

1 The role of tRNA identity elements in aminoacyl-tRNA editing

2 **Edwin Cruz and Oscar Vargas-Rodriguez**

3 Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine,
4 Farmington, CT, United States.

5 **Correspondence:**

6 vargasrodriguez@uchc.edu

7 **Keywords:** tRNA, mistranslation, translational fidelity, protein synthesis, aminoacyl-tRNA
8 synthetases, editing.

9 **Abstract**

10 The rules of the genetic code are implemented by the unique features that define the amino acid
11 identity of each transfer RNA (tRNA). These features, known as “identity elements”, mark tRNAs
12 for recognition by aminoacyl-tRNA synthetases (ARSs), the enzymes responsible for ligating amino
13 acids to tRNAs. While tRNA identity elements enable stringent substrate selectivity of ARSs, these
14 enzymes are prone to errors during amino acid selection, leading to the synthesis of incorrect
15 aminoacyl-tRNAs that jeopardize the fidelity of protein synthesis. Many error-prone ARSs have
16 evolved specialized domains that hydrolyze incorrectly synthesized aminoacyl-tRNAs. These
17 domains, known as editing domains, also exist as free-standing enzymes and, together with ARSs,
18 safeguard protein synthesis fidelity. Here, we discuss how the same identity elements that define
19 tRNA aminoacylation play an integral role in aminoacyl-tRNA editing, synergistically ensuring the
20 correct translation of genetic information into proteins. Moreover, we review the distinct strategies of
21 tRNA selection used by editing enzymes and ARSs to avoid undesired hydrolysis of correctly
22 aminoacylated tRNAs.

23 **1 Introduction**

24 Accurate translation of mRNAs into proteins requires the correct synthesis of aminoacyl-tRNAs (aa-
25 tRNAs). This reaction, known as tRNA aminoacylation or charging, is catalyzed by aminoacyl-tRNA
26 synthetases (ARSs), which ligate amino acids to tRNAs (Ibba and Soll, 2000). Errors in amino acid
27 or tRNA selection by ARSs lead to incorrectly synthesized aa-tRNAs (Figure 1A). Generally, ARSs
28 display a more robust specificity for their tRNA substrates than for amino acids. The relatively
29 weaker amino acid specificity is mainly due to the structural and chemical similarities shared by
30 many proteinogenic and non-proteinogenic amino acids (Ling et al., 2009a; Bullwinkle et al., 2014a;
31 Hoffman et al., 2017; Mohler and Ibba, 2017). As a result, many ARSs do not effectively discern
32 between cognate and near-cognate amino acid substrates. Prominent examples of tRNA mischarging
33 include threonyl-tRNA synthetase (ThrRS), which confuses Ser for Thr (Dock-Bregeon et al., 2000),
34 and isoleucyl-tRNA synthetase (IleRS), which mistakes Val for Ile (Berg et al., 1961). If uncorrected,
35 tRNA aminoacylation errors lead to the translation of codons with the wrong amino acid
36 (mistranslation), which can cause cellular dysregulation, growth defects, and death (Lee et al., 2006;
37 Nangle et al., 2006; Ling and Soll, 2010; Bullwinkle et al., 2014b; Cveticic et al., 2014; Liu et al.,
38 2014; Lu et al., 2014; Liu et al., 2015; Kelly et al., 2019; Lant et al., 2019; Zhang et al., 2021;
39 Schuntermann et al., 2023).

40 Due to their propensity to charge tRNAs with the wrong amino acid, ARSs acquired specialized
41 hydrolytic domains to “edit” their aa-tRNA products. These domains, known as “editing” domains,
42 catalyze the hydrolysis of mischarged tRNAs, ensuring that only correctly aminoacylated tRNAs
43 accumulate in the cell (Figure 1A). In addition to the editing domains embedded in ARSs (known as
44 *cis*-editing domains), aa-tRNA hydrolysis is catalyzed by standalone deacylases (known as *trans*-
45 editing domains) (Kuzmishin Nagy et al., 2020; Jani and Pappachan, 2022). *Cis*- and *trans*-editing
46 domains act as essential quality control checkpoints to maintain the integrity of the genetic code. The
47 importance of aa-tRNA editing is underscored by the negative phenotypes associated with defects in
48 editing domains (Lee et al., 2006; Nangle et al., 2006; Ling and Soll, 2010; Bullwinkle et al., 2014b;
49 Cvetescic et al., 2014; Liu et al., 2014; Lu et al., 2014; Liu et al., 2015; Kelly et al., 2019; Lant et al.,
50 2019; Zhang et al., 2021).

51 In contrast to amino acids, ARSs identify their tRNA substrates through an intricate set of structural
52 and sequence features unique to each tRNA (Schimmel et al., 1993; Giege et al., 1998; Giege and
53 Eriani, 2023). These tRNA features, collectively known as identity elements, promote faithful
54 interactions between tRNAs and ARSs, preventing ARSs from cross-reacting with noncognate
55 tRNAs. Notably, growing evidence indicates that many editing domains rely on the same tRNA
56 elements to gain aa-tRNA specificity and avoid hydrolysis of correctly aminoacylated tRNAs. This
57 tRNA specificity is crucial to elude unintended energy loss due to the depletion of correctly
58 aminoacylated tRNAs and to maintain adequate aa-tRNA supply for protein synthesis. More
59 importantly, the role of tRNA identity elements in aa-tRNA editing highlights how identity elements
60 secure the accurate translation of the genetic code.

61 2 tRNA identities

62 The elements that define the identity of tRNAs for a particular amino acid primarily reside in the
63 tRNA acceptor stem and the anticodon loop (Figure 1B) (Giege et al., 1998; Beuning and Musier-
64 Forsyth, 1999; Giege and Eriani, 2023). Positions 1, 72, and 73 in the acceptor stem, and 35 and 36
65 in the anticodon are major contributors to tRNA selection. These elements act as an operational code
66 to mark tRNAs for aminoacylation by a specific ARS (Schimmel et al., 1993; Ribas de Pouplana and
67 Schimmel, 2001). Identity elements in the acceptor stem are generally recognized in the
68 aminoacylation site of ARSs, whereas dedicated anticodon binding domains mediate the recognition
69 of tRNA anticodon elements. tRNA identity elements are typically conserved within a single domain
70 of life. However, with few exceptions, they diverge across domains of life (Lin et al., 2019). For
71 example, the operational code for aminoacylation of tRNA^{Pro} diverged during evolution from G72
72 and A73 in bacteria to C72/A73 and C72/C73 in archaea and eukaryotes, respectively (Liu et al.,
73 1995; Stehlin et al., 1998; Burke et al., 2001). These changes in tRNA^{Pro} were accompanied by
74 changes in the selection mechanism of prolyl-tRNA synthetase (ProRS), preventing cross-reaction
75 between ProRS and tRNA^{Pro} from different domains of life (Stehlin et al., 1998; Burke et al., 2001).
76 Similar changes in the operational code of other tRNAs are known (Giege and Eriani, 2023).

77 3 The diversity of editing domains

78 Seven ARS families have editing domains to proofread aa-tRNA synthesis, whereas five families and
79 superfamilies of *trans*-editing domains are currently known (Figure 2) (Kuzmishin Nagy et al., 2020;
80 Jani and Pappachan, 2022). In most cases, *trans*-editing domains are evolutionarily related to the
81 editing domains of ARSs, sharing structural homology and, sometimes, substrate specificity. *Trans*-
82 and *cis*-editing domains employ diverse mechanisms of substrate selection, which can involve unique
83 characteristics of the amino acid side chain or tRNA features. Most editing domains use steric

84 exclusion and/or chemical mechanisms to differentiate aminoacyl moieties of aa-tRNAs.
85 Consequently, they tend to display relaxed amino acid specificities. For example, bacterial ProXp-
86 ala, a *trans*-editing domain, hydrolyzes Ala- and Ser-tRNA with similar efficiency (Danhart et al.,
87 2017). In contrast to their aminoacyl moiety selectivity, both *trans*- and *cis*-editing domains, with
88 some exceptions, exhibit more robust tRNA specificities. The tRNA selectivity of editing enzymes
89 can be mediated via direct or indirect interactions. These mechanisms of tRNA recognition are
90 discussed in the following section.

91 **4 Identity elements in aminoacyl-tRNA editing**

92 Accurate recognition of mischarged tRNAs by editing enzymes is essential to avoid deacylation of
93 correctly aminoacylated tRNAs. Because aa-tRNA synthesis requires an ATP molecule,
94 indiscriminate hydrolysis of correctly charged tRNA by editing enzymes would be energetically
95 costly and could impact cell growth and homeostasis by decreasing the available pool of aa-tRNAs
96 for protein synthesis. As discussed in the following subsections, editing domains have evolved
97 distinct mechanisms of substrate selection that ensure hydrolysis of the incorrect aa-tRNAs. Notably,
98 in many cases, the same tRNA identity elements that define aminoacylation are used to gain
99 specificity during editing (**Figure 1C**). However, lacking tRNA specificity in other cases may offer a
100 functional advantage in acting on diverse mischarged tRNA substrates emerging from different
101 ARSs.

