
Cycle and Commute: Rare-Event Probability

Verification for Chemical Reaction Networks

Landon Taylor

Utah State University

Logan, Utah, USA

landon.jeffrey.taylor@usu.edu

Bryant Israelsen

Utah State University

Logan, Utah, USA

bryant.israelsen@usu.edu

Zhen Zhang

Utah State University

Logan, Utah, USA

zhen.zhang@usu.edu

AbstractÐIn synthetic biological systems, rare events can cause
undesirable behavior leading to pathological effects. Due to
their low observability, rare events are challenging to analyze
using existing stochastic simulation methods. Chemical Reac-
tion Networks (CRNs) are a general-purpose formal language
for modeling chemical kinetics. This paper presents a fully
automated approach to efficiently construct a large number
of concurrent traces by expanding a sample of known traces.
These traces constitute a partial state space containing only
traces leading to a rare event of interest. This state space
is then used to compute a lower bound for the rare event’s
probability. We propose a novel approach for the analysis of
highly concurrent CRNs, including a CRN reaction independence
analysis and an algorithm that exploits CRN concurrency to
rapidly enumerate parallel traces. We then present a novel
algorithm to add cycles to a partial state space to further increase
the rare event’s probability lower bound to its actual value. The
resulting prototype tool, RAGTIMER, demonstrates improvement
over stochastic simulation and probabilistic model checking.

Index TermsÐconcurrency, rare events, chemical reaction
networks

I. INTRODUCTION

Chemical Reaction Networks (CRNs) are a general-purpose

language for modeling chemical kinetics in genetic regulatory

networks [1], molecular programming [2], and biochemical

reaction systems [3]. Probabilistic behavior is inherent to many

systems modeled in CRNs. For example, gene and protein

expressions include reactions that occur simultaneously with

distinct probabilities. Further, noisy biological systems can

easily introduce unexpected and erroneous behavior. In these

systems, rare events are often highly relevant, as they can

represent infrequent but undesirable behavior that may lead

to pathological consequences. Obtaining reliability guarantees

is thus essential for CRNs. Existing formal verification tech-

niques, such as probabilistic model checking (PMC), can pro-

vide provable guarantees to quantify a rare event’s probability

in CRNs. In practice, it is often necessary to generate a large

number of traces to guarantee an accurate lower bound for a

rare-event probability, as a single trace or a small number of

traces often yields an insufficient estimate. Existing PMC tools

are often unable to enumerate large or infinite state spaces to

gather traces and verify a rare event’s probability [4]. The

computation of a rare event’s probability can easily become

intractable in this case.

This paper presents a fully automated approach to exploit a

CRN model’s concurrency to rapidly expand a small sample of

traces into a partial state space that only includes traces leading

to a rare event of interest. This partial state space guarantees a

lower bound for the rare-event probability. We first propose an

independence relation analysis for CRN reactions. It enables

a novel parallel trace discovery algorithm that effectively

expands a small number of traces. Additionally, we present a

novel algorithm to detect and add productive cycles to explored

states. Together, the constructed partial state space is used to

compute the rare event’s probability lower bound.

In benchmarking tests, a prototype implementation, Cycle &

Commute expansion of the Random Assume Guarantee Test-

ing Induced Model Executions for Reachability (RAGTIMER)

tool [5], demonstrates encouraging results for several challeng-

ing CRN models. We believe that this unique combination

of parallel trace discovery and cycle addition has not been

proposed elsewhere and is a fully automated, effective, and

user-friendly alternative to existing rare-event simulation ap-

proaches for the analysis of CRN rare-event properties.

II. MOTIVATING EXAMPLE

The modified yeast polarization model [6] was modified

from the pheromone-induced G-protein cycle in Saccha-

romyces cerevisia [7] with a constant ligand population that

keeps it away from reaching equilibrium [8], as follows:

R1 : ∅
0.0038
−−−−→ R, R2 : R

4.00×10−4

−−−−−−−→ ∅,

R3 : L + R
0.042
−−−→ RL + L, R4 : RL

0.010
−−−→ R,

R5 : RL + G
0.011
−−−→ Ga + Gbg, R6 : Ga

0.100
−−−→ Gd,

R7 : Gd + Gbg
1.05×103
−−−−−−→ G, R8 : ∅

3.21
−−→ RL.

This CRN has eight chemical reactions interacting with

the species vector [R,L,RL,G,Ga, Gbg, Gd]. All reaction

propensities are in molecules per second. The initial state s0 =
[50, 2, 0, 50, 0, 0, 0] represents the corresponding molecule

count. This model incurs a large state space due to its highly

concurrent nature, e.g., R1 and R8 are both independent of all

other reactions. Also, by inspection, one can see that at least

100 reactions must execute to reach a state where Gbg = 50.

As discussed in Section VIII, this model challenges several

cutting-edge probabilistic model checking tools.

1

https://orcid.org/0000-0002-4071-3625
https://orcid.org/0000-0002-9537-2645
https://orcid.org/0000-0002-8269-9489


III. PRELIMINARIES

1) Chemical Reaction Networks (CRNs): A CRN is a tuple

M composed of m chemical species X = {X0, . . . ,Xm−1},
n reactions R = {R0, . . . ,Rn−1}, an initial state s0 : Xm →
Z⩾0, and a vector of all species’ initial molecule count, where

m,n ∈ Z⩾0 and m,n < ∞. A CRN is represented as a

Vector Addition System (VAS) as follows, adapted from [9]. A

reaction tuple Ri = ⟨rvi,pvi, ki, θi⟩ includes the following:

a reactant vector rvi ∈ Z
m
⩾0 representing the stoichiometry

of reactants, a product vector pvi ∈ Z
m
⩾0 representing the

stoichiometry of products, a reaction rate coefficient ki ∈ R
+,

and a propensity function θi : Zm
⩾0 → R

+ representing the

probability that Ri occurs in a state. The state change vector,

λi = pvi−rvi, represents the molecule count update for each

species involved in Ri. In this work, all CRN models follow

the Stochastic Chemical Kinetic (SCK) assumption, which

requires that each reaction Ri occurs nearly instantaneously,

practically limiting elements of λi to the values of 0,±1,±2
and at most three reactants in one reaction [1].

2) CRN Semantics: The underlying model of a CRN is

a Continuous-time Markov Chain (CTMC), where state up-

dates occur in discrete amounts and the probability of state

change is a function of time. Formally, a CTMC is a tuple

C = ⟨S, s0,R,L⟩ where S is a finite state set called the state

space; s0 ∈ S is the initial state; R : S × S → R⩾0 is the

transition rate matrix; and L : S → 2AP is a state labeling

function with atomic proposition set AP . A reaction Ri is

enabled in state s if its propensity function θi(s) evaluates to a

positive value. The propensity function is the product of ki and

the number of possible combinations of reactant molecules:

θi(s) = ki
∏︁

Xj∈Reactanti
(s[j]). Reactanti ⊆ X is the set of

reactants for Ri: Reactanti = {Xα | rvi[α] > 0, ∀0 ⩽ α <
m}. The propensity function is the transition rate R(s, s′)
from state s to s′ in the CTMC C induced by a CRN. The

probability that reaction Ri is selected to occur out of many

reactions is p(s, s′) = R(s,s′)
E(s) , where the exit rate E(s) =∑︁

s′∈post(s) R(s, s′) is the sum of all enabled reaction rates in

s. A CTMC has a non-zero probability of staying in a state.

