactions
on an equal footing when solving the Eliashberg equations
within the isotropic approximation [21, 22] or the anisotropic
linearized gap equation near the critical temperature [23-25].

It remains nevertheless a challenge, within the anisotropic
Eliashberg framework, to compute the superconducting gap
for low critical temperature (7.) superconductors or to treat
both interactions from first principles at the same anisotropic
level. One reason behind these limitations is that the Eliash-
berg equations involve a summation over an extremely large
number of Matsubara frequencies as long as a standard repre-
sentation of the Green’s function is used [26, 27]. In general,
the typical energy scale of the electron-phonon interaction is

several tens of meV, whereas that of the Coulomb interaction
is a few tens of eV. This translates into twenty thousand sam-
pling points for a Matsubara frequency cutoff of approximately
10 eV at T = 1 K. In addition, since the Coulomb scattering
of electrons arising from high-energy states may remain large,
contributions from these states also need to be included in
the calculations. This requires prohibitively large computa-
tional resources as the total numerical cost is determined by
the multiplication of the number of electronic states and that of
Matsubara frequencies. Therefore, the vast majority of studies
have adopted the retarded Coulomb pseudopotential as rep-
resented by the Morel-Anderson pseudopotential [19] when
performing Eliashberg calculations. This approximation ef-
fectively reduces the Coulomb interaction to the low-energy
scale where the electron-phonon coupling is active and allows
us to limit the Matsubara frequency range to less than 1 eV,
drastically reducing the numerical cost for the summation over
many Matsubara frequencies.

The intermediate representation (IR) [28—30] method pro-
posed recently has overcome the long-standing Matsubara fre-
quency sampling problem discussed above. This method is
based on the compact representation of the Green’s func-
tions both in the imaginary-time and Matsubara-frequency
domain, and has been successfully applied to a wide variety
of problems [31-38], including solving the anisotropic lin-
earized Eliashberg equation in vicinity of the transition tem-
perature [23-25]. The technique allows us to describe the
Matsubara Green’s function in the frequency range of well
over several tens of eV with only around 100 sampling points.

In the present work, we have combined the IR basis tech-
nique with the anisotropic Eliashberg approach utilizing the
Wannier-based interpolation to efficiently sample the Green’s
function and the electron-phonon interaction in the Matsub-
ara frequency domain and the momentum space. This allows
describing the superconducting gap functions for high-energy
states and high Matsubara frequencies up to several tens of
eV at a feasible computational cost. We apply the developed



methodology to compute the momentum-dependent supercon-
ducting gap function for three representative low-T7. elemental
metals (Al, Pb and Nb), and show that the ab initio anisotropic
Eliashberg equations can be accurately solved at extremely low
temperatures, below 1 Kelvin.

II. METHOD
A. Migdal-Eliashberg equations

The derivation of the Migdal-Eliashberg (ME) equations
using the Nambu—Gor’kov formalism [39, 40] and Migdal’s
theorem [41] has been presented in many reviews and text-
books [5, 18, 21, 42]. Here, we focus on numerical issues in
solving the ME equations. The ME equations can be writ-
ten in terms of the normal self-energy X, and the pairing
self-energy ¢,x as:
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where T is the temperature, W, ¢ is a pairing interac-
tion, 1w( ) = = (2n; + 1)iaT stands for the fermionic Mat-
subara frequency with n; being an integer, and Ny and Ny
are the number of wavevectors k and k’ in the first Brillouin
zone. Gy (1a) it )and Fop (1w I )represent the normal and
anomalous Green’s functions for electrons. Equation (3) serves
as a constraint for the two self-energy equations to ensure the
conservation of the electron number per unit cell, denoted
as Ne. In the following, we choose the gauge such that the
anomalous Green’s function is a real-valued function.

The kernel W, /i’ consists of the contributions from the in-
teraction due to the electron-phonon coupling and the screened
Coulomb interaction as
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In the Migdal’s approximation [41], the electron-phonon in-
teraction szp:,k, can be written as:
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where g”, is the electron-phonon matrix element, D, is
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the dressed phonon Green’s function, and ia);B) = 2njinT is

the bosonic Matsubara frequency. Due to momentum conser-
vation, ¢ = k — k’ is a phonon wavevector. In this work, we
ignore renormalization effects of the phonon propagator and
replace D, with the bare phonon Green’s function,
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where w,q is the phonon frequency. Here, we introduce
. . F .
the even functions of 1w§.,), namely the mass renormaliza-

tion factor Z, (iw;F)) and the energy shift y,x (ia)j.F)). These
are defined as linear combinations of the normal self-energy,