102 **4.1 ARS editing domains**

103 **4.1.1 Alanyl-tRNA synthetase (AlaRS)**

104 AlaRS erroneously synthesizes Ser- and Gly-tRNA^{Ala}. The appended editing domain of AlaRS is
105 responsible for clearing these mischarged products (Figure 2A) (Beebe et al., 2003). The editing
106 domain relies on the almost universally conserved wobble base pair G3:U70 to recognize tRNA^{Ala}
107 (Beebe et al., 2008). G3:U70 is also indispensable for tRNA aminoacylation by AlaRS (Hou and
108 Schimmel, 1988; McClain and Foss, 1988). Thus, a single base pair defines tRNA^{Ala} aminoacylation
109 and editing. How the aa-tRNA^{Ala} substrate is transferred from the aminoacylation site to the editing
110 domain remains unknown. Channeling the aa-tRNA^{Ala} between the two active sites would require
111 substantial structural rearrangement of AlaRS to bring the editing domain closer to the
112 aminoacylation domain and prevent complete dissociation of the tRNA (Naganuma et al., 2014). The
113 C-Ala domain could facilitate the movement of the tRNA between the two domains (Guo et al.,
114 2009). Alternatively, the editing domain could bind the tRNA after being released from the
115 aminoacylation domain. Biochemical and biophysical characterization and structural studies are
116 needed to determine the molecular mechanism of aa-tRNA selection by the editing domain of AlaRS.

117 **4.1.2 ThrRS**

118 Most ThrRSs encode a dedicated editing domain that deacylates Ser-tRNA^{Thr} produced in the
119 aminoacylation domain (Dock-Bregeon et al., 2000; Beebe et al., 2004; Korencic et al., 2004). The
120 editing domain is located at the N-terminus of ThrRS and exhibits evolutionary differences.
121 Eukaryotic and bacterial ThrRS have a structurally similar editing domain known as the N2 (Figure
122 2A). In contrast, the archaeal ThrRS possesses an editing domain structurally homologous to D-
123 aminoacyl-tRNA deacylases (DTD) (Dwivedi et al., 2005; Hussain et al., 2006). Notably, while the
124 N2 and DTD-like domains effectively hydrolyze Ser-tRNA^{Thr}, they display distinct tRNA selectivity.
125 For example, the N2 editing domain of *E. coli* ThrRS indiscriminately deacylates bacterial and
126 archaeal Ser-tRNA^{Thr}. In contrast, the DTD-like domain of ThrRS from the archaeon *Methanosarcina*
127 *mazei* only hydrolyzes archaeal Ser-tRNA^{Thr} (Beebe et al., 2004). Similarly, the editing domain of

128 *Pyrococcus abyssi* ThrRS was shown to recognize Ser-tRNA^{Thr} while discriminating against other
129 Ser-tRNA substrates (Novoa et al., 2015). These observations suggest that the tRNA specificity of
130 the archaeal ThrRS editing domain may rely on the identity of position 73 (Beebe et al., 2004; Novoa
131 et al., 2015), a conserved U73 in archaeal tRNA^{Thr}. In contrast, the same position is variable in
132 bacterial and eukaryotic tRNA^{Thr}, consisting of A73 or U73 (Lin et al., 2019). Therefore, the N2
133 domain may have evolved a relaxed specificity that enables deacylation of tRNA^{Thr} with U73 and
134 A73. This relaxed specificity towards N73 is also observed in the aminoacylation of bacterial and
135 eukaryotic tRNA^{Thr} (Hasegawa et al., 1992; Nameki, 1995). In archaea, the role of N73 in
136 aminoacylation is species-specific, with some species lacking N73 specificity (e.g., *Halofexax*
137 *volcanii*) and others (e.g., *Aeropyrum pernix*) strongly depending on U73 (Ishikura et al., 2000;
138 Nagaoka et al., 2002). Consequently, a weak correlation exists between editing and aminoacylation
139 of tRNA^{Thr} in the context of N73. In contrast to N73, the anticodon bases play a more important and
140 conserved role in tRNA^{Thr} aminoacylation (Giege and Eriani, 2023). Although direct evidence of the
141 importance of the anticodon bases in editing is not available, a model based on *E. coli* ThrRS
142 suggests that tRNA^{Thr} is held by the ThrRS anticodon binding domain, facilitating the CCA-end
143 repositioning from the aminoacylation site to the editing domain (Dock-Bregeon et al., 2004).
144 Whether the DTD-like editing domain of archaeal ThrRS uses a similar mechanism and how it
145 recognizes the U73 is unknown.

146 4.1.3 Phenylalanyl-tRNA synthetase (PheRS)

147 The editing activity of PheRS resides in the B3/B4 domain of the β -subunit of the enzyme's
148 heterodimer (Figure 2A). The B3/B4 domain clears aminoacylation errors involving Tyr and *meta*-
149 Tyr (Roy et al., 2004; Bullwinkle et al., 2014b). This activity of PheRS is essential for preventing
150 mistranslation of Phe codons and maintaining cellular homeostasis. While a detailed investigation of
151 its tRNA specificity is missing, the activity of the PheRS editing domain is affected by changes in the
152 anticodon, as demonstrated by the lack of deacylation of a tRNA^{Phe} G34A mutant (Ling et al.,
153 2009b). Because G34 is an essential element for aminoacylation (Peterson and Uhlenbeck, 1992;
154 Ling et al., 2009b), this result supports a 3'-end translocation model similar to ThrRS N2 editing, in
155 which the anticodon binding domain provides indirect specificity to the editing by holding the tRNA
156 and enabling the transfer of the 3'-end from the aminoacylation site to the editing site (Roy et al.,
157 2004). Whether elements in the acceptor stem or other tRNA regions are directly recognized by the
158 B3/B4 domain of PheRS requires further investigation.

159 4.1.4 ProRS

160 ProRS exists in different structural isoforms. In bacteria, the predominant ProRS isoform encodes an
161 editing domain known as the insertion (INS) domain (Figure 2A). The INS domain catalyzes the
162 deacylation of Ala-tRNA^{Pro}, which is incorrectly synthesized in the aminoacylation domain of
163 ProRS. To avoid deacylation of cognate Ala-tRNA^{Ala}, the INS domain relies on the anticodon
164 binding domain (ABD) of ProRS. The ABD offers specificity by interacting with the unique tRNA^{Pro}
165 anticodon bases G35 and G36 (Das et al., 2014). These bases also serve as identity elements for
166 aminoacylation (Liu et al., 1995; Stehlin et al., 1998). Changes in the identity of these bases prevent
167 the binding of ProRS to the tRNA, impeding tRNA aminoacylation and deacylation. In contrast,
168 mutations in the acceptor stem of tRNA^{Pro} are inconsequential for the catalysis of the INS domain.
169 The role of the anticodon sequence in ProRS editing is further supported by the deacylation of Ala-
170 tRNA^{Ala} mutants with a Pro UGG anticodon (Das et al., 2014). The dependency of the INS domain
171 on the anticodon bases suggests that the ProRS ABD anchors the tRNA, enabling the translocation of
172 the tRNA's 3'-CCA end for editing. However, the molecular basis of this process remains poorly
173 understood.

174 **4.1.5 IleRS, LeuRS, and ValRS**

175 IleRS, leucyl-tRNA synthetase (LeuRS), and valyl-tRNA synthetase (ValRS) share an evolutionarily
176 related editing domain called CP1 (connecting peptide 1) (Figure 2A). However, the aa-tRNA
177 specificity of each CP1 corresponds to the amino acid(s) mischarged by each ARS. IleRS's CP1
178 catalyzes Val- and Cys-tRNA deacylation, whereas LeuRS's editing domain hydrolyzes Ile- and Nva
179 (norvaline)-tRNA, and ValRS edits Thr- and Abu (α -aminobutyrate)-tRNA (Baldwin and Berg,
180 1966; Englisch et al., 1986; Lin et al., 1996; Döring et al., 2001; Mursinna et al., 2004; Cvetescic et
181 al., 2014). In addition to their different CP1 substrate specificities, these ARSs use distinct selection
182 strategies for tRNA aminoacylation. IleRS and ValRS rely on anticodon bases and position 73, while
183 LeuRS uses A73 and the unique long variable stem-loop of tRNA^{Leu} (Giege and Eriani, 2023).

184 For editing by ValRS's CP1, A73, A35, and C36 are crucial, while other elements like the U4:A69,
185 the anticodon stem U29:A41 base pair, and the core nucleotide G45 moderately contribute to editing
186 (Tardif and Horowitz, 2002). The ValRS CP1's reliance on the anticodon bases suggests that the
187 ABD facilitates the CCA-end translocation between the aminoacylation and editing sites. The
188 ValRS-tRNA complex supports this model (Fukai et al., 2000). Similarly, some overlap between
189 elements for aminoacylation and editing has been established for LeuRS, albeit with antagonistic
190 evidence emerging from two bacterial LeuRS models. For *E. coli* LeuRS, the interaction between
191 G19 in the D-loop and C56 in the T-loop serves as a critical element for aminoacylation and editing
192 (Du and Wang, 2003). However, LeuRS from *Aquifex aeolicus*, a deep-branching bacterium, may
193 lack robust tRNA specificity for editing as it effectively edits Thr, Val, and Ile from different tRNA
194 substrates (Zhu et al., 2007). Nonetheless, the anticodon stem-loop may contribute to transferring the
195 tRNA acceptor stem from the aminoacylation to the editing site, as a mutation of A35 in tRNA^{Leu}
196 mildly decreases editing (Yao et al., 2008). Structural evidence of LeuRS suggests that the anticodon
197 binding domain holds the tRNA in place while the CCA-end moves from the aminoacylation state to
198 the CP1 domain (Tukalo et al., 2005; Palencia et al., 2012). However, how changes in the tRNA
199 anticodon influence LeuRS editing activity remains unclear.