The probability of exiting a state s in time interval [0, t] is

1−e−E(s)·t, where t ∈ R⩾0 represents real time. For example,

R3 is executed from the given initial state in the motivating

example to reach s1 = [49, 2, 1, 50, 0, 0, 0]. In this state, rv5

and pv5 for R5 are [0, 0, 1, 1, 0, 0, 0] and [0, 0, 0, 0, 1, 1, 0],
respectively; k5 is 0.011; and θ5(s1) = k5(s1[2])(s1[3]) =
0.011 · 1 · 50 = 0.55 > 0, indicating that R5 is enabled in s1.

The state change vector λ5 is [0, 0,−1,−1, 1, 1, 0]. Additional

enabled reactions and their propensities at this state are R1

(0.0038), R2 (0.0196), R3 (4.116), R4 (0.01), and R8 (3.21).

The exit rate E(s1) is 7.9094 and the probability that R5

executes is 0.55/7.9094 ≈ 0.0695.

3) Time-bounded Reachability Property and Target States:

In Continuous Stochastic Logic (CSL) [10], [11], the non-

nested time-bounded transient reachability probability is speci-

fied as P=?(♢
[0,T ]

Ψ). It represents the probability of reaching

rare-event Ψ -states within a time bound of T . In this work, a

target Ψ is an equality condition on exactly one species and

is not satisfied in s0. Formally, let condition Ψ be XΨ = CΨ ,

where CΨ ∈ Z⩾0 and s0(XΨ ) ̸= CΨ . A state si is a

target state sΨ if and only if si |= Ψ . This work provides

a guaranteed lower bound on the solution to P=?(♢
[0,T ]

Ψ).
4) Model Execution: Denote an execution of reaction Ri

from state sk as s′k = sk+λi. Denote ªreaction Ri is enabled

to execute at state skº as ∀0 ⩽ α < m, sk[α]+λi[α] ⩾ 0. Let

a run Ξ indicate a sequence of reactions. Reactions Ri and

Rj are adjacent if Rj immediately follows Ri in Ξ. Run Ξ
is a valid run from a state si (i.e., Valid(Ξ) holds for si) if no

reaction in Ξ is disabled when Ξ’s execution begins at state si.
A trace ρ indicates a valid run starting with s0 and terminating

at a target state sΨ . A seed trace is a trace used as an input for

the methods presented in this paper. Note that CRNs are often

provided without upper bounds on the species count, which

creates an infinite-state CTMC. However, because this work

explores only finite traces from s0 to Ψ -states, the partial state

space constructed from these traces is finite.

In this work, seed traces are generated using the trace gen-

eration feature in RAGTIMER. RAGTIMER uses compositional

testing with assume-guarantee reasoning to rapidly generate

many shortest traces.

IV. RELATED WORK

A CRN can be represented as a Vector Addition System

(VAS) [9], sometimes described as a Petri net [12]. Reacha-

bility analysis, cycle detection, and other properties make VAS

a convenient formalism to represent a CRN [13]±[16].

Rare-event properties often found in CRNs pose a challenge

to modern stochastic simulation and probabilistic verification

methods due to their extremely low observability. The ef-

fectiveness of the weighted Stochastic Simulation Algorithm

(wSSA) [17] heavily relies on a user-specified probability

biasing scheme to favor reactions leading to a rare event.

Extensions of wSSA (e.g., [18]±[20]) have substantially im-

proved its efficiency. As an alternative to wSSA, the weighted

ensemble (WE) technique [21], [22] has been used to sam-

ple CRN rare events [23], [24]. Existing statistical model

checking (SMC) techniques (e.g., [25], [26]) integrate rare-

event methods. Importance sampling [27], [28] weighs the

rare-event probability to bias simulation in order to increase

the likelihood of encountering rare events of interest. It then

compensates for the loss to yield an unbiased probability.

In importance splitting [29]±[31], an importance function,

potentially constructed manually, is used to reward or ter-

minate simulation traces to divide a model’s state space into

contiguous levels ordered by increasing likelihood of reaching

a rare event [32], [33]. Authors of [34] present an auto-

mated importance function derivation technique and recently

re-implemented the extended RESTART with the prolonged

retrials importance technique [35], [36] in the SMC engine

modes [34], [37], available in the MODEST TOOLSET [38].

The proposed method is fully automated and does not

require expert knowledge of the CRN model. It is less compu-

tationally intensive than other rare-event analysis methods, as

2



it neither requires rare-event biasing computations nor wastes

computational effort pursuing runs that do not lead to a rare

event. Lastly, it yields a probability lower-bound with provable

guarantees instead of a probability estimate.

V. CRN INDEPENDENCE AND COMMUTABILITY

CRNs are intrinsically highly concurrent. Consider the

motivating example in Section II. Reactions R1 and R8 are

always enabled, regardless of the current state of the CRN. By

leveraging properties of the VAS representation of a CRN, we

present a novel analysis of the independence relation among

CRN reactions, enabling effective state space exploration.

A. Independence Relation for CRN Reactions

The study of action independence can be traced back to the

work of Lipton [39] and Mazurkiewicz [40] on commuting

concurrent actions. Mazurkiewicz traces are equivalent classes

of action sequences. Action independence has also been the

foundation of partial order reduction techniques (e.g. [41]±

[43]) for verifying concurrent system correctness. We propose

an independence relation specific to reactions in a CRN.

Definition 1 (Independence of CRN Reactions): Two ad-

jacent reactions Ri and Rj (defined in Section III-4) are

independent and enabled at state sk if and only if:

1) Ri and Rj can execute in either order from sk:

(sk + λi) + λj = (sk + λj) + λi.

2) Rj is enabled after Ri executes at sk:

∀0 ⩽ α < m, (sk + λi)[α] + λj [α] ⩾ 0.

3) Ri is enabled after Rj executes at sk:

∀0 ⩽ α < m, (sk + λj)[α] + λi[α] ⩾ 0.

If Ri and Rj are not independent, they are dependent.

Because a VAS representation of a CRN reaction involves

only vector addition, condition (1) is true in every state for

which both conditions (2) and (3) hold. That is, because

vector addition is commutative and associative, firing a series

of enabled reactions from a designated state in any order

always results in the same final state. Conditions (2) and

(3) thus become sufficient and necessary conditions for the

independence of CRN reactions.

B. Commutability of Reactions

Conditions (2) and (3) described above enable reaction inde-

pendence (and thus commutability) to be further categorized.

We propose three classes to represent commutability between

adjacent reactions: trivially, semi-trivially, and conditionally

commutable pairs. Adjacent reactionsRi andRj are a trivially

commutable pair iff ∀ 0 ⩽ α < m, λi[α], λj [α] ∈ Z⩾0.

