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In this study, we combine the ab initio Migdal–Eliashberg approach with the intermediate representation for

the Green’s function, enabling accurate and efficient calculations of the momentum-dependent superconducting

gap function while fully considering the effect of the Coulomb retardation. Unlike the conventional scheme that

relies on a uniform sampling across Matsubara frequencies - demanding hundreds to thousands of points - the

intermediate representation works with fewer than 100 sampled Matsubara Green’s functions. The developed

methodology is applied to investigate the superconducting properties of three representative low-temperature

elemental metals: aluminum (Al), lead (Pb), and niobium (Nb). The results demonstrate the power and reliability

of our computational technique to accurately solve the ab initio anisotropic Migdal–Eliashberg equations even

at extremely low temperatures, below 1 Kelvin.

I. INTRODUCTION

Ab initio modeling of conventional superconductors is pri-

marily based on the Eliashberg theory [1, 2], a many-body

Green’s function approach, where the superconducting pairing

arises from an attractive phonon-mediated electron–electron

interaction, which overcomes the inter-electron Coulomb re-

pulsion [3–6]. This formalism provides the fundamental equa-

tions for calculating the frequency- and temperature-dependent

superconducting gap function, but solving the Eliashberg equa-

tions from first principles has necessitated several method-

ological developments [7–9]. For instance, a highly accu-

rate interpolation technique using Wannier functions has en-

abled the treatment of anisotropy (momentum-dependence)

in the electron-phonon interactions [10]. The Wannier-based

algorithm to solve the Eliashberg equations has become an

established approach to study the anisotropic nature of the

superconducting gap, and has been successfully applied to

describe material-specific properties in different families of

phonon-mediated superconductors [11–18]. Methods have

also been developed to include the Coulomb interaction from

first principles, eliminating the need to reduce it to a single

semi-empirical parameter `∗ [19, 20]. Notably, recent studies

have accounted for electron-phonon and Coulomb interactions

on an equal footing when solving the Eliashberg equations

within the isotropic approximation [21, 22] or the anisotropic

linearized gap equation near the critical temperature [23–25].

It remains nevertheless a challenge, within the anisotropic

Eliashberg framework, to compute the superconducting gap

for low critical temperature ()c) superconductors or to treat

both interactions from first principles at the same anisotropic

level. One reason behind these limitations is that the Eliash-

berg equations involve a summation over an extremely large

number of Matsubara frequencies as long as a standard repre-

sentation of the Green’s function is used [26, 27]. In general,

the typical energy scale of the electron-phonon interaction is

several tens of meV, whereas that of the Coulomb interaction

is a few tens of eV. This translates into twenty thousand sam-

pling points for a Matsubara frequency cutoff of approximately

10 eV at ) = 1 K. In addition, since the Coulomb scattering

of electrons arising from high-energy states may remain large,

contributions from these states also need to be included in

the calculations. This requires prohibitively large computa-

tional resources as the total numerical cost is determined by

the multiplication of the number of electronic states and that of

Matsubara frequencies. Therefore, the vast majority of studies

have adopted the retarded Coulomb pseudopotential as rep-

resented by the Morel–Anderson pseudopotential [19] when

performing Eliashberg calculations. This approximation ef-

fectively reduces the Coulomb interaction to the low-energy

scale where the electron-phonon coupling is active and allows

us to limit the Matsubara frequency range to less than 1 eV,

drastically reducing the numerical cost for the summation over

many Matsubara frequencies.

The intermediate representation (IR) [28–30] method pro-

posed recently has overcome the long-standing Matsubara fre-

quency sampling problem discussed above. This method is

based on the compact representation of the Green’s func-

tions both in the imaginary-time and Matsubara-frequency

domain, and has been successfully applied to a wide variety

of problems [31–38], including solving the anisotropic lin-

earized Eliashberg equation in vicinity of the transition tem-

perature [23–25]. The technique allows us to describe the

Matsubara Green’s function in the frequency range of well

over several tens of eV with only around 100 sampling points.

In the present work, we have combined the IR basis tech-

nique with the anisotropic Eliashberg approach utilizing the

Wannier-based interpolation to efficiently sample the Green’s

function and the electron-phonon interaction in the Matsub-

ara frequency domain and the momentum space. This allows

describing the superconducting gap functions for high-energy

states and high Matsubara frequencies up to several tens of

eV at a feasible computational cost. We apply the developed
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methodology to compute the momentum-dependent supercon-

ducting gap function for three representative low-)c elemental

metals (Al, Pb and Nb), and show that the ab initio anisotropic

Eliashberg equations can be accurately solved at extremely low

temperatures, below 1 Kelvin.

II. METHOD

A. Migdal–Eliashberg equations

The derivation of the Migdal–Eliashberg (ME) equations

using the Nambu–Gor’kov formalism [39, 40] and Migdal’s

theorem [41] has been presented in many reviews and text-

books [5, 18, 21, 42]. Here, we focus on numerical issues in

solving the ME equations. The ME equations can be writ-

ten in terms of the normal self-energy Σ=k and the pairing

self-energy q=k as:

Σ=k (il
(F)
9

) = −
)

#k′

∑

k ′ ,=′

∑

9′

�=′k ′ (il
(F)
9′

)

×,=k ,=′k ′ (il
(F)
9

− il
(F)
9′

), (1)

q=k (il
(F)
9

) =
)

#k′

∑

k ′ ,=′

∑

9′

�=′k ′ (il
(F)
9′

)

×,=k ,=′k ′ (il
(F)
9

− il
(F)
9′

), (2)

#e =
1

#k

∑

k ,=


1 + 2)

∑

9

Re[�=k (il
(F)
9′

)]


, (3)

where ) is the temperature, ,=k ,=′k ′ is a pairing interac-

tion, il
(F)
9

= (2= 9 + 1)ic) stands for the fermionic Mat-

subara frequency with = 9 being an integer, and #k and #k′

are the number of wavevectors k and k′ in the first Brillouin

zone. �=′k ′ (il
(F)
9′

) and �=′k ′ (il
(F)
9′

) represent the normal and

anomalous Green’s functions for electrons. Equation (3) serves

as a constraint for the two self-energy equations to ensure the

conservation of the electron number per unit cell, denoted

as #e. In the following, we choose the gauge such that the

anomalous Green’s function is a real-valued function.