200 Unlike ValRS and LeuRS, IleRS editing requires nucleotides that are different from those needed for
201 aminoacylation. Nucleotides 16, 20, and 21 in the D-loop are the principal features that facilitate
202 editing by *E. coli* IleRS CP1 (Hale et al., 1997). However, a mutant tRNA^{Ile} G16C/ Δ 20/U21G
203 tRNA^{Ile} is deacylated with similar efficiency as wild-type (Farrow et al., 1999). These discrepancies
204 suggest that D-loop bases influence the transfer of the tRNA but not the chemical step of deacylation
205 (Farrow et al., 1999; Nomanbhoy et al., 1999). Notably, the crystal structure of IleRS bound to the
206 tRNA in an editing conformation did not reveal direct interactions between IleRS and the tRNA D-
207 loop (Silvian et al., 1999). Thus, additional biochemical and structural insights are needed to clarify
208 the tRNA specificity of the IleRS CP1 domain, and how the aa-tRNA^{Ile} traffics between the two
209 IleRS active sites is unknown. This could explain if a direct role of identity elements in editing exists.

210 **4.2 Trans-editing domains**

211 In contrast to ARSs, *trans*-editing domains generally lack dedicated RNA binding domains (Figure
212 2B). Nonetheless, several of these enzyme families have developed tRNA specificities based on
213 recognizing tRNA acceptor stem elements. This recognition may be mediated in the same catalytic
214 domain.

215 **4.2.1 INS superfamily**

216 In addition to the INS domain of ProRS, the INS superfamily groups eight families of *trans*-editing
217 domains, YbaK, ProXp-ala, ProXp-x, ProXp-ST1, ProXp-ST2, ProXp-7, ProXp-8, and ProXp-9

218 (Vargas-Rodriguez and Musier-Forsyth, 2013; Kuzmishin Nagy et al., 2020). Most INS superfamily
219 members are found in bacteria, but each family's phylogenetic distribution pattern is unique. For
220 example, ProXp-ala is found in all domains of life, whereas YbaK is present only in bacteria. Except
221 for the INS domain, INS superfamily members are single-domain proteins. Interestingly, while these
222 enzymes share high structural homologies and active site features, they display a wider range of aa-
223 tRNA specificities catalyzed by several aaRSs. These deacylases also display distinct mechanisms of
224 substrate selection, including tRNA recognition. In the following subsections, each family's activities
225 and tRNA specificities are described, except for ProXp-7, ProXp-8, and ProXp-9, whose functions
226 remain unknown (Kuzmishin Nagy et al., 2020).

227 **4.2.1.1 YbaK**

228 YbaK is responsible for the deacylation of Cys-tRNA^{Pro} produced by ProRS (Ahel et al., 2002; An
229 and Musier-Forsyth, 2004; Ruan and Söll, 2005). YbaK uses thiol-specific chemistry for Cys
230 recognition and catalysis (Kumar et al., 2013). However, YbaK lacks robust tRNA selectivity, which
231 results in the deacylation of Cys-tRNA^{Cys} *in vitro* (An and Musier-Forsyth, 2005; Ruan and Söll,
232 2005; Das et al., 2014; Chen et al., 2019). In a cellular context, YbaK may gain indirect substrate
233 specificity by forming a YbaK-tRNA-ProRS ternary complex that allows shuttling of Cys-tRNA^{Pro}
234 from ProRS to YbaK, avoiding interaction with Cys-tRNA^{Cys} (An and Musier-Forsyth, 2005; Chen et
235 al., 2019). Additionally, the elongation factor Tu protects Cys-tRNA^{Cys} from YbaK but not Cys-
236 tRNA^{Pro}. How Cys-tRNA^{Pro} transitions from ProRS to YbaK is unknown.

237 **4.2.1.2 ProXp-ala**

238 **ProXp-ala shares the same activity with the ProRS INS domain** (Ahel et al., 2003; Vargas-Rodriguez
239 and Musier-Forsyth, 2013). However, unlike the INS domain, ProXp-ala has a robust selectivity for
240 tRNA^{Pro} based on the acceptor stem bases N72 and N73, **which corresponds to G72 and A73 in
241 bacteria and C72 and C73 in eukaryotes** (Vargas-Rodriguez and Musier-Forsyth, 2013; Das et al.,
242 2014; Ma et al., 2023). ProXp-ala's specificity prevents cross-reaction with Ala-tRNA^{Ala}.
243 Remarkably, ProXp-ala retained its tRNA^{Pro} specificity during evolution from bacteria to eukaryotes,
244 adapting to changes in the identity of the N72 and N73 bases (Vargas-Rodriguez et al., 2020).
245 ProXp-ala is also found fused to the N terminus of ProRS (lacking an INS domain) in lower
246 eukaryotes from the *Stramenopila*, *Aveolates*, and *Rhizaria* supergroups **and the *Leishmania* and
247 *Trypanosoma* genera** (Ahel et al., 2003; Vargas-Rodriguez et al., 2020; Parrot et al., 2021). Evidence
248 suggests that the ProRS-fused ProXp-ala can discriminate against Ala-tRNA^{Ala} (Figure 2B) (Ahel et
249 al., 2003). **In plants, ProXp-ala contains a unique C-terminal domain (CTD) that contributes to the
250 enzyme's tRNA binding affinity** (Figure 2B) (Byun et al., 2022). However, the mechanism of
251 substrate selection still needs to be determined for the ProXp-ala-ProRS fusion **and plant ProXp-ala**.

252 **4.2.1.3 ProXp-x**

253 ProXp-x deacylates tRNAs charged with the nonproteinogenic amino acid Abu, **and to a lesser
254 extent, Ala-tRNA^{Pro}** (Bacusmo et al., 2018). ProXp-x prefers tRNA substrates carrying an A73,
255 allowing it to recognize different Abu-tRNA substrates. This characteristic of ProXp-x is critical
256 because ProRS, ValRS, LeuRS, and IleRS mischarge Abu (Döring et al., 2001; Nangle et al., 2002;
257 Cvetesic et al., 2014; Bacusmo et al., 2018). Therefore, ProXp-x prevents broad mistranslation of the
258 genetic code with Abu.

259 **4.2.1.4 ProXp-ST1 and ProXp-ST2**

260 ProXp-ST1 and ProXp-ST2 are homologous deacylases that catalyze the hydrolysis of Ser- and Thr-
261 tRNAs (Liu et al., 2015). Both enzymes display broad tRNA specificity, recognizing diverse tRNAs,
262 including tRNA^{Val}, tRNA^{Ile}, tRNA^{Thr}, tRNA^{Ala}, and tRNA^{Lys}, all of which are mischarged with either
263 Ser or Thr by the corresponding ARS (Jakubowski, 2012; Liu et al., 2015). Thus, the broad tRNA
264 specificity of ProXp-ST1 and ProXp-ST2 prevents mistranslation caused by Ser and Thr
265 mischarging. Despite their overlapping substrate specificities, only ProXp-ST2 has developed direct
266 tRNA recognition based on A73. This bias for tRNAs with A73 prevents hydrolysis of Ser-tRNA^{Ser}
267 due to the G73 of tRNA^{Ser} (Liu et al., 2015). ProXp-ST1 is indifferent to the identity of N73, but
268 whether it hydrolyzes Ser-tRNA^{Ser} is unknown. Because tRNA^{Thr} has an A73, ProXp-ST1 and
269 ProXp-ST2 can efficiently hydrolyze Thr-tRNA^{Thr} *in vitro*. However, ThrRS effectively prevents
270 Thr-tRNA^{Thr} from both enzymes, offering a mechanism that protects correctly aminoacylated
271 tRNA^{Thr} (Liu et al., 2015). **A ProXp-ST1-related deacylase, FthB, that hydrolyzes fluorothreonyl-tRNA^{Thr} also exists, but little is known about its tRNA specificity** (McMurry and Chang, 2017).

273 **4.2.2 AlaXp**

274 Like the AlaRS editing domain, AlaXp hydrolyzes Ser- and Gly-tRNA^{Ala} (Ahel et al., 2003; Sokabe
275 et al., 2005; Fukunaga and Yokoyama, 2007; Beebe et al., 2008; Chong et al., 2008). AlaXp and the
276 editing domain of AlaRS share high structural and sequence homology and possibly emerged from a
277 common ancestor (Sokabe et al., 2005; Fukunaga and Yokoyama, 2007; Guo et al., 2009). AlaXp
278 exists in three distinct isoforms classified based on their sequence length (Beebe et al., 2008; Novoa
279 et al., 2015). While AlaXp-L and AlaXp-M are functionally identical, AlaXp-S only hydrolyzes Ser-
280 tRNA^{Ala} (Sokabe et al., 2005). Moreover, AlaXp-L and AlaXp-M exhibit tRNA selectivity, achieved
281 via recognition of the G3:U70 base pair that defines the identity of tRNA^{Ala} (Beebe et al., 2008). In
282 contrast, AlaXp-S lacks tRNA specificity (Novoa et al., 2015). AlaXp-S is considered an ancestral
283 version of the AlaXp family. Thus, AlaXp may have been a general aa-tRNA deacylase that
284 gradually evolved tRNA specificity. A single Arg residue may determine the tRNA specificity of
285 AlaXp (Novoa et al., 2015).