That is, Ri and Rj are trivially commutable at all states if

they require no reactants to produce their products. Ri and

Rj are a semi-trivially commutable pair iff ∀ 0 ⩽ α <
m, rvi[α] = 0 ∨ rvj [α] = 0. That is, Ri and Rj are

semi-trivially commutable at sk if they share no reactants and

are both enabled at sk. Intuitively, reactions R2 and R4 in

the motivating example are semi-trivially independent because

they share no reactants. If a state sk provides sufficient R to

enable R2 and sufficient RL to enable R4, then it is always

the case that R2 and R4 are enabled to execute in any order

from sk. If Ri and Rj are neither trivially nor semi-trivially

commutable, they are conditionally commutable.

Trivially and semi-trivially commutable pairs do not require

explicitly checking conditions (2) or (3), enabling state ex-

ploration to bypass the need to simulate adjacent reactions

to determine commutability. In trivially commutable pairs, λi

and λj contain only non-negative integers, so it is always the

case that λi+λj contains only non-negative integers. In semi-

trivially commutable pairs, each element of λi + λj contains

at least the lowest negative value in reactants of either λi or

λj , because Ri and Rj do not share reactants. Thus, one

reaction in a semi-trivially commutable pair cannot disable

the other, so if Equation 1 holds, conditions (2) and (3) must

also hold. Checking Equation 1 removes the need to simulate

semi-trivially commutable reactions directly, conserving effort

while exploring the state space. Conditionally commutable

pairs require conditions (2) and (3) to be checked explicitly.

∀0 ⩽ α < m, (sk[α] + λi[α] ⩾ 0 ∧ sk[α] + λj [α] ⩾ 0) (1)

C. Sequences of Conditionally Commutable Reactions

Given a run consisting of a sequence of κ (potentially re-

peating) reactions Ξ = R0,R1, . . . ,Rκ−1, it may be desirable

to check that firing a sequence of reactions Ξ from s0 produces

a valid run (i.e. each reaction in Ξ is enabled when Ξ is

executed in order). If Ξ contains conditionally commutable

pairs of reactions, Equation 2 checks that Ξ is a valid run

from a state sx. In the motivating example, a valid run from

the initial state s0 is R8, R5; while an invalid run from s0 is

R5, R8 because R5 is not enabled from the initial state, but

firing R8 enables the execution of R5.

Valid(Ξ) := (∀j ⩽ κ, 0 ⩽ i < m, sx +

j∑︂

α=0

λα[i] ⩾ 0) (2)

VI. PARALLEL TRACES VIA COMMUTATION

Exploring the inherent concurrency in CRN models helps

to discover traces contributing to a rare event’s probability.

These traces may be obtained by various methods. Results

presented in this paper use traces generated by the prototype

tool RAGTIMER. CRN models often contain a large volume

of parallel traces (i.e., traces that differ by a small number

of reactions or arrive at the same state while passing through

alternative intermediate states).

To obtain a lower bound for the rare event’s probability, we

desire to accumulate probability from a large number of traces

to a rare event as efficiently as possible. We suggest parallel

traces are an efficient way to accumulate probability for rare

events. Algorithm 1 finds parallel traces using Equations 1

and 2 to discover pairs of independent, commutable reactions.

For example, interrupting a seed trace from the motivating

example by firing R1 at a random state forms a nearly-

identical trace and increases the overall probability lower

bound relative to the seed trace alone.

Figure 1 illustrates this principle on a small toy example. In

this example, the seed trace (blue) contains reactions R0, R1,

3



and R2. By interrupting this seed trace with a universally-

enabled reaction Ra, it is possible to obtain many parallel

traces and increase the lower-bound of the probability of reach-

ing a target state. This particular example shows two unique

target states with four additional traces, so the probability of

reaching a target is increased compared to the probability of

the seed trace alone. In some models, parallel traces arrive

at the same target state as the seed trace via an alternative

reaction sequence. Having two target states, as is the case

in Figure 1, is allowed but not required for parallel trace

exploration; only target state s′
Ψ

is required.

s0 s1 s2 sΨ

s'0 s'1 s'2 s'Ψ

Ra Ra Ra Ra

R0 R1 R2

R0 R1 R2

Fig. 1: Parallel trace construction via transition commutation.

A. Trace Commutation Algorithm

Algorithm 1 details the procedure for exploring parallel

traces contained in the ªTracesº set, which contains seed traces

generated by RAGTIMER or a user’s method of choice. As the

main procedure, BUILDTRACES builds a partial state space for

each seed trace in ªTracesº, then calls the recursive function

COMMUTE on each trace, which recursively explores traces

parallel to each seed trace and builds a partial state space

as it explores. Using commutability conditions presented in

Section V, Algorithm 1 attempts to find commutable reactions

along the entire length of a seed trace. To efficiently explore

traces leading to a rare event, it attempts to commute reactions

that are enabled from every state along the seed trace.

In Figure 1, for instance, line 2 of Algorithm 1 selects the

seed trace R0, R1, R2 as ρ. In lines 3 and 4, it builds a

partial state space for the seed trace, then discovers Ra ∈ E.

In COMMUTE, it executes the prefix (line 11), which is initially

empty but is extended during recursion to list the sequence of

commuted reactions to fire before firing the reactions from the

seed trace. In lines 12 and 13, states along the parallel trace

ρ′ (shown in yellow on the top of Figure 1) are discovered.

In lines 14 and 15, ρ′ is built from the commuted transition

Ra. Finally, in line 16, the function recursively attempts

to commute transitions along the parallel trace ρ′, which

now includes prefix Ra. This recursive process is shown in

Figure 2. The seed trace, shown in blue with s0, leads to

the discovery of three parallel traces shown in yellow. These

traces, with sb, sc, and sd, are then recursively analyzed. For

instance, it may lead to the discovery of two more parallel

traces, shown in green with states se and sf .

Algorithm 1 Commuting universally enabled transitions

Require: M = ⟨X,R, s0⟩, Ψ , Traces.

1: procedure BUILDTRACES

2: for Trace ρ in Traces do

3: Build the state space for states along ρ
4: E ← enabled reactions along ρ
5: COMMUTE(∅, ρ, E)

6: BUILDCYCLES ▷ Defined formally in Algorithm 2

7: Clean up the model to save time and memory

8: Export explicit state-transition matrices

9: procedure COMMUTE(Prefix, ρ, Enabled)

10: for Ra ∈ Enabled do

11: Execute Prefix.

12: Fire Ra from each state in ρ to find ρ′

13: E′ ← enabled reactions along ρ′.
14: Execute Ra from s0 of ρ to find s′0 in ρ′.
15: Execute reactions in ρ from s′0 to construct ρ′.
16: COMMUTE((Prefix.append(Ra)), ρ′, E′)

sΨs2s1se

sΨs2s1sc

sΨ

s'Ψ

s2

s'2

s1

s'1

s0

sb

sΨs2s1sf

sΨs2s1sd

Fig. 2: Recursively-commuted partial state space.