The kernel,=k ,=′k ′ consists of the contributions from the in-

teraction due to the electron-phonon coupling and the screened

Coulomb interaction as

,=k ,=′k ′ = ,
el-ph

=k ,=′k ′ +,
C
=k ,=′k ′ . (4)

In the Migdal’s approximation [41], the electron-phonon in-

teraction,
el-ph

=k ,=′k ′ can be written as:

,
el-ph

=k ,=′k ′ (il
(B)
9

) =
∑

a

|�a
=k ,=′k ′ |

2�ak−k ′ (il
(B)
9

), (5)

where �a
=k ,=′k ′ is the electron-phonon matrix element, �aq is

the dressed phonon Green’s function, and il
(B)
9

= 2= 9 ic) is

the bosonic Matsubara frequency. Due to momentum conser-

vation, q = k − k′ is a phonon wavevector. In this work, we

ignore renormalization effects of the phonon propagator and

replace �aq with the bare phonon Green’s function,

�
(0)
aq (il

(B)
9

) = −
2laq

[l
(B)
9

]2 + l2
aq

, (6)

where laq is the phonon frequency. Here, we introduce

the even functions of il
(F)
9′

, namely the mass renormaliza-

tion factor /=k (il
(F)
9

) and the energy shift j=k (il
(F)
9

). These

are defined as linear combinations of the normal self-energy,

Σ=k (il
(F)
9

):

il
(F)
9

[1 − /=k (il
(F)
9

)] =
1

2
[Σ=k (il

(F)
9

) − Σ=k (−il
(F)
9

)],

(7)

j=k (il
(F)
9

) =
1

2
[Σ=k (il

(F)
9

) + Σ=k (−il
(F)
9

)] .

(8)

Using /=k (il
(F)
9

), j=k (il
(F)
9

), and q=k (il
(F)
9

), we can express

the normal and anomalous Green’s functions.

�=k (il
(F)
9

) = −
il

(F)
9
/=k (il

(F)
9

) + Y=k − YF + j=k (il
(F)
9

)

Θ=k (il
(F)
9

)
,

(9)

�=k (il
(F)
9

) = −
q=k (il

(F)
9

)

Θ=k (il
(F)
9

)
(10)

with

Θ=k (il
(F)
9

)

= [l
(F)
9
/=k (il

(F)
9

)]2 + [Y=k − YF + j=k (il
(F)
9

)]2

+ [q=k (il
(F)
9

)]2, (11)

where Y=k is the electronic eigenenergy. When solving Eqs. (1)

and (2) for Σ=k and q=k self-consistently, the Fermi level YF is

updated to ensure the charge neutrality of the system, Eq. (3).

Applying Eqs. (7)–(10) into Eqs. (1)–(3) yields another ex-

pression of the ME equations:

/=k (il
(F)
9

)

= 1 −
)

l
(F)
9
#k′

∑

k ′ ,=′

∑

9′

l
(F)
9′
/=′k ′ (il

(F)
9′

)

Θ=′k ′ (il
(F)
9′

)

×,=k ,=′k ′ (il
(F)
9

− il
(F)
9′

), (12)

j=k (il
(F)
9

)

=
)

#k′

∑

k ′ ,=′

∑

9′

Y=′k ′ − YF + j=′k ′ (il
(F)
9′

)

Θ=′k ′ (il
(F)
9′

)

×,=k ,=′k ′ (il
(F)
9

− il
(F)
9′

), (13)
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q=k (il
(F)
9

)

= −
)

#k′

∑

k ′ ,=′

∑

9′

q=′k ′ (il
(F)
9′

)

Θ=′k ′ (il
(F)
9′

)
,=k ,=′k ′ (il

(F)
9

− il
(F)
9′

),

(14)

#e =
1

#k

∑

k ,=


1 − 2)

∑

9

Y=k − YF + j=k (il
(F)
9

)

Θ=k (il
(F)
9

)


. (15)

Equations (12)–(15) are essentially equivalent to Eqs. (1)–(3).

The superconducting gap function Δ=k (il
(F)
9

) is determined

using q=k (il
(F)
9

) as

Δ=k (il
(F)
9

) =
q=k (il

(F)
9

)

/=k (il
(F)
9

)
. (16)

In this work, we introduce a dimensionless Coulomb in-

teraction parameter `C defined as the double Fermi-surface

average over k and k′ of the Coulomb interaction,C:

`C = #F ⟪,C
=k ,=′k ′ (il 9 = 0)⟫

F.S.
, (17)

where #F represents the density of states per spin at the Fermi

energy, Y
(0)

F
, which is calculated using the Gaussian smearing

method for the non-interacting state at zero temperature. We

also apply the approximation, ≃ ,el-ph to Eq. (1). This can

be justified by the following two facts: (1) Terms operated by

the static Coulomb interaction (`C/#F) have no contribution

to /=k , and (2) the Coulomb correction to the energy shift j=k
is expected to be small since the eigenenergy Y=k obtained

from first-principles calculations partially includes some con-

tribution from Coulomb interactions [5]. To account for the

Coulomb interactions from high-energy states, we introduce

two different energy windows and divide the summation over

the final states (k′, =′) in Eq. (2). Finally, the equations we

solve in this work are as follows:

Σ=k (il
(F)
9

)

= −
)