286 **4.2.3 D-aminoacyl-tRNA deacylase (DTD)**

287 DTDs prevent the cellular accumulation of D-aa-tRNAs stemming from several ARSs (Calendar and
288 Berg, 1967; Soutourina et al., 2000). Three distinct DTD isoforms are found in organisms from all
289 domains of life: DTD1 in most bacteria and eukaryotes, DTD2 in plants and archaea, and DTD3 in
290 cyanobacteria (Kumar et al., 2022). Bacterial DTD requires a purine (A/G) in position 73 for
291 effective aa-tRNA deacylation (Kuncha et al., 2018b). The specificity of bacterial DTD enables
292 deacylation of several tRNA substrates while preventing deacylation of Gly-tRNA^{Gly}, which has a
293 conserved U73 in bacteria (Routh et al., 2016). Interestingly, N73 evolved from U to A73 in
294 cytosolic tRNA^{Gly}. This change in the identity of N73 prompted a switch in the tRNA specificity of
295 eukaryotic DTD1, which prefers pyrimidine instead of purine (Gogoi et al., 2022). **Whether the**
296 **identity of N73 plays a role in the deacylation of D-aa-tRNAs is yet to be determined.**

297 In addition to D-aa-tRNAs, **bacterial** DTD can inherently deacylate the achiral Gly from tRNA^{Ala}
298 (Pawar et al., 2017). **Bacterial** DTD selects tRNA^{Ala} based on the G3:U70 and A73, which are
299 essential for tRNA^{Ala} aminoacylation by AlaRS (Hou and Schimmel, 1988; McClain and Foss, 1988;
300 Pawar et al., 2017). Finally, the Animalia-specific tRNA deacylase (ATD), a DTD paralog that
301 hydrolyzes Ala-tRNA^{Thr} synthesized by AlaRS, may use G4:U69 and U73 for tRNA selection. The
302 G4:U69 of tRNA^{Thr} enables mischarging by AlaRS (Sun et al., 2016; Kuncha et al., 2018a).

303 **5 Outlook**

304 Despite the strong correlation between the role of identity elements in tRNA editing and
305 aminoacylation, our overall knowledge is limited. The tRNA specificities of several editing enzymes
306 are unknown or poorly understood. For example, whether the B3/B4 domain of PheRS relies on
307 tRNA acceptor stem is still unknown. The lack of molecular tools to prepare aa-tRNA substrates has
308 significantly contributed to our poor understanding of the relationship between identity elements and
309 editing. Producing mischarged tRNA variants using ARSs is challenging because mutating identity
310 elements results in poor aminoacylation. Most available data for the tRNA specificity determination
311 of CP1 domains are based on ATP consumption assays (Farrow et al., 1999; Tardif and Horowitz,
312 2002; Du and Wang, 2003; Zhu et al., 2007). This method integrates the effect of tRNA mutations in
313 aminoacylation and editing. Thus, establishing the direct contribution of tRNA elements to editing
314 can be intricate because the same elements can impact aminoacylation. The development of
315 flexizyme technology now offers a powerful tool to investigate the role of identity elements in aa-
316 tRNA editing (Murakami et al., 2006). This catalytic RNA ligates virtually any amino acid to tRNAs
317 regardless of their sequence. Thus, it enables the preparation of diverse aa-tRNA mutant substrates to
318 examine identity elements in the context of editing comprehensively (Das et al., 2014; Liu et al.,
319 2015; Novoa et al., 2015; Danhart et al., 2017; Vargas-Rodriguez et al., 2020; Watkins et al., 2024).
320 Adopting flexizyme can help establish and clarify the substrate specificities of **many cis- and trans-**
321 **editing enzymes from diverse species and across domains of life.** Ultimately, this will expand our
322 understanding of the dual role of identity elements in editing and aminoacylation, which, in turn, can
323 provide novel insights into the contribution of editing enzymes to the establishment of the genetic
324 code (Beebe et al., 2003).

325 **6 Conflict of Interest**

326 *The authors declare that the manuscript was prepared in the absence of any commercial or financial
327 relationships that could be construed as a potential conflict of interest.*

328 **7 Author Contributions**

329 EC and OV-R wrote and edited the manuscript.

330 **8 Funding**

331 Work in the Vargas-Rodriguez laboratory is partly supported by a National Science Foundation grant
332 (IOS-2304710 to O. V-R.).

333 **9 Acknowledgments**

334 We thank members of the Vargas-Rodriguez lab for critically reading the manuscript.

335 **10 References**

336 Ahel, I., Korencic, D., Ibba, M., and Söll, D. (2003). Trans-editing of mischarged tRNAs. *Proc Natl
337 Acad Sci U S A* 100(26), 15422-15427. doi: 10.1073/pnas.2136934100.

338 Ahel, I., Stathopoulos, C., Ambrogelly, A., Sauerwald, A., Toogood, H., Hartsch, T., et al. (2002).
339 Cysteine activation is an inherent in vitro property of prolyl-tRNA synthetases. *J Biol Chem*
340 277(38), 34743-34748. doi: 10.1074/jbc.M206928200.

341 An, S., and Musier-Forsyth, K. (2004). Trans-editing of Cys-tRNAPro by *Haemophilus influenzae*
342 YbaK protein. *J Biol Chem* 279(41), 42359-42362. doi: 10.1074/jbc.C400304200.

343 An, S., and Musier-Forsyth, K. (2005). Cys-tRNA(Pro) editing by *Haemophilus influenzae* YbaK via
344 a novel synthetase. YbaK.tRNA ternary complex. *J Biol Chem* 280(41), 34465-34472. doi:
345 10.1074/jbc.M507550200.

346 Bacusmo, J.M., Kuzmishin, A.B., Cantara, W.A., Goto, Y., Suga, H., and Musier-Forsyth, K. (2018).
347 Quality control by trans-editing factor prevents global mistranslation of non-protein amino
348 acid α -aminobutyrate. *RNA Biol* 15(4-5), 576-585. doi: 10.1080/15476286.2017.1353846.

349 Baldwin, A.N., and Berg, P. (1966). Transfer ribonucleic acid-induced hydrolysis of valyladenylate
350 bound to isoleucyl ribonucleic acid synthetase. *J Biol Chem* 241(4), 839-845.

351 Beebe, K., Merriman, E., Ribas De Pouplana, L., and Schimmel, P. (2004). A domain for editing by
352 an archaeabacterial tRNA synthetase. *Proc Natl Acad Sci U S A* 101(16), 5958-5963. doi:
353 10.1073/pnas.0401530101.

354 Beebe, K., Mock, M., Merriman, E., and Schimmel, P. (2008). Distinct domains of tRNA synthetase
355 recognize the same base pair. *Nature* 451(7174), 90-93. doi: 10.1038/nature06454.

356 Beebe, K., Ribas De Pouplana, L., and Schimmel, P. (2003). Elucidation of tRNA-dependent editing
357 by a class II tRNA synthetase and significance for cell viability. *Embo J* 22(3), 668-675. doi:
358 10.1093/emboj/cdg065.

359 Berg, P., Bergmann, F.H., Ofengand, E., and Dieckmann, M. (1961). The enzymic synthesis of
360 amino acyl derivatives of ribonucleic acid: I. The mechanism of leucyl-, valyl-, isoleucyl-,
361 and methionyl ribonucleic acid formation. *Journal of Biological Chemistry* 236(6), 1726-
362 1734.

363 Beuning, P.J., and Musier-Forsyth, K. (1999). Transfer RNA recognition by aminoacyl-tRNA
364 synthetases. *Biopolymers* 52(1), 1-28. doi: 10.1002/(sici)1097-0282(1999)52:1<1::Aid-
365 bip1>3.0.Co;2-w.

366 Bullwinkle, T., Lazazzera, B., and Ibba, M. (2014a). Quality control and infiltration of translation by
367 amino acids outside of the genetic code. *Annu Rev Genet* 48, 149-166. doi: 10.1146/annurev-
368 genet-120213-092101.

369 Bullwinkle, T.J., Reynolds, N.M., Raina, M., Moghal, A., Matsa, E., Rajkovic, A., et al. (2014b).
370 Oxidation of cellular amino acid pools leads to cytotoxic mistranslation of the genetic code.
371 *Elife* 3. doi: 10.7554/eLife.02501.

372 Burke, B., Lipman, R.S., Shiba, K., Musier-Forsyth, K., and Hou, Y.M. (2001). Divergent adaptation
373 of tRNA recognition by *Methanococcus jannaschii* prolyl-tRNA synthetase. *J Biol Chem*
374 276(23), 20286-20291. doi: 10.1074/jbc.m100456200.