B. Termination Conditions on Algorithm 1

Algorithm 1 does not necessarily terminate. Thus, we

propose two methods for determining when to terminate

commutation recursion:

1) The user can specify a maximum recursion depth. This

is a naive approach, but it guarantees termination and

gives flexibility to advanced users; or

2) The algorithm can terminate based on the time bound

T from the model’s CSL property P=?(♢
[0,T ]

Ψ).
The mean state residence time for si is provided by

MRT(si) = 1/E(si). The sum of mean state residence

times along a trace provides the average duration for that

trace. If the average trace duration exceeds or approaches

the property time bound, it is likely not worth exploring

further as traces will become increasingly unlikely. This

approach requires less understanding of the model and

algorithm, so it provides less flexibility but a more

streamlined user experience.

Algorithm 1 is implemented as an extension of the RAG-

TIMER tool. In this implementation, a user can specify if they

prefer to terminate by recursion depth or by analyzing average

trace durations. Approach (1) terminates trivially. Termination

of approach (2) is justified because each reaction adds a

4



positive amount of time to the total average trace duration.

The algorithm will thus either explore the entire available

state space or the average duration will eventually increase to

meet the termination threshold. It is our experience that a very

small time or depth bound is sufficient to obtain a significant

probability boost in the seed traces.

C. Exporting Explicit Models

After exploring parallel traces, each unexplored enabled

reaction at any state is replaced by an absorbing reaction (i.e.,

a new reaction transitioning to an absorbing state) with an

equivalent probability. Formally, let En(si) represent the set

of all reactions enabled in state si. Let Disc(si) represent

the set of all reactions added to the explicit state space, such

that Disc(si) ⊆ En(si). Let Undisc(si) represent the set

reactions in En(si) but not included in the explicit state space,

such that Undisc(si) = En(si)−Disc(si).
Let A(si), defined in Equation 3, indicate the sum of

transition rates directed from state si to an abstract absorbing

state. The absorbing state preserves probability correctness by

consuming any probability that would have been directed to an

unexplored portion of the state space. To obtain a probabilistic

lower-bound, it is assumed that the absorbing state does not

satisfy Ψ . An explicit state space can then be exported for

model checking in a tool such as PRISM [44] or Storm [45].

A(si) =
∑︂

Rj∈Undisc(si)

θ(sj) (3)

D. Lower-Bound Probability Guarantee

Because the presented method explicitly enumerates traces,

the probability obtained by performing probabilistic model

checking on the explicit state graph is guaranteed to be a

lower bound. The seed trace is known to reach a target state,

so finding parallel traces through commutation also produces

traces leading to the same target state. This method is efficient

because every state and reaction (except the absorbing state)

is guaranteed to contribute to a rare event’s probability.

VII. CYCLES FOR PROBABILITY RECAPTURE

CRN models often contain cyclic behavior. Including cycles

in a state space is an effective way to increase the total number

of explored traces without greatly increasing the total number

of states explored. In many models, the exploration of cycles

can increase the probability lower bound by redirecting some

of the probability that would otherwise be redirected to an

absorbing state (see Section VI-C) to a target state.

While a number of cycle exploration methods have been

explored (in [13], for instance), we found a simple combina-

torial analysis of reactions sufficient to efficiently generate a

large number of cycles for the purposes of this work. This

approach involves testing multisets of reactions up to a user-

specified bound and selecting multisets of reactions such that

the sum of state change vectors corresponding to reactions

within each multiset is equal to the zero vector.

Formally, a cycle ci is a κ-multiset containing κ reactions

such that the sum of all reaction state change vectors in

ci is the zero vector. Let ªCycleListº be a set of known

cycles. Algorithm 2 presents an approach to augmenting the

probability lower bound by adding cycles into a partial state

space. Let ω(ci) represent a permutation of reactions in ci,
with Ω(ci) defined as the set of all possible ω(ci). Define

min(ω(ci)) as a vector of length m (i.e., a vector with one

element per species) such that ∀0 ≤ α < m, min(ω(ci))[α] =
minRj∈ω(ci)

∑︁j
k=0 λk[α]. In Line 4 of Algorithm 2, this is

achieved via a vector copy operation. Intuitively, the min-

imal value of species α in ω(ci) is either non-negative,

indicating species α is never consumed, or it is negative. If

min(ω(ci))[α] = −γ, at some point, ω(ci) has consumed and

has not replenished γ molecules of species l. In Algorithm 2,

min(ω(ci)) determines which states are candidates for the

addition of ω(ci). If a state si does not provide enough of

a given reactant to execute ω(ci), i.e. if Valid(ω(ci)) does

not hold at state si, cycle ω(ci) cannot be added to si. By

finding the minimal value for a molecule count during a cycle,

it becomes unnecessary to simulate a cycle from every state

to determine if it is possible to add the cycle to the state. This

saves computational effort while enabling cycles to be added to

every allowable state. Maximum cycle lengths are specified by

users, and all allowable cycles up to the user-specified length

are added to the state space.

In the motivating example, executing R2 followed by R1

constitutes a permutation ω(c) of the cycle with length two,

i.e., c = {R1,R2}. Because this cycle causes a degradation

of R followed by a generation of R, min(ω(c))[0] = −1. That

is, ω(c) can only be added to state si if si[0] ⩾ 1.

Algorithm 2 Adding cycles to a partial state space

Require: M = ⟨X,R, s0⟩, CycleList.

1: procedure BUILDCYCLES

2: for Cycle ci in CycleList do

3: for Cycle permutation ω(ci) in Ω(ci) do

4: min(ω(ci))← minRj∈ω(ci)

∑︁j
k=0 λk

5: for State sx in discovered state space do

6: for α ∈ [0,m) do

7: if sx[α] + min(ω(ci))[α] ≥ 0 then

8: Add ω(ci) to sx

Adding even one cycle to a trace can increase the probability

of that trace. Because Algorithm 1 produces an explicit state

space, the task of evaluating the overall probability impact of

cycles is given to a probabilistic model checker. This enables

only a few additional states in the explicit state space to

influence the probability of the model by providing a larger

number of traces. For example, Figure 3 shows the partial state

space from Figure 1. An arbitrary cycle (represented by three

green states) is enabled to be executed from five states, so

rather than direct reactions from those states to an absorbing

state, the cycles redirect part of the probability back into the

trace leading to the target rare-event state. Note that in this

example, the cycle is not added to state s1. In a realistic model,

this happens when s1 does not provide sufficient reactants to

5



enable the full execution of the cycle.

s0 s1 s2 sΨ

s'0 s'1 s'2 s'Ψ

Ra Ra Ra Ra

R0 R1 R2

R0 R1 R2

Fig. 3: Cycles added to five states in a partial state space.

It is occasionally the case that cycles add states and tran-

sitions (and thus computation time and memory for proba-

bilistic model checking) to a state space without contributing

significantly to the rare event’s probability bound. This is

largely the case when one or more states along a cycle has

a large absorbing rate relative to its other outgoing rates (i.e.,

when it is more likely that starting a cycle will lead to an

absorbing state than return to the original trace). If enough

of the probability that flows into the cycle does not flow back

toward the target state, the cycle is not sufficiently valuable and

need not be added. Given a desirable threshold T (in our tests,

a high threshold of around 0.98) of the ratio A(si)/E(si),
Lines 7-8 of Algorithm 2 may be adapted to include a cycle

addition benefit heuristic as shown in Equation 4. The ratio

A(si)/E(si) intuitively represents how much probability is

directed to an absorbing state versus into a trace.

if sx[y] +min(ω(ci))[y] ≥ 0 ∧A(si)/E(si) < T

then Add ω(ci) to sx (4)

VIII. RESULTS AND DISCUSSION

The parallel trace exploration and cycle addition methods

presented in this paper are implemented as part of a prototype

tool, RAGTIMER, which interfaces with the PRISM API [44].

