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Over the last two decades, following the early developments on maximally-localized Wan-
nier functions, an ecosystem of electronic-structure simulation techniques and software
leveraging the Wannier representation has flourished. This environment includes codes
to obtain Wannier functions and interfaces with first-principles simulation software, as
well as an increasing number of related post-processing packages. Wannier functions
can be obtained for isolated or extended systems (both crystalline and disordered), and
can be used to understand chemical bonding, to characterize polarization, magnetiza-
tion, and topology, or as an optimal basis set, providing very accurate interpolations in
reciprocal space or large-scale Hamiltonians in real space. In this review, we summarize
the current landscape of techniques, materials properties and simulation codes based
on Wannier functions that have been made accessible to the research community, and
that are now well integrated into what we term a Wannier-functions software ecosys-

tem. First we introduce the theory and practicalities of Wannier functions, starting
from their broad domains of applicability to advanced minimization methods using al-
ternative approaches beyond maximal localization. Then we define the concept of a
Wannier ecosystem and its interactions and interoperability with many quantum en-
gines and post-processing packages. We focus on some of the key properties that are
empowered by such ecosystem—from band interpolations and large-scale simulations to
electronic transport, Berryology, topology, electron-phonon couplings, dynamical mean-
field theory, embedding, and Koopmans functionals—concluding with the current status
of interoperability and automation. The review aims at highlighting basic theory and
concepts behind codes, providing relevant pointers to more in-depth references. It also
elucidates the relationships and connections between codes and, where relevant, the
different motivations and objectives behind their development strategies. Finally, we
provide an outlook on future developments, and comment on the goals of biodiversity
and sustainability for the whole software ecosystem.
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I. Introduction

Wannier functions (WFs) (Wannier, 1937), and in par-
ticular maximally-localized Wannier functions (MLWFs)
(Marzari and Vanderbilt, 1997), provide an accurate,
compact, and localized representation of the electronic-
structure problem, and have become widely used in com-
putational condensed-matter physics and materials sci-
ence (Marzari et al., 2012).

Thanks to developments in theory, algorithms and im-
plementations over the past few decades, summarized
in Sec. II, it has now become possible to apply widely
the concept of MLWFs to single-particle theories and in
particular to Kohn–Sham (KS) density-functional the-
ory (DFT) simulations, to obtain localized orbitals from
Bloch states; the latter can be themselves represented
with localized or extended basis sets, such as plane waves.
On one hand, these developments have benefited from
profound connections between WFs and physical quanti-
ties such as electric polarization, orbital magnetization
and topological invariants (Soluyanov and Vanderbilt,
2011b; Thonhauser et al., 2005; Vanderbilt, 2018; Van-
derbilt and King-Smith, 1993; Xiao et al., 2005). On
the other hand, the ability to obtain MLWFs from DFT
simulations often allows to calculate physical quantities
with high accuracy, but at a fraction of the computa-
tional cost, thanks to their role as very accurate in-
terpolators (Lee et al., 2005; Souza et al., 2001; Yates
et al., 2007). Finally, although not discussed here, lo-
calized representations have long been pioneered by the
quantum chemistry community to interpret coordination
and bonding (Edmiston and Ruedenberg, 1963), and ML-
WFs extend to periodic systems the concept of Foster-
Boys localized orbitals (Boys, 1966), thanks to algorith-
mic breakthroughs in calculating the position operator in
solids (Blount, 1962; King-Smith and Vanderbilt, 1993;
Nenciu, 1991; Resta, 1992; Zak, 1989).

Wannier functions are typically localized or even ex-
ponentially localized (Brouder et al., 2007; Panati, 2007;
Panati and Pisante, 2013), and due to the nearsight-
edness of interacting electrons (Des Cloizeaux, 1964a,b;
Kohn, 1996), local electronic properties only depend on
the nearby environment (Bianco and Resta, 2011, 2013;
Marrazzo and Resta, 2016, 2019). As a consequence,

the resulting Hamiltonian matrix expressed in a local-
ized basis set (such as MLWFs (Calzolari et al., 2004;
Lee et al., 2005)) becomes sparse, i.e., it displays neg-
ligible matrix elements—or hoppings, in the language
of a tight-binding (TB) formalism—if the distance be-
tween the corresponding localized basis functions exceeds
a given threshold. In this sense, MLWFs are optimal
choices as they decay exponentially in real space (Panati
and Pisante, 2013) and they minimize a localization func-
tional by design (Marzari et al., 2012; Marzari and Van-
derbilt, 1997). The resulting MLWFs can be used as a
basis set to build, LEGO™-like, the electronic structure of
large-scale nanostructures (Lee et al., 2005) that in turn
could be solved with linear-scaling methods (Mauri et al.,
1993; Nunes and Vanderbilt, 1994; Ordejón et al., 1993),
or as a remarkably accurate interpolators of electronic
properties, operators and quantities defined as integrals
over the Brillouin zone (BZ) of periodic systems (Souza
et al., 2001; Yates et al., 2007). Interpolation on dense
grids becomes essential when very fine features need to
be resolved, as happens when integrals are restricted to
lower-dimensional manifolds (such as the Fermi surface,
in the case of transport properties of metals).

Nowadays, MLWFs are routinely used in many re-
search areas of condensed-matter physics and materials
science. In Sec. II we summarize the past and current
challenges, discussing how we reached the current state.
Such a flourishment is not only due to theoretical ad-
vances, but also strongly driven by the concerted de-
velopment of accessible and efficient software. Indeed,
thanks to the availability of robust software packages (of-
ten open-source, encouraging further contributions), and
to the user support provided by developers, researchers
can now not only easily compute MLWFs, but also use
them as core ingredients for advanced simulations. As
more codes appear, they adopt the de facto standard-
ization of input and output formats, resulting in a set
of interacting and interoperating codes that we will call
here the “Wannier-functions software ecosystem.”

This review does not aim to provide an extensive dis-
cussion of the theory of MLWFs, for which we refer
to Marzari et al. (2012), although we do provide a gen-
eral introduction to the field in Sec. I.A. Instead, the
goal is to discuss the nature of the ecosystem and the
capabilities of existing codes, focusing in Sec. III on a se-
lection of physical phenomena or quantities that can be
efficiently predicted thanks to WFs, and on how WFs are
used as an ingredient to extend the accuracy of beyond-
DFT simulations. Nevertheless, we will still mention a
few notable developments of the past decade, whenever
useful to contextualize the theoretical and software devel-
opments. Our aim is to provide a reference that can help
newcomers and existing practitioners alike navigate the
ecosystem: which properties can be computed by which
codes, why the use of WFs is beneficial, which quantities
are exchanged between codes, and how interoperability
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is being addressed.

To discuss the codes, we group them into three ma-
jor categories: Wannier engines, i.e., codes to obtain
WFs; interface codes between the first-principles engines
(e.g., DFT or GW codes) and the Wannier engines; and
Wannier-enabled codes, which range from relatively sim-
ple post-processing tools to more advanced codes that
use WFs as one of the ingredients to accelerate accurate
simulations. A fourth category of codes that we discuss
in Sec. III.J are automation workflows. Indeed, until
very recently the generation of WFs typically required
human intuition by experienced researchers to provide
initial trial orbitals. This barrier has been largely re-
moved by recent algorithmic and automation efforts (see
Sec. II.D), enabling the use of WFs both by new users
and for high-throughput materials discovery and charac-
terization. In the latter case, managing thousands (or
more) simulations poses new challenges, which require
not only the use of robust workflow engines, but also the
implementation of WF-specific workflows to effectively
interconnect multiple codes within the ecosystem.

We will finally conclude in Sec. IV with some perspec-
tives on the field related to the sustainability of the whole
effort, current challenges that still need to be addressed,
and possible future developments.

A. Ab initio electronic structure and Wannier functions

Electronic-structure simulations aim to determine the
behavior of electrons in materials and molecules, as gov-
erned by the Schrödinger or Dirac equations. Electrons
feel Coulomb interactions among themselves and with the
nuclei, in addition to couplings with external fields (e.g.,
electrical, magnetic, or electromagnetic/photons) or per-
turbations (e.g., strain, phonons). The core electrons
of heavy chemical elements can reach relativistic speeds,
requiring to correct the Schrödinger equation with terms
obtained from an expansion of the Dirac equation in pow-
ers of 1/c2, where c is the speed of light. The most rel-
evant relativistic correction is spin-orbit coupling, which
is responsible for several important phenomena related to
magnetism and to geometrical and topological properties
of the electronic manifold (see Sec. III.E and Sec. III.F).

An exact solution of the Schrödinger equation (either
the bare one, or with relativistic corrections) would give
access to essentially all property of materials. This prob-
lem was already clear in 1929, when Paul Dirac declared:
“The underlying physical laws necessary for the mathe-
matical theory of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty
is only that the exact application of these laws leads to
equations much too complicated to be soluble” (Dirac,
1929).

For more than fifty years, ab initio or first-principles
methods have been developed to approximately solve the

Schrödinger equation in realistic settings (Giustino, 2014;
Martin, 2020), with more accurate strategies and theo-
ries being developed. In parallel, the exponential growth
of computational power (Moore’s law) has allowed to de-
ploy these new theoretical instruments through numeri-
cal simulations, constantly seeking not only to improve
accuracy but also targeting more complex and realistic
systems. Quickly, numerical solutions became sufficiently
accurate to be predictive for a number of properties in rel-
evant systems: the era of first-principles materials mod-
eling had begun (Marzari et al., 2021; Yin and Cohen,
1980).

An iconic example is given by DFT, which made it pos-
sible to determine the electronic structure of complex ma-
terials with reasonable accuracy at low cost. In DFT, the
total energy of the electrons is expressed as a functional
of the electronic charge density (Giustino, 2014; Mar-
tin, 2020). The theory is supported by two pillars, the
Hohenberg–Kohn theorems, which state not only a one-
to-one correspondence between the ground-state many-
body wavefunction and the ground-state charge density,
but also formulate a variational total-energy functional:
the solution of the Schrödinger equation can be recast as
a minimization problem for the charge density, a remark-
ably simpler object (a real function of r) than the many-
body wavefunction we started from (a complex function
of 3Ne variables, where Ne is the number of electrons in
the system).

In KS DFT, the interacting many-body problem is
mapped onto a non-interacting problem sharing the same
ground-state charge density but in presence of a suitable
local external potential; the latter is in general unknown.
This ansatz allows to capture with accuracy the kinetic
energy contribution through the second derivatives of the
KS orbitals, otherwise invisible in practice in their square
moduli (the density). The success of DFT has been possi-
ble also thanks to the discovery and development of sim-
ple functionals that approximate the exact, but unknown,
total-energy functional. Hence, the KS-DFT approach
to solving the many-body Schrödinger equation trans-
lates into solving a set of non-interacting one-particle
Schrödinger equations in presence of an external poten-
tial that depends, self-consistently, upon the charge den-
sity only. Although the outstanding importance of DFT
has been recognized by the 1998 Nobel Prize in chem-
istry awarded to Walter Kohn (for DFT) and John Pople
(for computational methods in quantum chemistry), its
impact on the physics community has been, if possible,
even greater: the top ten most highly cited articles pub-
lished by the American Physical Society deal with DFT
and related applications (Talirz et al., 2021).

The electronic structure of materials and molecular
systems is, at the same time, very similar and yet very
different. To some extent, extended materials can be
seen as very large molecules and one could focus on the
local electronic structure in real space, which is periodi-
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cally repeated in the case of a crystalline materials (e.g.,
metals, semiconductors, oxides). This viewpoint is sup-
ported by the mathematical structure of the Schrödinger
equation and its solutions, as observed by Kohn (Kohn,
1996): the electronic structure is fundamentally a local
property, “nearsighted” to what happens at further dis-
tance in real space. The effect of chemical bonding and
the presence of the lattice can be seen as perturbations to
the case of isolated atoms, with their well-defined s, p, d
and f orbitals. This perspective is powerful and founda-
tional for linear-scaling methods, which target the simu-
lation of large systems and leverage a description based
on localized orbitals. Yet materials are not just very large
molecules, and “more is different” (Anderson, 1972). Ex-
tended systems are practically infinite and can thus be
described using periodic boundary conditions (PBCs).
As will be discussed in more formal terms in Sec. II, the
electronic structure of a material in PBC is more natu-
rally described in terms of Bloch orbitals, which are not
localized in real space. Indeed, a different perspective
often drives the discussion of the electronic structure of
periodic crystals: the behavior in reciprocal (i.e., Fourier-
transformed) space. A textbook example is semiconduc-
tor physics, that is in general much better understood
(and taught) by studying solutions of the Schrödinger
equation in such reciprocal space. This approach, some-
what orthogonal to the large-molecule perspective, is in-
deed also very powerful both at a conceptual and practi-
cal level. As a side note, many electronic-structure codes
for materials actually adopt a completely delocalized ba-
sis (e.g., plane waves) to describe the periodic part of the
Bloch orbitals (Martin, 2004, 2020; Pickett, 1989).

How can we reconcile these two, almost opposite, per-
spectives? Remarkably, one can use the fundamental
“gauge freedom” of quantum mechanics: First, any quan-
tum state is defined modulo a phase factor. Second, if
one considers a set of single-particle states separated in
energy from other states, then any trace operation on this
manifold is invariant with respect to any unitary trans-
formation among the orbitals; we call this a “generalized”
gauge freedom. However, and this is the crucial aspect,
the localization properties of that set of states strongly
depend on their gauge.

WFs provide a rigorous and insightful way to recon-
cile the real-space and localized perspective with the
reciprocal-space (Fourier) and delocalized one. As it will
be clear in the next section, MLWFs in particular exploit
the generalized gauge freedom to transform delocalized
orbitals into localized ones (and vice versa), by construct-
ing the proper unitary matrices.

II. Wannier functions fundamentals

The electronic structure of periodic crystals is
most commonly described in terms of Bloch waves

ψnk(r) = unk(r) e
ik·r, where k is the crystal momentum,

and n is the band index. This is the case in textbooks on
solid-state theory, but also for the many software pack-
ages that solve the KS equations for crystalline solids.
A few years after Felix Bloch developed the theory of
electron waves in periodic crystals (Bloch, 1929), Gre-
gory Wannier introduced an alternative representation in
terms of an orthonormal set of localized functions (Wan-
nier, 1937), the Wannier functions. Given an isolated
Bloch band n, the WF wnR(r) = ⟨r|Rn⟩ = wn0(r −R)
associated with the unit cell labelled by lattice vector R
is defined as (Wannier, 1937)

|Rn⟩ =
Vcell
(2π)3

∫

BZ

dk e−ik·R |ψnk ⟩ , (1)

where Vcell is the unit-cell volume.

Since their inception, WFs have been employed as a
conceptual tool to tackle problems in solid-state physics
(see, e.g., Kivelson (1982)). However, in the first sixty
years following Wannier’s paper, there were few actual
calculations of WFs for real materials (see, e.g., Callaway
and Hughes (1967); Satpathy and Pawlowska (1988); and
Sporkmann and Bross (1994)). The main obstacle was
the fact that WFs are strongly non-unique, being sensi-
tive to the generalized gauge freedom discussed earlier,
e.g., to k-dependent phase changes |ψnk⟩ → e−iβnk |ψnk⟩
with βnk ∈ R (gauge transformations) of the Bloch
eigenstates. Moreover, the energy bands of real ma-
terials typically become degenerate at points, lines, or
even entire planes in the BZ. The presence of degenera-
cies leads to poor localization properties of the WFs ob-
tained from Eq. (1), because no matter how the phase
factors e−iβnk are chosen, the Bloch eigenfunctions are
non-differentiable functions of k at the degeneracy points.

A. Maximally-localized Wannier functions

In the following, we discuss the original Wannierization
methods introduced in Marzari and Vanderbilt (1997)
and Souza et al. (2001), while we refer the reader to
Sec. II.D for an overview of more recent and advanced
minimization methods.