375 Byun, J.K., Vu, J.A., He, S.L., Jang, J.C., and Musier-Forsyth, K. (2022). Plant-exclusive domain of
376 trans-editing enzyme ProXp-ala confers dimerization and enhanced tRNA binding. *J Biol
377 Chem* 298(9), 102255. doi: 10.1016/j.jbc.2022.102255.

378 Calendar, R., and Berg, P. (1967). D-Tyrosyl RNA: formation, hydrolysis and utilization for protein
379 synthesis. *J Mol Biol* 26(1), 39-54. doi: 10.1016/0022-2836(67)90259-8.

380 Chen, L., Tanimoto, A., So, B.R., Bakhtina, M., Magliery, T.J., Wysocki, V.H., et al. (2019).
381 Stoichiometry of triple-sieve tRNA editing complex ensures fidelity of aminoacyl-tRNA
382 formation. *Nucleic Acids Res* 47(2), 929-940. doi: 10.1093/nar/gky1153.

383 Chong, Y.E., Yang, X.L., and Schimmel, P. (2008). Natural homolog of tRNA synthetase editing
384 domain rescues conditional lethality caused by mistranslation. *J Biol Chem* 283(44), 30073-
385 30078. doi: 10.1074/jbc.M805943200.

386 Cvetesic, N., Palencia, A., Halasz, I., Cusack, S., and Gruic-Sovulj, I. (2014). The physiological
387 target for LeuRS translational quality control is norvaline. *Embo J* 33(15), 1639-1653. doi:
388 10.15252/embj.201488199.

389 Danhart, E.M., Bakhtina, M., Cantara, W.A., Kuzmishin, A.B., Ma, X., Sanford, B.L., et al. (2017).
390 Conformational and chemical selection by a trans-acting editing domain. *Proc Natl Acad Sci
391 USA* 114(33), E6774-E6783. doi: 10.1073/pnas.1703925114.

392 Das, M., Vargas-Rodriguez, O., Goto, Y., Suga, H., and Musier-Forsyth, K. (2014). Distinct tRNA
393 recognition strategies used by a homologous family of editing domains prevent
394 mistranslation. *Nucleic Acids Res* 42(6), 3943-3953. doi: 10.1093/nar/gkt1332.

395 Dock-Bregeon, A., Sankaranarayanan, R., Romby, P., Caillet, J., Springer, M., Rees, B., et al. (2000).
396 Transfer RNA-mediated editing in threonyl-tRNA synthetase. The class II solution to the
397 double discrimination problem. *Cell* 103(6), 877-884. doi: 10.1016/s0092-8674(00)00191-4.

398 Dock-Bregeon, A.C., Rees, B., Torres-Larios, A., Bey, G., Caillet, J., and Moras, D. (2004).
399 Achieving error-free translation; the mechanism of proofreading of threonyl-tRNA synthetase
400 at atomic resolution. *Mol Cell* 16(3), 375-386. doi: 10.1016/j.molcel.2004.10.002.

401 Döring, V., Mootz, H.D., Nangle, L.A., Hendrickson, T.L., de Crécy-Lagard, V., Schimmel, P., et al.
402 (2001). Enlarging the amino acid set of *Escherichia coli* by infiltration of the valine coding
403 pathway. *Science* 292(5516), 501-504. doi: 10.1126/science.1057718.

404 Du, X., and Wang, E.D. (2003). Tertiary structure base pairs between D- and T ψ C-loops of
405 *Escherichia coli* tRNA^{Leu} play important roles in both aminoacylation and editing. *Nucleic
406 Acids Res* 31(11), 2865-2872. doi: 10.1093/nar/gkg382.

407 Dwivedi, S., Kruparani, S.P., and Sankaranarayanan, R. (2005). A D-amino acid editing module
408 coupled to the translational apparatus in archaea. *Nat Struct Mol Biol* 12(6), 556-557. doi:
409 10.1038/nsmb943.

410 Englisch, S., Englisch, U., von der Haar, F., and Cramer, F. (1986). The proofreading of hydroxy
411 analogues of leucine and isoleucine by leucyl-tRNA synthetases from *E. coli* and yeast.
412 *Nucleic Acids Res* 14(19), 7529-7539. doi: 10.1093/nar/14.19.7529.

413 Farrow, M.A., Nordin, B.E., and Schimmel, P. (1999). Nucleotide determinants for tRNA-dependent
414 amino acid discrimination by a class I tRNA synthetase. *Biochemistry* 38(51), 16898-16903.
415 doi: 10.1021/bi9920782.

416 Fukai, S., Nureki, O., Sekine, S., Shimada, A., Tao, J., Vassylyev, D.G., et al. (2000). Structural basis
417 for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the
418 complex of tRNA(Val) and valyl-tRNA synthetase. *Cell* 103(5), 793-803. doi:
419 10.1016/s0092-8674(00)00182-3.

420 Fukunaga, R., and Yokoyama, S. (2007). Structure of the AlaX-M trans-editing enzyme from
421 *Pyrococcus horikoshii*. *Acta Crystallogr D Biol Crystallogr* 63(Pt 3), 390-400. doi:
422 10.1107/s090744490605640x.

423 Giege, R., and Eriani, G. (2023). The tRNA identity landscape for aminoacylation and beyond.
424 *Nucleic Acids Res* 51(4), 1528-1570. doi: 10.1093/nar/gkad007.

425 Giege, R., Sissler, M., and Florentz, C. (1998). Universal rules and idiosyncratic features in tRNA
426 identity. *Nucleic Acids Res* 26(22), 5017-5035. doi: 10.1093/nar/26.22.5017.

427 Gogoi, J., Bhatnagar, A., Ann, K.J., Pottabathini, S., Singh, R., Mazeed, M., et al. (2022). Switching
428 a conflicted bacterial DTD-tRNA code is essential for the emergence of mitochondria. *Sci
429 Adv* 8(2), eabj7307. doi: 10.1126/sciadv.abj7307.

430 Guo, M., Chong, Y.E., Beebe, K., Shapiro, R., Yang, X.L., and Schimmel, P. (2009). The C-Ala
431 domain brings together editing and aminoacylation functions on one tRNA. *Science*
432 325(5941), 744-747. doi: 10.1126/science.1174343.

433 Hale, S.P., Auld, D.S., Schmidt, E., and Schimmel, P. (1997). Discrete determinants in transfer RNA
434 for editing and aminoacylation. *Science* 276(5316), 1250-1252. doi:
435 10.1126/science.276.5316.1250.

436 Hasegawa, T., Miyano, M., Himeno, H., Sano, Y., Kimura, K., and Shimizu, M. (1992). Identity
437 determinants of *E. coli* threonine tRNA. *Biochem Biophys Res Commun* 184(1), 478-484. doi:
438 10.1016/0006-291X(92)91219-g.

439 Hoffman, K.S., O'Donoghue, P., and Brandl, C.J. (2017). Mistranslation: from adaptations to
440 applications. *Biochim Biophys Acta Gen Subj* 1861(11 Pt B), 3070-3080. doi:
441 10.1016/j.bbagen.2017.01.031.

442 Hou, Y.M., and Schimmel, P. (1988). A simple structural feature is a major determinant of the
443 identity of a transfer RNA. *Nature* 333(6169), 140-145. doi: 10.1038/333140a0.

444 Hussain, T., Kruparani, S.P., Pal, B., Dock-Bregeon, A.C., Dwivedi, S., Shekar, M.R., et al. (2006).
445 Post-transfer editing mechanism of a D-aminoacyl-tRNA deacylase-like domain in threonyl-
446 tRNA synthetase from archaea. *Embo J* 25(17), 4152-4162. doi: 10.1038/sj.emboj.7601278.

447 Ibba, M., and Soll, D. (2000). Aminoacyl-tRNA synthesis. *Annu Rev Biochem* 69, 617-650. doi:
448 10.1146/annurev.biochem.69.1.617.

449 Ishikura, H., Nagaoka, Y., Yokozawa, J., Umehara, T., Kuno, A., and Hasegawa, T. (2000).
450 Threonyl-tRNA synthetase of archaea: importance of the discriminator base in the
451 aminoacylation of threonine tRNA. *Nucleic Acids Symp Ser* (44), 83-84. doi:
452 10.1093/nass/44.1.83.

453 Jakubowski, H. (2012). Quality control in tRNA charging. *Wiley Interdiscip Rev RNA* 3(3), 295-310.
454 doi: 10.1002/wrna.122.

455 Jani, J., and Pappachan, A. (2022). A review on quality control agents of protein translation - The
456 role of Trans-editing proteins. *Int J Biol Macromol* 199, 252-263. doi:
457 10.1016/j.ijbiomac.2021.12.176.

458 Kelly, P., Backes, N., Mohler, K., Buser, C., Kavoor, A., Rinehart, J., et al. (2019). Alanyl-tRNA
459 Synthetase Quality Control Prevents Global Dysregulation of the *Escherichia coli* Proteome.
460 *mBio* 10(6). doi: 10.1128/mBio.02921-19.

461 Korencic, D., Ahel, I., Schelert, J., Sacher, M., Ruan, B., Stathopoulos, C., et al. (2004). A
462 freestanding proofreading domain is required for protein synthesis quality control in Archaea.
463 *Proc Natl Acad Sci U S A* 101(28), 10260-10265. doi: 10.1073/pnas.0403926101.