Xk (lw( ))

i1 = Zn (i1057)] = = [Zu (0 = T (-iw )],
)

1.
®)

| =

[Zok (10 + Ty (—iew

| =

. (F
Xk (i) =

Using Zx (ia);.F) ), Xnk (ia);F) ), and @,k (iw;F) ), We can express
the normal and anomalous Green’s functions.
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where g, is the electronic eigenenergy. When solving Egs. (1)
and (2) for Z,;; and ¢, self-consistently, the Fermi level e is
updated to ensure the charge neutrality of the system, Eq. (3).
Applying Egs. (7)-(10) into Egs. (1)—(3) yields another ex-
pression of the ME equations:
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Equations (12)—(15) are essentially equivalent to Egs. (1)—(3).
The superconducting gap function A% (iwj.F) ) is determined

using ¢,k (iw;m) as
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In this work, we introduce a dimensionless Coulomb in-
teraction parameter uc defined as the double Fermi-surface
average over k and k’ of the Coulomb interaction W¢:

e = Ne (WS e w0, =0, (17)

where N represents the density of states per spin at the Fermi

energy, 81(: ), which is calculated using the Gaussian smearing
method for the non-interacting state at zero temperature. We
also apply the approximation W ~ WP to Eq. (1). This can
be justified by the following two facts: (1) Terms operated by
the static Coulomb interaction (uc/Ng) have no contribution
to Zyk, and (2) the Coulomb correction to the energy shift y,x
is expected to be small since the eigenenergy &, obtained
from first-principles calculations partially includes some con-
tribution from Coulomb interactions [5]. To account for the
Coulomb interactions from high-energy states, we introduce
two different energy windows and divide the summation over
the final states (k’,n’) in Eq. (2). Finally, the equations we
solve in this work are as follows:
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where ¢q is the scattering wavevector for the electron-phonon
interaction, while k¢ is a newly introduced wavevector for the
Coulomb interaction. Nq and Ny are the number of wavevec-
tors ¢ and kc in the first Brillouin zone. The k¢ grid is
required to be commensurate with and smaller than (or equal
to) the k grid in order to map the two grids during the self-

consistent procedure in the ME equations. Fiﬁz”t) and ¢f:,’cut)
are the anomalous Green’s function and the pairing self-energy
defined outside the inner window on the k¢ grid [43]. Zfln’?fr‘
represents the summation over the final states (k + ¢, n’) lying
within the inner window. Similarly, }c"ne,;, dzouwr denote
the summations over the final states (kC, n’) lying Within and

outside the inner window, respectively. Outside the inner win-
dow, we approximate Z, (iw(F)) ~ 1, Xnk (ia);.F) ) ~ 0, and

F, ,,m,(w(F))W‘:}cpjj,kW(lw(F) iw'))) ~ 0. At this point it
is important to emphasize that the Coulomb parameter pc ap-
pearing in Egs. (19) and (20) is not a “retarded” Coulomb
pseudopotential, which is typified by the Morel-Anderson
pseudopotential [19]. By enlarging the outer window, these
equations can take into account the Coulomb retardation effect
coming from higher energy states, while limiting the energy

region where we calculate the electron-phonon interaction to
Inner

the inner window. In Eq. (3), > ,, is also replaced by > ;""™"",
which represents the summation over the states within the inner
window.

The cutoff in the Matsubara summation is generally deter-
mined by the frequency dependence of W. Particularly, in
phonon-driven superconductors, the typical cutoff is a few
times the maximum phonon frequency because the electron-
phonon interaction mainly contributes to W, and can be re-
garded as a linear combination of Lorentzian functions with the
phonon frequency w4 being the half-width at half-maximum.
In addition, employing a conventional uniform grid for Mat-
subara frequencies leads to an increase in the required number
of Matsubara points at a rate of 7~! as the temperature de-
creases, resulting in extremely high computational costs. Con-
sequently, calculating the superconducting gap functions for
systems with transition temperatures below 10 K has posed



significant challenges in terms of both computational and
memory requirements. Previous studies have managed to cut
down computational costs to some extent by employing the
fast Fourier transform (FFT) algorithm [44-47]. However,
the FFT algorithm does not address the problem of memory
shortage. For calculations, especially at temperatures below
1 K, we need to introduce innovative methods, such as the IR
method described below.