#q

Inner.∑

q,=′

∑

9′

�=′k+q (il
(F)
9′

),
el-ph

=k ,=′k+q
(il

(F)
9

− il
(F)
9′

),

(18)

q=k (il
(F)
9

)

=
)

#q

Inner.∑

q,=′

∑

9′

�=′k+q (il
(F)
9′

),
el-ph

=k ,=′k+q
(il

(F)
9

− il
(F)
9′

)

+
)

#kC

[
Inner.∑

kC ,=′

∑

9′

�=′kC
(il

(F)
9′

)
`C

#F

+

Outer.∑

kC ,=′

∑

9′

�
(out)

=′kC
(il

(F)
9′

)
`C

#F

]

, (19)

q
(out)

=k
(il

(F)
9

)

=
)

#kC

[
Inner.∑

kC ,=′

∑

9′

�=′kC
(il

(F)
9′

)
`C

#F

+

Outer.∑

kC ,=′

∑

9′

�
(out)

=′kC
(il

(F)
9′

)
`C

#F

]

, (20)

with

�
(out)

=k
(il

(F)
9

) = −
q
(out)

=k
(il

(F)
9

)

Θ
(out)

=k
(il

(F)
9′

)
(21)

and

Θ
(out)

=k
(il

(F)
9

)

= [l
(F)
9

]2 + [Y=k − YF]
2 + [q

(out)

=k
(il

(F)
9

)]2, (22)

where q is the scattering wavevector for the electron-phonon

interaction, while kC is a newly introduced wavevector for the

Coulomb interaction. #q and #kC
are the number of wavevec-

tors q and kC in the first Brillouin zone. The kC grid is

required to be commensurate with and smaller than (or equal

to) the k grid in order to map the two grids during the self-

consistent procedure in the ME equations. �
(out)

=k
and q

(out)

=k
are the anomalous Green’s function and the pairing self-energy

defined outside the inner window on the kC grid [43].
∑Inner.

q,=′

represents the summation over the final states (k + q, =′) lying

within the inner window. Similarly,
∑Inner.

kC ,=′
and

∑Outer.
kC ,=′

denote

the summations over the final states (kC, =
′) lying within and

outside the inner window, respectively. Outside the inner win-

dow, we approximate /=k (il
(F)
9

) ∼ 1, j=k (il
(F)
9

) ∼ 0, and

�=′k+q (il
(F)
9′

),
el-ph

=k ,=′k+q
(il

(F)
9

− il
(F)
9′

) ∼ 0. At this point it

is important to emphasize that the Coulomb parameter `C ap-

pearing in Eqs. (19) and (20) is not a “retarded” Coulomb

pseudopotential, which is typified by the Morel–Anderson

pseudopotential [19]. By enlarging the outer window, these

equations can take into account the Coulomb retardation effect

coming from higher energy states, while limiting the energy

region where we calculate the electron-phonon interaction to

the inner window. In Eq. (3),
∑

k ,= is also replaced by
∑Inner.

k ,= ,

which represents the summation over the states within the inner

window.

The cutoff in the Matsubara summation is generally deter-

mined by the frequency dependence of , . Particularly, in

phonon-driven superconductors, the typical cutoff is a few

times the maximum phonon frequency because the electron-

phonon interaction mainly contributes to , , and can be re-

garded as a linear combination of Lorentzian functions with the

phonon frequency laq being the half-width at half-maximum.

In addition, employing a conventional uniform grid for Mat-

subara frequencies leads to an increase in the required number

of Matsubara points at a rate of )−1 as the temperature de-

creases, resulting in extremely high computational costs. Con-

sequently, calculating the superconducting gap functions for

systems with transition temperatures below 10 K has posed
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significant challenges in terms of both computational and

memory requirements. Previous studies have managed to cut

down computational costs to some extent by employing the

fast Fourier transform (FFT) algorithm [44–47]. However,

the FFT algorithm does not address the problem of memory

shortage. For calculations, especially at temperatures below

1 K, we need to introduce innovative methods, such as the IR

method described below.

B. Fourier transformation with the IR basis

To solve Eqs. (1)–(3), we have to calculate the convolution

of � and , and that of � and , for all sampled Matsubara

frequencies. Using the convolution property of the Fourier

transformation, the convolution of two functions 5 and � can

be written as
∑

9

5 (il 9 − il 9′ )�(il 9′ ) = F −1 [F ( 5 ) · F (�)], (23)

where F and F −1 denote the Fourier and inverse Fourier trans-

formations between the Matsubara frequency domain and the

imaginary time domain. To reduce the cost for computing

the convolutions on the Matsubara frequency, we introduce

the IR basis functions. In practical calculations, we compute

sampling points of imaginary time and Matsubara frequency,

{ḡ8}, {l̄
(F)
9

}, and {l̄
(B)
9

}, and the IR basis functions, *; (ḡ8),

*̂
(F)

;
(il̄

(F)
9

), and *̂
(B)

;
(il̄

(B)
9

) prior to solving the ME equa-

tions. Using them, one can obtain the following compact

representation of the Green’s function:

� (il̄
(F)
9

) =
∑

;

�;*̂
(F)

;
(il̄

(F)
9

), (24)

� (ḡ8) =
∑

;

�;*; (ḡ8), (25)

where �; are the IR expansion coefficients. We can evaluate

�; from the functions� (il̄
(F)
9

) and� (ḡ8) by using the pseudo-

inverse matrix, U+ ≡ (U†U)−1U†:

�; =

∑

9

[
Û+

(F)

]

; 9
� (il̄

(F)
9

) (26)

=

∑

8

[
U+

]
;8
� (ḡ8), (27)

where [Û(F) ] 9; = *̂
(F)

;
(il̄

(F)
9

) and [U]8; = *; (ḡ8). Since

, is a bosonic function, we can consider similar relations to

Eqs. (24)–(27) by replacing *̂
(F)

;
(il̄

(F)
9

) with *̂
(B)

;
(il̄

(B)
9

).