464 Kumar, P., Bhatnagar, A., and Sankaranarayanan, R. (2022). Chiral proofreading during protein
465 biosynthesis and its evolutionary implications. *FEBS Lett* 596(13), 1615-1627. doi:
466 10.1002/1873-3468.14419.

467 Kumar, S., Das, M., Hadad, C.M., and Musier-Forsyth, K. (2013). Aminoacyl-tRNA substrate and
468 enzyme backbone atoms contribute to translational quality control by YbaK. *J Phys Chem B*
469 117(16), 4521-4527. doi: 10.1021/jp308628y.

470 Kuncha, S.K., Mazeed, M., Singh, R., Kattula, B., Routh, S.B., and Sankaranarayanan, R. (2018a). A
471 chiral selectivity relaxed paralog of DTD for proofreading tRNA mischarging in Animalia.
472 *Nat Commun* 9(1), 511. doi: 10.1038/s41467-017-02204-w.

473 Kuncha, S.K., Suma, K., Pawar, K.I., Gogoi, J., Routh, S.B., Pottabathini, S., et al. (2018b). A
474 discriminator code-based DTD surveillance ensures faithful glycine delivery for protein
475 biosynthesis in bacteria. *eLife* 7. doi: 10.7554/eLife.38232.

476 Kuzmishin Nagy, A.B., Bakhtina, M., and Musier-Forsyth, K. (2020). Trans-editing by aminoacyl-
477 tRNA synthetase-like editing domains. *Enzymes* 48, 69-115. doi:
478 10.1016/bs.enz.2020.07.002.

479 Lant, J.T., Berg, M.D., Heinemann, I.U., Brandl, C.J., and O'Donoghue, P. (2019). Pathways to
480 disease from natural variations in human cytoplasmic tRNAs. *J Biol Chem* 294(14), 5294-
481 5308. doi: 10.1074/jbc.REV118.002982.

482 Lee, J.W., Beebe, K., Nangle, L.A., Jang, J., Longo-Guess, C.M., Cook, S.A., et al. (2006). Editing-
483 defective tRNA synthetase causes protein misfolding and neurodegeneration. *Nature*
484 443(7107), 50-55. doi: 10.1038/nature05096.

485 Lin, B.Y., Chan, P.P., and Lowe, T.M. (2019). tRNAviz: explore and visualize tRNA sequence
486 features. *Nucleic Acids Res* 47(W1), W542-w547. doi: 10.1093/nar/gkz438.

487 Lin, L., Hale, S.P., and Schimmel, P. (1996). Aminoacylation error correction. *Nature* 384(6604), 33-
488 34. doi: 10.1038/384033b0.

489 Ling, J., Reynolds, N., and Ibba, M. (2009a). Aminoacyl-tRNA synthesis and translational quality
490 control. *Annu Rev Microbiol* 63, 61-78. doi: 10.1146/annurev.micro.091208.073210.

491 Ling, J., So, B.R., Yadavalli, S.S., Roy, H., Shoji, S., Fredrick, K., et al. (2009b). Resampling and
492 editing of mischarged tRNA prior to translation elongation. *Mol Cell* 33(5), 654-660. doi:
493 10.1016/j.molcel.2009.01.031.

494 Ling, J., and Soll, D. (2010). Severe oxidative stress induces protein mistranslation through
495 impairment of an aminoacyl-tRNA synthetase editing site. *Proc Natl Acad Sci U S A* 107(9),
496 4028-4033. doi: 10.1073/pnas.1000315107.

497 Liu, H., Peterson, R., Kessler, J., and Musier-Forsyth, K. (1995). Molecular recognition of tRNA^{Pro}
498 by *Escherichia coli* proline tRNA synthetase *in vitro*. *Nucleic Acids Res.* 23(1), 165-169. doi:
499 10.1093/nar/23.1.165.

500 Liu, Y., Satz, J.S., Vo, M.N., Nangle, L.A., Schimmel, P., and Ackerman, S.L. (2014). Deficiencies
501 in tRNA synthetase editing activity cause cardioproteinopathy. *Proc Natl Acad Sci U S A*
502 111(49), 17570-17575. doi: 10.1073/pnas.1420196111.

503 Liu, Z., Vargas-Rodriguez, O., Goto, Y., Novoa, E.M., Ribas de Pouplana, L., Suga, H., et al. (2015).
504 Homologous trans-editing factors with broad tRNA specificity prevent mistranslation caused
505 by serine/threonine misactivation. *Proc Natl Acad Sci U S A* 112(19), 6027-6032. doi:
506 10.1073/pnas.1423664112.

507 Lu, J., Bergert, M., Walther, A., and Suter, B. (2014). Double-sieving-defective aminoacyl-tRNA
508 synthetase causes protein mistranslation and affects cellular physiology and development. *Nat
509 Commun* 5, 5650. doi: 10.1038/ncomms6650.

510 Ma, X., Bakhtina, M., Shulgina, I., Cantara, W.A., Kuzmishin Nagy, A.B., Goto, Y., et al. (2023).
511 Structural basis of tRNAPro acceptor stem recognition by a bacterial trans-editing domain.
512 *Nucleic Acids Res* 51(8), 3988-3999. doi: 10.1093/nar/gkad192.

513 McClain, W.H., and Foss, K. (1988). Changing the identity of a tRNA by introducing a G-U wobble
514 pair near the 3' acceptor end. *Science* 240(4853), 793-796. doi: 10.1126/science.2452483.

515 McMurry, J.L., and Chang, M.C.Y. (2017). Fluorothreonyl-tRNA deacylase prevents mistranslation
516 in the organofluorine producer *Streptomyces cattleya*. *Proc Natl Acad Sci U S A* 114(45),
517 11920-11925. doi: 10.1073/pnas.1711482114.

518 Mohler, K., and Ibba, M. (2017). Translational fidelity and mistranslation in the cellular response to
519 stress. *Nat Microbiol* 2, 17117. doi: 10.1038/nmicrobiol.2017.117.

520 Murakami, H., Ohta, A., Ashigai, H., and Suga, H. (2006). A highly flexible tRNA acylation method
521 for non-natural polypeptide synthesis. *Nat Methods* 3(5), 357-359. doi: 10.1038/nmeth877.

522 Mursinna, R.S., Lee, K.W., Briggs, J.M., and Martinis, S.A. (2004). Molecular dissection of a critical
523 specificity determinant within the amino acid editing domain of leucyl-tRNA synthetase.
524 *Biochemistry* 43(1), 155-165. doi: 10.1021/bi034919h.

525 Naganuma, M., Sekine, S., Chong, Y.E., Guo, M., Yang, X.L., Gamper, H., et al. (2014). The
526 selective tRNA aminoacylation mechanism based on a single G•U pair. *Nature* 510(7506),
527 507-511. doi: 10.1038/nature13440.

528 Nagaoka, Y., Yokozawa, J., Umehara, T., Iwaki, J., Okamoto, K., Kawarabayasi, Y., et al. (2002).
529 Molecular recognition of threonine tRNA by threonyl-tRNA synthetase from an extreme
530 thermophilic archaeon, *Aeropyrum pernix* K1. *Nucleic Acids Res Suppl* (2), 81-82. doi:
531 10.1093/nass/2.1.81.

532 Nameki, N. (1995). Identity elements of tRNA(Thr) towards *Saccharomyces cerevisiae* threonyl-
533 tRNA synthetase. *Nucleic Acids Res* 23(15), 2831-2836. doi: 10.1093/nar/23.15.2831.

534 Nangle, L.A., De Crecy Lagard, V., Doring, V., and Schimmel, P. (2002). Genetic code ambiguity.
535 Cell viability related to the severity of editing defects in mutant tRNA synthetases. *J Biol
536 Chem* 277(48), 45729-45733. doi: 10.1074/jbc.M208093200.

537 Nangle, L.A., Motta, C.M., and Schimmel, P. (2006). Global effects of mistranslation from an editing
538 defect in mammalian cells. *Chem Biol* 13(10), 1091-1100. doi:
539 10.1016/j.chembiol.2006.08.011.

540 Nomanbhoy, T.K., Hendrickson, T.L., and Schimmel, P. (1999). Transfer RNA-dependent
541 translocation of misactivated amino acids to prevent errors in protein synthesis. *Mol Cell* 4(4),
542 519-528. doi: 10.1016/s1097-2765(00)80203-8.

543 Novoa, E.M., Vargas-Rodriguez, O., Lange, S., Goto, Y., Suga, H., Musier-Forsyth, K., et al. (2015).
544 Ancestral AlaX editing enzymes for control of genetic code fidelity are not tRNA-specific. *J
545 Biol Chem* 290(16), 10495-10503. doi: 10.1074/jbc.M115.640060.

546 Palencia, A., Crépin, T., Vu, M.T., Lincecum, T.L., Jr., Martinis, S.A., and Cusack, S. (2012).
547 Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial
548 leucyl-tRNA synthetase. *Nat Struct Mol Biol* 19(7), 677-684. doi: 10.1038/nsmb.2317.