1. Isolated composite groups of bands

Consider a group of J Bloch bands of orthonormal
|ψnk⟩ Bloch states that may be connected among them-
selves by degeneracies, but are isolated from all lower or
higher bands, e.g., the six valence bands in Fig. 1. Given
such a composite group, the most general expression for
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the associated WFs is (Marzari and Vanderbilt, 1997)

|Rj⟩ = Vcell
(2π)3

∫

BZ

dk e−ik·R |ψW
jk⟩ , (2a)

|ψW
jk⟩ =

J
∑

n=1

|ψnk⟩Uk,nj , (2b)

where the Uk are J × J unitary matrices that describe
the generalized (multiband) gauge freedom within the
Bloch manifold at each k. The superscript W denotes a
Wannier gauge, as opposed to a Hamiltonian gauge (later
denoted by H) where the Hamiltonian matrix is diagonal.
Note that at variance with Eq. (1), in Eq. (2) there is not
a one-to-one correspondence between the band index n
and the intra-cell Wannier index j.
Marzari and Vanderbilt (MV) introduced the concept

of MLWFs, in which the Uk matrices are chosen so as to
minimize the total quadratic spread of the WFs (Marzari
and Vanderbilt, 1997):

Ω =

J
∑

j=1

[

⟨0j | r2 |0j ⟩ − |⟨0j | r |0j ⟩|2
]

. (3)

As discussed later (see Sec. II.C.1) the spread (a.k.a. lo-
calization) functional Ω and its gradient with respect to
an infinitesimal gauge transformation can be expressed
in reciprocal space; furthermore, the BZ integration in
Eq. (2a) is replaced by a discrete sum (1/N)

∑

k where
N is the number of k-points in the finite grid used in
the numerical simulations, and the optimal Uk matrices
are found by iteratively minimizing the functional Ω (see
also Marzari and Vanderbilt (1997) for the mathematical
details).
From general Fourier-transform considerations (Duffin,

1953), the good real-space localization properties of the
MLWFs on the left-hand side of Eq. (2a) mean that the
Bloch-like states |ψW

jk⟩ appearing on the right-hand side
are smooth functions of k for the optimal choice of Uk

matrices in Eq. (2b) (or for any other choice leading to
well-localized WFs).
The details of the MV methodology can be found

in Marzari et al. (2012) and Marzari and Vanderbilt
(1997); in the case of single k-point sampling (large unit
cells), it is equivalent to the Foster-Boys scheme used in
quantum chemistry to construct localized molecular or-
bitals (Boys, 1966). It should be noted that other local-
ization criteria can be used for the purpose of obtaining
localized orbitals, e.g., the Edmiston–Ruedenberg (Ed-
miston and Ruedenberg, 1963) and Pipek–Mizey (Pipek
and Mezey, 1989) approaches, based on maximizing the
Coulomb self-repulsion of the orbitals and the sum of
the squares of the Mulliken charges (Mulliken, 2004) as-
sociated with the orbitals, respectively. Whilst these
are more challenging to adapt to a periodic, multi-k-
point formulation, there has been recent work to obtain

WFs for periodic systems using the Pipek–Mezey local-
ization criterion (Clement et al., 2021; Jónsson et al.,
2017). Nevertheless, the MV approach of minimizing the
quadratic spread is still the most widely used approach
for periodic systems.

2. Entangled bands

The MV approach described above provides a means
to construct well-localized WFs from isolated groups of
bands, such as the valence bands of insulators. However,
it is often useful to obtain WFs from non-isolated (or
“entangled”) groups of bands. Typical examples include
the low-lying conduction bands or the valence plus con-
duction bands of insulators (see Fig. 1), and the bands
crossing the Fermi level in metals.
A possible strategy to deal with such cases is to first

identify an appropriate J-dimensional Bloch manifold at
each k-point from a larger set of Jk Bloch eigenstates
|ψmk⟩, e.g., the ones within some energy window. For-
mally, this band-disentanglement step can be expressed
as

|ψ̃nk⟩ =
Jk
∑

m=1

|ψmk⟩ Ṽk,mn , (4)

where the Ṽk are Jk × J matrices satisfying
Ṽ †
k Ṽk = 1J×J . In 2001, Souza, Marzari and Van-

derbilt (Souza et al., 2001) (SMV) introduced a practical
scheme to extract an optimally-smooth Bloch-like
subspace P̂ =

∑J

n=1 |ũnk⟩ ⟨ũnk| across the BZ, from
which a set of MLWFs could then be obtained using the
MV prescription. The resulting “disentangled WFs” are
given by Eq. (2) with the ab initio Bloch eigenstates
|ψnk⟩ therein replaced by |ψ̃nk⟩, that is,

|Rj⟩ = 1

N

∑

k

e−ik·R |ψW
jk⟩ , (5a)

|ψW
jk⟩ =

Jk
∑

n=1

|ψnk⟩Vk,nj , (5b)

where the Jk × J matrices Vk = ṼkUk encode the net
result of the disentanglement (subspace-selection) and
maximal localization (gauge-selection) steps. As in the
case of Eq. (2), the states |ψW

jk⟩ in Eq. (5) are smooth
functions of k whenever the associated WFs are well lo-
calized.
The disentanglement step can be carried out in such

a way that the ab initio eigenstates are described ex-
actly within a “frozen” or “inner” energy window that is
contained by the “outer” energy window mentioned ear-
lier (Souza et al., 2001). This is useful, for example, when
studying transport properties, for which one would like
to obtain a faithful description of the states within some
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small energy range around the Fermi level. Note that
because of these energy windows, the needed input from
the first-principles calculation includes the energy eigen-
values εnk in addition to the overlap matrices Eq. (8).

Over the years, many alternative approaches and al-
gorithms have been developed—from partially-occupied
Wannier functions (Fontana et al., 2021; Thygesen et al.,
2005) to quasiatomic orbitals (Qian et al., 2008), to the
selected columns of the density matrix (SCDM) (Damle
et al., 2015, 2017), and to projectability disentanglement
and manifold remixing (Qiao et al., 2023a,b); these and
others will be discussed in Sec. II.D.

B. Major applications of Wannier functions

a. Interpolation The efficient interpolation in reciprocal
space of k-dependent quantities is arguably the most
common application of WFs, enabling the calculation
of simple (e.g., the band structure) or complex (e.g.,
electron-phonon coupling) electronic structure proper-
ties. A large part of this review is devoted to the fun-
damentals of WF interpolation (Sec. III.C) and their
applications, including ballistic transport (Sec. III.D),
Berry-phase related properties (Sec. III.E) and electron-
phonon interactions (Sec. III.G). As discussed in more
detail in Sec. III.C, the reason for such widespread set
of applications (not all of them covered in this review)
is that WFs can be applied to any generic operator that
is local in reciprocal space. Equally important is that
WFs allow to reproduce the correct band connectivity:
in particular, avoided crossings are not mistaken for ac-
tual crossings. This distinguishes Wannier interpolation
from other methods based on direct Fourier interpolation
of the energy eigenvalues. In other words, WFs allow to
exploit the fundamental locality (“nearsightedness” ac-
cording to Kohn (Des Cloizeaux, 1964a,b; Kohn, 1996))
of the electronic structure and the related exponential
localization of WFs to construct a potentially exact rep-
resentation of an operator in real space, such that any
interpolation back to reciprocal space is exact as well.
The procedure is also systematic as WFs are guaran-
teed to exist and the convergence is exponential with
the linear sampling density (Brouder et al., 2007; Pa-
nati, 2007; Panati and Pisante, 2013); prefactors and co-
efficients might depend on electronic structure properties
such as the band gap, and on the specific operator under
consideration.

b. Geometry and Topology WFs have several profound
connections with quantum-geometrical and topological
aspects of the electronic structure (Vanderbilt, 2018);
some of them are discussed in Sec. III.E and III.F. In
the following, we refer to topological properties as a
subset of geometrical properties that are quantized and

hence represented by integer topological invariants ro-
bust to certain classes of perturbations. A prime exam-
ple of geometrical—and in some circumstances also topo-
logical—quantity is the electric polarization of periodic
solids, which can be calculated in reciprocal space as a
Berry phase (Vanderbilt, 2018) (see Sec. III.E). Electric
polarization can also be equivalently computed by sum-
ming over WFs centers in real space (Marzari et al., 2012;
Marzari and Vanderbilt, 1997; Vanderbilt, 2018), which
provides a more intuitive formulation of the modern the-
ory of polarization (King-Smith and Vanderbilt, 1993;
Resta, 1992, 1994; Vanderbilt, 2018) and restores some
justification to the classical Clausius–Mossotti (Clau-
sius, 1879; Mossotti, 1850) viewpoint. While electronic-
structure geometry in reciprocal space speaks the lan-
guage of differential geometry (e.g., curvatures, parallel
transport, smoothness of manifolds), WFs allow to ex-
press the same quantities in terms of matrix elements of
the Hamiltonian and position operator r̂. The reciprocal-
space smoothness, which is measured by the quantum ge-
ometric tensor (Provost and Vallee, 1980), can be equiv-
alently analyzed in real space by measuring the degree of
WFs localization.

To some extent, the connection between WFs and
topological invariants is even stronger, where the former
provide not only powerful approaches to calculate invari-
ants for real materials (see Sec. III.F for a discussion) but
also fundamental understanding of topological phases. In
fact, topological insulators are essentially systems that
cannot be connected adiabatically to atomic insulators,
hence it is impossible to truly represent their ground
state with WFs (Thonhauser and Vanderbilt, 2006; Van-
derbilt, 2018). In reciprocal space, non-trivial topologi-
cal invariants translate into unavoidable obstructions to
choosing a smooth gauge over the BZ (Bernevig and
Hughes, 2013; Vanderbilt, 2018). The fundamental con-
nection between non-trivial topology of electronic bands
and the corresponding absence of a Wannier representa-
tion has been recently generalized and made systematic
in the context of elementary band representation (Michel
and Zak, 1999; Zak, 1982), leading to the so-called topo-
logical quantum chemistry (Bradlyn et al., 2017; Cano
et al., 2018; Vergniory et al., 2017) (see also related efforts
on symmetry-based indicators by Khalaf et al. (2018);
Kruthoff et al. (2017); Po et al. (2017); and Song et al.

(2018)), allowing to screen materials databases and iden-
tify non-trivial materials of various classes (Tang et al.,
2019; Vergniory et al., 2019; Wieder et al., 2022; Zhang
et al., 2019).

c. Advanced electronic-structure methods DFT simula-
tions of periodic solids can be conveniently (but definitely
not necessarily) performed by adopting a plane-wave ba-
sis set, in conjunction with smooth pseudopotentials that
reproduce the interaction between valence electrons and
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and Freimuth et al., 2008; Kune et al., 2010; and Poster-
nak et al., 2002 for the full-potential linearized aug-
mented planewave method). As regards the disentan-
glement procedure, note that because of energy windows
the needed input from the first-principles calculation in-
cludes the energy eigenvalues εnk in addition to the over-
lap matrices Eq. (8).

2. Accuracy and convergence

While the main focus of this review is on the pow-
erful applications of WFs, their successful use relies on
the Wannierization process being done correctly: in the
following, we briefly comment on fundamental tests and
established procedures to assess and improve the quality
of WFs.

Two major convergence parameters control the qual-
ity (and the cost) of the Wannierization procedure: the
spread minimization and the k-point grid used to obtain
the initial Hamiltonian eigenstates (e.g., the cell-periodic
part of Bloch states, if working with PBCs).

The spread minimization is generally performed with
a steepest-descent algorithm until results do not change
within a certain tolerance. While the iterative algo-
rithm is in general robust, the minimization can become
trapped in local minima. The strategy to avoid that is
to select a very good starting point: if the initial spread
is sufficiently close to the absolute minimum, it is more
likely to reach it by following the local gradient. Hence,
particular care needs to be paid to select good projection
functions to obtain the initial unitary matrix of Eq. (5b),
to be then iteratively optimized. In absence of chemical
intuition, a common strategy is to calculate a projected
density of states on the pseudoatomic orbitals and iden-
tify the orbital character in the energy region of interest:
the atomic orbitals which project more on the relevant
bands can be used as initial projection. Note that ML-
WFs are often not atom-centered, and atomic orbitals are
not always good starting projections, as it the case of the
valence bands of monolayer MoS2 (Gibertini et al., 2014).
In Sections II.D and III.J we cover advanced methods to
automate the selection of the starting point for the min-
imization procedure.

The spread functional measures the degree of localiza-
tion in real space and, to some extent, the efficiency of
the interpolation: more localized WFs decay faster in real
space, hence they require a smaller Born–von Kármán
(BvK) supercell to include all non-vanishing matrix ele-
ments of the Hamiltonian and the other operators, which
in turn allows adopting coarser k-point grids in the start-
ing electronic-structure simulation that is performed in
reciprocal space. Indeed, the accuracy of band interpo-
lation can be considered a proxy for the quality of the
underlying WFs not only as regards k-point convergence:
especially in the case of entangled bands (see Sec. II.A.2),

poor interpolation might signal problems in the disentan-
glement procedure. In addition, it is worth to empha-
size that in general the Wannierization procedure is not
forced to preserve symmetries (unless dedicated methods
designed to do so are employed, see Sec. II.D). Hence, the
spurious splitting of symmetry-protected degeneracies in
the interpolated band structure might signal convergence
problems related to the minimization, to the k-point con-
vergence or to the choice of projection functions. This
holds true not only for crystalline symmetries, but also
for time-reversal symmetry, which is particularly relevant
in non-collinear simulations of non-magnetic materials in
presence of spin-orbit coupling (e.g., topological insula-
tors).

Among other indicators of the quality of WFs we men-
tion the ratio between their imaginary (Im) and real (Re)
part: for isolated bands (and not considering spin-orbit
coupling), MLWFs at the global minimum should be real
functions (Marzari and Vanderbilt, 1997). Note that the
calculation of the Im/Re part, and anything related to
WFs themselves and their visualization, requires to have
access to the full Bloch orbitals, not just the overlap ma-
trices. It is also important to emphasize that different
quantities derived from WFs—such as the WF spread
and centers, as well as unitary matrices Ṽk, Uk—converge
in general with different speeds, also depending on the
specific formulation adopted (Stengel and Spaldin, 2006).

Finally, we remark that many of the complications re-
lated to producing WFs for periodic solids are related
to construction of a smooth gauge across the BZ. Hence,
supercell Wannierizations with Γ-only sampling are typ-
ically more straightforward and less prone to be trapped
in local minima. The challenge there is more on algorith-
mic efficiency due the large size of the systems involved;
a number of Γ-only dedicated methods have been devel-
oped (Gygi et al., 2003; Silvestrelli, 1999).

D. Advanced minimization methods, and beyond

maximally-localized Wannier functions

As discussed in section II, there is in principle large
freedom in choosing the recipe to obtain well-localized
WFs. Not only one can replace the MV spread functional
with other cost functions, but also different minimization
procedures and their starting points can be chosen, hence
affecting the resulting WFs and their localization prop-
erties. Over the years, a number of methods have been
developed to address all these different aspects of the
Wannierization procedure. It is worth emphasizing that
for many of these methods, the initial guess already pro-
vides well-localized WFs, so that an iterative minimiza-
tion can in principle be avoided. The unitary matrices
Uk of these “projection-only” WFs are set directly by
the initial projection functions. While this choice cannot
guarantee optimal localization properties, it has the ad-
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vantage of enforcing some degree of symmetry induced by
the choice of atomic orbitals used as projection functions.
However, in all these cases it is possible—and in some
cases even recommended—to minimize the MV spread
or some other functional as a final step.

The prime decision deals with the functional that is to
be minimized in order to determine the unitary matrices
of Eq. (5). The most popular choice is the MV MLWF
procedure (Marzari and Vanderbilt, 1997) for compos-
ite bands (see Sec. II.A.1) and the SMV disentangle-
ment scheme for entangled bands (Souza et al., 2001) (see
Sec. II.A.2). The minimization of the spread functional
leads to very well localized WFs, hence reducing the size
of the BvK supercell needed to represent operators (e.g.,
the Hamiltonian) in a WF basis. While MLWFs and dis-
entanglement represent the most convenient choice in the
vast majority of applications, substantial work has been
done to augment the MLWF scheme or develop alterna-
tives which satisfy the needs of specific applications.

The MLWF procedure leads to optimal real-space lo-
calization, but is not guaranteed to yield orbitals that
preserve desirable crystal symmetries. This is only par-
tially relieved using symmetric initial projections, as
typically obtained by a proper selection of atomic-like
orbitals (we further discuss initial projections later on
in this section). Symmetry-preserving WFs are ap-
pealing in providing the correct orbital or site symme-
tries for many-body approaches like dynamical mean-
field theory (DMFT). Hence, it is not surprising that
several non-MLWF procedures directly or indirectly in-
clude crystal symmetries in the functional to minimize.
In the symmetry-adapted Wannier function (SAWF)
method (Sakuma, 2013), symmetric WFs are obtained
through additional constraints on the unitary matrices
Uk which are based on symmetry operations of the site-
symmetry group. The SAWF method is fully compatible
with the maximal-localization procedure and the SMV
disentanglement (and has also been recently extended
to the case where a frozen window is used (Koretsune,
2023)), although the additional constraints imply a pos-
sibly larger total spread, even if some individual WFs can
actually be more localized than in the MLWF procedure.
Currently, the implementation of the SAWF method in
the code Wannier90 (more about software in Sec. III.A) is
interfaced with the Quantum ESPRESSO distribution and,
if the site-symmetry group is equivalent to the full space
group of the crystal, then symmetry operations can be
calculated directly by the interface code. Otherwise, if
the site-symmetry group contains fewer operations than
the full space group, then symmetry operations can be
provided by an external file. We note that it is also nec-
essary to specify the site location and orbital symmetry
of the SAWFs through the projection functions.

While the SAWFmethod provides a rigorous way to in-
clude symmetries in the maximal-localization procedure,
it requires quite some prior knowledge of the electronic

structure of the material under study. An alternative
and simpler approach is to construct selectively-localized
Wannier functions (SLWFs), where the MLWF proce-
dure is applied only to a subset of the entire WFs con-
sidered (Wang et al., 2014). In addition, some WF cen-
ters can be constrained (SLWF+C) to specific positions
by adding a quadratic penalty term to the spread func-
tional. While the SLWF+C approach does not enforce
symmetries, it has been observed that the resulting WFs
typically exhibit the site symmetries corresponding to the
constrained centers (Wang et al., 2014). The SLWF+C
can be used in the case of entangled bands, where the
SMV disentanglement step is performed as usual, while
the selective localization and constrained centers are ap-
plied only to the final Wannierization step. A more in-
depth review of the SAWF and SLWF+C methods, in-
cluding their implementation and usage in Wannier90,
can be found in Pizzi et al. (2020).