B. Fourier transformation with the IR basis

To solve Egs. (1)—(3), we have to calculate the convolution
of G and W and that of F and W for all sampled Matsubara
frequencies. Using the convolution property of the Fourier
transformation, the convolution of two functions f and g can
be written as

Y fliw; —iw;)glwy) = FF() - F(9l.  (23)
J

where # and ! denote the Fourier and inverse Fourier trans-
formations between the Matsubara frequency domain and the
imaginary time domain. To reduce the cost for computing
the convolutions on the Matsubara frequency, we introduce
the IR basis functions. In practical calculations, we compute
sampling points of imaginary time and Matsubara frequency,

{7:}, {(DE.F)}, and {cDE.B)}, and the IR basis functions, U (7;),
U;F) (ia’);F)), and 0Z(B) (ia’)ﬁ,B)) prior to solving the ME equa-
tions. Using them, one can obtain the following compact
representation of the Green’s function:
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where G; are the IR expansion coefficients. We can evaluate
G from the functions G (ia‘)gF) ) and G (7;) by using the pseudo-
inverse matrix, U* = (UTU)~'U":
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where [ﬁ(p)]jl = UI(F) (icDj.F)) and [U]; = U(7;). Since
W is a bosonic function, we can consider similar relations to
Egs. (24)-(27) by replacing UI(F) (ia_);F)) with U I(B) (icD;B)).

The sampling points and the IR basis functions can be com-
puted using the sPARSE-IR library [28-30]. Two parameters, A
and €fR, are used to generate the sampling points. A = wmax/T
determines the real frequency domain [—wmax; Wmax| of the
kernel K(7,w) in the spectral representation of the Green’s
function,

G(r)=- J o dwK (1, w)p(w), (28)
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where p(w) is the spectral function. The IR basis functions are
computed by a singular value expansion of the kernel K (7, w).
A sufficiently large value of A must be chosen according to
the typical energy scale of the system and the minimum tem-
perature so that the domain [—wmax; Wmax] includes all real
frequencies where p(w) has a nonzero value. €r controls the
sparseness of the sampling points, i.e., the numerical accuracy
of the Green’s function.

C. Calculation flow

Figure 1 shows the calculation flow chart for solving the
anisotropic ME equations. The implementation is based

on the assumption that the symmetry relation G(1w(F))

G* (—1w§. )) always holds so that only summations over the
positive Matsubara frequencies need to be considered. The
ME calculations for each temperature are performed as fol-
lows:

(1) Set the initial guess: Z (id") = 1, xue (i0\") = 0,
and

Ag

(F )) _
L+ (@ fwpm)?
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where wpy = 1.1 X (the maximum phonon frequency), and Ag
should be set to an appropriate value. For a sufficiently low
temperature, we set Ag = 1.76 X T(AD> with TC(AD) being the
Allen—Dynes estimate of the transition temperature [49].

), P (i)

(2) Compute the Green’s functions G,k (1a)

and F ) (out) (1LD§F)) and the interaction term Wk’ (1a)( >) on
the dlscrete imaginary Mastubara frequency grid based on
Egs. (5), (9), (10), and (21) using Zy (i), yut (i),
G (i}, and 6,3 (i@o}").

(3) Compute the Fermi level ef such that Eq. (3) is satisfied
using Brent’s method [50].

(4) Evaluate the IR coefficients Gk 1, Fuk.1, Fr(lzuy, and
Wk i1 using Eq. (26).

(5) Replace negligibly small IR coefficients with 0. This
is equivalent to a noise reduction to prevent truncation errors
from accumulating in the iterative procedure. If |G ;| <
€cut X mlax|Gnk,l|, the value is replaced with 0. A value of

€cut = 1077 is employed in this work. The same treatment is

applied to Fyy 1, F(zult), and W i

(6) Evaluate the Green’s functions Gnk (7;) and Fy (7;), and
the interaction term W, (7;) in the imaginary time domain
from the IR coefficients using Eq. (25).

(7) Compute the element-wise products

X e (7) = G )Wk i (50), (30)
X”’ e (7 = Fue (B) W o (1) 31)

in the imaginary time domain.

(8) Extract the IR coefficients of X( ) kL and X%

nk,n’k’ 1
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FIG. 1. The flow chart to solve the ME equations self-consistently
using the IR basis.

using Eq. (27).
(9) Evaluate X( ) Wk (1w(F)) and X(z)
subara frequency space using Eq. (24)
(10) Compute the self-energies X, (ia")(F)) Dk (icZ)(F)) and

-y (ILD}F)) in the Mat-

(Om) (1a)(F)) in the Matsubara frequency domain by taking the
summatlon over the final states using Eqs. (18)—(20).