549 Parrot, C., Moulinier, L., Bernard, F., Hashem, Y., Dupuy, D., and Sissler, M. (2021). Peculiarities of
550 aminoacyl-tRNA synthetases from trypanosomatids. *J Biol Chem* 297(2), 100913. doi:
551 10.1016/j.jbc.2021.100913.

552 Pawar, K.I., Suma, K., Seenivasan, A., Kuncha, S.K., Routh, S.B., Kruparani, S.P., et al. (2017).
553 Role of D-aminoacyl-tRNA deacylase beyond chiral proofreading as a cellular defense
554 against glycine mischarging by AlaRS. *Elife* 6. doi: 10.7554/eLife.24001.

555 Peterson, E.T., and Uhlenbeck, O.C. (1992). Determination of recognition nucleotides for
556 *Escherichia coli* phenylalanyl-tRNA synthetase. *Biochemistry* 31(42), 10380-10389. doi:
557 10.1021/bi00157a028.

558 Ribas de Pouplana, L., and Schimmel, P. (2001). Operational RNA code for amino acids in relation
559 to genetic code in evolution. *J Biol Chem* 276(10), 6881-6884. doi: 10.1074/jbc.R000032200.

560 Routh, S.B., Pawar, K.I., Ahmad, S., Singh, S., Suma, K., Kumar, M., et al. (2016). Elongation
561 Factor Tu Prevents Misediting of Gly-tRNA(Gly) Caused by the Design Behind the Chiral
562 Proofreading Site of D-Aminoacyl-tRNA Deacylase. *PLoS Biol* 14(5), e1002465. doi:
563 10.1371/journal.pbio.1002465.

564 Roy, H., Ling, J., Irnov, M., and Ibba, M. (2004). Post-transfer editing in vitro and in vivo by the beta
565 subunit of phenylalanyl-tRNA synthetase. *Embo J* 23(23), 4639-4648. doi:
566 10.1038/sj.emboj.7600474.

567 Ruan, B., and Söll, D. (2005). The bacterial YbaK protein is a Cys-tRNAPro and Cys-tRNA Cys
568 deacylase. *J Biol Chem* 280(27), 25887-25891. doi: 10.1074/jbc.M502174200.

569 Schimmel, P., Giegé, R., Moras, D., and Yokoyama, S. (1993). An operational RNA code for amino
570 acids and possible relationship to genetic code. *Proc Natl Acad Sci U S A* 90(19), 8763-8768.
571 doi: 10.1073/pnas.90.19.8763.

572 Schuntermann, D.B., Fischer, J.T., Bile, J., Gaier, S.A., Shelley, B.A., Awawdeh, A., et al. (2023).
573 Mistranslation of the genetic code by a new family of bacterial transfer RNAs. *J Biol Chem*
574 299(7), 104852. doi: 10.1016/j.jbc.2023.104852.

575 Silvian, L.F., Wang, J., and Steitz, T.A. (1999). Insights into editing from an Ile-tRNA synthetase
576 structure with tRNAile and mupirocin. *Science* 285(5430), 1074-1077.

577 Sokabe, M., Okada, A., Yao, M., Nakashima, T., and Tanaka, I. (2005). Molecular basis of alanine
578 discrimination in editing site. *Proc Natl Acad Sci U S A* 102(33), 11669-11674. doi:
579 10.1073/pnas.0502119102.

580 Soutourina, J., Plateau, P., and Blanquet, S. (2000). Metabolism of D-aminoacyl-tRNAs in
581 *Escherichia coli* and *Saccharomyces cerevisiae* cells. *J Biol Chem* 275(42), 32535-32542. doi:
582 10.1074/jbc.M005166200.

583 Stehlin, C., Burke, B., Yang, F., Liu, H., Shiba, K., and Musier-Forsyth, K. (1998). Species-specific
584 differences in the operational RNA code for aminoacylation of tRNAPro. *Biochemistry*
585 37(23), 8605-8613. doi: 10.1021/bi980364s.

586 Sun, L., Gomes, A.C., He, W., Zhou, H., Wang, X., Pan, D.W., et al. (2016). Evolutionary Gain of
587 Alanine Mischarging to Noncognate tRNAs with a G4:U69 Base Pair. *J Am Chem Soc*
588 138(39), 12948-12955. doi: 10.1021/jacs.6b07121.

589 Tardif, K.D., and Horowitz, J. (2002). Transfer RNA determinants for translational editing by
590 *Escherichia coli* valyl-tRNA synthetase. *Nucleic Acids Res* 30(11), 2538-2545. doi:
591 10.1093/nar/30.11.2538.

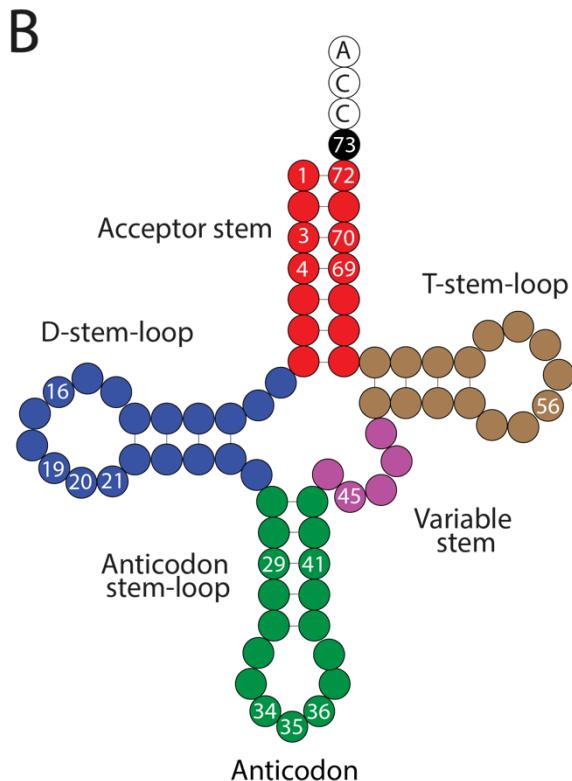
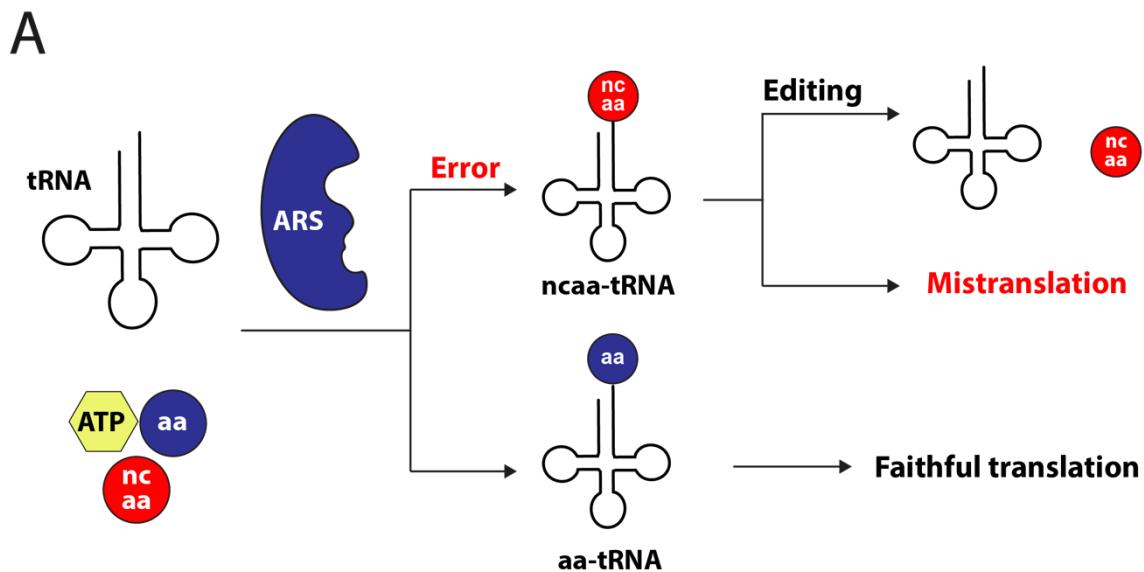
592 Tukalo, M., Yaremchuk, A., Fukunaga, R., Yokoyama, S., and Cusack, S. (2005). The crystal
593 structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing
594 conformation. *Nat Struct Mol Biol* 12(10), 923-930. doi: 10.1038/nsmb986.

595 Vargas-Rodriguez, O., Bakhtina, M., McGowan, D., Abid, J., Goto, Y., Suga, H., et al. (2020).
596 Human trans-editing enzyme displays tRNA acceptor-stem specificity and relaxed amino acid
597 selectivity. *J Biol Chem* 295(48), 16180-16190. doi: 10.1074/jbc.RA120.015981.

598 Vargas-Rodriguez, O., and Musier-Forsyth, K. (2013). Exclusive use of trans-editing domains
599 prevents proline mistranslation. *J Biol Chem* 288(20), 14391-14399. doi:
600 10.1074/jbc.M113.467795.

601 Watkins, R.R., Kavoor, A., and Musier-Forsyth, K. (2024). Strategies for Detecting Aminoacylation
602 and Aminoacyl-tRNA Editing *In Vitro* and In Cells. *Isr. J. Chem.*, e202400009. doi:
603 <https://doi.org/10.1002/ijch.202400009>.