The sampling points and the IR basis functions can be com-

puted using the sparse-ir library [28–30]. Two parameters, Λ

and nIR, are used to generate the sampling points. Λ = lmax/)

determines the real frequency domain [−lmax;lmax] of the

kernel  (g, l) in the spectral representation of the Green’s

function,

� (g) = −

∫ lmax

−lmax

3l (g, l)d(l), (28)

where d(l) is the spectral function. The IR basis functions are

computed by a singular value expansion of the kernel  (g, l).

A sufficiently large value of Λ must be chosen according to

the typical energy scale of the system and the minimum tem-

perature so that the domain [−lmax;lmax] includes all real

frequencies where d(l) has a nonzero value. nIR controls the

sparseness of the sampling points, i.e., the numerical accuracy

of the Green’s function.

C. Calculation flow

Figure 1 shows the calculation flow chart for solving the

anisotropic ME equations. The implementation is based

on the assumption that the symmetry relation � (il
(F)
9

) =

�∗ (−il
(F)
9

) always holds so that only summations over the

positive Matsubara frequencies need to be considered. The

ME calculations for each temperature are performed as fol-

lows:

(1) Set the initial guess: /=k (il̄
(F)
9

) = 1, j=k (il̄
(F)
9

) = 0,

and

q=k (il̄
(F)
9

) =
Δ0

1 + (l̄
(F)
9

/lph)2
, (29)

where lph = 1.1× (the maximum phonon frequency), and Δ0

should be set to an appropriate value. For a sufficiently low

temperature, we set Δ0 = 1.76 × )
(AD)
c , with )

(AD)
c being the

Allen–Dynes estimate of the transition temperature [49].

(2) Compute the Green’s functions �=k (il̄
(F)
9

), �=k (il̄
(F)
9

)

and �
(out)

=k
(il̄

(F)
9

) and the interaction term,=k ,=′k ′ (il̄
(B)
9

) on

the discrete imaginary Mastubara frequency grid based on

Eqs. (5), (9), (10), and (21) using /=k (il̄
(F)
9

), j=k (il̄
(F)
9

),

q=k (il̄
(F)
9

), and q
(out)

=k
(il̄

(F)
9

).

(3) Compute the Fermi level YF such that Eq. (3) is satisfied

using Brent’s method [50].

(4) Evaluate the IR coefficients �=k ,; , �=k ,; , �
(out)

=k ,;
, and

,=k ,=′k ′ ,; using Eq. (26).

(5) Replace negligibly small IR coefficients with 0. This

is equivalent to a noise reduction to prevent truncation errors

from accumulating in the iterative procedure. If |�=k ,; | <

ncut × max
;

|�=k ,; |, the value is replaced with 0. A value of

ncut = 10−5 is employed in this work. The same treatment is

applied to �=k ,; , �
(out)

=k ,;
, and,=k ,=′k ′ ,; .

(6) Evaluate the Green’s functions�=k (ḡ8) and �=k (ḡ8), and

the interaction term,=k ,=′k ′ (ḡ8) in the imaginary time domain

from the IR coefficients using Eq. (25).

(7) Compute the element-wise products

-
(1)

=k ,=′k ′ (ḡ8) = �=k (ḡ8),=k ,=′k ′ (ḡ8), (30)

-
(2)

=k ,=′k ′ (ḡ8) = �=k (ḡ8),=k ,=′k ′ (ḡ8) (31)

in the imaginary time domain.

(8) Extract the IR coefficients of -
(1)

=k ,=′k ′ ,;
and -

(2)

=k ,=′k ′ ,;
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FIG. 1. The flow chart to solve the ME equations self-consistently

using the IR basis.

using Eq. (27).

(9) Evaluate -
(1)

=k ,=′k ′ (il̄
(F)
9

) and -
(2)

=k ,=′k ′ (il̄
(F)
9

) in the Mat-

subara frequency space using Eq. (24).

(10) Compute the self-energiesΣ=k (il̄
(F)
9

), q=k (il̄
(F)
9

), and

q
(out)

=k
(il̄

(F)
9

) in the Matsubara frequency domain by taking the

summation over the final states using Eqs. (18)–(20).

(11) Check whether the difference between q(il̄
(F)
9

) at the

current and previous iteration is below a given convergence

threshold. Repeat steps (2)–(11) until q(il̄
(F)
9

) converges.

Here, the interaction term is denoted simply as

,=k ,=′k ′ (il̄
(B)
9

) for general notation. However, the above

description applies specifically to the convolution with the

electron-phonon interaction since the Coulomb interaction is

treated in the static approximation as ,C
= `C/#F. See also

Appendix B for a discussion of the treatment of the static term.

III. RESULTS AND DISCUSSION

In this paper, we calculate the superconducting gap function

of three elemental materials, fcc Al, bcc Nb, and fcc Pb. All

the first-principles calculations are performed with the Quan-

tum espresso package [51–53]. We use the Perdew-Burke-

Ernzerhof parametrization of the generalized gradient approx-

imation (PBE-GGA) [54] and the optimized norm-conserving

Vanderbilt (ONCV) pseudopotentials [55] extracted from the

SG15 ONCV library [56]. The plane wave cutoff is set to

100 Ry. The optimized lattice parameters are found to be 0 =

4.04, 3.31 and 5.03 Å for Al, Nb, and Pb, respectively. The dy-

namical matrices and the linear variation of the self-consistent

potential are calculated within density-functional perturbation

theory on an 83 q mesh, using the charge density computed

on a 163 k mesh. The maximally localized Wannier func-

tions are constructed using the Wannier90 code [57, 58]. For

Al and Pb, four Wannier functions are used to describe the

electronic states near the Fermi level. These are the B?3-like

functions localized along each bond. In the case of Nb, we

consider nine Wannier functions with B, ?, and 3 character. In

order to solve the anisotropic ME equations, we employ the

EPW code [10, 42, 59, 60]. The electronic eigen-energies,

phonon frequencies, and electron-phonon matrix elements are

evaluated on 963 k and q grids. The inner and outer windows

are set to ±0.5 eV and ±15 eV around the Fermi energy Y
(0)