(11) Check whether the difference between ¢(ia’)§.F)) at the
current and previous iteration is below a given convergence
threshold. Repeat steps (2)—(11) until ¢(1w )) converges.

Here, the interaction term is denoted simply as
Wk ke’ (ia");.B)) for general notation. However, the above
description applies specifically to the convolution with the
electron-phonon interaction since the Coulomb interaction is
treated in the static approximation as W€ = uc/Ng. See also
Appendix B for a discussion of the treatment of the static term.

III. RESULTS AND DISCUSSION

In this paper, we calculate the superconducting gap function
of three elemental materials, fcc Al, bcc Nb, and fcc Pb. All
the first-principles calculations are performed with the QUAN-
TUM ESPRESsO package [51-53]. We use the Perdew-Burke-
Ernzerhof parametrization of the generalized gradient approx-
imation (PBE-GGA) [54] and the optimized norm-conserving
Vanderbilt (ONCV) pseudopotentials [55] extracted from the
SG15 ONCV library [56]. The plane wave cutoff is set to
100 Ry. The optimized lattice parameters are found to be a =
4.04,3.31 and 5.03 A for Al, Nb, and Pb, respectively. The dy-
namical matrices and the linear variation of the self-consistent
potential are calculated within density-functional perturbation
theory on an 8> g mesh, using the charge density computed
on a 16% k mesh. The maximally localized Wannier func-
tions are constructed using the WaNNIER9O code [57, 58]. For
Al and Pb, four Wannier functions are used to describe the
electronic states near the Fermi level. These are the sp3-like
functions localized along each bond. In the case of Nb, we
consider nine Wannier functions with s, p, and d character. In
order to solve the anisotropic ME equations, we employ the
EPW code [10, 42, 59, 60]. The electronic eigen-energies,
phonon frequencies, and electron-phonon matrix elements are
evaluated on 96° k and ¢ grids. The inner and outer windows
are set to +0.5 eV and +£15 eV around the Fermi energy g( )
respectively. A 48 k¢ grid is used for the summations of
the Coulomb contribution in Egs. (19)—(20). The ab initio
Coulomb parameters puc = 0.251, 0.429, and 0.224 for Al, Nb,
and Pb are adopted from Ref. 61, where they were obtained
with the SupErconDUCTINGTooLKIT (SCTK) [61]. To com-
pute the IR basis functions, we use the SPARSE-IR library [28—
30] with A = 10% and er = 1078, resulting in 96 fermionic
and 97 bosonic Matsubara frequency sampling points [62].

Figure 2 shows the calculated electron and phonon band
structures of Al, Nb, and Pb. The electronic band structures
and the density of states (DOS) are presented in Figs. 2(a),
(c), and (e). The phonon dispersion, the phonon DOS, the
isotropic Eliashberg spectral function o F (w), and the cumu-
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FIG. 2. Panel (a) shows the calculated electronic band structure and the density of states (DOS) with respect to the Fermi energy for Al. The
dashed red lines represent the DFT bands, and the solid blue lines represent the Wannier bands. Panel (b) shows the phonon dispersion and the
phonon density of states (PHDOS), the isotropic Eliashberg spectral function @2F (w), and the cumulative electron-phonon coupling strength
A(w). Panels (c)—(d) and (e)—(f) show the corresponding results for Nb and Pb, respectively.

lative electron-phonon coupling strength A(w) are presented
in Figs. 2(b), (d), and (f). The band structure of the Wan-
nier model reproduces very well the band structure obtained
with the density functional theory (DFT) calculations. The
computed electron-phonon coupling strength parameters A are
found to be 0.432, 1.20, and 1.13 in Al, Nb, and Pb, respec-
tively. These values are comparable with results reported in
previous theoretical studies [10, 21, 22, 42, 61, 63-65]. The
electron-phonon coupling strength A of Pb is slightly smaller
than the value extracted from tunneling measurements because
we neglect the spin-orbit coupling [42, 66].

In Fig. 3, we plot the histograms of the state-dependent
electron-phonon coupling strength A, and the superconduct-
ing gap function at the lowest Matsubara frequency A,y (inT),
denoted as p(A1) and p(A), respectively. The two quantities
are defined as
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It can be seen that out of the three materials, only Pb dis-
plays a two-gap structure, both p(1) and p(A) histograms
being clearly separated into two distinct ranges. This two-gap
structure has been observed in the differential conductance
(d1/dV(V)) spectra from tunneling measurements [67-69]
and also found in a previous theoretical study based on the
density functional theory for superconductors (SCDFT) [70].
The splitting in the p(A) histogram is about 0.25-0.30 meV
at 0.2 K, which is slightly larger than the experimentally re-
ported energy separation of 0.15 meV [69]. The transition
temperature is estimated by fitting A(T') ~ A4/1 — T /T, to the
histograms, where A is constant for several temperature points
near the transition temperature. We obtain 7;. values of 2.75,
13.8, and 6.39 K for Al, Nb, and Pb, respectively.