604 Yao, P., Zhu, B., Jaeger, S., Eriani, G., and Wang, E.D. (2008). Recognition of tRNA^{Leu} by *Aquifex*
605 *aeolicus* leucyl-tRNA synthetase during the aminoacylation and editing steps. *Nucleic Acids*
606 *Res* 36(8), 2728-2738. doi: 10.1093/nar/gkn028.

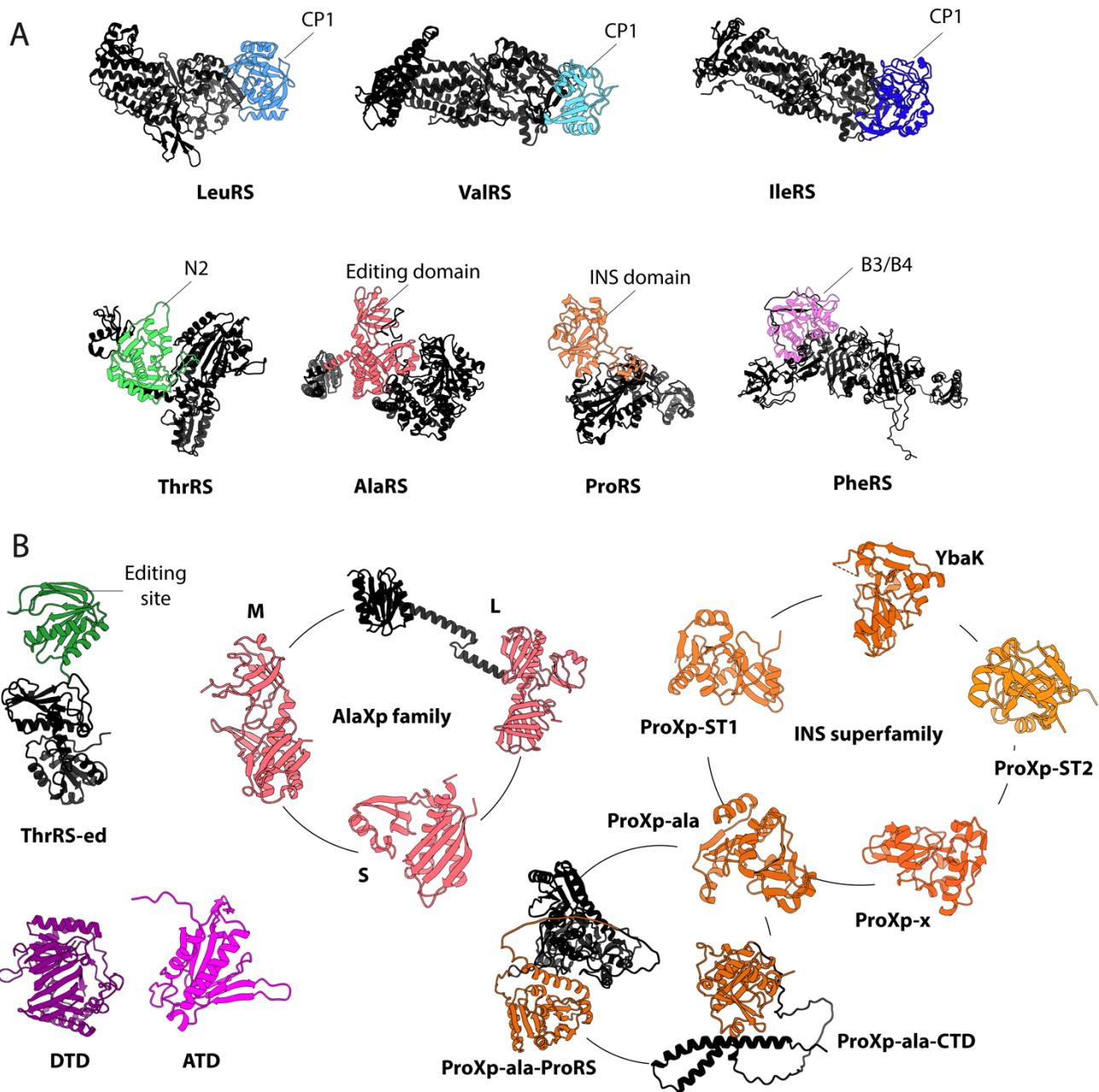


607 Zhang, H., Wu, J., Lyu, Z., and Ling, J. (2021). Impact of alanyl-tRNA synthetase editing deficiency
608 in yeast. *Nucleic Acids Res* 49(17), 9953-9964. doi: 10.1093/nar/gkab766.

609 Zhu, B., Zhao, M.W., Eriani, G., and Wang, E.D. (2007). A present-day aminoacyl-tRNA synthetase
610 with ancestral editing properties. *Rna* 13(1), 15-21. doi: 10.1261/rna.228707.

611 **Figure legends**

612 **Figure 1.** (A) Steps in tRNA aminoacylation and editing. tRNAs are aminoacylated by ARSs
613 producing aa-tRNAs. If the ARS uses a non-cognate amino acid (ncaa), the resulting ncaa-tRNA can
614 be hydrolyzed by the editing enzymes. In the absence of editing checkpoints, the ncaa is incorporated
615 into proteins in response to the wrong codon, causing mistranslation. (B) Representative secondary
616 structures of tRNAs. As discussed in the main text, the numbered bases indicate the various positions
617 important for editing. (C) Summary of the *trans*- and *cis*-editing domains with characterized
618 functions and their known tRNA recognition elements. ^aArchaeal origin; ^bindicates weak or no tRNA
619 specificity; ^cthe specificity of N73 depends on the DTD's origin; ^din the context of tRNA^{Ala};
620 ^eBacterial origin; aaRS “ND” indicates not determined. B and E for ProXp-Ala indicate bacterial and
621 eukaryotic, respectively.

622 **Figure 2.** Representative structures of ARSs' editing domains (A) and free-standing editing enzymes
623 (B). The CP1 domains of LeuRS (PDB 3ZJU), ValRS (PDB 1IVS), and IleRS (PDB 1FFY) are
624 colored in light blue, teal, and navy blue, respectively. The editing domains of ThrRS (PDB 1NYQ),
625 AlaRS (PDB 3WQY), ProRS (PDB 2J3L), and PheRS (PDB 3PCO) are shown in green, pink,
626 orange, and purple, respectively. The other domains (e.g., aminoacylation and anticodon binding
627 domains) are in black. For ThrRS-ed (an AlphaFold model of *S. solfataricus*), the hydrolytic active
628 domain is shown in green, while the anticodon binding domain is in black. The structure of *E. coli*
629 DTD (PDB 1JKE) and the AlphaFold model of human ATD are shown. The INS superfamily is
630 represented by ProRS and five single-domain families: YbaK (PDB 1DBU), ProXp-ST1 (an
631 AlphaFold model of *E. coli*), ProXp-ST2 (an AlphaFold model of *Bordetella parapertussis*), ProXp-
632 ala (PDB 5VXB), ProXp-ala-CTD (an AlphaFold model of *Arabidopsis thaliana*), ProXp-ala-ProRS
633 (an AlphaFold model of *Plasmodium falciparum*) and ProXp-x (PDB 2CX5). ProXp-7, ProXp-8, and
634 ProXp-9 were omitted from the INS superfamily because their activities are unknown. The three
635 known isoforms of AlaXp are represented by the structures of AlaXp-S (PDB 1WXO), AlaXp-M
636 (PDB 2E1B), and AlaXp-L (an AlphaFold model of *Pyrococcus horikoshii*). For simplicity, all
637 structures are displayed in monomeric form.



C

	Substrate	Known tRNA recognition elements
Cis-editing		
AlaRS ^e	Ser/Gly-tRNA ^{Ala}	G3:U70
ProRS ^e	Ala-tRNA ^{Pro}	G35, G36
ThrRS ^a	Ser-tRNA ^{Thr}	U73
PheRS ^e	mTyr/Tyr-tRNA ^{Phe}	G34
ValRS ^e	Thr/Abu-tRNA ^{Val}	A73, A35, C35, G45, U4:A69, U29:A41
IleRS ^e	Ile/Nva-tRNA ^{Ile}	G16/U20/U21
LeuRS ^e	Val/Cys-tRNA ^{Leu}	G19, C56, A35
Trans-editing		
YbaK	Cys-tRNA ^{Pro}	Relaxed ^{b, e}
ProXp-ala (B)	Ala-tRNA ^{Pro}	G72, A73
ProXp-ala (E)	Ala-tRNA ^{Pro}	C72, C73
ProXp-ST1	Ser/Thr-tRNA	ND
ProXp-ST2	Ser/Thr-tRNA	A73 ^e
ProXp-x	Abu/Ala-tRNA	A73 ^e
AlaXp-S	Ser-tRNA ^{Ala}	Relaxed ^{b, a}
AlaXp-M	Ser/Gly-tRNA ^{Ala}	G3:U70 ^a
AlaXp-L	Ser/Gly-tRNA ^{Ala}	G3:U70 ^a
DTD	D-aa-tRNA and Gly-tRNA ^{Ala}	N73 ^c , G3:U70 ^d
ATD	Ala-tRNA ^{Thr}	ND

638

639 **Figure 1**

640

641 Figure 1