F
,

respectively. A 483 kC grid is used for the summations of

the Coulomb contribution in Eqs. (19)–(20). The ab initio

Coulomb parameters `C = 0.251, 0.429, and 0.224 for Al, Nb,

and Pb are adopted from Ref. 61, where they were obtained

with the SuperconductingToolkit (SCTK) [61]. To com-

pute the IR basis functions, we use the sparse-ir library [28–

30] with Λ = 106 and nIR = 10−8, resulting in 96 fermionic

and 97 bosonic Matsubara frequency sampling points [62].

Figure 2 shows the calculated electron and phonon band

structures of Al, Nb, and Pb. The electronic band structures

and the density of states (DOS) are presented in Figs. 2(a),

(c), and (e). The phonon dispersion, the phonon DOS, the

isotropic Eliashberg spectral function U2� (l), and the cumu-
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FIG. 2. Panel (a) shows the calculated electronic band structure and the density of states (DOS) with respect to the Fermi energy for Al. The

dashed red lines represent the DFT bands, and the solid blue lines represent the Wannier bands. Panel (b) shows the phonon dispersion and the

phonon density of states (PHDOS), the isotropic Eliashberg spectral function U2� (l), and the cumulative electron-phonon coupling strength

_(l). Panels (c)–(d) and (e)–(f) show the corresponding results for Nb and Pb, respectively.

lative electron-phonon coupling strength _(l) are presented

in Figs. 2(b), (d), and (f). The band structure of the Wan-

nier model reproduces very well the band structure obtained

with the density functional theory (DFT) calculations. The

computed electron-phonon coupling strength parameters _ are

found to be 0.432, 1.20, and 1.13 in Al, Nb, and Pb, respec-

tively. These values are comparable with results reported in

previous theoretical studies [10, 21, 22, 42, 61, 63–65]. The

electron-phonon coupling strength _ of Pb is slightly smaller

than the value extracted from tunneling measurements because

we neglect the spin-orbit coupling [42, 66].

In Fig. 3, we plot the histograms of the state-dependent

electron-phonon coupling strength _=k and the superconduct-

ing gap function at the lowest Matsubara frequency Δ=k (ic)),

denoted as d(_) and d(Δ), respectively. The two quantities

are defined as

d(_) =
1

#k

Inner.∑

k ,=

X(_=k − _)X(Y=k − Y
(0)

F
) (32)

with

_=k =
1

#q

Inner.∑

q,=′

∑

a

2

����a
=k ,=′k+q

���
2

laq

X(Y=′k+q − Y
(0)

F
) (33)

and

d(Δ) =
1

#k

Inner.∑

k ,=

X(Δ=k (ic)) − Δ)X(Y=k − Y
(0)

F
). (34)

It can be seen that out of the three materials, only Pb dis-

plays a two-gap structure, both d(_) and d(Δ) histograms

being clearly separated into two distinct ranges. This two-gap

structure has been observed in the differential conductance

(3�/3+ (+)) spectra from tunneling measurements [67–69]

and also found in a previous theoretical study based on the

density functional theory for superconductors (SCDFT) [70].

The splitting in the d(Δ) histogram is about 0.25–0.30 meV

at 0.2 K, which is slightly larger than the experimentally re-

ported energy separation of 0.15 meV [69]. The transition

temperature is estimated by fitting Δ()) ∼ �
√

1 − )/)c to the

histograms, where � is constant for several temperature points

near the transition temperature. We obtain )c values of 2.75,

13.8, and 6.39 K for Al, Nb, and Pb, respectively.

Here we compare our )c values with those obtained from

literature as shown in Table I. Note that the calculations per-

formed in Refs. 21 and 22 are isotropic, while those performed

in Ref. 61 are anisotropic. Our estimates of )c for both Al and

Nb exceed the experimental values. These discrepancies are

due to the fact that we have not considered the spin fluctuation

in this study [61, 71]. The estimated value for Al is 2.75 K, rel-

atively high compared to the isotropic calculations in Refs. 21
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FIG. 3. Panel (a) shows the histogram of the state-dependent electron-phonon coupling strength d(_). Panel (b) shows the histograms of the

superconducting gap function d(Δ) at the lowest Matsubara frequency for different temperatures. Solid red line represents the temperature

dependence of the superconducting gap expected from the BCS theory in the weak coupling limit. Panels (c)–(d) show the state-dependent

electron-phonon coupling strength and the superconducting gap function on the Fermi surface. Panels (e)–(h) and (i)–(l) show the corresponding

results for Nb and Pb, respectively. The calculations were performed with 963 k and q grids, a 483 kC grid, and an inner window of 0.5 eV.

The images on the Fermi surface were rendered using the FermiSurfer software [48].

and 22. This could be attributed to the insufficient sampling

size of the kC grid. Increasing the kC-grid sampling to 963

it is estimated that the )c value would be around 2.2 K, as

discussed in Appendix C. On the other hand, our )c value for

Nb is comparable to the one obtained from isotropic calcu-

lations [21, 22]. The close agreement between isotropic and

anisotropic calculations implies that the isotropic treatment

provides a relatively accurate approximation for Nb, as most

of the states exhibit similar values of the gap function. In fact,

Fig. 3(e) shows that the histogram d(Δ) at 0.2 K for Nb has

a typical large peak near 2.5 meV. For Pb, our calculated )c

is lower than the experimental value. This underestimation is

associated to the neglect of the spin-orbit interaction in our

calculations.