Here we compare our 7 values with those obtained from
literature as shown in Table 1. Note that the calculations per-
formed in Refs. 21 and 22 are isotropic, while those performed
in Ref. 61 are anisotropic. Our estimates of 7 for both Al and
Nb exceed the experimental values. These discrepancies are
due to the fact that we have not considered the spin fluctuation
in this study [61, 71]. The estimated value for Al is 2.75 K, rel-
atively high compared to the isotropic calculations in Refs. 21
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FIG. 3. Panel (a) shows the histogram of the state-dependent electron-phonon coupling strength p(A). Panel (b) shows the histograms of the
superconducting gap function p(A) at the lowest Matsubara frequency for different temperatures. Solid red line represents the temperature
dependence of the superconducting gap expected from the BCS theory in the weak coupling limit. Panels (c)—(d) show the state-dependent
electron-phonon coupling strength and the superconducting gap function on the Fermi surface. Panels (e)—(h) and (i)—(1) show the corresponding
results for Nb and Pb, respectively. The calculations were performed with 96% k and ¢ grids, a 483 k¢ grid, and an inner window of 0.5 eV.
The images on the Fermi surface were rendered using the FERMISURFER software [48].

and 22. This could be attributed to the insufficient sampling
size of the k¢ grid. Increasing the kc-grid sampling to 96°
it is estimated that the 7. value would be around 2.2 K, as
discussed in Appendix C. On the other hand, our 7¢. value for
Nb is comparable to the one obtained from isotropic calcu-
lations [21, 22]. The close agreement between isotropic and
anisotropic calculations implies that the isotropic treatment
provides a relatively accurate approximation for Nb, as most
of the states exhibit similar values of the gap function. In fact,
Fig. 3(e) shows that the histogram p(A) at 0.2 K for Nb has
a typical large peak near 2.5 meV. For Pb, our calculated T,
is lower than the experimental value. This underestimation is
associated to the neglect of the spin-orbit interaction in our
calculations.

We fit the BCS curve predicted at the weak coupling limit
to the histograms, aligning the superconducting gap A at zero
temperature with A(T = 0) = 1.76 x T in Figs. 3(b), (f), and
(). The temperature dependence of the histogram generally
agrees well with the BCS curve. However, it is evident that
the BCS curve does not necessarily pass through the center

of the distribution range of the histogram or near the largest
peak, particularly in Fig. 3(f) for Nb. Therefore, accurate
estimation of the transition temperature solely by examining
the histogram at low temperatures is difficult.

Comparing the distribution of A, and that of A, (inT) on
the Fermi surface for each material, it is clear that the momen-
tum distribution of the two quantities are qualitatively similar.
In the following, we shall primarily focus on discussing the
distribution of A,k (inT). For Al, there is one large Fermi
surface around the I' point and several small Fermi surfaces
along each edge around the K points. The larger Fermi surface
exhibits a range of superconducting gap values between 0.40
and 0.53 meV, whereas the smaller Fermi surfaces have values
around 0.35 meV. In the calculations for Al, the challenge in
achieving convergence with respect to the Brillouin zone sam-
pling most likely arises from the requirement of accurately
computing the contribution of these small Fermi surfaces (see
also Appendix C). For Nb, there is one large Fermi surface
around the I' point and several small Fermi surface on each
face around the N point. The larger Fermi surface has values



TABLE I. Comparison between the transition temperatures (in Kelvin) obtained in this work and in previous theoretical studies [21, 22, 61].
In the table we use the following abbreviations: with spin fluctuation (w SF), without spin fluctuation (w/o SF), with spin-orbit interaction
(w SO), and without spin-orbit interaction (w/o SO), respectively. In this work, we employed the anisotropic Eliashberg formalism with a
constant Coulomb parameter (uc). In the isotropic Eliashberg formalism employed in Refs. 21 and 22, as well as in the isotropic SCDFT
formalism employed in Ref. 21, the Coulomb interaction was treated as an energy-dependent function. The anisotropic SCDFT formalism in
Ref. 61 considered the momentum dependence of the Coulomb interaction. SPG denotes the parameterization proposed by Sanna, Pellegrini,
and Gross [72] for the SCDFT formalism.