Prototype versions of RAGTIMER and its Cycle & Commute

expansion are freely available1. This tool quickly generates

many seed traces. The benchmarking results presented in this

paper were obtained on an AMD Ryzen Threadripper 12-Core

3.5 GHz Processor and 132 GB of RAM, running Ubuntu

22.04 LTS. We allocated one CPU and 16 GB of RAM to

test our approach on all four challenging case studies and

compared our method’s results to those of other probabilis-

tic verification tools. In each case study, ªDefault Cycle &

Commuteº indicates that the default settings for RAGTIMER

are used. The default settings include generating 100 shortest

1RAGTIMER v0.0 (trace generation) and v0.1 (Cycle & Commute) are
available as releases at https://github.com/fluentverification/ragtimer/tags.

traces, using a fixed recursion bound of 20 (i.e., limit the

number of calls to the COMMUTE function in Algorithm 1

to 20), and adding cycles of two reactions after state space

construction. These default settings give users an acceptable

result for most models, while ªOptimized Cycle & Commuteº

indicates custom settings for each model.

1) Single Species Production-Degradation Model: The

model describes a production-degradation interaction between

two species [17]: R1 : S1
1.0
−−→ S1+S2,R2 : S2

0.025
−−−→ ∅. The

initial state for the species vector [S1, S2] is s0 = [1, 40],
while the desired CSL property is P=?(♢

[0,100] S2 = 80).
Figure 4a shows an increase in the lower bound of the

model’s probability as the parallel trace exploration recursion

bound increases during exploration of a single seed trace. The

probability bound asymptotically approaches the actual rare-

event probability, which is 3.0631 × 10−7 [17]. Figure 4b

shows that while the probability increases exponentially, the

number of states increases linearly. Thus, we argue this method

explores a productive part of the state space. Partial state space

exploration required less than 4 seconds at any recursion depth.

0 5 10 15 20 25 30
Recursion Bound

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Pr
ob

ab
ili

ty

1e 7

(a)

0 5 10 15 20 25 30
Recursion Bound

50

60

70

80

90

100

St
at

e 
Co

un
t

(b)

Fig. 4: Single Species Production-Degradation Model.

It is interesting to compare the methods presented in this

paper to simple trace generation, which RAGTIMER is already

capable of. In our benchmarks, RAGTIMER generated a single

seed trace for this model with a probability of 1.03 × 10−16

in 13.26 seconds. It then generated 43 additional traces,

increasing the state space’s probability to 1.34×10−16 in 31.35
seconds. By expanding the seed trace using methods presented

in this paper, however, RAGTIMER achieved a probability

bound of 2.99×10−7 in 21.21 seconds, including the duration

of trace generation, commuting, and model checking. This

is a reasonable lower bound to the true probability of the

model (3.0631 × 10−7). Table I summarizes these results. In

all result tables, ªDefault Commuting Optionsº indicates that

the default options implemented in RAGTIMER are selected;

ªOptimized Commuting Optionsº indicates that configurations

were modified to produce an improved result. In this model,

the default settings produced the best probability bound.

2) Enzymatic Futile Cycle Model: A futile cycle interaction

is modeled in this CRN with six species reacting through six

reactions [17]:

R1 : S1 + S2
1.0
−−→ S3, R2 : S3

1.0
−−→ S1 + S2,

R3 : S3
0.1
−−→ S1 + S5, R4 : S4 + S5

1.0
−−→ S6,

R5 : S6
1.0
−−→ S4 + S5, R6 : S6

0.1
−−→ S4 + S2.

6

https://github.com/fluentverification/ragtimer/tags


TABLE I: Single-Species Production-Degradation Model.

Method Probability Runtime (s)

Generate 1 Trace ⩾ 1.03× 10
−16

13.26

Generate 44 Traces ⩾ 1.34× 10
−16

31.35

Default Cycle & Commute ⩾ 2.99× 10
−7

23.21

Optimized Cycle & Commute ⩾ 2.99× 10
−7

23.21

The initial molecule count for species vector

[S1, S2, S3, S4, S5, S6] forms the initial state:

s0 = [1, 50, 0, 1, 50, 0] and the rare-event property of

interest is P=?(♢
[0,100] S5 = 25). Figure 5 shows the

probability and state count for this model’s partial state space

as the recursion depth increases for a single seed trace. The

probability bound sharply increases while the state space

grows linearly, illustrating that for this model, states that are

considered in the partial state space contribute significantly

to the probability bound. State space construction required

less than four seconds for all recursion depths for this

model. RAGTIMER generated one shortest seed trace for this

0 5 10 15 20 25 30
Recursion Bound

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ili

ty

1e 26

0 5 10 15 20 25 30
Recursion Bound

80

100

120

140

160

St
at

e 
Co

un
t

Fig. 5: Enzymatic Futile Cycle Model.

model with a probability of 1.73 × 10−78 in 15.52 seconds.

Generating 99 more traces increased the probability bound to

2.71× 10−64 in 41.1 seconds. By expanding 100 seed traces

using methods presented in this paper, RAGTIMER achieved

a probability bound of 4.32 × 10−18 in 31.69 seconds,

including time for trace generation, commuting, and model

checking. This is an improvement of 60 orders of magnitude

that requires less runtime than generating a small sample

of additional traces. Table II summarizes these results. This

model’s results appear to be influenced by the quality of

the seed traces used to generate the partial state space. Its

optimized settings involve asking RAGTIMER to generate a

set of short but unique seed traces. After generating 42 unique

traces, it explored a recursion depth of 10 and added all

possible cycles of length two to the state space. Further, cycle

TABLE II: Enzymatic Futile Cycle Model.

Method Probability Runtime (s)

Generate 1 Trace ⩾ 1.73× 10
−78

15.52

Generate 100 Traces ⩾ 2.71× 10
−64

41.10

Default Cycle & Commute ⩾ 1.45× 10
−26

27.92

Optimized Cycle & Commute ⩾ 4.32× 10
−18

31.69

addition boosts the probability of this model without requiring

significant additional time. We ran 36 tests to account for

this method’s stochastic nature and found that adding only

cycles of length two to the model as described in Section VII

increased the average discovered lower probability bound by

two orders of magnitude (from 2.28×10−21 to 4.92×10−19)

while increasing the average total runtime by less than one

second (from 25.6 to 26.4 seconds).

3) Modified Yeast Polarization Model: The rare event of

interest for our motivating example is the rapid build-up of

Gbg . This is described by the probability of the molecule

count of Gbg increasing from 0 to 50 within 20 seconds:

P=?(♢
[0,20] Gbg = 50). When this model is simulated using

the standard stochastic simulation algorithm (SSA) imple-

mented in the PRISM probabilistic model checking tool, the

total probability for over 500, 000 traces is rounded to 0 due to

floating-point precision limitations, indicating that SSA alone

produced a probability lower than 4.9 × 10−324. However,

when two seed traces are expanded, the probability is found

to be greater than 5.8 × 10−72 after a recursion depth of

6 and with a state space consisting of about 3500 states,

produced in less than 10 seconds, as can be seen in Figure 6.