We fit the BCS curve predicted at the weak coupling limit

to the histograms, aligning the superconducting gap Δ at zero

temperature with Δ() = 0) = 1.76 × )c in Figs. 3(b), (f), and

(j). The temperature dependence of the histogram generally

agrees well with the BCS curve. However, it is evident that

the BCS curve does not necessarily pass through the center

of the distribution range of the histogram or near the largest

peak, particularly in Fig. 3(f) for Nb. Therefore, accurate

estimation of the transition temperature solely by examining

the histogram at low temperatures is difficult.

Comparing the distribution of _=k and that of Δ=k (ic)) on

the Fermi surface for each material, it is clear that the momen-

tum distribution of the two quantities are qualitatively similar.

In the following, we shall primarily focus on discussing the

distribution of Δ=k (ic)). For Al, there is one large Fermi

surface around the Γ point and several small Fermi surfaces

along each edge around the K points. The larger Fermi surface

exhibits a range of superconducting gap values between 0.40

and 0.53 meV, whereas the smaller Fermi surfaces have values

around 0.35 meV. In the calculations for Al, the challenge in

achieving convergence with respect to the Brillouin zone sam-

pling most likely arises from the requirement of accurately

computing the contribution of these small Fermi surfaces (see

also Appendix C). For Nb, there is one large Fermi surface

around the Γ point and several small Fermi surface on each

face around the N point. The larger Fermi surface has values
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TABLE I. Comparison between the transition temperatures (in Kelvin) obtained in this work and in previous theoretical studies [21, 22, 61].

In the table we use the following abbreviations: with spin fluctuation (w SF), without spin fluctuation (w/o SF), with spin-orbit interaction

(w SO), and without spin-orbit interaction (w/o SO), respectively. In this work, we employed the anisotropic Eliashberg formalism with a

constant Coulomb parameter (`C). In the isotropic Eliashberg formalism employed in Refs. 21 and 22, as well as in the isotropic SCDFT

formalism employed in Ref. 21, the Coulomb interaction was treated as an energy-dependent function. The anisotropic SCDFT formalism in

Ref. 61 considered the momentum dependence of the Coulomb interaction. SPG denotes the parameterization proposed by Sanna, Pellegrini,

and Gross [72] for the SCDFT formalism.

A. Davydov et al. [21] C. Pellegrini et al. [22] M. Kawamura et al. [61] This work

Exp.

k dep. of Δ isotropic isotropic anisotropic anisotropic

formulation Eliashberg SCDFT (SPG) Eliashberg SCDFT Eliashberg

Coulomb int. Static Dynamical Static Dynamical Static Dynamical Static

SF & SO w/o SF, w/o SO w/o SF, w/o SO w/o SF, w/o SO w SF, w/o SO w/o SF, w SO w SF, w SO w/o SF, w/o SO

Al 0.9 2.5 1.6 1.3 1.03 1.9 0.89 1.9 0.88 2.75 (∼2.2)* 1.14

Nb 13.3 23.2 7.3 7.8 12.4 14 7.6 13 7.5 13.8 9.20

Pb 6.9 8.2 5.4 3.8 6.85 4.4 3.7 6.9 6.0 6.39 7.19

* The value in parentheses is a transition temperature roughly estimated from the histogram with the 963 kC grid at 0.2 K as described in Appendix C.

around 2.5 meV over almost the entire area, consistent with

the fact that the sharp peak in the d(Δ) histogram is centered

around 2.5 meV in Fig. 3(f). The distribution on the smaller

Fermi surfaces ranges from 1.9 to 2.4 meV, corresponding to

the broadened peak of the histogram d(Δ). For Pb, there are

two large Fermi surfaces: one is an almost spherical surface

encircling the Γ point, and the other is a tube-like surface

enveloping the edges of the first Brillouin zone. The typi-

cal value of the gap function varys distinctly for each Fermi

surface. This separation is also shown in Ref. 70 and results

in a two-gap structure in the d(Δ) histogram as presented in

Fig. 3(j).

IV. CONCLUSIONS

We have presented our implementation of the anisotropic

ME formalism coupled with the IR method. This approach

significantly reduces the computational cost associated with

Matsubara frequency sampling, allowing us to account for the

Coulomb interaction from electronic states far from the Fermi

energy. In order to confirm the validity of our methodology,

we have conducted calculations for several elemental metals,

Al, Nb, and Pb. We have found that the estimated transition

temperatures are comparable to those obtained from previ-

ous first-principles calculations as well as experiments, and

the temperature dependence of the gap function is generally

consistent with predictions from BCS theory. Of particular

significance is obtaining the momentum-dependent gap func-

tion from the anisotropic ME calculations even at temperatures

as low as 0.2 K. This quantity can be directly compared with

experimental results, and indeed, the gap function for Pb suc-

cessfully reproduced the two-gap structure observed in experi-

ments. We anticipate that our approach will prove instrumental

in analyzing superconducting properties at temperatures sig-

nificantly lower than the transition temperature and potentially

estimating other superconducting quantities.
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APPENDIX A: DECAY OF THE IR COEFFICIENTS

When using the IR method, selecting an appropriate func-

tion as the initial guess for q=k (il
(F)
9

) is crucial for success-

fully fitting the IR coefficients to the Green’s function. To

assess the extent to which the choice of the initial guess in-

fluences the fitting of the IR coefficients, we conduct the self-

consistent ME calculations for Nb using five different initial

guesses. The following functions were selected as initial func-

tions:

q=k (il
(F)
9

)