The localization and possibly the symmetry can cru-
cially depend on the number of WFs considered in a
given energy range. The so-called partly occupied Wan-
nier functions (POWFs) (Thygesen et al., 2005) formal-
ize this observation by including the relevant unoccupied
states which lead to the minimal spread functional, essen-
tially implementing a bonding-antibonding closing pro-
cedure. POWFs can have a high degree of symmetry,
while the bonding-antibonding criterion has been shown
to correspond to the condition of maximal average local-
ization (Thygesen et al., 2005). Notably, in the POWF
scheme the total spread functional Ω = ΩI + Ω̃ is mini-
mized at once, at variance with the SMV scheme where
first the gauge-invariant part ΩI is minimized through
the disentanglement step, and only after the gauge-
dependent part Ω̃ is minimized through the usual MV
scheme. The iterative minimization of the total spread
Ω has been further developed by Damle, Levitt and Lin
in Damle et al. (2019). They reformulated the Wannier-
ization, which is a constrained non-linear optimization
problem, as unconstrained optimization on matrix man-
ifolds, where the SMV disentanglement procedure can
be interpreted as a splitting method which represents an
approximate solution.

We stress that even if minimization of the full the
spread functional Ω guarantees the highest degree of over-
all localization, several of the methods discussed here can
actually produce WFs such that a subset of them might
individually be more localized than their maximally-
localized counterparts. Along those lines, Fontana et
al. developed the spread-balanced WFs (Fontana et al.,
2021), where they added a penalty term to the spread
functional, proportional to the variance of the spread dis-
tribution among all WFs of the system. This scheme
could be less prone to produce solutions with one or
several poorly localized WFs, at the price of an in-
creased total spread for the whole set. The addition of
terms to the spread functional can also be used to pre-
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serve some degree of locality in energy, such as in the
case of mixed Wannier-Bloch functions (Giustino and
Pasquarello, 2006) and dually localized Wannier func-
tions (Mahler et al., 2022). These approaches are based
on a generalized spread functional (Gygi et al., 2003) de-
signed to carry both spatial localization (Wannier char-
acter) and limited spectral broadening (Bloch character),
by minimizing a functional that contains not only a spa-
tial variance (as for MLWF) but also an energy variance.

Once a choice for the functional to be minimized is
made (the total spread as in the MLWF scheme, or any
other choice), there is still a lot of flexibility on the choice
of algorithm to perform the minimization. First, one
needs to define a starting guess for the unitary matri-
ces Uk, which is customarily obtained by specifying a set
of localized projection functions. While for composite
bands a set of randomly centered spherically-symmetric
Gaussian orbitals might work, in general more sophis-
ticated choices are required. Typically, atomic orbitals
are used as projection functions, such as s, p, d-orbitals
as well as hybrid orbitals (e.g., sp3), which are often
centered either on atoms or along bond directions. As
discussed in Sec. II.C.2, the choice of the right atomic
orbitals is typically based on chemical intuition and can
be partly informed by inspecting the projected density of
states in the energy region of interest. Still, the choice of
the right projection orbitals—i.e., those providing a good
starting point for a successful minimization of the target
functional—can often be a non-trivial task, especially
in the context of automated high-throughput materials
screening and, more generally, when one wants to study
a novel material never investigated before (especially in
case of unfamiliar orbital composition). Hence, in the
last decade substantial efforts have been targeted at de-
veloping automated algorithms removing the need for
users to define appropriate initial projections. A first ap-
proach in this direction is the optimized projection func-
tions (OPFs) method (Mustafa et al., 2015) for composite
bands. In OPF, a larger set of functions that overspan
the space of MLWFs is built and used as a starting point.
While in plane-wave codes the OPF approach (Mustafa
et al., 2015) still needs the user to provide a list of initial
projections, for instance atomic-like local orbitals (LOs),
ab initio codes operating with localized (or mixed plane-
wave/localized) basis sets can leverage the built-in local-
ized orbitals. For instance, the full-potential linearized
augmented-plane wave (LAPW) method can be extended
by adding the so-called LOs, which are atomic-like, very
localized, and can be employed in the construction of
WFs. Tillack et al. (2020) combined the SMV disentan-
glement with the OPF method (Mustafa et al., 2015) to
construct initial guesses for MLWFs from a set of LOs
in an automated way. Finally, another set of parameters
that require tuning in the standard SMV disentangle-
ment scheme are the inner and outer energy windows.
Gresch et al. (2018) targeted the removal of the need for

manual input by focusing on the automated optimization
of both windows.

On the algorithmic side, in the quest for fully automat-
ing the generation of localized WFs, various general and
practical approaches have been recently proposed, tar-
geting the construction of well-localized WFs using algo-
rithms that are often non-iterative; this not only makes
them more automatable, but also provides an excellent
starting point for a final Wannierization, if required: the
SCDM approach (Damle and Lin, 2018; Damle et al.,
2015, 2017), the continuous Bloch gauges (Cancès et al.,
2017; Gontier et al., 2019), and the projectability dis-
entanglement and manifold remixing approaches (Qiao
et al., 2023a,b).

SCDM is based on QR factorization with column pivot-
ing (QRCP) of the reduced single-particle density matrix.
The approach can be used either to produce well-localized
WFs without performing an iterative minimization, or it
can be considered a linear-algebra method to identify a
good starting point for a MLWF procedure. The SCDM
method is implemented (Vitale et al., 2020) in the in-
terface code to Quantum ESPRESSO, with an algorithm
for the QRCP factorization that works on a smaller ma-
trix instead of the full density matrix (Damle and Lin,
2018; Damle et al., 2015, 2017). For a set of compos-
ite bands, SCDM is parameter-free. A comprehensive
study on 81 insulators (Vitale et al., 2020) has shown
how the MLWF procedure applied to SCDM initial pro-
jections (SCDM+MLWF) improves the interpolation ac-
curacy and localization of the resulting WFs, although
SCDM-only WFs perform already remarkably well, both
in terms of accuracy of band structure interpolation and
in terms of localization. In the case of entangled bands,
SCDM requires to specify an energy-window function, its
center and width, as well as the number of WFs to con-
sider. Vitale et al. (2020) introduced a recipe to automat-
ically select those parameters (more details in Sec. III.J),
which was tested on 200 bulk materials. Unlike in the
case of isolated groups of bands, for entangled bands the
SCDM+MLWF method greatly improved the localiza-
tion of the WFs with respect to SCDM-only. Notably,
however, the reduced spread induced by the MV proce-
dure might result in lower band-interpolation accuracy.
Although the SCDM projections could be used together
with the SMV disentanglement scheme, this more com-
plex procedure does not provide systematic gain in ac-
curacy, such that a SCDM-only or SCDM+MLWF (with
MV minimization for Ω̃) is recommended (Vitale et al.,
2020). In addition, we note that SCDM requires real-
space wavefunctions as input, and therefore has a higher
computational and memory cost with respect to other
methods discussed later in this section, which are imple-
mented in reciprocal space.

Another non-iterative approach for composite bands
is based on ensuring a continuous Bloch gauge over the
entire BZ (Cancès et al., 2017; Gontier et al., 2019), re-
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sulting in good localization properties of the WFs and
not requiring any chemical intuition for their construc-
tion. The main idea is that one can construct a sequence
of gauge matrices that are not only continuous across
the BZ but also satisfy its periodicity at the BZ edges.
This is achieved by first adopting parallel transport for
the gauge matrix, starting from a chosen k-point (usually
the Γ point) and propagating along a line (e.g. the kx
line). This allows to fix the periodicity at the two end
points of the line, while preserving the continuity. Then,
for each k-point on the line, parallel transport is applied
to each of the gauge matrices along an orthogonal direc-
tion (e.g. in the ky direction), and all gauge matrices are
fixed again at the endpoints, to ensure periodicity of the
2D plane. Finally, for each k-point on the 2D plane, one
can apply a similar procedure to construct gauge matri-
ces along the third direction, therefore obtaining a global
continuous gauge across the full BZ. Often, the resulting
gauge is continuous but not smooth enough: a subse-
quent conventional MV iterative minimization can im-
prove the localization and reach the MLWF gauge. Such
algorithm is able to construct MLWFs for difficult cases
such as Z2 topological insulators (Gontier et al., 2019).

Lastly, a very robust approach has emerged in the form
of projectability disentanglement (Qiao et al., 2023b),
where the inner and outer energy windows are replaced
by projectability thresholds. For each state |unk⟩, a
projectability (Agapito et al., 2013; Vitale et al., 2020)
onto localized atomic orbitals (typically, those com-
ing from the pseudopotentials) is calculated. Then,
states that have very high projectability are retained
identically (exactly as done for states inside the inner
frozen window in the SMV method); states that have
low projectability are discarded altogether (since they
do not provide useful contributions to MLWFs); and
states that span the intermediate projectability values
are treated with the standard SMV disentanglement.
This approach leads naturally and robustly to atomic-like
projectability-disentangled Wannier functions (PDWFs),
spanning both occupied and unoccupied states corre-
sponding to Bloch sums of bonding/anti-bonding com-
binations of atomic orbitals.

These PDWFs can in turn be remixed into linear com-
binations that aim to describe target submanifolds; e.g.,
the valence states only, the conduction states only, or cer-
tain groups of bands that are separated in energy from
the rest. This may be beneficial for finding optimal target
states for beyond-DFT methods (see Sec. III.H).

This remixing is particularly valuable for Koopmans
functionals (see Sec. III.H.2), which require separate sets
of MLWFs for the valence and conduction manifolds,
or for transport calculations. For this purpose, the
manifold-remixed Wannier functions (MRWFs) (Qiao
et al., 2023a) are obtained by starting from the PDWFs
spanning the whole manifold (valence plus conduction),
which is then split by rotating the gauge matrices into

a block-diagonal structure across all the k-points, while
simultaneously maintaining the gauge smoothness for
each block. This is achieved by a combination of auto-
mated Wannierization of the whole manifold, diagonal-
ization of the Wannier Hamiltonian, parallel transport,
and maximal localization. The automated Wannieriza-
tion of the whole manifold can be obtained using the
PDWF method; the Hamiltonian diagonalization splits
the manifold into desired submanifolds (e.g., two for va-
lence and conduction, respectively); the parallel trans-
port fixes the gauge randomness to construct two sets of
localized WFs; the final maximal localization smoothens
the gauge, leading to subsets of MLWFs for the respec-
tive submanifolds. Qiao et al. (2023a) demonstrates that,
when combined with PDWFs, the MRWF method can be
fully automated, and can also be extended to other types
of band manifolds gapped in energy, such as the single
top valence band of MoS2, or the 3d and t2g/eg subman-
ifolds of SrVO3. For high-throughput results of PDWF
and MRWF, see Sec. III.J.

III. The Wannier ecosystem: theory and software packages

A. Development of widely-available Wannier engines

The MV and SMV methods described in Marzari and
Vanderbilt (1997) and Souza et al. (2001) were originally
implemented in Fortran 77. The code would compute the
overlaps in Eq. (8) and the projection of the periodic part
of the Bloch orbitals onto trial localized states, by reading
the former evaluated on a regular k-point grid by a DFT
code—originally by an early version of CASTEP (Clark
et al., 2005; Marzari et al., 1997). To provide a more
general model, driven by the need to interface with a
DFT code based on the LAPW method (Posternak et al.,
2002), the choice was made to keep the calculation of all
the scalar products involving Bloch orbitals needed by
the Wannier code within the electronic-structure code of
choice, typically as a postprocessing step, and to establish
well-defined protocols to exchange this information writ-
ing/reading files to/from disk; the format of those files
was defined in the accompanying documentation, and the
Wannier77 code was released under a GPL v2 license in
March 2004.

In 2005, two of the current authors (AAM and JRY),
then working in the groups of NM and IS respectively,
rewrote the routines using modern modular Fortran, re-
lying on their experience of software development gained
from working on the ONETEP (Prentice et al., 2020) and
CASTEP (Clark et al., 2005) DFT programs. The resulting
program, Wannier90 (Mostofi et al., 2008), was released
under a GPL license in April 2006. Following the early
layout in the Wannier77 code, Wannier90 was designed
to be easily interfaced to any electronic structure code,
irrespective of its underlying basis set. The first release





14

and the executables are linked to performance-optimized
versions on high-performance computing (HPC) clusters.
While a similar approach is often used for other low-level
routines, such as fast-Fourier-transform (FFT) computa-
tion (Frigo and Johnson, 2005) or to support file formats
such as netCDF (Rew and Davis, 1990) or HDF5 (The
HDF Group, 2023), it was until recently far less common
for higher-level materials-science-oriented routines.

To address the challenges of monolithic codes, many
electronic structure codes are being redesigned or rewrit-
ten using a more modular approach, where core mod-
ules are—when possible—generalized and separated into
a library of reusable routines, then called by higher-level
functions to execute complex tasks. Some of these codes
have evolved into distributions, i.e., a set of relatively
independent but interoperable executables reusing com-
mon core routines. However, even with this approach,
the different modules can often operate only within the
distribution, and the development of all modules needs
to be constantly in sync.

Ultimate interoperability is obtained when code (such
as core routines or full functionality) is reused by dif-
ferent independent software distributions, maintained by
non-overlapping developer groups. A crucial challenge
to enable such a level of interoperability is to design a
clear application programming interface (API) defining
which data needs to be transferred between codes, and
in which format. This requires discussions and coordina-
tion, which can be catalyzed via targeted coordination ef-
forts; an example worth mentioning is the CECAM Elec-
tronic Structure Library project (CECAM-ESL, 2023).
At an even higher level, one can address code interoper-
ability by defining common interfaces (e.g., input/output
schemes) for workflows computing a quantity of interest,
independent of the underlying simulation code, such as
the common workflow interface of Huber et al. (2021)
to perform crystal-structure relaxation and to compute
equations of state. The workflow only requires as input,
in a common format, the crystal structure and a few basic
input parameters, and is then interfaced with 11 different
DFT codes to run the actual simulations. Such universal
interfaces make workflows accessible to a broader audi-
ence and codes fully interoperable, allowing researchers
to switch between them without the need to learn from
scratch the details of each one. In addition, they can
be seamlessly applied to perform cross-code verification
studies (Bosoni et al., 2023).

When codes have to exchange data, the interfaces be-
tween them can be actual code APIs (e.g., in C or For-
tran), where the library is directly compiled and linked
with the main code, but also simply files in a well-
documented format, written by the first application and
read by the second one (see also later discussion of this
approach in Sec. III.I). The actual choice depends on the
interdependency between the algorithmic steps and on
performance considerations. The use of files is typically

favored when the corresponding simulation workflows im-
ply a sequential execution of codes rather than intercon-
nected loops between them, when the exchanged data
is small (up to few GB), and when the individual steps
are computationally demanding, so that I/O overhead is
only a small fraction of the total execution time. (In
a few advanced cases, other interfaces such as network
sockets have been used to keep the applications decoupled
while still reducing the I/O overhead for simulations that
are not very computationally demanding (Kapil et al.,
2019).) In addition, by writing intermediate results to
files, the steps do not need to be combined in the same
run, but can be executed at differed points in time (e.g.,
days later) or by different researchers.

In this context, WFs represent a remarkable and ele-
gant method to decouple the ab initio simulation of the
electronic structure from the calculation of the physical
properties. This is possible thanks to two core aspects of
WFs. First, WFs are independent of the basis set used in
the first-principles electronic structure code: the MLWF
algorithm requires the sole knowledge of a handful of
vectors and matrices, such as the overlap matrices on a
coarse grid of k points. Wavefunctions, typically stored in
very large files, are not required during Wannierization,
but only used optionally in few post-processing steps,
e.g., when representing the WFs on a real-space grid.
Second, many physical quantities can be obtained effi-
ciently once a WF basis is constructed, only with the
knowledge of relevant operators represented as small ma-
trices directly in the Wannier basis, such as the Hamil-
tonian or the position operator. Indeed, while extended
basis sets such as plane waves are particularly convenient
to obtain charge densities and wavefunctions of periodic
systems, reciprocal space integrals can be more efficiently
calculated using a Fourier-interpolated basis set, origi-
nating from a compact maximally-localized representa-
tion in real space. From a computer-science perspective,
we can say that these two aspects of the Wannierization
process make it an effective data-compression encoding,
avoiding the need to transfer large wavefunctions between
the ab initio codes and the property calculators, while re-
taining an equivalent level of accuracy.