A. Davydov et al. [21] C. Pellegrini et al. [22] M. Kawamura et al. [61] This work
k dep. of A isotropic isotropic anisotropic anisotropic
formulation Eliashberg SCDFT (SPG) Eliashberg SCDFT Eliashberg | Exp.
Coulomb int. [ Static [ Dynamical | Static [ Dynamical Static Dynamical Static

SF & SO w/o SF, w/o SO w/o SF, w/o SO w/o SF, w/o SO[w SF, w/o SO[w/o SF, w SO[w SF, w SO|w/o SF, w/o SO

Al 0.9 2.5 1.6 1.3 1.03 1.9 0.89 1.9 0.88 275(~22)* 1.14
Nb 133 23.2 7.3 7.8 12.4 14 7.6 13 7.5 13.8 9.20
Pb 6.9 8.2 5.4 3.8 6.85 4.4 3.7 6.9 6.0 6.39 7.19

* The value in parentheses is a transition temperature roughly estimated from

around 2.5 meV over almost the entire area, consistent with
the fact that the sharp peak in the p(A) histogram is centered
around 2.5 meV in Fig. 3(f). The distribution on the smaller
Fermi surfaces ranges from 1.9 to 2.4 meV, corresponding to
the broadened peak of the histogram p(A). For Pb, there are
two large Fermi surfaces: one is an almost spherical surface
encircling the I' point, and the other is a tube-like surface
enveloping the edges of the first Brillouin zone. The typi-
cal value of the gap function varys distinctly for each Fermi
surface. This separation is also shown in Ref. 70 and results
in a two-gap structure in the p(A) histogram as presented in

Fig. 3(j).

IV. CONCLUSIONS

We have presented our implementation of the anisotropic
ME formalism coupled with the IR method. This approach
significantly reduces the computational cost associated with
Matsubara frequency sampling, allowing us to account for the
Coulomb interaction from electronic states far from the Fermi
energy. In order to confirm the validity of our methodology,
we have conducted calculations for several elemental metals,
Al, Nb, and Pb. We have found that the estimated transition
temperatures are comparable to those obtained from previ-
ous first-principles calculations as well as experiments, and
the temperature dependence of the gap function is generally
consistent with predictions from BCS theory. Of particular
significance is obtaining the momentum-dependent gap func-
tion from the anisotropic ME calculations even at temperatures
as low as 0.2 K. This quantity can be directly compared with
experimental results, and indeed, the gap function for Pb suc-
cessfully reproduced the two-gap structure observed in experi-
ments. We anticipate that our approach will prove instrumental
in analyzing superconducting properties at temperatures sig-
nificantly lower than the transition temperature and potentially
estimating other superconducting quantities.

the histogram with the 96> k¢ grid at 0.2 K as described in Appendix C.
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APPENDIX A: DECAY OF THE IR COEFFICIENTS

When using the IR method, selecting an appropriate func-
tion as the initial guess for ¢,x (iw;.F)) is crucial for success-
fully fitting the IR coefficients to the Green’s function. To
assess the extent to which the choice of the initial guess in-
fluences the fitting of the IR coefficients, we conduct the self-
consistent ME calculations for Nb using five different initial
guesses. The following functions were selected as initial func-

tions:
S (i)
Ao X H (|w§F) | = 2wpn) step function
Ao constant
= Ay . (A1)
Lorentzian

2
(F)
1+AX (w]. /a)ph)

where H(x) is the Heaviside step function. In the test calcula-
tions, we examine the effect of sharpness in the Lorentzian by
testing A = 0.1, 1.0, and 10.0. Figure 4 shows the index de-
pendence of the IR coefficients of both normal and anomalous
Green’s functions with various initial guesses. Note that the
index / of IR coefficients starts at zero. Typically, assuming
successful fitting, the IR coefficients should decay rapidly as
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FIG. 4. Absolute values of the IR coefficients of both normal and anomalous Green’s functions for each index. These coefficients, shown in
panels (a)—(e), are extracted from the thirtieth iteration within the self-consistent ME calculation for Nb at 7 = 0.2 K. The calculations were
conducted using 483 k and ¢ grids and various initial guesses for the gap function: (a) a step function, (b) a constant, (c) a Lorentzian with
A = 0.1, (d) a Lorentzian with A = 1.0, and (e) a Lorentzian with A = 10.0. Panel (f) shows the same plot as in panel (d) but the calculation
was conducted at 7 = 1.0 K. In the ME calculations, the inner window was set to 0.3 eV and the Coulomb interaction was omitted. No noise
reduction was applied during the self-consistent procedure.
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FIG. 5. Absolute values of the IR coeflicients of both normal and anomalous Green’s functions for each index. Panel (a) shows the coefficients
extracted from the first iteration within the self-consistent ME calculation. Panels (b)—(f) show those extracted from the thirtieth iteration
immediately after Step (4) in the self-consistent procedure (See Sec. II C). In the process of obtaining the coefficients depicted in panels (b)—(f),
noise reduction was conducted with varying threshold values for each iteration: (b) eyt = 1075 , () €cut = 10_6, (d) €cut = 10~7, and (e)
€cut = 1078 The coefficients shown in panel (f) were obtained without applying noise reduction. The ME calculations were conducted for Nb
at 7 = 0.2 K without the Coulomb interactions using 483 k and ¢ grids and an inner window of 0.3 eV.