=




Δ0 × � ( |l
(F)
9

| − 2lph) step function

Δ0 constant
Δ0

1 + � ×
(
l

(F)
9

/lph

)2
Lorentzian

(A1)

where � (G) is the Heaviside step function. In the test calcula-

tions, we examine the effect of sharpness in the Lorentzian by

testing � = 0.1, 1.0, and 10.0. Figure 4 shows the index de-

pendence of the IR coefficients of both normal and anomalous

Green’s functions with various initial guesses. Note that the

index ; of IR coefficients starts at zero. Typically, assuming

successful fitting, the IR coefficients should decay rapidly as
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FIG. 4. Absolute values of the IR coefficients of both normal and anomalous Green’s functions for each index. These coefficients, shown in

panels (a)–(e), are extracted from the thirtieth iteration within the self-consistent ME calculation for Nb at ) = 0.2 K. The calculations were

conducted using 483 k and q grids and various initial guesses for the gap function: (a) a step function, (b) a constant, (c) a Lorentzian with

� = 0.1, (d) a Lorentzian with � = 1.0, and (e) a Lorentzian with � = 10.0. Panel (f) shows the same plot as in panel (d) but the calculation

was conducted at ) = 1.0 K. In the ME calculations, the inner window was set to 0.3 eV and the Coulomb interaction was omitted. No noise

reduction was applied during the self-consistent procedure.

FIG. 5. Absolute values of the IR coefficients of both normal and anomalous Green’s functions for each index. Panel (a) shows the coefficients

extracted from the first iteration within the self-consistent ME calculation. Panels (b)–(f) show those extracted from the thirtieth iteration

immediately after Step (4) in the self-consistent procedure (See Sec. II C). In the process of obtaining the coefficients depicted in panels (b)–(f),

noise reduction was conducted with varying threshold values for each iteration: (b) ncut = 10−5, (c) ncut = 10−6, (d) ncut = 10−7, and (e)

ncut = 10−8. The coefficients shown in panel (f) were obtained without applying noise reduction. The ME calculations were conducted for Nb

at ) = 0.2 K without the Coulomb interactions using 483 k and q grids and an inner window of 0.3 eV.
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the index increases [28, 73, 74]. In fact, except for panel (a),

a fast decay of the IR coefficients is observed in Fig. 4. It can

be seen that the width of the Lorentzian does not significantly

affect the quality of the fitting, and the fitting is successful

even with the constant function. In contrast, Fig. 4(a) exhibits

no decay of the IR coefficients. This indicates that while a

step function is not a suitable initial guess for q=k (il
(F)
9

) in

the case of the compact representation using the IR basis func-

tions, both a constant or a Lorentzian function are appropriate.

Nevertheless, Figs. 4(b)–(e) show that the IR coefficients do

not decay completely, instead, they form a small peak in the

region where the index ; exceeds about 70. Additionally, while

this peak is observed at 0.2 K, it is mostly absent at 1 K as

shown in Figs. 4(f). To investigate the cause of the peak promi-

nently observed at low temperatures at large indices ; [75], we

conduct several noise reduction tests using different thresholds

in the ME calculations for Nb at ) = 0.2 K. In Fig. 5, the peak

is not observed at large indices ; in the first iteration but ap-

pears in the thirtieth iteration in the case when using a lenient

threshold or not performing noise reduction. As the number

of iterations increases, it is observed that the peak becomes

larger. Notably, when using a threshold higher than 10−7, the

peak does not appear even in the thirtieth iteration. It means

that the peak observed at large indices ; arises from trunca-

tion errors accumulated during the iterative procedure in the

self-consistent calculation. Although the test calculations for

Nb using 483 k and q grids show that ncut = 10−7 is suffi-

ciently large to reduce noise stemming from truncation errors,

ncut = 10−5 was applied in other calculations for safety. Of

course, if one truncates IR coefficients that are not negligible,

the accuracy of the restored Green’s functions may be com-

promised. It is therefore necessary to use an appropriate value

of ncut.

APPENDIX B: SPECIAL TREATMENT OF MATSUBARA

SUM CONVOLUTION

The static Coulomb interaction cannot be compactly rep-

resented using IR basis functions because a function being

constant in the Matsubara frequency domain corresponds to

an unbounded spectrum [29]. Therefore, computing a con-

volution involving the static Coulomb interaction requires a

different approach from that of the electron-phonon interac-

tion. In this study, we have chosen the gauge such that the

imaginary part of the anomalous Green’s function is zero,

Im[�=k (il
(F)
9

)] = 0. This leads to the following relation for

the anomalous Green’s function,

�=k (g → +0) = )
∑

9

Re
[
�=k (il

(F)
9

)
]
. (B1)

The convolution with the constant Coulomb interaction `C/#F

appearing in Eqs. (19)–(20) can be calculated as follows:

)
∑

9′

�=′k ′ (il
(F)
9′

)
`C

#F

= �=′k ′ (g → +0)
`C

#F

. (B2)

The Matsubara sum in Eq. (3) also requires a similar treatment

since it is not a convolution with the electron-phonon inter-

action. Regarding the normal Green’s function, the following

relation holds [18, 76]:

�=k (g → +0) = −
1

2
+ )

∑

9

Re
[
�=k (il

(F)
9

)
]
. (B3)

Applying this relation to Eq. (3) yields the following expres-

sion,

#e =
2

#k

∑

k ,=

[
1 + �=k (g → +0)

]
. (B4)

�=k (g → +0) and �=k (g → +0) can be easily evaluated from

the IR coefficients.

APPENDIX C: CONVERGENCE TESTS

In this appendix, we provide the results of the convergence

tests. Since including the Coulomb contribution would incur

high computational costs, we initially conducted the calcula-

tions while considering only the electron-phonon interaction

term to examine the convergence with respect to the sampling

size of the k and q grids and the size of the inner window.