Thanks to the first aspect, i.e., basis-set independence,
the Wannier code (Marzari and Vanderbilt, 1997) evolved
from being a standalone code focused on the minimiza-
tion procedure to one with a well-defined format for the
input data (overlap and projection matrices), which also
defined and documented the corresponding files (e.g., for
the overlap matrices in .mmn format and the projection
matrices in .amn format). The calculation of the latter
was delegated to specific interfaces implemented within
the corresponding first-principles packages (Posternak
et al., 2002). This design persisted in the Wannier90

code (Mostofi et al., 2008; Pizzi et al., 2020) and as a re-
sult the Wannier90 engine can now be interfaced with
virtually any electronic-structure code as already dis-
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cussed in Sec. III.A, with interfaces currently available
for many widespread codes, including ABINIT (Gonze
et al., 2020), BigDFT (Ratcliff et al., 2020), Elk (Elk,
2023), FLEUR (Wortmann et al., 2023), GPAW (Enkovaara
et al., 2010), Octopus (Tancogne-Dejean et al., 2020),
OpenMX (Ozaki and Kino, 2005), pySCF (Sun et al., 2018,
2020), Quantum ESPRESSO (Giannozzi et al., 2017, 2009),
SIESTA (Soler et al., 2002), VASP (Kresse and Joubert,
1999) and WIEN2k (Blaha et al., 2020).

Because of the second aspect, i.e., the possibility
of efficiently obtaining many physical quantities in the
Wannier basis, Wannier90 started to include a large
number of efficient post-processing utilities for materi-
als properties, ranging from simple band-structure in-
terpolation to more complex properties such as the or-
dinary and anomalous Hall conductivities, Seebeck co-
efficients, orbital magnetization, and many more (Pizzi
et al., 2020). However, in the last decade the commu-
nity has spontaneously moved towards a decentralized
software ecosystem (as opposed to a centralized, albeit
modular, Wannier distribution), where different packages
interact through APIs and a common data format. The
decentralized model was again facilitated by a clear and
documented interface to generate data as input to the
next steps (e.g., the tb.dat file containing the full TB
model: WF centers, on-site energies, and hopping ener-
gies). The community has been rapidly growing, and
several independent packages exploiting MLWFs exist
nowadays, targeting diverse properties such as TB mod-
els (Sec. III.C), ballistic transport (Sec. III.D), Berry-
phase related properties (Sec. III.E), topological invari-
ants (Sec. III.F), electron-phonon coupling (Sec. III.G),
beyond-DFT methods (Sec. III.H), high-throughput cal-
culations (Sec. III.J), and more.

This review article formalizes the existence of such a
community of symbiotic packages, forming a research and
software ecosystem built upon the concept of MLWFs.
We illustrate this schematically in Fig. 2.

C. Wannier interpolation and tight-binding models

A very common application of WFs is to evaluate var-
ious k-space quantities and BZ integrals by “Wannier in-
terpolation”. This name has come to refer to a type of
Slater–Koster interpolation where the needed on-site and
hopping integrals are calculated explicitly in the WF ba-
sis (Calzolari et al., 2004; Lee et al., 2005; Souza et al.,
2001; Yates et al., 2007), as opposed to being treated as
fitting parameters as done in empirical TB theory. Here
we review the basic procedure as it applies to energy
bands and other simple quantities, leaving more sophis-
ticated applications to later sections. Before proceeding,
let us mention that the Wannier interpolation scheme has
been adapted to work with non-orthogonal localized or-
bitals instead of (orthogonal) WFs (Buongiorno Nardelli

et al., 2018; Jin et al., 2021; Lee et al., 2018; Wang et al.,
2019a).

1. Band interpolation

To interpolate the band structure, one needs the ma-
trix elements of the KS Hamiltonian in the WF basis,

HW
ij (R) = ⟨0i|Ĥ|Rj⟩; (11)

here Hii(0) are on-site energies, and the remaining ma-
trix elements are hoppings. One way to evaluate these
matrix elements is to start from Eq. (5a) for the WFs in
terms of the KS Bloch eigenstates on the ab initio k-grid.
Inserting that expression in Eq. (11) gives

HW
ij (R) =

1

N

∑

k

e−ik·R

Jk
∑

n=1

V ∗
k,niεnkVk,nj . (12)

This procedure is particularly convenient in the frame-
work of the MV and SMVWannierization schemes, which
are formulated as post-processing steps after a conven-
tional ab initio calculation is carried out on a uniform
{k} grid; Eq. (12) only involves the Vk matrices gener-
ated by the Wannier engine starting from the ab initio

overlap matrices and energy eigenvalues (see Sec. II.A),
and the energy eigenvalues themselves. An alternative
to Eq. (12) would be to express the WFs in a real-space
basis, e.g., localized orbitals or a grid, and then evaluate
Eq. (11) directly on that basis.
In view of the localized character of the WFs, |HW

ij (R)|
is expected to become negligibly small when the distance
|R + τ j − τ i| between the centers of the two WFs be-
comes sufficiently large (here, τ j = ⟨0j|r̂|0j⟩). However,
due to the finite size N of the ab initio grid, the WFs
obtained from Eq. (5a) are actually periodic over a real-
space supercell of volume NVcell; accordingly, the matrix
elements given by Eq. (12) are also supercell-periodic:
HW

ij (R+T) = HW
ij (R), for any supercell lattice vector T.

To minimize spurious effects associated with this artificial
periodicity, the hopping matrix should be truncated by
setting HW

ij (R) = 0 whenever the vector R+T+ τ j lies
outside the Wigner–Seitz (WS) supercell centered at the
origin. Provided that this supercell is sufficiently large to
ensure negligible overlap between a WF and its periodic
images, the truncation error will be insignificant. This
means that in practice one can achieve well-converged
numerical results with a relatively coarse ab initio grid.
Note, however, that the matrix elements do not decay
exactly to zero for finite-size WS supercells. Therefore,
when multiple R vectors lie on the boundary of the WS
supercell and are connected by a supercell vector T, it
is better to consider all these equivalent vectors with ap-
propriate weights, rather than picking only one of them,
which would introduce spurious symmetry breaking in
the Hamiltonian. The details of this approach and its
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Bloch eigenstates, and matrix elements thereof (see be-
low)—that can vary rapidly in k-space, and even become
non-analytic at degeneracies. This strategy retains the
accuracy of a full-blown ab initio calculation, while ben-
efiting from the efficiency of Slater–Koster interpolation.

2. Band derivatives and Boltzmann transport

The interpolation procedure outlined above can be
adapted to evaluate band velocities, inverse effective-
mass tensors, and higher k-derivatives of the energy
eigenvalues (Yates et al., 2007); as in the empirical TB
method (Graf and Vogl, 1995), this is achieved without

relying on finite-difference methods, which become prob-
lematic in the vicinity of band crossings and weak avoided
crossings, where the band ordering can change from one
grid point to the next.
Band derivatives are needed, for instance, to evaluate

transport coefficients such as the electrical conductivity
σ, the Seebeck coefficient S, or the electronic contribu-
tion to the thermal conductivity K. Within the semi-
classical Boltzmann transport equation (BTE) frame-
work, one defines a scattering time τnk for an electron on
band n at wavevector k (incidentally, the contributions
from electron–phonon scattering to τnk can be efficiently
computed exploiting Wannier functions, see Sec. III.G).
Then, the expressions for the transport tensors are given
by (Ziman, 1972):

σab(µ, T ) = e2
∫ +∞

−∞

dE

(

−∂f(E, µ, T )
∂E

)

Σab(E), (19)

[σS]ab(µ, T ) =
e

T

∫ +∞

−∞

dE

(

−∂f(E, µ, T )
∂E

)

(E − µ)Σab(E), (20)

Kab(µ, T ) =
1

T

∫ +∞

−∞

dE

(

−∂f(E, µ, T )
∂E

)

(E − µ)2Σab(E), (21)

where µ is the chemical potential, T is the temperature,
a and b are Cartesian indices, σS denotes the matrix
product of the two tensors, ∂f/∂E is the derivative of
the Fermi–Dirac distribution function with respect to the
energy, and Σab(E) is the transport distribution function.
The latter is defined by

Σab(E) =
1

Vcell

∑

nk

vankv
b
nkτnkδ(E − Enk), (22)

where the summation is over all bands n and over all the
BZ, εnk is the energy for band n at k and vank is the a
component of the band velocity at (n,k).

Obtaining converged quantities for Eqs.(19)–(21),
therefore, requires to compute the band derivatives vnk

while sampling the BZ over dense k-point grids (Madsen
and Singh, 2006; Schulz et al., 1992; Uehara and Tse,
2000), since the term ∂f/∂E is non-zero only in a narrow
energy region (of typical size kBT , where kB is the Boltz-
mann constant) around the chemical potential µ. Wan-
nier interpolation allows carrying out this task efficiently
and accurately even when (avoided) crossings occur close
to the Fermi level: band derivatives at a given k-point
are obtained with an analytical expression, without re-
sorting to finite-difference methods (Yates et al., 2007).
Moreover, computation on dense k-point grids is very
efficient, as already discussed earlier for band interpola-
tion. This WF-based Boltzmann-transport methodology

is implemented in Wannier90 and used to compute trans-
port tensors in its BoltzWann module (Pizzi et al., 2014),
as well as in other codes (see, e.g., the electron-phonon
section, Sec. III.G), and is also used for post-processing
calculations in many-body theory (see Sec. III.H.1).

Furthermore, many transport coefficients (e.g., lin-
ear and non-linear (AHCs) (Sodemann and Fu, 2015;
Yao et al., 2004), anomalous Nernst thermoelectric con-
ductivity (Xiao et al., 2006), magnetoresistance (Gao
et al., 2017), and magnetochiral anisotropy (Yokouchi
et al., 2023)) depend on the Berry curvature and other
quantum-geometric quantities (Gao, 2019; Vanderbilt,
2018; Xiao et al., 2010). As they involve k-derivatives
of the Bloch states themselves, such quantities cannot be
obtained from the energy dispersions. Moreover, those
quantities tend to become strongly enhanced when weak
avoided crossings occur near the Fermi level; when that
happens, very dense k-point grids must be employed to
converge the calculation (Yao et al., 2004). Compared
to band interpolation, the interpolation of Berry-type
quantities is more involved because it requires setting
up matrix elements of the position operator r̂, which is
non-local in reciprocal space (Blount, 1962). We defer
a discussion of that case to Sec. III.E, and below we de-
scribe how to interpolate the matrix elements of a generic
k-local operator X̂.
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3. Interpolation of a generic k-local operator

Replacing Ĥ → X̂ in Eq. (11) and using Eq. (5) yields

XW
ij (R) =

1

N

∑

k

e−ik·R

Jk
∑

m,n=1

V ∗
k,mi⟨ψmk|X̂|ψnk⟩Vk,nj ,

(23)
which reduces to Eq. (12) for X̂ = Ĥ. The considerations
made earlier regarding the spatial decay and truncation
of the HW(R) matrix apply equally well to XW(R). The
Fourier-transform step is also analogous to Eq. (13),

XW
k′,ij =

∑

R

eik
′·RXW

ij (R) = ⟨ψW
ik′ |X̂|ψW

jk′⟩ , (24)

and the final step is to apply to XW
k′ the same unitary

transformation that was used in Eq. (14) to diagonalize
HW

k′ . Using Eq. (18), we find

XH
k′,mn =

(

U†
k′X

W
k′ Uk′

)

mn
= ⟨ψH

mk′ |X̂|ψH
nk′⟩ . (25)

In particular, diagonal elements of XH
k′ give the expecta-

tion values of X̂ in the interpolated states. With X̂ = Ŝ,
for example, one obtains their spin polarization, which is
how the color-coding in Fig. 4 was generated.

Note that in addition to the overlap matrices and en-
ergy eigenvalues, interpolating a generic operator X̂ ̸= Ĥ
requires setting up its matrix elements ⟨ψmk|X̂|ψnk⟩ on
the ab initio grid; this should be done by the same inter-
face code that computes the overlap matrices.

4. Wannier function perturbation theory

Several important materials properties can be calcu-
lated as the linear response of the system to an ex-
ternal perturbation V̂ . A common example is the
calculation of phonon dispersions and electron-phonon
coupling through density-functional perturbation theory
(DFPT) (Baroni et al., 2001), the latter case is discussed
in Sec. III.G.
We follow Lihm and Park (2021), and write the Hamil-

tonian eigenstates of the perturbed system in terms of
the ones of the unperturbed system plus the wavefunc-
tion perturbation,

|ψnk⟩ = |ψnk⟩(0) + λ |ψnk⟩(1) +O(λ2) , (26)

where the wavefunction perturbation can be calculated
with a sum over empty states,

|ψnk⟩(1) =
∑′

n′k′

|ψnk⟩(0)
⟨ψn′k′ |V̂ |ψnk⟩

(0)

ϵnk − ϵn′k′

. (27)

The primed sum means that terms for which the denom-
inator vanishes are excluded.

Alternatively, the wavefunction perturbation can be
calculated without summing over high-energy states by
solving the Sternheimer equation (Baroni et al., 2001).
Lihm and Park (Lihm and Park, 2021) have shown that
such perturbation theory can be formulated in the Wan-
nier representation, where the WFs of the perturbed sys-
tem can be written as

|Rj⟩ = |Rj⟩(0) + λ |Rj⟩(1) +O(λ2). (28)

The expression for |Rj⟩(1), reported in Eqs. (8) and (9)
of Lihm and Park (2021), consists of two terms: the first
can be calculated with the Sternheimer equation to ob-

tain the states |ψnk⟩(1), while the second contains ma-
trix elements of V̂ and the projector over the WFs of the
unperturbed system. Crucially, both terms only require
energies and matrix elements within the Wannier outer
window introduced in Sec. II.A.2. Thus, the Wannier
function perturbation can be calculated without making
explicit use of the states outside that energy window.

For a monochromatic static perturbation with
wavevector q, the first-order wavefunction perturbation
can be interpolated as (Lihm and Park, 2021)

|ψH
nk′,q⟩

(1)
=

1√
N

∑

j,R

eik
′·R |Rqj⟩(1) Uk′,jn

+

NW
∑′

m=1

|ψH
mk′+q⟩

(0) g̃Hmnk′,q

ϵ
(0)
nk′ − ϵ

(0)
mk′+q

, (29)

where the WF perturbations are expanded as a sum of
monochromatic perturbations

|Rj⟩(1) =
∑

q

|Rqj⟩(1) (30)

while the superscript H marks the Hamiltonian gauge of
the unperturbed (0) and perturbed (1) system, Uk′ is the
unitary matrix that diagonalizes the unperturbed Hamil-
tonian according to Eq. (14), and g̃Hmnk,q is obtained by
performing the Fourier transform of the matrix elements
of V̂ between WFs of the unperturbed states, and then
rotating to the Hamiltonian gauge using Uk′ .

A key aspect is that Wannier function perturbations
are localized in real space, so the perturbed Hamiltonian
and its eigenstates can be efficiently interpolated by con-
sidering coarse k-point grids. This allows to efficiently
interpolate various matrix elements involving the wave-
function perturbation, such as in the case of electron-
phonon self-energies and Kubo formulas. Wannier func-
tion perturbation theory (WFPT) has been applied to de-
scribe temperature-dependent electronic band structures
and indirect optical absorption, shift spin currents and
spin Hall conductivities (Lihm and Park, 2021). WFPT
will be made available in a future release of the EPW
code (Lee et al., 2023).
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5. Porting Wannier Hamiltonians to TB codes

In TB theory, two phase conventions are commonly
used to perform the Fourier transforms from real to re-
ciprocal space (Vanderbilt, 2018): the one adopted in
Eqs. (13), (16) and (24) (“original convention”), and the
alternative one (“modified convention”) where the phase
factors in those equations are modified as

eik
′·R → eik

′·(R+τ j−τ i) . (31)

Although the interpolated eigenvalues εHnk′ and matrix
elements XH

k′,mn come out the same with both conven-
tions (as they should), the modified convention is more
natural for the purpose of evaluating quantities, such as
Berry connections and curvatures, that are sensitive to
the real-space embedding of the TB model via the po-
sition matrix elements ⟨0i|r̂|Rj⟩ (see Sec. III.E). This
has to do with the fact that with the original conven-
tion, TB eigenvectors (the column vectors of Uk′) behave
like full Bloch eigenstates |ψnk′⟩, whereas with the mod-
ified convention they behave like their cell-periodic parts
|unk′⟩ (Vanderbilt, 2018); and it is in terms of the latter
that Berry-type quantities are most naturally expressed.
The modified phase convention is the one adopted

in the TB codes PythTB (PythTB, 2023a) and
TBmodels (TBmodels, 2023); both are able to import
the Wannier Hamiltonian HW

ij (R), along with the Wan-
nier centers {τ j}, from the seedname tb.dat file written
by Wannier90. PythTB was originally written for ped-
agogical purposes, as part of a course on Berry phases
in electronic structure theory that was later turned into
a textbook (Vanderbilt, 2018). It is feature-rich but is
not optimized for speed, as it was designed with TB
toy models in mind (however, a high-performance im-
plementation is available (Numba-PythTB, 2023)). In-
stead, TBmodels has fewer post-processing functionali-
ties, but it delivers critical speed-up and improved scal-
ing. Among other Wannier-TB codes, it is worth men-
tioning Wannier Tools (Wu et al., 2018), which imple-
ments sparse Hamiltonians for large systems, band un-
folding, and several other features related to Berry-type
quantities (see Sec. III.E).