Because of this model’s infinite state space, the state count

0 1 2 3 4 5 6
Recursion Bound

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8
Pr

ob
ab

ili
ty

1e 72

0 1 2 3 4 5 6
Recursion Bound

500

1000

1500

2000

2500

3000

3500

St
at

e 
Co

un
t

Fig. 6: Modified Yeast Polarization Model.

and probability both appear to increase nearly-linearly with

recursion depth. Therefore, the states in this model’s partial

state space contribute significantly to its probability bound.

RAGTIMER generated 100 seed traces for which PRISM

is unable to compute a nonzero probability (due to floating-

point constraints). By expanding these seed traces using meth-

ods presented in this paper, however, RAGTIMER achieved

a probability of 5.26 × 10−26 in 125.64 seconds, including

trace generation, commuting, and model checking time. These

results are summarized in Table III. Optimized settings for this

model are identical to default settings, but the optimal test used

a set of 100 higher-probability seed traces due to the stochastic

nature of RAGTIMER trace generation.

TABLE III: Modified Yeast Polarization Model.

Method Probability Runtime (s)

Generate 1 Trace ⩾ 0.0 23.34

Generate 100 Traces ⩾ 0.0 66.78

Default Cycle & Commute ⩾ 1.01× 10
−32

167.11

Optimized Cycle & Commute ⩾ 5.26× 10
−26

125.64

4) Simplified motility regulation model: This model con-

sists of nine species reacting through twelve reactions and

represents the genetic mechanism which regulates flagella

7



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Recursion Bound

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Pr

ob
ab

ili
ty

1e 10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Recursion Bound

0

500

1000

1500

2000

2500

St
at

e 
Co

un
t

Fig. 7: Simplified Motility Regulation Model.

formation in Bacillus subtilis [46]:

R1 : codY
0.1
−−→ codY + CodY,

R2 : CodY
0.0002
−−−−→ ∅,

R3 : flache
1.0
−−→ flache + SigD,

R4 : SigD
0.0002
−−−−→ ∅,

R5 : SigD hag
1.0
−−→ SigD + hag + Hag,

R6 : Hag
0.0002
−−−−→ ∅,

R7 : SigD + hag
0.01
−−→ SigD hag,

R8 : SigD hag
0.1
−−→ SigD + hag,

R9 : CodY + flache
0.02
−−→ CodY flache,

R10 : CodY flache
0.1
−−→ CodY + flache,

R11 : CodY + hag
0.01
−−→ CodY hag,

R12 : CodY hag
0.1
−−→ CodY + hag.

The initial molecule count for species vector [codY, flache,

SigD hag, CodY, CodY flache, hag,CodY hag, SigD, Hag]

forms the initial state s0 = [1, 1, 1, 10, 1, 1, 1, 10, 10]. The rare

event property is P=?(♢
[0,10] CodY = 20). Figure 7 shows

that while a single seed trace’s probability is found to be zero,

expanding a single seed trace quickly increases the probability

bound to 1.45 × 10−10. Because the probability and state

count growth both appear to grow exponentially relative to

the recursion bound, it suggests the states explored by this

method contribute efficiently to the rare event probability.

Similarly to the Modified Yeast Reaction Model, generating

100 seed traces produced a low probability bound that was

rounded to zero. By expanding the seed trace using meth-

ods presented in this paper, however, RAGTIMER achieved a

probability of 1.42 × 10−9 in 34.67 seconds, including trace

generation, commuting, and model checking time. Results

from this model are summarized in Table IV. Due to this

model’s complexity, its default recursion depth is 2. Increasing

the recursion depth to 10 results in the optimized probability.

5) Comparison to modes rare-event simulation engine:

The modes statistical model checking tool in the MOD-

EST TOOLSET was able to compute rare-event probabilities

efficiently for the presented case studies, and the reported

probabilities closely match those reported in [17] and [23].

However, modes requires a compositional importance func-

tion for rare-event simulation, which limits the use of global

variables shared between multiple components. While manual

modifications to the model’s importance function can be made

to circumvent this, it requires user intervention and an in-depth

understanding of the CRN model and MODEST language.

TABLE IV: Simplified Motility Regulation Model.

Method Probability Runtime (s)

Generate 1 Trace ⩾ 0.0 13.39

Generate 100 Traces ⩾ 0.0 17.16

Default Cycle & Commute ⩾ 1.77× 10
−11

28.05

Optimized Cycle & Commute ⩾ 1.42× 10
−9

34.67

6) Comparison to probabilistic model checking tools: We

attempted to verify the modified yeast polarization model’s

rare event property with all species’ molecule counts bounded

by the reasonably large range of [0, 150] in the probabilistic

model checker Storm with the SYLVAN library [47]. Although

Storm completed symbolic state space construction quickly,

it failed to complete the CTMC analysis of the model within

30 days due to the task of converting a symbolic state space

to a sparse matrix representation for time-bounded transient

analysis. In another test, the state-truncation probabilistic

model checker STAMINA [48] produced a probability bound

of [1.64×10−6, 23.01×10−6] on the same model after 2 days.

7) Discussion: We claim that our method can compete

effectively against these tools because it requires no in-depth

understanding of a CRN model, a formal modeling language,

or a verification tool. Rather, it requires only a single trace

(obtainable from the implemented functionality in RAGTIMER

or another user-selected method). We argue that our method is

effective because increasing the recursion bound and number

of cycles in our benchmarks reliably provides an improved

probability bound, demonstrating this method explores an

effective region of a state space. This method can also be

used to gain insights to guide model synthesis, as it can report

information about which reactions and cycles cause a rare

event to be more likely. We firmly believe that this model

analysis is a useful tool to guide design decisions and reveal

design flaws, and that in many cases, it is more useful to a

user than a probability report alone.

IX. CONCLUSION

This paper presents a fully-automated approach to expand

a small sample of traces and build a partial state space

containing only states and transitions leading to a rare event

of interest in a CRN model. We propose CRN-specific inde-

pendence conditions accompanied by an algorithmic method

to effectively discover parallel traces that are guaranteed to

reach the rare event of interest. This increases the lower

bound for the rare event’s probability. Adding cycles to a

partial state space further increases the rare-event probability

lower bound. The promising results from the prototype tool

RAGTIMER demonstrate it as an effective and user-friendly

method for CRN model analysis. Future work may include

further investigation of the properties of cycles in CRN explicit

state spaces, integration with other existing probabilistic model

checking tools, and improvement on seed trace generation.

8



Acknowledgment: We thank Arnd Hartmanns (U. Twente)

for helping with MODEST TOOLSET; Chris Winstead (Utah

State U.), Chris Myers (U. Colorado Boulder), and Hao Zheng

(U. South Florida) for their feedback. This work was supported

by the National Science Foundation under Grant No. 1856733.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the funding agencies.