the index increases [28, 73, 74]. In fact, except for panel (a),
a fast decay of the IR coefficients is observed in Fig. 4. It can
be seen that the width of the Lorentzian does not significantly
affect the quality of the fitting, and the fitting is successful
even with the constant function. In contrast, Fig. 4(a) exhibits
no decay of the IR coefficients. This indicates that while a
step function is not a suitable initial guess for ¢,,k(ia)j,F)) in
the case of the compact representation using the IR basis func-
tions, both a constant or a Lorentzian function are appropriate.
Nevertheless, Figs. 4(b)—(e) show that the IR coefficients do
not decay completely, instead, they form a small peak in the
region where the index / exceeds about 70. Additionally, while
this peak is observed at 0.2 K, it is mostly absent at 1 K as
shown in Figs. 4(f). To investigate the cause of the peak promi-
nently observed at low temperatures at large indices / [75], we
conduct several noise reduction tests using different thresholds
in the ME calculations for Nb at 7 = 0.2 K. In Fig. 5, the peak
is not observed at large indices / in the first iteration but ap-
pears in the thirtieth iteration in the case when using a lenient
threshold or not performing noise reduction. As the number
of iterations increases, it is observed that the peak becomes
larger. Notably, when using a threshold higher than 10~7, the
peak does not appear even in the thirtieth iteration. It means
that the peak observed at large indices / arises from trunca-
tion errors accumulated during the iterative procedure in the
self-consistent calculation. Although the test calculations for
Nb using 483 k and ¢ grids show that e,y = 1077 is suffi-
ciently large to reduce noise stemming from truncation errors,
€cat = 1073 was applied in other calculations for safety. Of
course, if one truncates IR coefficients that are not negligible,
the accuracy of the restored Green’s functions may be com-
promised. It is therefore necessary to use an appropriate value
of €cyt.

APPENDIX B: SPECIAL TREATMENT OF MATSUBARA
SUM CONVOLUTION

The static Coulomb interaction cannot be compactly rep-
resented using IR basis functions because a function being
constant in the Matsubara frequency domain corresponds to
an unbounded spectrum [29]. Therefore, computing a con-
volution involving the static Coulomb interaction requires a
different approach from that of the electron-phonon interac-
tion. In this study, we have chosen the gauge such that the
imaginary part of the anomalous Green’s function is zero,
Im[F (ia);F))] = 0. This leads to the following relation for
the anomalous Green’s function,

Fae(t = +0)=T Y Re [Fnk (i@”)] . B
J

The convolution with the constant Coulomb interaction uc/Ng
appearing in Egs. (19)—(20) can be calculated as follows:

. (F)y MC McC
Ty R0 = Fuae (T > +0)08. (B2)
-
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The Matsubara sum in Eq. (3) also requires a similar treatment
since it is not a convolution with the electron-phonon inter-
action. Regarding the normal Green’s function, the following
relation holds [18, 76]:

Gk (T = +0) = _% +TY Re[Gulio™)|.  ®3)
J

Applying this relation to Eq. (3) yields the following expres-
sion,

N, = 2 [1+Gu(r — +0)]. (B4)
Nk k.,n

Gux (t — +0) and Fyx (t — +0) can be easily evaluated from
the IR coeflicients.