6. Wannier interpolation beyond density-functional theory

As discussed above, one of the most powerful and
effective applications of WFs is the interpolation of
band structures and other electronic-structure proper-
ties. While this is already very useful in the context of
DFT calculations, it becomes even more compelling for
beyond-DFT methods, such as hybrid functionals (Becke,
1988, 2014; Heyd et al., 2003; Kümmel and Kronik, 2008;
Lee et al., 1988; Martin, 2020; Perdew et al., 1996), many-
body perturbation theory (MBPT) such as G0W0 (Golze
et al., 2019), and non-diagrammatic approaches such

as the Koopmans-compliant functionals (Borghi et al.,
2014; Colonna et al., 2022, 2018, 2019; Dabo et al., 2010;
De Gennaro et al., 2022; Elliott et al., 2019; Nguyen et al.,
2018). In fact, in DFT the potential can always be recal-
culated from the sole knowledge of the ground-state elec-
tronic charge density; therefore, the corresponding KS
Hamiltonian can be directly calculated at any arbitrary
k-point. Instead, for most beyond-DFT methods this is
no longer the case, and band structure calculations on
a high-symmetry path cannot be performed as a series
of independent diagonalizations. For hybrid functionals
and GW, the eigenvalues at a given k-point requires the
knowledge of the wavefunctions and eigenenergies on all
(k + q)-points, where the q-points are defined on a uni-
form grid which has to be converged. In other words,
reasonably dense sampling on high-symmetry paths can
only be obtained with some form of interpolation.

While electronic structure codes typically offer general-
purpose interpolation methods, often based on Fourier
series (Koelling and Wood, 1986; Pickett et al., 1988),
WFs provide two concrete advantages. First, they are a
physically motived and optimal basis set, which exhibits
exponential convergence and is guaranteed to deliver the
exact result for a sufficiently dense k-point grid, so the
accuracy can be systematically increased simply by con-
sidering denser grids. If MLWFs are chosen, the efficiency
is maximal and rather coarse grids are often sufficient to
faithfully reproduce the entire band structure. Second,
once a WF basis is constructed, not only it yields in-
terpolated eigenvalues (e.g., the band structure) but it
also allows to represent the Hamiltonian and many other
operators in a compact real space representation. Once
the relevant operators in a WF basis are available, one
gets access to the full spectrum of theories and software
packages that are part of the Wannier ecosystem, capa-
ble of much more complex tasks than just band inter-
polation. Notably, once a Wannierization is performed
with hybrid functionals or at the G0W0 level, all other
Wannier-interpolated quantities can be obtained at the
same level of theory with no extra effort or cost. Finally,
thanks to all the recent work in advanced minimization
techniques (Sec. II.D) and automation (Sec. III.J), the
Wannier interpolation does not require much more hu-
man intervention than other standard methods such as
smooth Fourier interpolation. In the following, we briefly
outline the motivation and the corresponding procedure
to deploy Wannier interpolation for two of the most pop-
ular excited-state approaches: hybrid functionals, and
many-body perturbation theory at the G0W0 level.

a. Hybrid functionals. A very popular approach to im-
prove the accuracy of ab initio band structures is
to combine explicit density-dependent functionals with
Hartree–Fock terms, which leads to orbital-dependent
functionals called “hybrids” (Becke, 1988, 2014; Heyd
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et al., 2003; Kümmel and Kronik, 2008; Lee et al., 1988;
Martin, 2020; Perdew et al., 1996). The procedure to
obtain WFs is similar to that in vanilla DFT, except
that non-self-consistent field calculations cannot be per-
formed. Hence, the self-consistent field calculation must
already include all the empty states (if any) to be in-
cluded in the Wannierization. In addition, ground-state
calculations are typically performed on the irreducible
Brillouin zone (IBZ) by exploiting crystalline symme-
tries, while Wannier90 requires a uniform grid on the full
Brillouin zone (FBZ). As performing the self-consistent
calculation on the FBZ is certainly possible but rather
inefficient, the typical procedure involves unfolding the
ground-state orbitals and band structure from the IBZ
to the FBZ as a post-processing step to be performed
after the self-consistent calculation and before produc-
ing the overlap matrices and the other input required
to obtain WFs. For example, in the Quantum ESPRESSO

distribution (Giannozzi et al., 2017, 2009) this is done
through the open_grid.x code. Notably, WFs can be
used to speed up the core hybrid-functionals calculations,
as they allow reducing the number of exchange integrals
to be computed (Carnimeo et al., 2019; DiStasio et al.,
2014; E et al., 2007; Garćıa-Cervera et al., 2009; Moun-
tjoy et al., 2017; Wu et al., 2009).

b. G0W0. Most of what has been discussed for hy-
brid functionals also holds for MBPT calculations in
the G0W0 approximation, with two important remarks.
First, G0W0 is a one-shot approach in the quasiparticle
(QP) approximation which is typically performed on top
of a DFT calculation: so the orbitals remain at the KS
level and only the energy eigenvalues are corrected, hence
neglecting off-diagonal elements of the self-energy in the
KS basis. Second, as only the energies are changed at
the G0W0 level, the KS states might swap their band
indices and not be ordered in energy anymore. A typi-
cal case where this might manifest clearly are topological
insulator candidates (and systems with band inversions
in general) such as monolayer TiNI (Marrazzo et al.,
2019), which is topological in DFT and trivial at the
G0W0 level. The practicalities of obtaining G0W0 WFs
and related quantities depend on whether the DFT and
MBPT calculations are performed with the same distri-
bution (e.g., VASP (Kaltak, 2015)) or with two separate
codes (as for example with Quantum ESPRESSO (Gian-
nozzi et al., 2017, 2009) and Yambo (Sangalli et al., 2019)).

In general, G0W0 QP corrections ∆ϵQP
i = ϵG0W0

i − ϵDFT
i

need to be computed on a uniform grid in the FBZ,
which can be made efficient by unfolding from the IBZ
to the FBZ (in Yambo, this operation is carried out by
the post-processing utility ypp). While orbitals remain
at the DFT-KS level, Wannier90 requires the states to
be ordered with ascending energy and, in addition, some
input matrices (e.g., the uHu) need to be updated with

QP corrections. If this is not performed by the ab ini-

tio engine, it can be taken care by the Wannier90 utility
gw2wannier90.py if the DFT eigenvalues and QP correc-
tions are provided in the standard format seedname.eig.
After this step, the Wannierization can proceed as usual,
and it is available in both Wannier90 (Pizzi et al., 2020)
and WanT (Ferretti et al., 2012). Note that in G0W0,
QP corrections need to be computed on a subset of the
k−point grid required to calculate the self-energy: this
can be exploited to speedup the calculation, especially
for 2D materials as discussed in Sangalli et al. (2019), be-
cause Wannierization typically requires relatively coarse
k−point grids. Finally, we briefly touch on beyond-
G0W0 development of interest from a WF perspective.
While Aguilera et al. have shown that off-diagonal com-
ponents of the self-energy—which are not included in
standard perturbative approaches—are very relevant in
case of band inversions (Aguilera et al., 2013) (such as
for topological insulators), Hamann and Vanderbilt have
found (Hamann and Vanderbilt, 2009) that, in general,
differences between MLWFs obtained with local-density
approximation (LDA) and self-consistent GW (QSGW)
are minimal.

c. Bethe–Salpeter equation In order to address neutral
excitations, as opposed to the charged excitations of GW,
one needs to describe the bound state of an excited elec-
tron with the hole that has been created. This is accom-
plished either using time-dependent density-functional
theory or Green’s function methods (Onida et al., 2002);
in the latter case, the Bethe–Salpeter equation (BSE) is
solved on top of the GW solutions. Within the Tamm–
Dancoff approximation (Dancoff, 1950; Hirata and Head-
Gordon, 1999; Onida et al., 2002), the BSE can be recast
into an effective two-particle eigenvalue problem (Onida
et al., 2002; Rohlfing and Louie, 2000), which in the
electron-hole (e-h) basis reads

∑

v′c′

[

Dvc,v′c′ + 2Kx
vc,v′c′ −Kd

vc,v′c′

]

Aλ
v′c′ = EλA

λ
vc,

(32)
where the v, v′ and c, c′ indices run over valence and
conduction states, Eλ are the neutral excitation ener-
gies (the poles of the density-density response function),
and Aλ

vc are the coefficients of the excitonic wavefunc-
tions (that are related to oscillator strengths) in the e-h
basis. The effective 2-particle Hamiltonian is made by i)
a diagonal term Dvc,v′c′ = (εQP

c − εQP
v )δvv′δcc′ represent-

ing the “bare” e-h transitions (i.e., without accounting
for the electron-hole interaction) from the QP theory, ii)
an exchange-like term

Kx
vc,v′c′ =

∫

drdr′ ϕ∗c(r)ϕv(r)|r− r′|−1ϕ∗v′(r′)ϕc′(r
′),

(33)
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and iii) a direct screened Coulomb term

Kd
vc,v′c′ =

∫

drdr′ ϕ∗c(r)ϕc′(r)W (r, r′)ϕ∗v′(r′)ϕv(r
′)

(34)
responsible for an effective attractive interaction between
the electron and the hole. Here {ϕi} and {εQP

i } are the
QP wavefunctions and QP energies, respectively. The
solution of Eq. (32) in the e-h basis would require the
explicit computation of a significant number of empty
states, which becomes in turn a critical convergence pa-
rameter. This can be conveniently avoided (Giustino
et al., 2010; Marsili et al., 2017; Rocca et al., 2010;
Umari et al., 2011) resorting to well established tech-
niques from DFPT (Baroni et al., 2001) by introduc-
ing i) the projector over the conduction manifold Q̂ =
1 − P̂ = 1 − ∑

v |ϕv⟩⟨ϕv|, and ii) a set of auxiliary
functions ξv(r) =

∑

cAcvϕc(r), usually called a batch

representation (Rocca et al., 2008; Walker et al., 2006).
These are Nv (where Nv is the number of occupied
states) auxiliary functions that live in the unperturbed
empty-states manifold and provide an equivalent but
more compact representation of the excitonic wavefunc-
tion Θ(r, r′) =

∑

vcAcvϕ
∗
v(r)ϕc(r

′) =
∑

v ϕv(r)ξv(r
′). In

this representation, the effective 2-particle Hamiltonian
is completely specified by its action on the components
of the batch (Rocca et al., 2010):

∑

v′

Dvv′ |ξv′⟩ =
∑

v′

(ĤQP − εv′1)δvv′ |ξv′⟩ (35)

∑

v′

Kx
vv′ |ξv′⟩ =

∑

v′

Q̂

(
∫

1

|r− r′|ϕ
∗
v′(r′)ξv′(r′) dr′

)

|ϕv⟩

(36)

∑

v′

Kd
vv′ |ξv′⟩ =

∑

v′

Q̂

(
∫

W (r, r′)ϕ∗v′(r′)ϕv′(r′) dr′
)

|ξv′⟩.

(37)

The advantage of this formulation is that there is no ex-
plicit reference to the empty states (hidden inside the
projector Q̂ and the batch representation), and only the
Nv auxiliary functions {|ξv⟩} need to be determined solv-
ing the BSE in the batch representation.
A further computational speed-up (and an improve-

ment on the overall scaling (Marsili et al., 2017)) can
be achieved by moving from the KS orbitals to MLWFs
and by exploiting their localization to greatly reduce the
number of operations needed to evaluate the action of
the BSE Hamiltonian on a trial state |ξv⟩. This is par-
ticularly relevant for the direct term (Eq. (37)), which
represents the real bottleneck of the calculations. In the
Wannier representation, this becomes

∑

v′

Kd
vv′ |ξ̃v′⟩ = Q̂

(

∑

v′

∫

W (r, r′)ω∗
v′(r′)ωv′(r′) dr′

)

|ξ̃v′⟩,

(38)

where {ωv(r)} are the MLWFs and ξ̃v(r) is the batch
component in the Wannier representation (simply ob-
tained by rotating the original ξv(r) with the unitary
matrix rotation that transforms the manifold from the
canonical to the MLWF representation). Exploiting lo-
cality, one can define a threshold for which a given pair
of MLWFs overlap. By excluding non-overlapping pairs
of MLWFs from the summation in Eq. (38), it becomes
possible to lower the scaling of the evaluation of the ac-
tion of the direct term on trial states from O(N4) to
O(N3) (Marsili et al., 2017), an approach that has been
established and applied in the community (Elliott et al.,
2019; Marsili et al., 2017; Umari et al., 2011). Tight-
binding and phenomenological models based on localized
representation have also recently appeared (Dias et al.,
2023; Uŕıa-Álvarez et al., 2023).

D. Ballistic transport and nanostructures

MLWFs can be used to build the electronic structure
of large nanostructures (Lee et al., 2005; Lihm and Park,
2019) and to determine their ballistic transport when
connected to semi-infinite leads (Calzolari et al., 2004;
Lee et al., 2005). In this latter case, the formalism of
Green’s functions is used to embed a conductor into
the surrounding environment. In all cases, the build-
ing blocks are Hamiltonian matrix elements between the
localized MLWFs that are used to construct, LEGO™-
like, either the desired non-self-consistent Hamiltonian
of a much larger nanostructure, or the self-energies em-
bedding the conductor of interest into semi-infinite leads.
Importantly, any solid (or surface) can be viewed as an
infinite (or semi-infinite, in the case of surfaces) stack
of “principal layers” interacting only with neighboring
layers (Lee and Joannopoulos, 1981a,b). In this way,
the infinite-dimensional real-space Hamiltonian can be
divided into finite-sized Hamiltonian matrices; for a bulk
system (i.e., infinite and periodic) the only independent
components are H00 and H01, where the former repre-
sents the interaction between MLWFs located in the same
principal layer, and the latter the interaction between or-
bitals in one principal layer and the next.
As discussed by Nardelli (Nardelli, 1999), one can con-

sider a system composed of a conductor C connected to
two semi-infinite leads, R and L (C, R, and L are in
themselves composed by a finite or infinite number of
principal layers). The conductance through C is related
to the scattering properties of C itself via the Landauer
formula (Landauer, 1970):

G(E) =
2e2

h
T (E), (39)

where T is the transmission function, G is the conduc-
tance, and T is the probability that an electron injected
at one end of the conductor will transmit to the other end.





23

2002), SMEAGOL (Rocha et al., 2006), OpenMX (Ozaki et al.,
2010), NEMO5 (Fonseca et al., 2013), nextnano (Birner
et al., 2007), NanoTCAD Vides (Bruzzone et al., 2014;
Fiori and Iannaccone, 2007), KWANT (Groth et al., 2014),
some of which also provide an interface with the Wannier
ecosystem.

E. Berryology

1. Motivation

Berry phases and related quantities are central to the
description of the electronic properties of crystals (Van-
derbilt, 2018; Xiao et al., 2010). Here are some represen-
tative examples.

1. The electronic contribution to the electric polariza-
tion of an insulator is given by

Pel = −e
occ
∑

n

∫

BZ

d3k

(2π)3
Ak,nn , (46)

where −e is the electron charge and Ak,nn are di-
agonal elements of the Berry connection matrix,

Ak,mn = i⟨umk|∇kunk⟩ . (47)

2. Off-diagonal elements ofAk describe electric-dipole
transition moments, allowing the interband optical
conductivity to be expressed as

σab(ω) =
ie2

ℏ

∑

m,n

∫

BZ

d3k

(2π)3
(fmk − fnk)×

× εmk − εnk
εmk − εnk − ℏ(ω + i0+)

Aa
k,nmA

b
k,mn , (48)

where fnk is the Fermi-Dirac occupation factor.

3. The Berry curvature is defined as the curl of the
Berry connection,

Ωnk = ∇k ×Ak,nn = −Im ⟨∇kunk| × |∇kunk⟩ , (49)

and its integral over the occupied states gives the
intrinsic AHC,

σyx =
e2

ℏ

∫

BZ

d3k

(2π)3

∑

n

fnkΩ
z
nk . (50)

4. The ground-state orbital magnetization reads

Morb =

∫

BZ

dk

(2π)3

∑

n

fnk

[

morb
nk +

e

ℏ
(εF − εnk)Ωnk

]

,

(51)
with εF the Fermi energy and

morb
nk =

e

2ℏ
Im ⟨∇kunk| ×

(

Ĥk − εnk

)

|∇kunk⟩ (52)

the intrinsic orbital moment of a Bloch state.

5. To first order in applied fields E and B, the semi-
classical equations of motion for a wavepacket in a
Bloch band read

ṙ =
1

ℏ
∇kε̃nk − k̇×Ωnk , (53a)

k̇ = − e
ℏ
E− e

ℏ
ṙ×B , (53b)

where

ε̃nk = εnk −
(

m
spin
nk +morb

nk

)

·B (54)

is the Zeeman-shifted band energy.