REFERENCES

[1] C. J. Myers, Engineering Genetic Circuits, 1st ed., ser. Chapman &
Hall/CRC Mathematical and Computational Biology. Chapman &
Hall/CRC, July 2009.

[2] D. Soloveichik, G. Seelig, and E. Winfree, ªDna as a universal
substrate for chemical kinetics,º Proceedings of the National Academy

of Sciences, vol. 107, no. 12, pp. 5393±5398, 2010. [Online]. Available:
https://www.pnas.org/doi/abs/10.1073/pnas.0909380107

[3] V. Chellaboina, S. P. Bhat, W. M. Haddad, and D. S. Bernstein,
ªModeling and analysis of mass-action kinetics,º IEEE Control Systems

Magazine, vol. 29, no. 4, pp. 60±78, 2009.
[4] L. Buecherl, R. Roberts, P. Fontanarrosa, P. J. Thomas, J. Mante,

Z. Zhang, and C. J. Myers, ªStochastic hazard analysis of genetic
circuits in iBioSim and STAMINA,º ACS Synthetic Biology, vol. 10,
no. 10, pp. 2532±2540, 2021, pMID: 34606710. [Online]. Available:
https://doi.org/10.1021/acssynbio.1c00159

[5] B. Israelsen, L. Taylor, and Z. Zhang, ªEfficient trace generation for rare-
event analysis in chemical reaction networks,º in Model Checking

Software, G. Caltais and C. Schilling, Eds. Cham: Springer Nature
Switzerland, 2023, pp. 83±102.

[6] B. J. Daigle, M. K. Roh, D. T. Gillespie, and L. R. Petzold, ªAutomated
estimation of rare event probabilities in biochemical systems,º The

Journal of Chemical Physics, vol. 134, no. 4, p. 044110, Jan. 2011.
[7] B. Drawert, M. J. Lawson, L. Petzold, and M. Khammash, ªThe

diffusive finite state projection algorithm for efficient simulation of the
stochastic reaction-diffusion master equation,º The Journal of Chemical

Physics, vol. 132, no. 7, p. 074101, 2010. [Online]. Available:
https://doi.org/10.1063/1.3310809

[8] M. K. Roh, D. T. Gillespie, and L. R. Petzold, ªState-dependent biasing
method for importance sampling in the weighted stochastic simulation
algorithm,º The Journal of Chemical Physics, vol. 133, no. 17, p.
174106, Nov. 2010.

[9] M. Češka and J. KřetÂınskÂy, ªSemi-quantitative abstraction and analysis
of chemical reaction networks,º in Computer Aided Verification, I. Dillig
and S. Tasiran, Eds. Cham: Springer International Publishing, 2019,
pp. 475±496.

[10] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, ªModel-checking
continuous-time Markov chains,º ACM Transactions on Computational

Logic, vol. 1, no. 1, pp. 162±170, Jul. 2000.
[11] M. Kwiatkowska, G. Norman, and D. Parker, Stochastic Model Check-

ing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 220±270.
[12] I. Koch, ªPetri Nets ± A Mathematical Formalism to Analyze Chemical

Reaction Networks,º Molecular Informatics, vol. 29, no. 12, pp. 838±
843, 2010.

[13] J. Leroux, ªPolynomial Vector Addition Systems With States,º in 45th

International Colloquium on Automata, Languages, and Programming

(ICALP 2018), July 9-13, 2018, Prague, Czech Republic, ser. LIPIcs,
I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella, Eds., vol.
107. Prague, Czech Republic: Schloss Dagstuhl - Leibniz-Zentrum
fÈur Informatik, Jul. 2018, pp. 134:1±134:13. [Online]. Available:
https://hal.science/hal-01711089

[14] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis,
ªModelling with Generalized Stochastic Petri Nets,º ACM SIGMETRICS

Performance Evaluation Review, vol. 26, no. 2, p. 2, Aug. 1998.
[15] D. Angeli, P. De Leenheer, and E. D. Sontag, ªA Petri net approach to

the study of persistence in chemical reaction networks,º Dec. 2007.
[16] W. CzerwiÂnski, S. Lasota, R. LaziÂc, J. Leroux, and F. Mazowiecki,

ªReachability in fixed dimension vector addition systems with states,º
May 2020.

[17] H. Kuwahara and I. Mura, ªAn efficient and exact stochastic simulation
method to analyze rare events in biochemical systems,º The Journal of

Chemical Physics, vol. 129, no. 16, p. 165101, Oct. 2008.

[18] C. Jegourel, A. Legay, and S. Sedwards, ªCross-entropy optimisation
of importance sampling parameters for statistical model checking,º in
Proceedings of the 24th international conference on Computer Aided

Verification, ser. CAV’12. Berlin, Heidelberg: Springer-Verlag, 2012,
pp. 327±342.

[19] M. Roh, B. J. J. Daigle, D. T. Gillespie, and L. R. Petzold, ªState-
dependent doubly weighted stochastic simulation algorithm for auto-
matic characterization of stochastic biochemical rare events,º in Journal

of Chemical Physics, vol. 135. American Institute of Physics, 2011.

[20] M. K. Roh and B. J. Daigle, ªSparse++: improved event-based stochastic
parameter search,º BMC Systems Biology, vol. 10, no. 1, p. 109, 2016.
[Online]. Available: https://doi.org/10.1186/s12918-016-0367-z

[21] B. W. Zhang, D. Jasnow, and D. M. Zuckerman, ªEfficient and verified
simulation of a path ensemble for conformational change in a united-
residue model of calmodulin,º Proceedings of the National Academy

of Sciences, vol. 104, no. 46, pp. 18 043±18 048, 2007. [Online].
Available: https://www.pnas.org/doi/abs/10.1073/pnas.0706349104

[22] J. L. Adelman and M. Grabe, ªSimulating rare events using a
weighted ensemble-based string method,º The Journal of Chemical

Physics, vol. 138, no. 4, p. 044105, 2013. [Online]. Available:
https://doi.org/10.1063/1.4773892

[23] R. M. Donovan, A. J. Sedgewick, J. R. Faeder, and D. M. Zuckerman,
ªEfficient stochastic simulation of chemical kinetics networks using a
weighted ensemble of trajectories,º The Journal of Chemical Physics,
vol. 139, no. 11, p. 115105, Sep. 2013.

[24] D. M. Zuckerman and L. T. Chong, ªWeighted ensemble simulation:
Review of methodology, applications, and software.º Annu Rev Biophys,
vol. 46, pp. 43±57, May 2017.

[25] M. Okamoto, ªSome inequalities relating to the partial sum
of binomial probabilities,º Annals of the Institute of Statistical

Mathematics, vol. 10, no. 1, pp. 29±35, 1959. [Online]. Available:
https://doi.org/10.1007/BF02883985

[26] A. Wald, ªSequential tests of statistical hypotheses,º The Annals of

Mathematical Statistics, vol. 16, no. 2, pp. 117±186, 1945. [Online].
Available: http://www.jstor.org/stable/2235829

[27] H. Kahn, ªRandom sampling (monte carlo) techniques in neutron
attenuation problems±I.º Nucleonics, vol. 6, no. 5, p. 27; passim, May
1950.