APPENDIX C: CONVERGENCE TESTS

In this appendix, we provide the results of the convergence
tests. Since including the Coulomb contribution would incur
high computational costs, we initially conducted the calcula-
tions while considering only the electron-phonon interaction
term to examine the convergence with respect to the sampling
size of the k and ¢ grids and the size of the inner window.
The convergence of the electron-phonon coupling strength, A,
is shown in Table II, and that of the gap function, A, (inT), is

TABLE II. Convergence of the electron-phonon couplng strength A
with respect to the k- and g-grid sampling and the inner window.

system sampling size |inner window 1
k and ¢ (V)
243243 0.3 0.386
363-36° 0.3 0.409
483483 0.3 0.358
643643 0.3 0.435
Al 723723 0.3 0.446
963-96° 0.3 0.432
963-96° 0.5 0.432
1083-1083 0.3 0.427
1203-1203 0.3 0.426
243243 0.3 1.14
363-36° 0.3 1.35
483483 0.3 1.17
603-603 0.3 1.22
Nb 723773 0.3 1.22
963-963 0.3 1.20
963-963 0.5 1.20
243243 0.3 1.65
483483 0.3 1.27
603-603 0.3 1.26
723723 0.3 1.20
Pb 803-803 0.3 1.06
883883 0.3 1.11
963-96° 0.3 1.13
963-96° 0.5 1.13
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FIG. 6. Convergence of the superconducting gap function with respect to the k- and g-grid sampling and the inner window. The temperature
issetto T = 0.8 K for Al, and T = 1 K for Nb and Pb. The calculations were performed without the Coulomb interaction (uc = 0).
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FIG. 7. Convergence of the superconducting gap function with respect to the kc-grid sampling and the outer window. The calculations were
performed with 963 k and ¢ grids and an inner window of 0.3 eV. The temperature is set to 7 = 0.8 K for Al, and 7 = 1 K for Nb and Pb. The
constant Coulomb parameter is puc = 0.251 for Al, uc = 0.429 for Nb, and uc = 0.224 for Pb.

shown in Fig. 6. Note that the gap functions in Fig. 6 exhibit
larger values compared to those in Fig. 3 due to the exclusion
of the Coulomb term. Changing the size of the inner window
hardly affects the results, indicating that an inner window of
0.3 eV is sufficient, whereas a size of 0.5 €V was used in the
main text. Moreover, for Nb and Pb, the calculations converge
with 963 k and ¢ grids. Especially for Nb, acceptable results
are obtained even with 48% k and q grids. On the other hand,
convergence proves challenging for Al, attributed to the pres-
ence of small Fermi surfaces near the edges. Although a 963
k- and ¢-grid sampling is not sufficient in this case, the results
are found to be close enough to those obtained for denser grids
as shown in Fig. 6(a). Considering the balance with the com-
putational cost, the 96 k- and g-grid sampling was adopted

in the main text for all three metals.

To investigate the convergence of the gap function with re-
spect to the sampling size of the k¢ grid and the size of the
outer window, we performed calculations by fixing the k- and
g-grid sampling to 96° and the inner window to 0.3 eV. Figure 7
demonstrates that as the size of the outer window increases,
the gap function gradually increases due to the Coulomb re-
tardation effect arising from the high-energy states. However,
since the change is small when going from 15 to 25 meV, an
outer window of 15 eV was adopted in the main text. It is
also found that while a k¢ grid of 323 for Nb and 483 for
Pb are sufficient, a k¢ grid denser than 48% should in prin-
ciple be used for Al. However, computing the gap function
at 0.2 K for Al takes 59,000 CPU core hours using a 96° k¢
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FIG. 8. Plots of the superconducting gap function of Al at 0.2 K.
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window of 0.5 eV: (a) the superconducting gap function with a 963 kc
grid on the Fermi surface, and (b) comparison between the histogram
of the superconducting gap function with 963 and 483 k¢ grids. The
image on the Fermi surface was rendered using the FERMISURFER
software [48].
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grid, compared to 1,200 using a 48> k¢ grid. Attempting to
compute the full temperature dependence of the gap function
with the 96° k¢ grid, the computational cost is estimated to
be about one million core hours. While this cost is not un-
feasible, it is significantly more expensive, and considering
that the momentum dependence of the gap function does not
qualitatively change when using the denser grid as shown in
Fig. 8(a), we opted to use the 48> k¢ grid in the main text for
Al as well. Nevertheless, the histogram of the gap function in
Fig. 8(b) allows us to obtain a rough estimate of the transition
temperature for the 96° k¢ grid. From the BCS curve fitted
to the temperature dependence of the gap function for the 483
k¢ grid, we obtain A(T = 0) = 0.418 meV. Assuming that
the BCS curve for the 96 k¢ grid passes through the same
peak of the histogram as in the case of the 483 k¢ grid, we get
A(T = 0) ~ 0.34 meV, which corresponds to 7T, ~ 2.2 K.
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