The motivation to apply Wannier interpolation to
Berry-type quantities came from pioneering ab initio cal-
culations of the AHC in the ferromagnets SrRuO3 (Fang
et al., 2003) and BCC Fe (Yao et al., 2004), which re-
vealed the integrand of Eq. (50) to be strongly peaked in
the vicinity of avoided crossings between occupied and
empty bands; resulting in the need to sample the BZ
over millions of k-points to reach convergence. An ef-
ficient Wannier-interpolation scheme for evaluating the
AHC was developed in Wang et al. (2006), and since
then the methodology has been applied to many other
properties.
Wannier interpolation of Berry-type quantities was in-

troduced in version 2 of Wannier90 as part of its post-
processing code postw90 (Mostofi et al., 2014), with the
ability to compute AHC (Wang et al., 2006), interband
optical conductivity (Yates et al., 2007), and orbital mag-
netization (Lopez et al., 2012). The list of available prop-
erties has grown considerably since then, and more re-
cently the WannierBerri code package (Tsirkin, 2021)
introduced several methodological improvements includ-
ing “pruned FFT” (Markel, 1971; Sorensen and Burrus,
1993) (a combination of fast and slow Fourier trans-
forms), and the use of symmetries and of the tetrahe-
dron method for BZ integrals. Other codes, including
WannierTools (Wu et al., 2018) and linres (Železný,
2023), implement some functionalities but with addi-
tional approximations (see discussion of Eq. (60) be-
low). The reader should consult the documentation of
the codes for an up-to-date description of their capabili-
ties.
In the following, we outline the basic interpolation

strategy for Berry-type quantities, using the off-diagonal
Berry connection as an example (the diagonal Berry con-
nection that enters the Berry phase requires a separate
treatment, see Sec. III.F). For discussion purposes, we
adopt the modified phase convention for Bloch sums in-
dicated in Eq. (31).

2. Wannier interpolation of the interband Berry connection

We wish to evaluate off-diagonal elements of the Berry
connection matrix in the Hamiltonian gauge. Inserting
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in Eq. (47) the relation (18) between interpolated Bloch
states in the Hamiltonian and Wannier gauges, we obtain

AH
k′ = iU†

k′∇k′Uk′ + U†
k′A

W
k′Uk′ . (55)

Note the extra (first) term compared to the gauge-
transformation rule (25) for a k-local matrix object. Re-
calling from Eq. (14) that the columns of Uk′ are eigen-
vectors of HW

k′ , the off-diagonal matrix elements of that
term can be evaluated from non-degenerate perturbation
theory as

(

U†
k′∇k′Uk′

)

mn
=

[

U†
k′

(

∇k′HW
k′

)

Uk′

]

mn

εHnk′ − εHmk′

. (56)

All quantities on the right-hand side can be obtained
from Eqs. (13) and (14) starting from ⟨0i|Ĥ|Rj⟩ and

τ j = ⟨0j|ˆ̂r|0j⟩ (the latter appears in the modified phase
factors in Eq. (31)). For the second term in Eq. (55), we
also need

AW
k′,ij =

∑

R

eik
′·(R+τ j−τ i)dij(R) , (57)

which follows from inserting in Eq. (47) the Bloch
sum (16) with the modified phase factors. Here dij(R)
are the off-diagonal matrix elements of r̂ in the Wannier
basis, that is,

⟨0i|r̂|Rj⟩ = δR,0δijτ j + dij(R) . (58)

The matrix elements ⟨0i|Ĥ|Rj⟩ are evaluated using
Eq. (12), and the corresponding procedure for ⟨0i|r̂|Rj⟩
is as follows. First, we can use Eq. (5a) to write ⟨0i|r̂|Rj⟩
as (1/N)

∑

k e
−ik·RAW

k,ij . Since the Bloch functions are

smooth in the Wannier gauge, AW
k,ij can be evaluated on

the ab initio grid by discretizing the k derivative appear-
ing in Eq. (47). Adopting the finite-differences scheme
described in Marzari and Vanderbilt (1997) and Mostofi
et al. (2008) we obtain

⟨0i|r̂|Rj⟩ = i

N

∑

k

e−ik·R
∑

b

wbb×

×
∑

m,n

V ∗
k,miM

(k,b)
mn Vk+b,nj , (59)

where b are vectors connecting neighboring grid points,
wb are appropriately chosen weights,M (k,b) are the over-
lap matrices defined by Eq. (8), and Vk are the Wan-
nierization matrices in Eq. (5b); since the overlap matri-
ces were computed in preparation for the WF construc-
tion procedure, and the Wannierization matrices were
obtained at the end of that procedure, both are readily
available.
Once ⟨0i|Ĥ|Rj⟩ and ⟨0i|r̂|Rj⟩ have been tabulated,

the interband Berry connection can be evaluated from
Eqs. (55)–(57), with the matrices Uk′ therein (along with

the interpolated energy eigenvalues) given by Eq. (14).
Finally, the Berry connection and energy eigenvalues are
inserted in Eq. (48) to obtain the interband optical con-
ductivity (Yates et al., 2007).
Equation (59) entails a numerical error of order (∆k)2,

where ∆k is the ab initio mesh spacing (Marzari and
Vanderbilt, 1997; Mostofi et al., 2008). The direct real-
space mesh integration method mentioned below Eq. (12)
should be free of such errors, but it is not as practi-
cal in the context of k-space Wannierization schemes.
It is therefore desirable to develop improved discretized
k-space formulas for ⟨0i|r̂|Rj⟩ and related matrix ele-
ments. A higher-order generalization of the discretization
scheme of Marzari and Vanderbilt (1997) and Mostofi
et al. (2008) was recently introduced (Cistaro et al.,
2023), and further improvements are currently under
way (Ghim, 2022; Lihm, 2022).

In empirical tight-binding, it is customary to approxi-
mate the position matrix elements by dropping the sec-
ond term in Eq. (58) (Foreman, 2002; Vanderbilt, 2018),

⟨0i|r̂|Rj⟩ ≈ δR,0δijτ j . (60)

In this approximation, and when the modified phase con-
vention (31) is used, the matrix AW

k′ in Eq. (57) vanishes;
Eq. (55) for AH

k′ then reduces to its first term, which
can be interpreted as the “internal” Berry connection of
the tight-binding eigenvectors; this is how tight-binding
codes such as PythTB evaluate Berry phases and curva-
tures (PythTB, 2023b), which is quite natural in the con-
text of toy-model calculations.
The above approximation is harder to justify when

using ab initio WFs, given that the discarded dij(R)
matrix elements are readily available, as mentioned
above; even so, that approximation is made by some
codes, including WannierTools (Wu et al., 2018) and
linres (Železný, 2023). The role of intra-atomic dij(R)
matrix elements in tight-binding calculations of the linear
dielectric function was studied in Pedersen et al. (2001);
in Ibañez-Azpiroz et al. (2022), that analysis was ex-
tended to inter-atomic matrix elements and to non-linear
optical responses, using Wannier interpolation.

3. Other Berry-type quantities

The interpolation of the Berry curvature Ωk proceeds
along similar lines, allowing to compute the AHC from
Eq. (50) (Wang et al., 2006), and the procedure can be
extended to spin Hall conductivity (SHC) (Qiao et al.,
2018; Ryoo et al., 2019) or non-linear responses. For ex-
ample, non-linear optical and AHCs involve k-derivatives
ofAk andΩk, respectively (Aversa and Sipe, 1995; Sode-
mann and Fu, 2015); in the same way as band derivatives
(see Sec. III.C.2), both are conveniently evaluated by
Wannier interpolation (Ibañez Azpiroz et al., 2018; Liu
et al., 2023; Wang et al., 2017). To interpolate Ak, Ωk,
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and their k-derivatives, only ⟨0i|Ĥ|Rj⟩ and ⟨0i|r̂|Rj⟩ are
needed, but other quantities require additional matrix el-
ements. For example, the orbital moment in Eq. (52) re-
quires ⟨0i|Ĥ(r̂−R)|Rj⟩ and ⟨0i|r̂aĤ(r̂−R)b|Rj⟩ (Lopez
et al., 2012); and while the former can be evaluated on
the ab initio grid using the same ingredients entering
Eqs. (12) and (59) for ⟨0i|Ĥ|Rj⟩ and ⟨0i|r̂|Rj⟩, the latter
also requires ⟨umk+b1

|Ĥk|unk+b2
⟩, which must be calcu-

lated separately (Lopez et al., 2012). As in the case of
Eq. (55) for Ak′ , the resulting interpolation formula con-
tains an “internal” term analogous to Eq. (52) itself, but
expressed in terms of the TB eigenvectors and Hamilto-
nian. That term can be evaluated from ⟨0i|Ĥ|Rj⟩ and
τ j alone, but it leaves out important atomic-like contri-
butions that are encoded in the other matrix elements
needed for a full calculation (Lopez et al., 2012; Nikolaev
and Solovyev, 2014).
The ab initio matrix elements needed for various inter-

polation tasks are listed in Table I. The files *.eig and
*.mmn are required already for constructing the WFs, and
therefore they are provided by the interface code of every
ab initio code that is compatible with Wannier90. The
file *.spn is provided by the interface of both Quantum

ESPRESSO and VASP. As for the other matrix elements
listed in Table I, at present they are only implemented in
pw2wannier90.x, the interface of Quantum ESPRESSO.
As a workaround for obtaining these quantities from

the output of other ab initio engines, one can resort to a
sum-over-states procedure. For example, the uHu matrix
elements may be expressed as

⟨umk+b1
|Ĥk|unk+b2

⟩ ≈
lmax
∑

l

⟨umk+b1
|ulk⟩εlk⟨ulk|unk+b2

⟩

(61)
in terms of the energy eigenvalues and overlap matrices,
and the relevant matrices for spin Hall conductivity can
be obtained similarly (Qiao et al., 2018). Since the sum-
mation is done before Wannierization, the number lmax

of states included in the non-selfconsistent ab initio cal-
culation can be systematically increased until the desired
level of convergence is reached.
The above procedure is implemented for uHu, uIu,

sHu and sIu in the utility mmn2uHu (WannierBerri, 2023)
provided with the WannierBerri code package (Tsirkin,
2021). Besides its use as a workaround, it can serve as
a benchmark for testing future implementations of those
matrix elements in various interface codes between ab

initio and Wannier engines.

F. Topological invariants and related properties

The topological aspects of band theory have been stud-
ied intensively over the past two decades (Hasan and
Kane, 2010; Vanderbilt, 2018), and ab initio calculations
have been central to that effort (Wang and Zhang, 2017):

they are used for identifying candidate topological mate-
rials, to determine topological invariants, and to calculate
surface bands that can be compared with angle-resolved
photoemission measurements.
WFs feature prominently in topological band theory.

For example, quantum anomalous Hall insulators (Hal-
dane, 1988) (a.k.a. Chern insulators) can be defined as
2D systems where it is not possible 1 to construct a set of
exponentially-localized WFs (Brouder et al., 2007; Thon-
hauser and Vanderbilt, 2006; Vanderbilt, 2018): this
is known as a “topological obstruction”. More gener-
ally, symmetry-protected topological insulators can typ-
ically be defined as insulators for which it is not possible
to construct a set of WFs spanning the valence bands
without breaking the protecting symmetry in the choice
of gauge (Bradlyn et al., 2017; Soluyanov and Vander-
bilt, 2011a). Prominent examples include 2D quantum
spin Hall insulators (Bernevig and Zhang, 2006; Kane
and Mele, 2005a,b) and 3D Z2 topological insulators (Fu
et al., 2007), where the protecting symmetry is time re-
versal, and topological crystalline insulators, which are
instead protected by crystalline symmetries (Fu, 2011).
A second example is the “Wannier spectrum” defined

by the centers of hybrid (a.k.a. hermaphrodite) or-
bitals (Sgiarovello et al., 2001) that are Wannier-like
along ẑ and Bloch-like along x̂ and ŷ. The surface en-
ergy spectrum εn(kx, ky) can be continuously deformed
into the bulk Wannier spectrum zn(kx, ky) obtained by
Wannierizing along the surface normal (Fidkowski et al.,
2011; Neupert and Schindler, 2018), allowing to infer the
topological flow of the surface energy bands from that of
the bulk Wannier bands (Taherinejad et al., 2014). In
some cases, the topological indices can be deduced from
the Wannier band structure (Gresch et al., 2017; Varnava
et al., 2020).
WFs also play a more practical role in the study

of topological materials, as several of the electronic-
structure packages that are commonly used to character-
ize them rely on a Wannier/TB representation (despite
the obstruction mentioned above (Bradlyn et al., 2017;
Soluyanov and Vanderbilt, 2011a), topological insulators
still afford a Wannier representation, provided that the
WFs span a few low-lying conduction states along with
the valence bands).
In particular, both PythTB (PythTB, 2023a) and

WannierTools (Wu et al., 2018) work with orthogonal
TB models, and have the option to import TB Hamilto-
nians generated by a Wannier engine using either the
∗ hr.dat or the ∗ tb.dat file format (as mentioned
above, the latter also includes the matrix elements of

1 Very recent work (Gunawardana et al., 2023) suggests that it
might be possible to construct optimally localized WFs even in
presence of non-vanishing Chern numbers, at least for the simple
case of one isolated band.
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Matrix element Wannier90 file Needed for Implemented in Computed by mmn2uHu from

⟨umk|Ĥk|unk⟩ = εnkδmn *.eig Transport, optics, morb
k All

⟨umk|σ̂|unk⟩ *.spn m
spin

k
QE,VASP

⟨umk|unk+b⟩ *.mmn Ak, Ωk, morb
k , all below All

⟨umk+b1
|Ĥk|unk+b2

⟩ *.uHu m
orb
k QE *.eig, *.mmn

⟨umk+b1
|unk+b2

⟩ *.uIu qabk QE *.mmn

⟨umk|σ̂Ĥk|unk+b⟩ *.sHu
}

SHC in Ryoo et al. (2019)
QE *.eig, *.mmn, *.spn

⟨umk|σ|unk+b⟩ *.sIu QE *.mmn, *.spn

TABLE I Ab initio matrix elements that are used explicitly in setting up the WF matrix elements needed to perform common
interpolation tasks, SHC stands for spin Hall conductivity. * denotes the seedname specified in the input file of Wannier90.
QE = Quantum ESPRESSO, Ak is the Berry connection or electric dipole matrix (47), Ωk is the Berry curvature (49), morb

k is the
intrinsic orbital magnetic dipole (52), and qabk is the intrinsic electric quadrupole (for the matrix definitions of morb

k and qabk ,

see Óscar Pozo Ocaña and Souza (2023)). The optical conductivity (48) in the electric-dipole approximation involves εnk and
Ak, the AHC (50) involves εnk and Ωk, and the orbital magnetization (51) involves εnk, Ωk and m

orb
k . Spatially-dispersive

responses such as natural optical activity depend on εnk, Ak, morb
k , mspin

k
, and qabk (Óscar Pozo Ocaña and Souza, 2023). The

mmn (and eig) matrix elements are needed for constructing the (disentangled) WFs, and hence they are used implicitly when
interpolating any physical quantity.

the position operator in the Wannier basis, and the coor-
dinates of the lattice vectors). The key point is that the
Wannierized Hamiltonian preserves the topological fea-
tures of the original first-principles electronic structure;
the identification and characterization of those features
can therefore be carried out entirely in the Wannier repre-
sentation, which is often more convenient and/or efficient
than proceeding directly from the ab initio Bloch states.
The simplest example of a topological band-structure

feature is an isolated touching between a pair of bands,
known as a “Weyl point” (Armitage et al., 2018; Van-
derbilt, 2018). Weyl points are fundamentally differ-
ent from weak avoided crossings, but most band in-
terpolation schemes are unable to tell them apart; in-
stead, Wannier interpolation correctly distinguishes be-
tween the two. The distinction is rooted in the fact that
a Weyl node acts as a monopole source or sink of Berry
curvature in k space, allowing to associate with it a topo-
logical invariant known as the “chiral charge.”
The chiral charge χ (typically ±1, but sometimes ±2

or ±3 (Fang et al., 2012; Tsirkin et al., 2017)) can be
determined in two different ways: (i) from the quantized
Berry-curvature flux through a small surface S enclosing
the Weyl point (Gosálbez-Mart́ınez et al., 2015; Vander-
bilt, 2018),

∫

S

Ωnk · n̂ = −2πχ , (62)

where n̂ is a unit vector in the direction of ∇kεnk; (ii)
by evaluating the Berry phase

ϕn(C) =
∮

C

Annk · dk (63)

around contours C at fixed latitude on an enclosing spher-
ical surface, and then tracking its evolution from zero at
the south pole to 2πχ at the north pole (Gresch et al.,
2017).

The latter procedure is implemented in both
Z2Pack (Z2pack, 2023) and WannierTools. All that is re-
quired is the TB Hamiltonian ⟨0i|Ĥ|Rj⟩, from which one
obtains the eigenvectors on a discrete mesh {kj} of points
along each contour; the Berry phase is then evaluated by
finite differences from the overlaps between TB eigenvec-
tors on consecutive points along C as follows (Vanderbilt,
2018),

ϕ(int)n (C) = −Im lnΠj⟨⟨ϕnkj
||ϕnkj+1

⟩⟩ , (64)

where ||unkj
⟩⟩ denotes a column vector of the matrix Ukj

defined by Eq. (14). The above expression corresponds,
in the language of Sec. III.E, to the internal part of the
Berry phase (63), which also contains an external part

ϕ(ext)n (C) =
∑

j

⟨⟨unkj
||AW

k ||unkj
⟩⟩ ·∆k , (65)

where ∆k = (kj+1 − kj−1)/2 (Wang et al., 2007). The
two parts arise from discretizing the integral along C of
the two terms in Eq. (55) for the interpolated Berry con-
nection; the internal term only depends on ⟨0i|Ĥ|Rj⟩,
while the external one also requires ⟨0i|r̂|Rj⟩. The 2π
indeterminacy in the Berry phase comes from the for-
mer, while the latter is single-valued and hence it does
not contribute to the quantized change in Berry phase
from the south to the north pole of a spherical surface;
this is why χ can be determined from the TB Hamilto-
nian alone.