The convergence of the electron-phonon coupling strength, _,

is shown in Table II, and that of the gap function, Δ=k (ic)), is

TABLE II. Convergence of the electron-phonon couplng strength _

with respect to the k- and q-grid sampling and the inner window.

system
sampling size inner window

_
k and q (eV)

Al

243–243 0.3 0.386

363–363 0.3 0.409

483–483 0.3 0.358

643–643 0.3 0.435

723–723 0.3 0.446

963–963 0.3 0.432

963–963 0.5 0.432

1083–1083 0.3 0.427

1203–1203 0.3 0.426

Nb

243–243 0.3 1.14

363–363 0.3 1.35

483–483 0.3 1.17

603–603 0.3 1.22

723–723 0.3 1.22

963–963 0.3 1.20

963–963 0.5 1.20

Pb

243–243 0.3 1.65

483–483 0.3 1.27

603–603 0.3 1.26

723–723 0.3 1.20

803–803 0.3 1.06

883–883 0.3 1.11

963–963 0.3 1.13

963–963 0.5 1.13
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FIG. 6. Convergence of the superconducting gap function with respect to the k- and q-grid sampling and the inner window. The temperature

is set to ) = 0.8 K for Al, and ) = 1 K for Nb and Pb. The calculations were performed without the Coulomb interaction (`C = 0).

FIG. 7. Convergence of the superconducting gap function with respect to the kC-grid sampling and the outer window. The calculations were

performed with 963 k and q grids and an inner window of 0.3 eV. The temperature is set to ) = 0.8 K for Al, and ) = 1 K for Nb and Pb. The

constant Coulomb parameter is `C = 0.251 for Al, `C = 0.429 for Nb, and `C = 0.224 for Pb.

shown in Fig. 6. Note that the gap functions in Fig. 6 exhibit

larger values compared to those in Fig. 3 due to the exclusion

of the Coulomb term. Changing the size of the inner window

hardly affects the results, indicating that an inner window of

0.3 eV is sufficient, whereas a size of 0.5 eV was used in the

main text. Moreover, for Nb and Pb, the calculations converge

with 963 k and q grids. Especially for Nb, acceptable results

are obtained even with 483 k and q grids. On the other hand,

convergence proves challenging for Al, attributed to the pres-

ence of small Fermi surfaces near the edges. Although a 963

k- and q-grid sampling is not sufficient in this case, the results

are found to be close enough to those obtained for denser grids

as shown in Fig. 6(a). Considering the balance with the com-

putational cost, the 963 k- and q-grid sampling was adopted

in the main text for all three metals.

To investigate the convergence of the gap function with re-

spect to the sampling size of the kC grid and the size of the

outer window, we performed calculations by fixing the k- and

q-grid sampling to 963 and the inner window to 0.3 eV. Figure 7

demonstrates that as the size of the outer window increases,

the gap function gradually increases due to the Coulomb re-

tardation effect arising from the high-energy states. However,

since the change is small when going from 15 to 25 meV, an

outer window of 15 eV was adopted in the main text. It is

also found that while a kC grid of 323 for Nb and 483 for

Pb are sufficient, a kC grid denser than 483 should in prin-

ciple be used for Al. However, computing the gap function

at 0.2 K for Al takes 59,000 CPU core hours using a 963 kC
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FIG. 8. Plots of the superconducting gap function of Al at 0.2 K.

The calculations were performed with 963 k and q grids and an inner

window of 0.5 eV: (a) the superconducting gap function with a 963 kC

grid on the Fermi surface, and (b) comparison between the histogram

of the superconducting gap function with 963 and 483 kC grids. The

image on the Fermi surface was rendered using the FermiSurfer

software [48].

grid, compared to 1,200 using a 483 kC grid. Attempting to

compute the full temperature dependence of the gap function

with the 963 kC grid, the computational cost is estimated to

be about one million core hours. While this cost is not un-

feasible, it is significantly more expensive, and considering

that the momentum dependence of the gap function does not

qualitatively change when using the denser grid as shown in

Fig. 8(a), we opted to use the 483 kC grid in the main text for

Al as well. Nevertheless, the histogram of the gap function in

Fig. 8(b) allows us to obtain a rough estimate of the transition

temperature for the 963 kC grid. From the BCS curve fitted

to the temperature dependence of the gap function for the 483

kC grid, we obtain Δ() = 0) = 0.418 meV. Assuming that

the BCS curve for the 963 kC grid passes through the same

peak of the histogram as in the case of the 483 kC grid, we get

Δ() = 0) ∼ 0.34 meV, which corresponds to )c ∼ 2.2 K.
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[5] P. B. Allen and B. Mitrović, Solid State Phys. 37, 1 (1983).

[6] J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).

[7] F. Marsiglio and J. P. Carbotte, in Superconductivity, edited by

V. Grasso (Springer, Berlin, 2008) p. 73.

[8] L. Boeri, R. Hennig, P. Hirschfeld, G. Profeta, A. Sanna,

E. Zurek, W. E. Pickett, M. Amsler, R. Dias, M. I. Eremets,

C. Heil, R. J. Hemley, H. Liu, Y. Ma, C. Pierleoni, A. N. Kol-

mogorov, N. Rybin, D. Novoselov, V. Anisimov, A. R. Oganov,

C. J. Pickard, T. Bi, R. Arita, I. Errea, C. Pellegrini, R. Requist,

E. K. U. Gross, E. R. Margine, S. R. Xie, Y. Quan, A. Hire,

L. Fanfarillo, G. R. Stewart, J. J. Hamlin, V. Stanev, R. S.

Gonnelli, E. Piatti, D. Romanin, D. Daghero, and R. Valenti, J.

Phys. Condens. Matter 34, 183002 (2022).

[9] W. E. Pickett, Rev. Mod. Phys. 95, 021001 (2023).

[10] E. R. Margine and F. Giustino, Phys. Rev. B 87, 024505 (2013).

[11] E. R. Margine, H. Lambert, and F. Giustino, Sci. Rep. 6, 21414

(2016).
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