[28] H. Kahn and A. W. Marshall, ªMethods of reducing sample size in
monte carlo computations,º Journal of the Operations Research Society

of America, vol. 1, no. 5, pp. 263±278, 1953. [Online]. Available:
https://doi.org/10.1287/opre.1.5.263

[29] H. Kahn and T. E. Harris, ªEstimation of particle transmission by
random sampling,º National Bureau of Standards applied mathematics

series, vol. 12, pp. 27±30, 1951.

[30] M. N. Rosenbluth and A. W. Rosenbluth, ªMonte carlo calculation of
the average extension of molecular chains,º The Journal of Chemical

Physics, vol. 23, no. 2, pp. 356±359, 1955. [Online]. Available:
https://doi.org/10.1063/1.1741967

[31] M. Villen-Altamirano, J. Villen-Altamirano et al., ªRestart: a method for
accelerating rare event simulations,º Queueing, Performance and Control

in ATM (ITC-13), pp. 71±76, 1991.

[32] P. L’Ecuyer, F. Le Gland, P. Lezaud, and B. Tuffin, ªSplitting Tech-
niques,º in Rare Event Simulation Using Monte Carlo Methods. John
Wiley & Sons, Ltd, 2009, ch. 3, pp. 39±61.

[33] M. VillÂen-Altamirano and J. VillÂen-Altamirano, The Rare Event Sim-

ulation Method RESTART: Efficiency Analysis and Guidelines for Its

Application. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.
509±547.

[34] C. E. Budde, P. R. D’Argenio, and A. Hartmanns, ªAutomated compo-
sitional importance splitting,º Science of Computer Programming, vol.
174, pp. 90±108, Apr. 2019.

[35] J. VillÂen-Altamirano, ªRestart vs splitting: A comparative study,º Perfor-

mance Evaluation, vol. 121-122, pp. 38±47, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0166531616300839

[36] ÐÐ, ªAn improved variant of the rare event simulation method restart
using prolonged retrials,º Operations Research Perspectives, vol. 6, pp.
1±9, 2019. [Online]. Available: http://hdl.handle.net/10419/246387

[37] C. E. Budde and A. Hartmanns, ªReplicating RESTART with prolonged
retrials: An experimental report,º in Tools and Algorithms for the

Construction and Analysis of Systems - 27th International Conference,

TACAS 2021, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2021, Luxembourg City,

Luxembourg, March 27 - April 1, 2021, Proceedings, Part II, ser.

9

https://www.pnas.org/doi/abs/10.1073/pnas.0909380107
https://doi.org/10.1021/acssynbio.1c00159
https://doi.org/10.1063/1.3310809
https://hal.science/hal-01711089
https://doi.org/10.1186/s12918-016-0367-z
https://www.pnas.org/doi/abs/10.1073/pnas.0706349104
https://doi.org/10.1063/1.4773892
https://doi.org/10.1007/BF02883985
http://www.jstor.org/stable/2235829
https://doi.org/10.1287/opre.1.5.263
https://doi.org/10.1063/1.1741967
https://www.sciencedirect.com/science/article/pii/S0166531616300839
http://hdl.handle.net/10419/246387


Lecture Notes in Computer Science, J. F. Groote and K. G. Larsen,
Eds., vol. 12652. Springer, 2021, pp. 373±380. [Online]. Available:
https://doi.org/10.1007/978-3-030-72013-1 21

[38] A. Hartmanns and H. Hermanns, ªThe Modest Toolset: An integrated
environment for quantitative modelling and verification,º in TACAS, ser.
LNCS, E. ÂAbrahÂam and K. Havelund, Eds., vol. 8413. Springer, 2014,
pp. 593±598.

[39] R. J. Lipton, ªReduction: A method of proving properties of parallel
programs,º Commun. ACM, vol. 18, no. 12, pp. 717±721, dec 1975.
[Online]. Available: https://doi.org/10.1145/361227.361234

[40] A. Mazurkiewicz, ªTrace theory,º in Petri Nets: Applications and Rela-

tionships to Other Models of Concurrency, W. Brauer, W. Reisig, and
G. Rozenberg, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1987, pp. 278±324.

[41] D. Peled, ªAll from one, one for all: on model checking using represen-
tatives,º in Computer Aided Verification, C. Courcoubetis, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1993, pp. 409±423.

[42] P. Godefroid, ªUsing partial orders to improve automatic verification
methods,º in Computer-Aided Verification, E. M. Clarke and R. P.
Kurshan, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991,
pp. 176±185.

[43] A. Valmari, ªStubborn sets for reduced state space generation,º in
Advances in Petri Nets 1990, G. Rozenberg, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1991, pp. 491±515.

[44] M. Kwiatkowska, G. Norman, and D. Parker, ªPrism 4.0: Verification of
probabilistic real-time systems,º in Proceedings of the 23rd International

Conference on Computer Aided Verification, ser. CAV’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 585±591.

[45] C. Hensel, S. Junges, J.-P. Katoen, T. Quatmann, and M. Volk, ªThe
probabilistic model checker Storm,º International Journal on Software

Tools for Technology Transfer, vol. 24, no. 4, pp. 589±610, Aug. 2022.
[46] D. B. Kearns and R. Losick, ªCell population heterogeneity during

growth of bacillus subtilis.º Genes & development, vol. 19 24, pp. 3083±
94, 2005.

[47] T. Dijk and J. Pol, ªSylvan: Multi-core framework for decision
diagrams,º Int. J. Softw. Tools Technol. Transf., vol. 19, no. 6,
pp. 675±696, nov 2017. [Online]. Available: https://doi.org/10.1007/
s10009-016-0433-2

[48] R. Roberts, T. Neupane, L. Buecherl, C. J. Myers, and Z. Zhang,
ªSTAMINA 2.0: Improving scalability of infinite-state stochastic model
checking,º in Verification, Model Checking, and Abstract Interpretation,
B. Finkbeiner and T. Wies, Eds. Cham: Springer International Publish-
ing, 2022, pp. 319±331.

10

https://doi.org/10.1007/978-3-030-72013-1_21
https://doi.org/10.1145/361227.361234
https://doi.org/10.1007/s10009-016-0433-2
https://doi.org/10.1007/s10009-016-0433-2

	Introduction
	Motivating Example
	Preliminaries
	Chemical Reaction Networks (CRNs)
	CRN Semantics
	Time-bounded Reachability Property and Target States
	Model Execution


	Related Work
	CRN Independence and Commutability
	Independence Relation for CRN Reactions
	Commutability of Reactions
	Sequences of Conditionally Commutable Reactions

	Parallel Traces via Commutation
	Trace Commutation Algorithm
	Termination Conditions on Algorithm 1
	Exporting Explicit Models
	Lower-Bound Probability Guarantee

	Cycles for Probability Recapture
	Results and Discussion
	Single Species Production-Degradation Model
	Enzymatic Futile Cycle Model
	Modified Yeast Polarization Model
	Simplified motility regulation model
	Comparison to modes rare-event simulation engine
	Comparison to probabilistic model checking tools
	Discussion


	Conclusion
	References