Weyl crossings can occur at arbitrary points in the
BZ, which makes it difficult to spot them in the band
structure. By allowing to quickly evaluate energy eigen-
values and band velocities at arbitrary k-points, Wan-
nier interpolation provides a practical solution to this
problem (Gosálbez-Mart́ınez et al., 2015): to locate the
degeneracies between bands n and n + 1, define a gap
function εn+1k − εnk, and search for its minima using a
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2009; Li et al., 2009) and amorphous topological insula-
tors (Corbae et al., 2023), heterogeneous systems such as
trivial/topological junctions (Bianco and Resta, 2011),
molecular dynamics simulations, and any other use case
that does not fit a small primitive cell with BZ sampling.
Among many other approaches (see Corbae et al. (2023)
for a dedicated overview), single-point sampling (Ceresoli
and Resta, 2007; Favata and Marrazzo, 2023) and local
markers (Bianco and Resta, 2011) have been introduced
to study topology for non-crystalline systems.

Thanks to the use of WFs as a basis set, these
techniques can be implemented seamlessly in the same
framework both for model TB (like the Haldane (Hal-
dane, 1988) or the Kane–Mele models (Kane and Mele,
2005a,b)) and ab initio TB, where the latter is obtained
by constructing WFs on top of any electronic structure
calculations including DFT, GW or DMFT (as discussed
in Sec. III.C). This strategy has been adopted by the
StraWBerryPy code (Baù and Marrazzo, 2023; Favata
and Marrazzo, 2023; StraWBerryPy, 2023), where model
or ab initio TB Hamiltonians are read and manipulated
either through PythTB or TBmodels, allowing to calcu-
late a few single-point and local topological invariants
such as the Chern number and the Z2 invariant, as well
as other quantum-geometrical quantities of the electronic
structure that are relevant for topological materials.

G. Electron-phonon interactions

1. Methodology

In the past decade, we have witnessed a community-
wide effort to develop advanced computational ap-
proaches and simulation tools for atomistic modeling
of function-defining properties of materials. A primary
focus of this ongoing research has been the accurate
description of electron-phonon (e-ph) interactions from
first-principles (Giustino, 2017), as they determine many
materials properties of technological interest such as elec-
trical and thermal transport (Brunin et al., 2020a,b;
Chaves et al., 2020; Cheng et al., 2020; Jhalani et al.,
2020; Li, 2015; Macheda et al., 2022; Macheda and
Bonini, 2018; Maliyov et al., 2021; Park et al., 2020;
Poncé et al., 2020; Poncé et al., 2021, 2018, 2023; Pro-
tik and Broido, 2020; Protik and Kozinsky, 2020; Zhou
et al., 2021b), phonon-assisted light absorption (Bushick
and Kioupakis, 2023; Noffsinger et al., 2012), phonon-
mediated superconductivity (Errea et al., 2020; Heil
et al., 2017; Lafuente-Bartolome et al., 2020; Lilia et al.,
2022; Margine and Giustino, 2013), and polaron forma-
tion (Falletta and Pasquarello, 2022; Lafuente-Bartolome
et al., 2022; Lee et al., 2021; Sio and Giustino, 2023; Sio
et al., 2019; Zhou and Bernardi, 2019). A comprehensive
review of the theory of e-ph interactions in solids from
the point of view of ab initio calculations is given by

Giustino (Giustino, 2017). An important contribution to
the e-ph problem has been recently made by Stefanucci
and colleagues (Stefanucci et al., 2023), who have devel-
oped an ab initiomany-body quantum theory of electrons
and phonons in and out-of-equilibrium.
There is a well established formalism for comput-

ing the e-ph matrix elements from first-principles using
DFPT (Baroni et al., 2001, 1987; Gonze, 1997; Savrasov,
1992). However, all aforementioned properties are noto-
riously difficult to evaluate with desired accuracy using
DFPT calculations directly due to the prohibitive compu-
tational cost. To achieve numerical convergence, the e-ph
matrix elements need to be computed on ultra-dense elec-
tron (k) and phonon (q) BZ grids with 106 − 107 points.
Specialized numerical techniques, such as linear (Brunin
et al., 2020b; Li, 2015) or Wannier (Calandra et al., 2010;
Giustino et al., 2007a,b) interpolation and Fermi-surface
harmonics (Allen, 1976; Lafuente-Bartolome et al., 2020),
have been developed to address this problem. In partic-
ular, the interpolation of the e-ph matrix elements using
MLWFs (Marzari et al., 2012) introduced by Giustino,
Cohen, and Louie (Giustino et al., 2007a) has proven very
successful for enabling highly accurate and efficient cal-
culations of e-ph interactions, and the approach has been
implemented in a number of codes (Cepellotti et al., 2022;
Lee et al., 2023; Marini et al., 2023; Noffsinger et al.,
2010; Poncé et al., 2016; Zhou et al., 2021a).
We note that an alternative to the computation of

the e-ph interaction with DFPT is offered by the finite
displacement scheme in real space (Chaput et al., 2019;
Engel et al., 2020, 2022). While this approach requires
large supercells to reach convergence, it has the advan-
tage of being universally applicable to any functional,
including hybrid or metagradient functionals, as well as
more complicated exchange-correlation potentials, where
higher-order derivatives of the functional are not readily
available.
Below, we focus on the DFPT approach and outline

the interpolation procedure to compute the e-ph matrix
elements on ultra-dense meshes using WFs. One first
determines the e-ph matrix elements in the Bloch repre-
sentation using the electronic and vibrational properties,
computed with DFT and DFPT on coarse k- and q-point
grids, respectively. The e-ph matrix element is defined
as:

gmnν(k,q) = ⟨ψmk+q|∆qνV
KS|ψnk⟩ , (68)

where ψnk and ψmk+q are the KS wavefunctions of the
initial and final Bloch states (with k being the electron
wavevector, and n being the band index), and ∆qνV

KS is
the derivative of the self-consistent potential associated
with a phonon with momentum q and branch index ν.
The latter quantity can be obtained as:

∆qνV
KS =

∑

καp

eiq·Rp
∂V KS

∂τκαp
uκα,qν , (69)
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with

uκα,qν =

√

ℏ

2Mκωqν

eκα,qν . (70)

Here Rp is the lattice vector identifying the unit cell p,
τκαp is the position of atom κ in unit cell p in the Carte-
sian direction α, Mκ is the mass of atom κ, ωqν is the
phonon frequency, and eκα,qν is the eigendisplacement
vector corresponding to atom κ in the Cartesian direc-
tion α for a collective phonon mode qν.

Next, one finds the e-ph matrix elements in the Wan-
nier representation:

gijκα(Re,Rp) =

〈

0ei

∣

∣

∣

∣

∂V KS

∂τκαp

∣

∣

∣

∣

Rej

〉

, (71)

where Re and Rp are the Bravais lattice vectors asso-
ciated to the electron and phonon WS supercells, and
|Rej⟩ are the MLWFs with index j and centered in the
cell at Re. This is done by transforming the e-ph ma-
trix elements from the coarse BZ (k,q) grids into the
corresponding real-space supercells (Re,Rp) as:

gijκα(Re,Rp) =
1

NeNp

∑

k,q

e−i(k·Re+q·Rp)

×
∑

mnν

V †
k+q,imgmnν(k,q)Vk,nju

−1
κα,qν . (72)

In Eq. (72), Ne and Np are the number of unit cells in
the periodic BvK supercells corresponding to the number
of k and q points on the coarse electron and phonon
grids, respectively, and Vk is the Wannierization matrix
introduced in Eq. (5). That matrix is provided by the
Wannier engine, while uκα,qν is obtained by diagonalizing
the dynamical matrix at wavevector q.
Finally, performing the inverse Fourier transform of

Eq. (72), the e-ph matrix elements on very fine (k′,q′)
BZ grids are given by:

gmnν(k
′,q′) =

∑

ep

ei(k
′·Re+q′·Rp)

×
∑

ijκα

Uk′+q′,migijκα(Re,Rp)U†
k′,jnuκα,q′ν . (73)

In this step, it is assumed that the e-ph matrix elements
outside of the WS supercells defined by the initial coarse
grids can be neglected. Prior to computing Eq. (73),
the transformation matrices Uk′,nj given by Eq. (14) and
the phonon eigenvectors uκα,q′ν for the new set of points
(k′,q′) must be found as described in Giustino et al.

(2007a).
The accuracy of the Wannier–Fourier interpolation

approach depends on the spatial localization of the
gijκα(Re,Rp) matrix elements. Eq. (71) can be seen
as a hopping integral between two localized WFs, one
at 0e and one at Re, due to a perturbation caused by

the displacement of the atom at τκp. If the e-ph in-
teractions are short-ranged in real space, the quantity
gijκα(Re,Rp) decays rapidly with |Re| and |Rp|, and it
is sufficient to only compute the matrix elements on a
small set of (Re,Rp) lattice vectors to fully capture the
coupling between electrons and phonons. As discussed
in Giustino (2017) and Giustino et al. (2007a), the spa-
tial decay is bound by the limiting cases gijκα(Re,0p)
and gijκα(0e,Rp). In the first case, the matrix element
decays in the variable Re at least as fast as the MLWFs.
In the second case, the matrix element decays with the
variableRp at the same rate as the screened Coulomb po-
tential generated by the atomic displacements. Thus, the
localization of gijκα(Re,Rp) depends strongly on the di-
electric properties of the system. In metals and non-polar
semiconductors, the screening properties are dictated by
Friedel oscillations (Fetter and Walecka, 2003) |Rp|−4

and quadrupole behavior (Pick et al., 1970) |Rp|−3, re-
spectively. In polar materials (i.e., ionic and polar co-
valent crystals), the dominant contribution to the po-
tential is the dipole Fröhlich term (Vogl, 1976), which
is long-ranged and decays as |Rp|−2. As a consequence,
some of the matrix elements in reciprocal space diverge
as |q|−1 in the long-wavelength limit (q → 0), and
cannot be directly interpolated from a coarse to a fine
grid using the Wannier-based interpolation approach.
Recent methodologies have been developed for includ-
ing long-range dipole (Deng et al., 2021; Sjakste et al.,
2015; Sohier et al., 2016; Verdi and Giustino, 2015) and
quadrupole (Brunin et al., 2020a,b; Jhalani et al., 2020;
Park et al., 2020; Zhang and Liu, 2022) corrections in the
interpolation of the e-ph matrix elements.

2. Codes

EPW (EPW, 2023; Lee et al., 2023; Noffsinger et al.,
2010; Poncé et al., 2016), the first open-source code
for the study of e-ph interaction using MLWFs, was
publicly released in 2010 and has been distributed
within the Quantum ESPRESSO suite (Giannozzi et al.,
2017; Quantum ESPRESSO, 2023) since 2016. Sev-
eral Wannier-based open-source codes exist today to
compute physical properties related to e-ph interac-
tions such as Perturbo (PERTURBO, 2023; Zhou
et al., 2021a), Phoebe (Cepellotti et al., 2022; Phoebe,
2023), elphbolt (EPIq, 2023a; Protik et al., 2022), and
EPIq (EPIq, 2023b; Marini et al., 2023). At present,
EPW, Perturbo, Phoebe, and EPIq are all interfaced
with Quantum ESPRESSO (Giannozzi et al., 2017) to gen-
erate the relevant first-principles input data, and use
Wannier90 (Pizzi et al., 2020) in standalone or library
mode to compute the required quantities in the Wannier
representation. elphbolt, on the other hand, relies on
EPW to generate the required Wannier space information.
All codes follow an overall similar workflow to compute
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e-ph matrix elements on fine grids, as outlined below and
summarized in Fig. 7.
1. The initial step is to perform DFT calculations

with Quantum ESPRESSO on a uniform coarse electronic
k-point grid to obtain the band energies and Bloch
wavefunctions, and DFPT calculations with Quantum

ESPRESSO on an irreducible coarse q-point grid to obtain
the dynamical matrices and the derivatives of the self-
consistent potential with respect to the phonon pertur-
bations. Phoebe and EPIq require that the e-ph matrix
elements on the coarse electron and phonon grids are also
computed with Quantum ESPRESSO since these quantities
are later passed to the two codes. EPW and PERTURBO, on
the other hand, compute the e-ph matrix elements on the
coarse k- and q-point grids internally by reading the files
generated from the DFT and DFPT calculations.
2. Next, one must perform a precise Wannierization

of the system using Wannier90 in standalone mode with
PERTURBO, Phoebe, and EPIq, or in library mode with
EPW. This step produces the MLWFs and the Wannier-
ization matrices Vk that transform the DFT Bloch wave-
functions into MLWFs.
3. The next step is to compute the e-ph matrix ele-

ments on the coarse k- and q-point grids in the Bloch
representation and transform them, along with the elec-
tronic Hamiltonian and the dynamical matrix, from the
Bloch to the Wannier representation. As noticed at point
2, Phoebe and EPIq uses the e-ph matrix elements on the
coarse electron and phonon grids computed directly with
Quantum ESPRESSO.
4. The final step is to perform an inverse Fourier trans-

form of the electronic Hamiltonian, dynamical matrix,
and e-ph matrix elements from the Wannier to the Bloch
representation. At this stage, the electronic eigenvalues,
phonon frequencies, and e-ph matrix elements can be ef-
ficiently computed on ultra-dense k′- and q′-point grids
and further used to carry out calculations of various ma-
terials properties.
To extend the Wannier-based interpolation scheme to

systems with long-range e-ph contributions, the strategy
is to split the e-ph matrix elements into a short- and long-
range part. Then, the short-range e-ph matrix elements
are interpolated to ultra-dense k′- and q′-point grids us-
ing MLWFs, while the long-range e-ph matrix elements
are computed using derived first-principles expressions
for the dipole and quadrupole e-ph interactions. Finally,
the short- and long-range components are summed up to
recover the total e-ph matrix elements.
A wide range of properties can be currently computed

with EPW, Perturbo, Phoebe, elphbolt, and EPIq. A
full list of the capabilities for the released version of each
code can be found on the respective website. In par-
ticular, EPW computes phonon-limited transport proper-
ties in the framework of the BTE, magnetotransport,
phonon-mediated superconducting properties based on
the Migdal–Eliashberg formalism, phonon-assisted op-

tical processes, and polarons (EPW, 2023; Lee et al.,
2023). EPW also comes with the ZG toolkit for calculations
of temperature-dependent e-ph properties for harmonic
and anharmonic phonons via the special displacement
method (Zacharias and Giustino, 2016, 2020; Zacharias
et al., 2023a,b). Perturbo calculates phonon-limited
transport properties using BTE, ultrafast carrier dynam-
ics, magnetotransport, and high-field transport (PER-
TURBO, 2023; Zhou et al., 2021a). Perturbo is inter-
faced with TDEP (TDEP, 2023) to compute anharmonic
phonons. Phoebe provides various tools to predict elec-
tron and phonon transport properties at different lev-
els of theory and accuracy, such as the BTE or mod-
els based on the Wigner distribution (Cepellotti et al.,
2022; Phoebe, 2023). elphbolt solves the coupled elec-
tron and phonon BTEs, and the effect of the mutual e-
ph drag on the electrical and thermal transport coeffi-
cients (EPIq, 2023a; Protik et al., 2022). EPIq computes
phonon-mediated superconducting properties based on
the Migdal–Eliashberg formalism, double resonant Ra-
man intensities, and excited carriers lifetimes (EPIq,
2023b; Marini et al., 2023).

H. Beyond DFT with localized orbitals

While in most cases DFT is the method of choice
for electronic ground state calculations, and even the
ground state properties of certain materials, may require
a “beyond-DFT” treatment for accurate first-principles
predictions. Two examples are finite-temperature and
spectroscopic properties, as observed in direct and in-
verse photoemission experiments, which cannot be ad-
dressed adequately within conventional DFT. Similarly,
the complex physics arising from strong local Coulomb
interaction in partially filled orbitals is beyond the scope
of a single-particle picture, which can manifest itself in
an inaccurate description of the material. In such cases,
more advanced methods are needed. One class of ap-
proaches is based on diagrammatic many-body pertur-
bation theory; examples include the GW approximation
or DMFT (see Sec. III.H.1). Since such methods are of-
ten computationally costly and complex, it may be nec-
essary to extract accurate low-energy effective Hamilto-
nians that are treated using these methods in a post-
processing step. An efficient alternative is to retain the
functional character of DFT and apply physically moti-
vated corrections, as in hybrid or Koopmans-compliant
functionals (see Sec. III.H.2). In this case the theory is
no longer based on a pure functional of the density, but
the orbitals themselves or their orbital densities become
the key variables. Common to both approaches is the
importance of improving the description of local, orbital-
dependent physics. This is where WFs come in, provid-
ing a useful basis for such applications and supporting
the physical understanding with chemical intuition.
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to serve as a starting point for the respective topics.
In beyond-DFT methods, it is convenient to describe

the total system of interacting electrons in a peri-
odic solid in terms of the momentum- and frequency-
dependent retarded single-particle Green’s function

Ĝ(k, ω) =
[

(ω + µ)1− Ĥ(k)− Σ̂(k, ω) + iη
]−1

, (74)

where µ is the chemical potential and Ĥ(k) represents
the non-interacting Hamiltonian. The frequency- and
momentum-dependent electron self-energy is given by
Σ̂(k, ω), and η is an infinitesimal positive parameter to
ensure physical correctness. For clarity, we have omit-
ted the double-counting correction here, and we refer
to Karolak et al. (2010) for an overview. Starting from
a DFT-derived downfolded Hamiltonian, the challenge
is to compute the corresponding self-energy correction
that accounts for dynamical interaction effects. Var-
ious approaches can be formalized, but for the pur-
pose of this review we outline the workflow of single-site
DMFT (Georges et al., 1996). In DMFT, the self-energy
becomes a site-local quantity for a given atomic site R
within the unit cell when expressed in a localized or-
bital basis. This approximation is conceptually similar
to DFT+U (Anisimov et al., 1997), but in DMFT the
full frequency dependence of the interaction is taken into
account. Following this approach, in the DMFT self-
consistency cycle, the local lattice self-energy ΣR(ω) is
approximated by that of an auxiliary quantum impurity
problem. The most computationally challenging step of
the DMFT loop is typically to find the solution to the
impurity problem, which allows to infer the impurity self-
energy via the Dyson equation. The self-energy is embed-
ded into the Hilbert space of the effective Hamiltonian as

Σmn(k, ω) =
∑

R,ij

PR∗
mi (k)Σ

R
ij (ω)P

R
jn(k) . (75)

Approximating the lattice self-energy in Eq. (74) by the
upfolded impurity self-energy becomes exact for infinite
connectivity of the lattice (Georges and Kotliar, 1992;
Metzner and Vollhardt, 1989). The projector functions
PR
jn(k) in (75) encode the basis transformation from band

to orbital basis, i.e., from |ψnk⟩, with band index n and
wavevector k, to |ψW

Rjk
⟩, with orbital index j at site R

(i.e., j is an intrasite index here):

PR
jn(k) = ⟨ψW

Rjk
|ψnk⟩ . (76)

The local Green’s function is then computed as
Gloc,R

ij (ω) = 1
N

∑

k,mn P
R
im(k)Gmn(k, ω)P

R∗
nj (k), where

N is the total number of k-points of the grid. To deter-
mine a suitable localized basis set, some DFT+DMFT
codes use projections on atomic orbitals, others rely on
Wannier90 directly for a simple and user-friendly inter-
face. While the two approaches are conceptually similar

(for a more detailed overview see Chen et al. (2022)),
the choice of projectors may affect the results and there-
fore needs to be carefully analyzed (Karp et al., 2021).
Note that Eq. (76) assumes that the DFT+DMFT cal-
culation is performed in the band basis in a charge
self-consistent mode (i.e., P (k) corresponds to Vk in
Eq. (5b)). However, for one-shot calculations, the equa-
tions simplify (Beck et al., 2022). Wannier interpolation
can be used in the DMFT self-consistent loop for an iso-
lated set of bands or at the TB level, which is crucial
for accurately resolving low-energy physics (Kaye et al.,
2023).
Multiple schemes go beyond standard DMFT, but the

discussion above carries over directly to these extensions.
Examples include cluster-DMFT approaches (either in
real or reciprocal space) or diagrammatic extensions of
the self-energy such as the DΓA (Galler et al., 2017,
2019) and the TRILEX method (Ayral and Parcollet,
2015, 2016), as well as non-equilibrium DMFT (Aoki
et al., 2014). To improve some of the shortcomings of
the DFT+DMFT method, a better starting point than
DFT may be GW, which combined with DMFT allows to
include non-local effects beyond DFT as well as to for-
malize the double-counting correction term (Biermann,
2014).

a. DFT+DMFT codes From the previous section, it be-
comes clear that a fully integrated DFT+DMFT soft-
ware suite requires three main components: 1) a DFT
implementation (ab initio engine) and a routine to
construct the localized basis set (e.g., a Wannier en-
gine), 2) a Green’s function formalism to implement
the DMFT equations, and 3) an impurity solver. At
present, there are several open-source implementations
that meet these requirements to varying degrees. On
the side of more monolithic, publicly available beyond-
DFT codes, there are implementations in, for example,
CASTEP (Plekhanov et al., 2018), Abinit (Romero et al.,
2020), RSPt (Di Marco et al., 2009; Grechnev et al., 2007;
Thunström et al., 2009), Amulet (AMULET, 2023), and
eDMFT (Haule et al., 2010), which include an implemen-
tation of DFT and a downfolding routine, as well as
choices of internal and externally linked impurity solvers.
ComDMFT (Choi et al., 2019), on the other hand, interfaces
directly with Wannier90 for the downfolding procedure.
All codes support charge self-consistency.
An alternative philosophy is a more modular library

approach, focusing on providing the framework for per-
forming DMFT calculations based on input from a DFT
calculation. For this purpose, most codes directly rely
on Wannier90 to benefit from a generic, robust, and flex-
ible interface independent of the flavor of DFT. Exam-
ples include w2dynamics (Wallerberger et al., 2019) and
DCORE (Shinaoka et al., 2021), as well as EDIpack (Amar-
icci et al., 2022), DMFTwDFT (Singh et al., 2021), and
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and others, to implement a centralized reference set of
parsers for the Wannier90 input/output files in Python,
hosted at https://github.com/wannier-developers/

wannier90io-python/. The goal of this project is not
only to provide a parser library for developers, but also
to provide a convenient package directly for users, allow-
ing them to easily load and manipulate the Wannier90

input/output files for their own use case.

In addition, part of the Wannier90 code base already
outputs Python scripts for post-processing; one exam-
ple is the berry module, which outputs scripts using the
matplotlib (Hunter, 2007) library to plot the Berry cur-
vature. However, these scripts are hard-coded into the
Wannier90 codebase as a series of write Fortran state-
ments that output Python code, which makes them very
difficult to update and maintain. The aforementioned
Python library will also facilitate future efforts on moving
these post-processing functions into a dedicated Python
package, in the hope of smoothening the development ex-
perience, as well as allowing users to easily postprocess
and visualize the calculation results.

The concept of a common parsing library is not lim-
ited to the Python language, and can also be applied to
other emerging languages. For example, the Julia pack-
age WannierIO.jl (Qiao et al., 2023c) provides functions
to read/write Wannier90 file formats, and is used by the
Wannier.jl (Qiao et al., 2023d) and DFTK.jl (Herbst
et al., 2023) packages as their I/O backend.

J. Automation, workflows and high-throughput

The diversity of the software ecosystem demonstrates
the effectiveness of WFs. However, all methods face the
need of a robust Wannierization, which used to be a not
very straightforward process, since it involves a series of
DFT calculations and construction of WFs, and more
importantly it also depends sensitively on various input
parameters (number of WFs, initial projections for ML-
WFs, energy windows, k-point sampling, etc.). Their se-
lection often required experience and chemical intuition,
and was often a major challenge not only for beginners,
but even for experienced researchers. Fully automated
Wannierizations would make the procedure straightfor-
ward, and, as a consequence, allow any researcher to
easily use all capabilities of the whole ecosystem, while
also enabling high-throughput studies for accelerated ma-
terials discovery. To this end, it became urgent and
necessary to perform algorithmic developments on the
Wannierization itself, and to implement robust workflows
combining multiple software packages in the ecosystem.
On the algorithmic side, Wannierization should provide
well-localized WFs without user input (for initial projec-
tions or energy windows, for instance); on the workflow
side, one would like to orchestrate all different steps from
the initial DFT calculations to the Wannier-engine exe-

cutions to the post-processing steps, while dynamically
parsing the outputs and generating new inputs. More-
over, the workflow engine should provide a set of well-
tested convergence parameters, and it should be able
to handle common errors, and to automatically restart
failed calculations.

Recent development of novel algorithms have largely
solved the Wannierization challenge, starting from the
“selected columns of the density matrix” SCDM (Damle
and Lin, 2018; Damle et al., 2015, 2017) algorithms,
which generate initial projections by decomposing the
density matrix, to the “projectability disentanglement”
PDWF (Qiao et al., 2023b), that uses projectability
thresholds on atomic orbitals, rather than energy win-
dows, to select which states to drop, keep frozen, or throw
in the disentanglement algorithm. Together with the
“manifold remixing” MRWF (Qiao et al., 2023a) using
parallel transport (Gontier et al., 2019) these approaches
remove what had been up to now a critical stumbling
block.

On the workflow-engine side, several software packages
are able to automate the electronic-structure calcula-
tions, such as pymatgen (Ong et al., 2013) and FireWorks

(Jain et al., 2015), AFLOWπ (Supka et al., 2017), mkite
(Schwalbe-Koda, 2023), ASE (Larsen et al., 2017) and ASR

(Gjerding et al., 2021), and AiiDA (Huber et al., 2020;
Pizzi et al., 2016; Uhrin et al., 2021); some of them,
such as ASE and AiiDA, also provide functionalities or
workflows to compute WFs. Equipped with automated
Wannierization algorithms and robust workflow engines,
it has become now possible to create workflows for au-
tomated Wannierizations. For instance, Gresch et al.

(2018) implemented AiiDA workflows and gathered Wan-
nier TB models for a group of III-V semiconductor mate-
rials; Vitale et al. (2020) used SCDM algorithm together
with AiiDA workflows, carefully tested convergence pa-
rameters, and benchmarked Wannier interpolation ac-
curacy on a set of 200 structures for entangled bands
and a set of 81 structures for isolated bands; Garrity
and Choudhary (2021) created a database of Wannier
Hamiltonians for 1771 materials; Fontana et al. (2021)
implemented workflows in ASE and Wannierized 30 in-
organic monolayer materials using an automated proto-
col; and finally Qiao et al. (2023b) used PDWF to au-
tomate the Wannierization, obtaining over 1.3 million
MLWF for over 20,000 3D inorganics from the Materials
Cloud (Talirz et al., 2020) MC3D database, then using
manifold remixing (Qiao et al., 2023a) to separately Wan-
nierize back these into the valence and conduction bands
of 77 insulators. These high-throughput studies can not
only expedite materials discoveries, but also help identify
challenging cases for the Wannierization algorithm, and
promote further development of robust and automated
Wannierization approaches.
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IV. Conclusions and perspectives

The WFs software ecosystem represents a positive
model for interoperability and decentralized code devel-
opment in electronic-structure simulations, very much
in the spirit of CECAM’s Electronic Structure Li-
brary (Oliveira et al., 2020). This was made possible both
by the nature of the scientific problem and physical quan-
tities involved, and by the design choices originally made
in Wannier77 and Wannier90, planned early on as Wan-
nierization engines decoupled from the ab initio codes
used to compute the electronic structure. The avail-
ability of a well-documented, maintained, and modular
open-source Wannier engine has pushed scientists to ex-
tend Wannier90’s functionalities or, when deemed more
practical or efficient, to develop novel packages target-
ing specific materials properties. The growing availabil-
ity of post-processing features has ignited a positive loop
which further attracted developers from different elec-
tronic structure domains to work and use WFs, strength-
ening the interest in WF-related methods and resulting
in the current ecosystem of interoperable software. The
ecosystem has been reinforced by the organization of cod-
ing weeks and developer workshops, that have proven to
be crucial to keep the community engaged and synced, to
avoid duplication of efforts, and to collaborate on code
maintenance.

While we could not cover here all the existing applica-
tions and codes leveraging WFs, we have outlined some of
the most popular applications and summarized how they
can be implemented in software packages and workflows
to calculate advanced materials properties.

Looking forward, we expect that the ongoing efforts
in the redesigned Wannier90’s library mode will be in-
strumental in smoothly integrating automated Wannier-
ization procedures within ab initio and post-processing
codes, with the benefit of reduced file I/O and code main-
tenance. As Wannierization becomes increasingly auto-
mated, we expect scientists to focus on calculations of
complex properties, either through high-level program-
ming of simulation workflows, or through the develop-
ment and extension of post-processing packages. As a
result, even more materials properties will become com-
putationally accessible thanks to WFs, and available to
the community through the release of dedicated func-
tionalities, either in existing or in new packages of the
ecosystem.

Finally, it is worth commenting on two crucial features
of an ecosystem, being it biological or software: bio-
diversity and resilience. A certain level of biodiversity
within a software ecosystem, i.e., the existence of mul-
tiple software packages with partially overlapping func-
tionalities, can increase its robustness. First, it enables
cross-verification of different implementations, increas-
ing the reliability of the results and facilitating a rapid
identification of bugs. Second, it can ensure that the

ecosystem capabilities are not lost if a package goes un-
maintained or disappears. This aspect is connected to
resilience, i.e., the capability of the ecosystem to de-
liver functionalities—such as the calculation of materials
properties—under the loss of some of its components, an
especially relevant issue in a scientific community where
developers might not be able to guarantee long-term sup-
port for their code. We highlight that a software ecosys-
tem might display the same dynamics that can be seen in
biological settings, including competition and extinction.
While a certain level of competition can result in code
improvements regarding feature coverage, efficiency, and
robustness, we caution that extreme competition might
undermine biodiversity. It is thus important to sustain
the work of individual developers who contribute to the
progress and maintenance of an active, heterogeneous,
and efficient ecosystem, encouraging measures to ensure
proper scientific recognition. More broadly, the challenge
will be to support the software development work, which
is crucial for the long-term maintenance and integration
of heterogeneous software packages.

We believe that a diverse, resilient, and open WF soft-
ware ecosystem is a major asset for the electronic struc-
ture community in its quest to understand, discover, and
design materials.
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Bloch, F (1929), “Über die Quantenmechanik der Elektronen
in Kristallgittern,” Zeitschrift für Physik 52, 555.

Blount, E I (1962), “Formalisms of band theory,” in Solid

State Phys., Vol. 13 (Elsevier) p. 305.
Boehnke, Lewin, Hartmut Hafermann, Michel Ferrero, Frank

Lechermann, and Olivier Parcollet (2011), “Orthogonal
polynomial representation of imaginary-time Green’s func-
tions,” Phys. Rev. B 84, 075145.

Borghi, Giovanni, Andrea Ferretti, Ngoc Linh Nguyen, Is-
maila Dabo, and Nicola Marzari (2014), “Koopmans-
compliant functionals and their performance against ref-
erence molecular data,” Phys. Rev. B 90, 075135.

Bosoni, Emanuele, Louis Beal, Marnik Bercx, Peter Blaha,
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A Kokalj, E Küçükbenli, M Lazzeri, M Marsili, N Marzari,
F Mauri, N L Nguyen, H-V Nguyen, A Otero de-la Roza,
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Häuselmann, Matthias Troyer, and Alexey A. Soluyanov
(2018), “Automated construction of symmetrized Wannier-
like tight-binding models from ab initio calculations,” Phys.
Rev. Mater. 2, 103805.

Groth, C W, M. Wimmer, A. R. Akhmerov, J. Tworzyd lo,
and C. W. J. Beenakker (2009), “Theory of the Topological
Anderson Insulator,” Phys. Rev. Lett. 103, 196805.

Groth, Christoph W, Michael Wimmer, Anton R Akhmerov,
and Xavier Waintal (2014), “Kwant: a software package for
quantum transport,” New J. Phys. 16 (6), 063065.

Gubernatis, J E, Mark Jarrell, R. N. Silver, and D. S. Sivia
(1991), “Quantum Monte Carlo simulations and maximum
entropy: Dynamics from imaginary-time data,” Phys. Rev.
B 44, 6011–6029.

Gunawardana, Thivan M, Ari M. Turner, and Ryan
Barnett (2023), “Optimally Localized Wannier Func-
tions for 2D Chern Insulators,” arXiv 2309.07242,
10.48550/arXiv.2309.07242.



42

Gygi, F (2008), “Architecture of Qbox: A scalable first-
principles molecular dynamics code,” IBM Journal of Re-
search and Development 52 (1.2), 137–144.

Gygi, François, Jean-Luc Fattebert, and Eric Schwegler
(2003), “Computation of Maximally Localized Wannier
Functions using a simultaneous diagonalization algorithm,”
Comput. Phys. Commun. 155 (1), 1–6.

Haldane, F D M (1988), “Model for a Quantum Hall Effect
without Landau Levels: Condensed-Matter Realization of
the “Parity Anomaly”,” Phys. Rev. Lett. 61, 2015–2018.

Hamann, D R, and David Vanderbilt (2009), “Maximally lo-
calized Wannier functions for GW quasiparticles,” Phys.
Rev. B 79, 045109.

Hariki, Atsushi, Takayuki Uozumi, and Jan Kuneš (2017),
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transition-metal dichalcogenide monolayers: Theoreti-
cal modeling and first-principles calculations,” Phys. Rev.
B 94, 085415.
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